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Abstract. In this paper, we introduce a quantile version of past entropy for order statistics and study
some of its properties. It is shown that this measure uniquely determine the quantile function. Two
nonparametric classes of distributions are also defined based on the proposed measure. The closure of
these classes under increasing convex (concave) transformations and weighted variables are discussed.
Moreover, a new stochastic order based on this measure is defined and some features of it are investigated.
We give desirable conditions for a function of a random variable to have more quantile past entropy for
order statistics than original random variable.

1. Introduction

In recent years, the measurement of uncertainty of probability distribution has gained much interest.
An important uncertainty measure is called entropy and is introduced by Shannon (1948). Let X be an
absolutely continuous non-negative random variable representing the lifetime of a component or a system
with distribution function F(x), survival function F̄(x) and density function f (x). The Shannon entropy of
X is defined by

η(X) = −E(log f (X)) = −
∫
∞

0
(log f (x)) f (x)dx. (1)

Shannon entropy has been used by many authors in the context of information theory, we refer to Ebrahimi
et al. (2004), Baratpour et al. (2007), Madadi and Tata (2011, 2014), Zamani and Madadi (2018) and the
references therein. Sometimes, the uncertainty about the remaining lifetime of a system if it is working at
time t is important. Based on this idea, Ebrahimi (1996) introduced the residual entropy of random variable
X at time t as follows

η(X; t) = −
∫
∞

t

(
log

f (x)
F̄(t)

)
f (x)
F̄(t)

dx = log F̄(t) −
1

F̄(t)

∫
∞

t
(log f (x)) f (x)dx. (2)

In many realistic situations, the random lifetime variable is not necessarily related to the future but can also
refer to the past. If at time t the system is observed failed for the first time, then the uncertainty is related
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to the past. The random variable X(t) = (t − X|X ≤ t) is called the past lifetime and its entropy is named
past entropy. The past entropy shows the uncertainty of a system which is observed failed at time t and
has been introduced by Di Crescenzo and Longobardi (2002) as

η̄(X; t) = −
∫ t

0

(
log

f (x)
F(t)

)
f (x)
F(t)

dx = log F(t) −
1

F(t)

∫ t

0
(log f (x)) f (x)dx, (3)

where η̄(X; t) = η(X(t)). For further studies on entropy measures and its applications in past lifetime, we
refer to Di Crescenzo and Longobardi (2002, 2006), Nanda and Paul (2006), Kundu et al. (2010), Sachlas and
Papaioannou (2014), Di Crescenzo and Toomaj (2015), Krishnan et al. (2020) and Calı̀ et al. (2020) and the
references therein.
All of the investigations of uncertainty measures are based on distribution function, however might not be
suitable for the models that have no tractable distribution. An offered way in this condition is using the
quantile function which definition is given in the following. Suppose that X is an absolutely continuous
non-negative random variable with distribution function F(x) and probability density function f (x) as
described before. The quantile function Q(u) of X is defined by

Q(u) = F−1(u) = inf{x : F(x) ≥ u}, 0 ≤ u ≤ 1. (4)

The equation F(Q(u)) = u is obtained using (4). Now, differentiating of this relation with respect to u, yields

q(u) f (Q(u)) = 1,

where f (Q(u)) and q(u) = Q′(u) are called the density quantile function and the quantile density function of
X, respectively and the prime denotes the differentiation. One important measure in reliability analysis is the
reversed hazard rate function λ(x) = f (x)

F(x) which its quantile version is defined byΛ(u) = λ(Q(u)) = (uq(u))−1.
A variety of literature deal with information measures using the quantile function. For example, Sunoj and
Sankaran (2012) have considered the quantile-based Shannon entropy and its residual form as follows

η =

∫ 1

0
log q(p)dp, (5)

and

η(u) = log(1 − u) + (1 − u)−1
∫ 1

u
log q(p)dp, (6)

respectively. The past entropy in relation (3) in terms of the quantile function is introduced by Sunoj et al.
(2013) as

η̄(u) = log u + u−1
∫ u

0
log q(p)dp. (7)

Different approaches of employing the quantile version of various entropies were also introduced to pro-
viding alternative methodology, new results and different methods of stochastic comparisons. We refer to
Sunoj and Sankaran (2012), Yu and Wang (2013), Nanda et al. (2014) and Qiu (2019) for more details.
Suppose that X1,X2, · · · ,Xn are n independent and identically distributed (iid) random variables with an
absolutely continuous distribution function F(x) and probability density function f (x). The order statistics
of this sample is defined by the arrangement of X1,X2, · · · ,Xn from the smallest to the largest and is denoted
as X1:n,X2:n, · · · ,Xn:n. The probability density function of ith order statistics Xi:n, is given by

fi:n(x) =
1

B(i,n − i + 1)
(F(x))i−1(F̄(x))n−i f (x), (8)

where

B(a, b) =
∫ 1

0
xa−1(1 − x)b−1dx; a, b > 0,
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is the beta function.
The density function of ith order statistics in terms of the quantile function is obtained as

fi:n(u) = fi:n(Q(u)) =
1

B(i,n − i + 1)
ui−1(1 − u)n−i 1

q(u)
=
1i(u)
q(u)
, (9)

where 1i(u) = 1
B(i,n−i+1) u

i−1(1 − u)n−i is the probability density function of Beta distribution with parameters
(i,n − i + 1). Because of the applications of order statistics in various applied practical fields, many authors
have considered some of entropy measures for order statistics based on the quantile function. For example,
Sunoj et al. (2017) obtained the quantile versions of entropy and residual entropy of order statistics and
studied their properties. Kumar and Singh (2018) obtained the quantile version of generalized entropy of
order (α, β) for order statistics and obtained this measure for residual and past lifetime variables. Nisa and
Biag (2019) presented some characterization results for the proposed measure by Kumar and Singh (2018).
Various stochastic orders are defined to compare two random variables. Suppose X and Y be two non-
negative random variables with absolutely continuous distribution functions F(x) and G(x), densities f (x)
and 1(x) and quantile functions QX(u) and QY(u), respectively. Furthermore, suppose ΛX(u) and ΛY(u)
indicate their respective reversed hazard quantile functions. Let X1,X2, · · · ,Xn and Y1,Y2, · · · ,Yn are
independent random samples of size n from populations X and Y, respectively. In the following, we recall
some stochastic orders which will be used later.

Definition 1.1. X is said to be smaller than Y in the usual stochastic order (denoted by X ≤st Y), if QX(u) ≤
QY(u) for all u ∈ (0, 1).

Definition 1.2. (Nair et al., 2013). X is said to be smaller than Y in the reversed hazard quantile function
order (X ≤rhq Y), if and only if, ΛX(u) ≤ ΛY(u) for all u ∈ (0, 1).

Definition 1.3. Xi:n is smaller than Yi:n in the dispersive order, (denoted by Xi:n ≤disp Yi:n) if G−1
i:n Fi:n(x) − x is

increasing in x.

Remark 1.4. Barlow and Proschan (1975) showed that G−1
i:n Fi:n(x) = G−1F(x), therefore we can say that Xi:n ≤disp Yi:n

if QY(u) −QX(u) is increasing in u.

There are different distributions that do not have closed-form distribution functions, even though they have
tractable quantile functions. Thus, the study of entropy measures is difficult for these distributions. Thus,
the presentation of entropy measures in terms of the quantile function is useful in this direction and has
several advantages. Firstly, here we can derive the quantile-based past entropy of order statistics for certain
quantile functions which do not have an explicit form for distribution functions and their computations
are simple. Secondly, our approach gives an alternative methodology in the study of past entropy of order
statistics. Further there are certain properties of quantile functions that are not shared by the distribution
function approach. Because of this, we study the quantile form of entropy function in past lifetime for
order statistics in this work. The rest of the paper is organized as follows: In Section 2, we define the
quantile version of past entropy for order statistics and obtain some of its features. We study also this
measure for some lifetime distributions. In Section 3, we define two nonparametric classes of distribution
based on the proposed measure and study the closure of these classes under increasing convex (concave)
transformations and weighting. A new stochastic order based on this measure is also introduced in this
section. Finally, the paper is concluded in Section 4.
Throughout this paper, the terms “increasing” and “decreasing” mean “non-decreasing” and “non-increasing”,
respectively. All integrals and expectations are implicitly assumed to exist whenever they are written.

2. Quantile-based past entropy for order statistics

In some situations, such as reliability or neurobiology a shift-dependent measure of uncertainty is
needed. In this section, we derive past entropy for order statistics from the quantile point of view and study
its properties.
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Theorem 2.1. The quantile form of entropy function in past lifetime for ith order statistics is defined by

η̄Xi:n (u) = −
β(i,n − i + 1)
βu(i,n − i + 1)

∫ u

0
(log 1i(p))1i(p)dp +

β(i,n − i + 1)
βu(i,n − i + 1)

∫ u

0
(log q(p))1i(p)dp + log

βu(i,n − i + 1)
β(i,n − i + 1)

,

(10)

where βu(i,n−i+1)
β(i,n−i+1) is the quantile version of Fi:n(u) with βu(i,n − i + 1) =

∫ u

0 pi−1(1 − p)n−idp, the incomplete beta
function.

Proof. We know that the past entropy for ith order statistics is defined as

η̄(Xi:n, t) = −
∫ t

0

(
log

fi:n(x)
Fi:n(t)

)
fi:n(x)
Fi:n(t)

dx. (11)

It is easy to show that Fi:n(t) = βF(t)(i,n−i+1)
β(i,n−i+1) . Now, by substituting x = Q(p), t = Q(u) in (11) and using relations

(4) and (9), we reach to the desired result.

Remark 2.2. The proposed measure in relation (10) is a special case of the quantile-based generalized entropy of order
(α, β), for order statistics when β = 1 and α→ 1. Considering this fact, the present study concentrates only on those
results which are not presented in Kumar and Singh (2018) and Nisa and Baig (2019).

Corollary 2.3. An equivalent representation of (10) is

η̄Xi:n (u) = −
1

βu(i,n − i + 1)

∫ u

0
(log 1i(p))pi−1(1 − p)n−idp +

1
βu(i,n − i + 1)

∫ u

0
(log q(p))pi−1(1 − p)n−idp

+ log
βu(i,n − i + 1)
β(i,n − i + 1)

. (12)

Order statistics have many applications in the characterization of probability distributions, goodness-of-fit
tests and also in reliability theory. In reliability theory, order statistics are used for statistical modeling. The
(n−k+1)th order statistics in a sample of size n represents the life length of a k-out-of-n system. Particularly,
X1:n and Xn:n give the lifetimes of series and parallel systems, respectively (see Arnold et al. (1992) and
David and Nagaraja (2003)).

Corollary 2.4. The past entropy for the sample minimum X1:n and the sample maximum Xn:n are respectively given
by

η̄(X1:n, t) = −
∫ t

0

(
log

n f (x)(1 − F(x))n−1

1 − (1 − F(t))n

) (
n f (x)(1 − F(x))n−1

1 − (1 − F(t))n

)
dx, (13)

and

η̄(Xn:n, t) = −
∫ t

0

(
log

n f (x)(F(x))n−1

Fn(t)

) (
n f (x)(F(x))n−1

Fn(t)

)
dx. (14)

Corollary 2.5. The corresponding quantile-based past entropy of the first and the nth order statistics are obtained as

η̄X1:n (u) = − log n +
n − 1

n
+ (n − 1)

(1 − u)n

1 − (1 − u)n log(1 − u) + log(1 − (1 − u)n)

+
n

1 − (1 − u)n

∫ u

0
(log q(p))(1 − p)n−1dp, (15)

and

η̄Xn:n (u) = − log n +
n − 1

n
+ log u +

n
un

∫ u

0
(log q(p))pn−1dp, (16)

respectively.
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η̄X1:n (u) and η̄Xn:n (u) measure the quantile-based past entropy of series and parallel systems with i.i.d compo-
nents, respectively. We obtain various properties using η̄X1:n (u), results of η̄Xn:n (u) can be derived similarly.
Now, we consider one example which deals with the Cox proportional reversed hazard (PRH) model.

Example 2.6. The Cox proportional reversed hazards model, defined by ΛY(x) = θΛX(x). Further, this model can be
expressed in terms of the quantile function by,

QY(u) = QX(u
1
θ ), θ > 0.

In addition, in terms of the quantile density function, we have qY(u) = 1
θu

1
θ−1qX(u

1
θ ). The quantile-based past entropy

of the first order statistics is obtained as

η̄Y1:n (u) = − log n + (n − 1)
(1 − u)n

1 − (1 − u)n log(1 − u) +
n − 1

n
+ log(1 − (1 − u)n) − logθ

+ (
1
θ
− 1)

n
1 − (1 − u)n

∫ u

0
(log p)(1 − p)n−1dp +

n
1 − (1 − u)n

∫ u

0
(log qX(p

1
θ ))(1 − p)n−1dp.

There are some models that do not have closed form for distribution functions and probability distribution
functions, but have simple quantile functions. For instance, the following characterization example shows
this fact.

Example 2.7. Suppose X is distributed with the quantile density function as

q(u) = Kuα(1 − u)−(A+α), (17)

where K, α and A are real constants. The past quantile entropy of the sample minimum X1:n is equal to

η̄X1:n (u) = − log n + log K + (n − 1 + A + α)
(1 − u)n

1 − (1 − u)n log(1 − u) + log(1 − (1 − u)n) +
A + α + n − 1

n

+
nα

1 − (1 − u)n

∫ u

0
(log p)(1 − p)n−1dp.

Remark 2.8. The family of distributions (17) contains some important probability distributions such as, Exponential
(α = 0, A = 1), Pareto (α = 0, A < 1), Rescaled beta (α = 0, A > 1), Log-logistic (α = λ − 1, A = 2) and the Life
distribution proposed by Govindarajulu (1977) (α = β − 1, A = −β).

The following example computes the quantile-based past entropy of the first order statistics, η̄X1:n (u), where
the distribution function has no closed form.

Example 2.9. Let X be a random variable with the quantile function Q(u) = 2u − u2, which has no closed form
distribution function. The distribution of X is a special case of Govindarajulu distribution (1977). Then

η̄X1:n (u) = − log n + log 2 + 1 −
2
n
+ log(1 − (1 − u)n) + (n − 2)

(1 − u)n

1 − (1 − u)n log(1 − u).

Table 1 provides the quantile functions and the corresponding quantile-based past entropy of the first order
statistics η̄X1:n (u) of some important lifetime models.
In the case of Generalized Pareto distribution, we want to consider the behavior of the quantile-based past
entropy of the first order statistics. We have

∂
∂b
η̄X1:n (u) =

1
b
> 0,

therefore the entropy is an increasing function of b. Furthermore,

∂
∂a
η̄X1:n (u) = −

1
a + 1

+
1

n(a + 1)2 +
1

(a + 1)2

(1 − u)n

1 − (1 − u)n log(1 − u)

=
−na − (n − 1)

n(a + 1)2 +
1

(a + 1)2

(1 − u)n

1 − (1 − u)n log(1 − u) < 0,
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Table 1: Quantile function and quantile-based past entropy of the first order statistics

Distribution Quantile function η̄X1:n (u)

Exponential −
log(1−u)
λ − log n − logλ + 1 + log(1 − (1 − u)n)

+n (1−u)n

1−(1−u)n log(1 − u)

Uniform a + (b − a)u − log n + (n − 1) (1−u)n

1−(1−u)n log(1 − u) + n−1
n

+ log(1 − (1 − u)n) + log(b − a)

Pareto II α[(1 − u)−
1
c − 1] − log n + log(αc ) + (1 + 1

nc ) + log(1 − (1 − u)n)
+(n + 1

c ) (1−u)n

1−(1−u)n log(1 − u)

Rescaled beta R[1 − (1 − u)
1
c ] − log n + 1 − 1

nc + log(1 − (1 − u)n)
+ log( R

c ) + (n − 1
c ) (1−u)n

1−(1−u)n log(1 − u)

Pareto I σ(1 − u)−
1
α − log n + log( σα ) + 1 + 1

nα + log(1 − (1 − u)n)
+(n + 1

α ) (1−u)n

1−(1−u)n log(1 − u)

Generalized Pareto b
a

[
(1 − u)−

a
a+1 − 1

]
− log n + log(1 − (1 − u)n) + log( b

a+1 )
+(1 + a

n(a+1) ) + (n + a
a+1 ) (1−u)n

1−(1−u)n log(1 − u)

so, η̄X1:n (u) is a decreasing function of a.
Figure 1 gives plots of η̄X1:n (u) of Generalized Pareto distribution with different parameters a and b for the
sample sizes n = 5 and n = 20.
Next, we provide an association between the quantile density function and η̄Xi:n (u).

Corollary 2.10. The quantile-based past entropy of order statistics, η̄Xi:n (u), uniquely determines the quantile density
function by

q(u) =
ui−1(1 − u)n−i

βu(i,n − i + 1)
exp

η̄Xi:n (u) − 1 −
η̄
′

Xi:n
(u)βu(i,n − i + 1)

ui−1(1 − u)n−i

 . (18)

Proof. Differentiating (12) with respect to u, we have

η̄
′

Xi:n
(u) =

ui−1(1 − u)n−i

βu(i,n − i + 1)

{
−η̄Xi:n (u) + log q(u) + 1 − log

ui−1(1 − u)n−i

βu(i,n − i + 1)

}
. (19)

Now, by simplifying the relation (19), we get the desired result.

Example 2.11. If X is distributed as Pareto II with quantile function

Q(u) = α
[
(1 − u)−

1
c − 1

]
, α, c > 0.

Then the quantile-based past entropy of X1:n is given by

η̄X1:n (u) = − log n + log(
α
c

) + (1 +
1
nc

) + log(1 − (1 − u)n) + (n +
1
c

)
(1 − u)n

1 − (1 − u)n log(1 − u). (20)
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Figure 1: Plots of η̄X1:n (u) of Generalized Pareto distribution (GP(a, b)) against u. Figures: (a) b = 0.3, n = 5, (b) b = 0.3, n = 20, (c) b = 1,
n = 5, (d) b = 1, n = 20, (e) b = 20, n = 5, (f) b = 20, n = 20.
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Assume that (20) holds. Using (18), we have

q(u) = exp

η̄X1:n (u) − 1 + log
(1 − u)n−1

β(1,n)
−

η̄
′

X1:n
(u)βu(1,n)

(1 − u)n−1 − log
βu(1,n)
β(1,n)

 ,
or equivalently

q(u) = exp
{
− log n + log(

α
c

) + (1 +
1
nc

) + log(1 − (1 − u)n) + (n +
1
c

)
(1 − u)n

1 − (1 − u)n log(1 − u) − 1

+ log(n(1 − u)n−1) − log(1 − (1 − u)n) −
1
nc
− (n +

1
c

) log(1 − u) − (n +
1
c

)
(1 − u)n

1 − (1 − u)n log(1 − u)
}
.

Now, with simplifying we can write

q(u) =
α
c

(1 − u)−
c+1

c ,

which is the quantile density function of Pareto II distribution.

Theorem 2.12. Let X and Y be two non-negative random variables having common support χ with absolutely
continuous distribution functions, F and G and quantile functions QX and QY, respectively. Then F(x) = G(x), ∀ x ∈
χ, if and only if

η̄Xi:n (u) = η̄Yi:n (u), ∀ 0 < u < 1. (21)

Proof. The necessity part is clear. Now, for proving the sufficiency part, let η̄Xi:n (u) = η̄Yi:n (u) for all u ∈ (0, 1).
Using equation (10) and on simplification, we have∫ u

0
log qX(p)1i(p)dp =

∫ u

0
log qY(p)1i(p)dp.

Therefore the desired result is obtained.

Remark 2.13. The quantile-based past entropy of order statistics η̄Xi:n (u) can be expressed in terms of quantile-based
Shannon entropy of order statistics, ηXi:n , as

η̄Xi:n (u) =
β(i,n − i + 1)
βu(i,n − i + 1)

(∫ u

0
(log q(p))1i(p)dp −

∫ u

0
(log 1i(p))1i(p)dp

)
+ log

βu(i,n − i + 1)
β(i,n − i + 1)

=
β(i,n − i + 1)
βu(i,n − i + 1)

ηXi:n +

∫ 1

u
[log(1i(p)q−1(p))]

pi−1(1 − p)n−i

βu(i,n − i + 1)
dp + log

βu(i,n − i + 1)
β(i,n − i + 1)

,

where ηXi:n = η1i + E1i (log q(U)). Note that η1i is given by Ebrahimi et al. (2004) as

η1i = log B(i,n − i + 1) − (i − 1)[Ψ(i) −Ψ(n + 1)] − (n − i)[Ψ(n − i + 1) −Ψ(n + 1)], (22)

in whichΨ(z) = d
dz (logΓ(z)) is digamma function.

The weighted distributions are widely used in many fields such as medicine, ecology, reliability, analysis of
family data, for the improvement of proper statistical models. The concept of weighted distributions was
initiated by Fisher (1934). Then Rao (1965) and Rao (1985) introduced weighted distributions in a unified
way. Let X be a univariate random variable with distribution function F and probability distribution
function f . Then the weighted version of X with univariate non-negative weight function w with 0 <
E[w(X)] < ∞, is denoted by Xw. The probability density function of Xw is given by fw(x) = w(x) f (x)

E[w(X)] . When
w(t) = t, Xw is called the length (or size) biased random variable. The corresponding density quantile
function using fw is obtained as

fw(Q(u)) = w(Q(u)) f (Q(u))/µ,

where µ =
∫ 1

0 w(Q(p)) f (Q(p))d(Q(p)) =
∫ 1

0 w(p)dp. So, the quantile density function of Xw is given by
1

qw(u) =
w(Q(u))
µq(u) .
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Theorem 2.14. The quantile-based past entropy for ith order statistics corresponding to Xw, η̄Xw
i:n

(u), is obtained as

η̄Xw
i:n

(u) = η̄Xi:n (u) + logµ −
β(i,n − i + 1)
βu(i,n − i + 1)

∫ u

0
(log w(Q(p)))1i(p)dp

= η̄Xi:n (u) + logµ −

∫ u

0 (log w(Q(p)))pi−1(1 − p)n−idp∫ u

0 pi−1(1 − p)n−idp
. (23)

3. Ageing classes and stochastic comparisons

It is often useful to identify different classes of probability distributions based on the uncertainty
measures. In the following, we define two nonparametric classes of distribution based on η̄Xi:n (u).

Definition 3.1. X is said to have increasing (decreasing) past lifetime quantile entropy of order statistics
(IPQEO (DPQEO)), if η̄Xi:n (u) is increasing (decreasing) in u ≥ 0.

If X is IPQEO (DPQEO), then from (19) we can show

η̄Xi:n (u) ≤ (≥)1 + lo1
q(u)βu(i,n − i + 1)

ui−1(1 − u)n−i ,

which gives the upper (lower) bound for η̄Xi:n (u). According to Table 1 and for Uniform distribution, we
have

η̄
′

X1:n
(u) =

(1 − u)n−1

1 − (1 − u)n − n(n − 1)
(1 − u)n−1

[1 − (1 − u)n]2 log(1 − u) > 0.

So, the uniform random variable belongs to increasing past lifetime quantile entropy of first order statistics.
For Power function distribution with quantile function Q(u) = αu

1
β , we obtain η̄Xn:n (u) = − log n + log(αβ ) +

1 + 1
β log u − 1

nβ and η̄
′

Xn:n
(u) = 1

βu > 0, therefore the Power function random variable has increasing past
lifetime quantile entropy of nth order statistics. For Exponential distribution

η̄
′

X1:n
(u) = −n2 (1 − u)n−1

[1 − (1 − u)n]2 log(1 − u) > 0,

so, this distribution belongs to increasing past lifetime quantile entropy of first order statistics class.

Remark 3.2. The reversed hazard rate ordering do not imply quantile past lifetime entropy of the first order statistics.

Example 3.3. In Exponential distribution, Λ(u) = λ( 1
u − 1) and Λ′ (u) < 0, therefore this distribution is DRHR.

While we showed that this distribution is IPQEO in first order statistics.

The closure of the IPQEO (DPQEO) class under increasing convex (concave) transformations is studied in
the following.

Theorem 3.4. If X is IPQEO (DPQEO) and ϕ(.) is a non-negative, increasing and convex (concave) function, then
ϕ(X) is also IPQEO (DPQEO).

Proof. Let Y = ϕ(X) be a non-negative, increasing and convex (concave) function. In addition, let 1(y) be
density function of Y, then

1(y) =
f (ϕ−1(y))
ϕ′ (ϕ−1(y))

=
1

ϕ′ (QX(u))qX(u)
,

and qY(u) = qX(u)ϕ
′

(QX(u)). Now using (10), the past quantile entropy of Yi:n is obtained as

η̄Yi:n (u) = −
β(i,n − i + 1)
βu(i,n − i + 1)

∫ u

0
(log 1i(p))1i(p)dp +

β(i,n − i + 1)
βu(i,n − i + 1)

∫ u

0
(log qY(p))1i(p)dp + log

βu(i,n − i + 1)
β(i,n − i + 1)

,
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which is equivalent to

η̄Yi:n (u) = −
β(i,n − i + 1)
βu(i,n − i + 1)

∫ u

0
(log 1i(p))1i(p)dp +

β(i,n − i + 1)
βu(i,n − i + 1)

∫ u

0
(log qX(p))1i(p)dp

+
β(i,n − i + 1)
βu(i,n − i + 1)

∫ u

0
(logϕ

′

(QX(p)))1i(p)dp + log
βu(i,n − i + 1)
β(i,n − i + 1)

= η̄Xi:n (u) +

∫ u

0 (logϕ
′

(QX(p)))pi−1(1 − p)n−idp

βu(i,n − i + 1)
. (24)

Differentiating the relation (24) with respect to u yields

η̄
′

Yi:n
(u) = η̄

′

Xi:n
(u) +

ui−1(1 − u)n−i
∫ u

0 [logϕ
′

(QX(u)) − logϕ
′

(QX(p))]pi−1(1 − p)n−idp

(
∫ u

0 pi−1(1 − p)n−idp)2
.

Since X is IPQEO (DPQEO), we obtain η̄
′

Xi:n
(u) > (<)0. By regarding convexity (convcavity) of ϕ(u), we

have ϕ
′

(u) is an increasing (a decreasing) function in u. Hence for any p ∈ (0,u), we obtain [logϕ
′

(QX(u)) −
logϕ

′

(QX(p))] ≥ (≤)0 and so η̄
′

Yi:n
(u) > (<)0. Therefore, Y is IPQEO (DPQEO) which completes the proof.

The usefulness of Theorem 3.4 is illustrated by the following example.

Example 3.5. Let X has Exponential distribution with the quantile function QX(u) = − 1
λ log(1−u) and let Y = X

1
α ,

α > 0. The distribution of Y is Weibull distribution with the quantile function QY(u) = λ−
1
α (− log(1 − u))

1
α . We

know that X is IPQEO and the non-negative increasing function ϕ(x) = x
1
α , x > 0, α > 0, is convex (concave) if

0 < α < 1 (α > 1). Hence due to Theorem 3.4, the Weibull distribution is IPQEO for 0 < α < 1.

Now, we give appropriate conditions under which the IPQEO (DPQEO) class is preserved by weighted
variables.

Theorem 3.6. (a) If X is IPQEO and if w(x) is a non-negative decreasing function of x, then Xw is also IPQEO.
(b) If X is DPQEO and if w(x) is a non-negative increasing function of x, then Xw is also DPQEO.

Proof. (a). Differentiating both sides of (23) with respect to u, we get

η̄
′

Xw
i:n

(u) = η̄
′

Xi:n
(u) +

ui−1(1 − u)n−i
∫ u

0 [log w(Q(p)) − log w(Q(u))]pi−1(1 − p)n−idp

(
∫ u

0 pi−1(1 − p)n−idp)2
. (25)

Since the quantile function is a nondecreasing function and w(x) is a non-negative decreasing function of
x, we have log w(Q(p)) > log w(Q(u)) for each 0 < p < u .Thus, we can deduce the second term in the
expression (25) is positive. In addition, η̄

′

Xi:n
(u) > 0, because X is IPQEO. Therefore η̄

′

Xw
i:n

(u) is positive i.e. Xw

also belongs to IPQEO class. Part (b) can be proved in an analogous manner.

Here, we define a new stochastic order based on the comparison of η̄Xi:n (u) and η̄Yi:n (u) corresponding to
two non-negative random variables X and Y, respectively.

Definition 3.7. X is said to be smaller than Y in PQEO order (written as X ≤PQEO Y) if η̄Xi:n (u) ≤ η̄Yi:n (u) for
all u ∈ (0, 1).

Example 3.8. Let X and Y be two exponential random variables with quantile functions

QX(u) = −
1
λ1

log(1 − u), QY(u) = −
1
λ2

log(1 − u), f or all u ∈ (0, 1),

respectively. By means of Table 1 and Definition 3.7, we get the following results for any u ∈ (0, 1).
(a). If λ1 < λ2, then η̄X1:n (u) ≥ η̄Y1:n (u) or equivalently X ≥PQEO Y.
(b). If λ1 > λ2, then η̄X1:n (u) ≤ η̄Y1:n (u) or equivalently X ≤PQEO Y.
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In the following, we give sufficient conditions for a function of a random variable to have more (less) past
quantile entropy of order statistics than itself.

Theorem 3.9. Let ϕ is a non-negative increasing function of x. (a). If ϕ′ (x) ≥ 1 for all x > 0, then X ≤PQEO ϕ(X).
(b). If ϕ′ (x) ≤ 1 for all x > 0, then ϕ(X) ≤PQEO X.

Proof. For Part (a), Let Z = ϕ(X). From (24), we have

η̄Zi:n (u) = η̄Xi:n (u) +

∫ u

0 (logϕ
′

(QX(p)))pi−1(1 − p)n−idp

βu(i,n − i + 1)
. (26)

First notice that the function log(ϕ
′

(QX(p))) can be defined because ϕ(x) is an increasing function of x i.e.
ϕ
′

(x) > 0. The conditionϕ
′

(x) ≥ 1 implies log(ϕ
′

(QX(p))) ≥ 0. Therefore from (26), we obtain η̄Zi:n (u) ≥ η̄Xi:n (u)
which is equivalent to X ≤PQEO ϕ(X) according to Definition 3.7. This completes the proof.
For Part (b), The proof can be done in a similar manner and hence is omitted.

In the following example, we illustrate the usefulness of Theorem 3.9.

Example 3.10. If X is a random variable following the Exponential distribution with quantile function QX(u) =
−

1
λ log(1 − u), λ > 0 and let

ϕ(x) =
1
γ

log(1 +
λγ

β
x), γ > 0, λ ≤ β.

Then ϕ(X) has the Gompertz–Makeham distribution with quantile function

Qϕ(X)(u) =
1
γ

log(1 −
γ

β
log(1 − u)).

From Theorem 3.9 Part (b), it follows that ϕ(X) ≤PQEO X. Note that using this issue and Definition 3.7, we obtain
an upper bound for quantile-based past entropy of order statistics for the Gompertz–Makeham distribution.

Cox and Oakes (1984) proposed the following accelerated life model (ALM) to study the relationship
between F and G,

F(x) = G(W(x)),

where W(x) is strictly increasing function with W(0) = 0, and W(x)→∞ as x→∞ and it is a time-dependent
scale transformation function.
In general, assume that W(x) is continuous and differentiable in [0,∞) and

W(x) =
∫ x

0
w(t)dt, w(t) ≥ 0, x ∈ [0,∞).

Furthermore, suppose that F and G are distribution functions for two lifetime variables X and Y, respectively.
For ALM, it is interesting to investigate the role of W(x) or w(x). For example, the role of W(x) or w(x) in
establishing the aging properties of X via the aging properties of Y, is important. Here, we give sufficient
condition under which X has less quantile past entropy of order statistics than Y.

Theorem 3.11. If W(x) − x is increasing in x, then X ≤PQEO Y.

Proof. We have X = ϕ(Y), where ϕ = W−1, from above discussion. The conditions of Theorem 3.9 Part(b) is
satisfied, thus the proof is complete.

Theorem 3.12. If qX(u) ≤ qY(u) for all u ∈ (0, 1), then X ≤PQEO Y.

Proof. The proof directly follows from relation (10) and Definition 3.7.
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Example 3.13. Let Xi, i = 1, 2 be distributed as Rescaled beta with quantile functions Qi(u) = Ri[1 − (1 − u)
1
c ] and

quantile density function qi(u) = Ri
c (1 − u)

1
c −1, i = 1, 2. If we have R1 < R2, then q1(u) < q2(u) for all u ∈ (0, 1) and

therefore from Theorem 3.12, we conclude that X1 ≤PQEO X2.

The PQEO order is closed under non-negative increasing convex transformations as the following theorem
shows.

Theorem 3.14. Let X and Y be two non-negative random variables such that X ≤PQEO Y and X ≤st Y. Then for any
non-negative increasing convex function ϕ(.), we have ϕ(X) ≤PQEO ϕ(Y).

Proof. Let Z = ϕ(X) and T = ϕ(Y). From (24), we have

η̄Zi:n (u) = η̄Xi:n (u) +

∫ u

0 (logϕ
′

(QX(p)))pi−1(1 − p)n−i1i(p)dp

βu(i,n − i + 1)
,

and

η̄Ti:n (u) = η̄Yi:n (u) +

∫ u

0 (logϕ
′

(QY(p)))pi−1(1 − p)n−i1i(p)dp

βu(i,n − i + 1)
.

According to Definition 1.1, X ≤st Y implies that QX(u) ≤ QY(u) for all u ∈ (0, 1). Since ϕ(u) is convex, ϕ
′

(u)
is an increasing function of u, hence ϕ

′

(QX(u)) ≤ ϕ
′

(QY(u)), ∀u ∈ (0, 1). The stochastic order X ≤PQEO Y also
asserts that η̄Xi:n (u) ≤ η̄Yi:n (u) for all u ∈ (0, 1). So, we can easily show that η̄Zi:n (u) ≤ η̄Ti:n (u) for all u ∈ (0, 1)
and so using Definition 3.7, we reach the desired result.

The following example deals with use of Theorem 3.14.

Example 3.15. It is known that if X follows Pareto II distribution with quantile function QX(u) = α[(1 − u)−
1
c −

1], α, c > 0, then Z = Xβ follows Burr type XII distribution with parameters (α, c, β) and the quantile function
QZ(u) = αβ[(1 − u)−

1
c − 1]β. Now, assume that X and Y follow two independent Pareto II distributions with

quantile functions QX(u) = α1[(1 − u)−
1
c − 1] and QY(u) = α2[(1 − u)−

1
c − 1], respectively. For α1 < α2, we obtain

QX(u) ≤ QY(u) for all u ∈ (0, 1) which means X ≤st Y. From Table 1,

η̄Xi:n (u) = − log n + log(
α1

c
) + (1 +

1
nc

) + log(1 − (1 − u)n) + (n +
1
c

)
(1 − u)n

1 − (1 − u)n log(1 − u).

The conditionα1 < α2, implies that η̄Xi:n (u) ≤ η̄Yi:n (u) for all u ∈ (0, 1) which is equivalent to X ≤PQEO Y. Furthermore,
we know that ϕ(u) = uβ is a non-negative increasing function of u and for β > 1 is convex. Therefore the conditions
of Theorem 3.14 is satisfied and we conclude that Z1 ≤PQEO Z2, where Z1 = Xβ and Z2 = Yβ. We remark that the
past quantile entropy of order statistics for two Burr type XII densities can be obtained from Theorem 3.4 by taking
ϕ1(X) = Xβ and ϕ2(Y) = Yβ.

Theorem 3.16. Let X and Y be two random variables such that Xi:n ≤disp Yi:n, then X ≤PQEO Y.

Proof. According to Remark 1.4, the condition Xi:n ≤disp Yi:n implies that QY(u) − QX(u) is increasing in u
and therefore qX(u) ≤ qY(u) for all u ∈ (0, 1). Now, using Theorem 3.12, we conclude that X ≤PQEO Y which
completes the proof.

We consider the following example, to illustrate Theorem 3.16.

Example 3.17. Let X and Y be two random variables with quantile functions QX(u) = u and QY(u) = −4 log(1−u),
respectively. Let 1(u) = QY(u) − QX(u) = −4 log(1 − u) − u, then 1′(u) = 3+u

1−u ≥ 0. Therefore QY(u) − QX(u) is
increasing function in u, and Xi:n ≤disp Yi:n which implies X ≤PQEO Y.

Theorem 3.18. If X ≤rhq Y, then X ≥PQEO Y.
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Proof. According to Definition 1.2, X ≤rhq Y asserts that

− logΛX(u) ≥ − logΛY(u), f or all u ∈ (0, 1).

Using definition of the quantile reversed hazard rate function, we obtain q(u) = 1
uΛ(u) and log q(u) =

− log u − logΛ(u). Next from relation (10), we have

η̄Xi:n (u) = −
β(i,n − i + 1)
βu(i,n − i + 1)

∫ u

0
(log 1i(p))1i(p)dp +

β(i,n − i + 1)
βu(i,n − i + 1)

∫ u

0
(− log p)1i(p)dp

+
β(i,n − i + 1)
βu(i,n − i + 1)

∫ u

0
(− logΛX(p))1i(p)dp + log

βu(i,n − i + 1)
β(i,n − i + 1)

≥ −
β(i,n − i + 1)
βu(i,n − i + 1)

∫ u

0
(log 1i(p))1i(p)dp +

β(i,n − i + 1)
βu(i,n − i + 1)

∫ u

0
(− log p)1i(p)dp

+
β(i,n − i + 1)
βu(i,n − i + 1)

∫ u

0
(− logΛY(p))1i(p)dp + log

βu(i,n − i + 1)
β(i,n − i + 1)

= η̄Yi:n (u)

So, X ≥PQEO Y.

To show the usefulness of Theorem 3.18, we consider the following examples.

Example 3.19. If X and Y follow Exponential distributions with parameters λ1 and λ2 and the quantile reversed
hazard rate functionsΛX(u) = λ1

1−u
u andΛY(u) = λ2

1−u
u , respectively. The conditionλ1 < λ2 impliesΛX(u) < ΛY(u)

for all u ∈ (0, 1) which is equivalent to X ≤rhq Y. So using Theorem 3.18, we reach to the desired issue.

Example 3.20. Let X be a random variable with quantile function QX(u) = u
(1−u)2 which is a special case of Power-

Pareto distribution due to Hankin and Lee (2006). In addition, let Y follows Exponential distribution with the quantile
function QY(u) = − log(1 − u). The reversed hazard quantile functions of X and Y are given by ΛX(u) = (1−u)3

u(1+u) and

ΛY(u) = 1−u
u , respectively. Hence ΛX(u)

ΛY(u) =
(1−u)2

1+u and

d
du

(
ΛX(u)
ΛY(u)

)
=
−(1 − u)(3 + u)

(1 + u)2 < 0,

or equivalently ΛX(u)
ΛY(u) is a decreasing function of u. For u = 0, we obtain ΛX(u)

ΛY(u) = 1, therefore we can conclude that
ΛX(u)
ΛY(u) ≤ 1 for all u ∈ (0, 1) which means X ≤rhq Y. Now applying Theorem 3.18, we get to the relation X ≥PQEO Y.

4. Conclusions

In the present work, we have introduced past entropy of order statistics based on the quantile function.
Specially, we obtained the quantile version of entropy function in past lifetime for parallel and series
systems. Furthermore, this measure is computed for some lifetime models. The proposed measure is useful
for variables which have not closed form for distribution functions. It is defined two nonparametric classes
of distribution based on the proposed measure. The closure property of these classes under increasing
convex (concave) function and weighting are also discussed. One stochastic order based on this measure is
defined and several properties for it are studied. In addition, the effect of non-negative increasing convex
function on this order is investigated. Finally, some results based on the proposed order are also provided.
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