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Abstract. We introduce the concept of strong BD property in Banach lattices and we characterize Banach
lattices with this property. Also, by introducing the class of almost limited (resp. Dunford-Pettis) weakly
completely continuous operators from an arbitrary Banach lattice E to another F, we give some properties
of them related to some well known classes of operators and related to the strong BD (resp. RDP∗) property
of the Banach lattice E.

1. Introduction

A subset A of a Banach space X is called limited (resp. Dunford–Pettis (DP)), if every weak∗ null (resp.
weak null) sequence (x∗n) in X∗ converges uniformly on A, that is

lim
n→∞

sup
a∈A
|⟨a, x∗n⟩| = 0.

A Banach space X has the BD (resp. RDP∗) property, if each limited (resp. DP) set in X is relatively
weakly compact. It is shown that if X is weakly sequentially complete or X does not contain the absolutely
summable sequence space ℓ1, then X has the BD property. If X is weakly sequentially complete, then it
has the RDP∗ property. If every limited subset of a Banach space X is relatively compact, then X has the
Gelfand–Phillips (GP) property. If every DP subset of a Banach space X is relatively compact, then X has
the DPrcP [7, 10–12].
A subset A of a Banach lattice E is called almost limited (almost DP), if every disjoint and weak∗ null (weak
null) sequence (x∗n) in E∗ converges uniformly on A (see [6, 9]). A Banach lattice E has the weak DP property
if each realatively weakly compact set in E is an almost DP set, or equivalently, for every weakly null
sequence (xn) in E and disjoint weakly null sequence ( fn) in E∗, we have fn(xn)→ 0 (see [25]).
Recently, the authors in [3, 4] introduced an alternative form of the GP property and DPrcP for Banach lattices.
In fact, a Banach lattice E has the strong GP property (Strong DPrcP) if every almost limited (almost DP) set
in E is relatively compact. Then by introducing the concept of almost limited completely continuous (alcc)
operators and almost DP completely continuous (aDPcc) operators between Banach lattices, they obtain
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some characterizations of them and then the relation between the strong GP property and strong DPrcP of
E and also alcc and aDPcc operators on E are treated.
In this article, we introduce an alternative form of the BD property for Banach lattices, so called, the strong
BD property if every almost limited set in E is relatively weakly compact. Also, by introducing the concept
of almost limited (resp. almost DP) weakly completely continuous operators between Banach lattices, we
obtained some characterizations of them. Finally, some relations between the strong BD property (resp.
RDP∗ property) of Banach lattices with these operators on that spaces are treated.
A subset A of E is called solid if |x| ≤ |y| for some y ∈ A implies that x ∈ A and the solid hull of A is the
smallest solid set containing A and is exactly the set Sol(A) = {y ∈ E : |y| ≤ |x|, for some x ∈ A}. The lattice
operations in the dual Banach lattice E∗ are weak∗ sequentially continuous if for every weak∗ null sequence
( fn) in E∗, | fn| → 0 for σ(E∗,E). We refer the reader for undefined terminologies to the classical references
[1, 2, 19].

2. Strong BD property in Banach lattices

Theorem 2.1. Let E be a Banach lattice with order continuous norm. Then E has the strong BD property.

Proof. Let A be an almost limited subset of E. By order continuity of the norm on E and [9, Theorem 2.6],
A is L-weakly compact (i.e. ∥xn∥ → 0 as n → ∞ for every disjoint sequence (xn) contained in Sol(A). Since
every L-weakly compact set is relatively weakly compact, so A is relatively weakly compact, that is, E has
the strong BD property.

As an immediate consequence of the definition BD property one can conclude that the BD property
is inherited by closed subspaces. In fact, if X is a Banach space with the BD property and Y is a closed
subspace of X. Then each limited set A in Y is a limited set in X, hence relatively weakly compact in X.
Then every sequence (xn) in A has a subsequence weakly convergent to an element x in X. Since Y is closed,
it is weakly closed. Hence x is in Y. Thus A is relatively weakly compact in Y, and Y has the BD property.

Theorem 2.2. Let E be a σ–Dedekind complete Banach lattice without order continuous norm. Then E does not have
the (strong) BD property.

Proof. By [19, Corollary 2.4.3], every σ–Dedekind complete E without order continuous norm contains a
sublattice isomorphic to ℓ∞, which does not have the BD property [21, Example 1.1.8]. Since the BD property
is inherited by closed subspaces [21], then E does not have the (strong) BD property.

A Banach lattice E has the property (d) if the sequence (| fn|) is weak∗ null for every disjoint weak∗ null
sequence ( fn) in E∗. Cleraly, each σ–Dedekind complete Banach lattice has the property (d).
In the following we characterize some classes of Banach lattices with the strong BD property.

Theorem 2.3. Let E be a Banach lattice. Then the following are equivalent:

(a) E has order continuous norm,

(b) E has the properties (d) and strong BD.

Proof. (a) ⇒ (b). If E has order continuous norm, from Theorem 2.1, it the strong BD property. Also E is
σ–Dedekind complete and so it has the property (d).
(b) ⇒ (a). By defenition of almost limitedness, every order interval in a Banach lattice E is almost limited
if and only if E has the property (d). So in a Banach lattice E with the property (d), every order interval is
an almost limited set and because of another hypothesis of (b), it is weakly compact. Now by [2, Theorem
4.9], E has order continuous norm.

Theorem 2.4. Let E be a Grothendieck Banach lattice (i.e. weak∗ convergent sequences in its dual are weakly
convergent). Then the following are equivalent:

(a) E has the strong BD property,
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(b) E has the BD property,

(c) E has order continuous norm.

Proof. (a)⇒ (b). It is obvious.
(b) ⇒ (c). If E has the BD property, then each limited set in E is relatively weakly compact. Since E is
Grothendieck, so each DP set in E is relatively weakly compact. Now by [6, Theorem 2.10], E is a KB-space.
Therefore E has order continuous norm.
(c)⇒ (a). It is obvious.

Theorem 2.5. Let E be a σ–Dedekind complete Banach lattice. Then the following are equivalent:

(a) E has the strong BD property,

(b) E has the BD property,

(c) E has order continuous norm,

(d) E has the GP property.

Proof. (a)⇒ (b). It is obvious.
(b) ⇒ (c). If E has the BD property, then it does not contain any sublattice isomorphic to ℓ∞. Since E is
σ–Dedekind complete, by [19, Corollary 2.4.3], E has order continuous norm.
(c)⇒ (a). It follows from Theorem 2.1.
Also by [23, Theorem 4.5], (c) and (d) are equivalent.

Theorem 2.6. Let E be a Banach lattice such that E∗ has the weak∗ sequentially continuous lattice operations, the
following are equivalent:

(a) E has the strong BD property,

(b) E has the BD property.

Proof. (a)⇒ (b). It is obvious.
(b) ⇒ (a). Let A be an almost limited set in E. Since E∗ has the weak∗ sequentially continuous lattice
operations, so E has the property (d) and by [20, Lemma 2.1], B = Sol(A) is almost limited. By hypothesis
and from [18, Theorem 2.6], B is limited. Since E has the BD property, B = Sol(A) (and hence A itself) is
relatively weakly compact. Hence E has the strong BD property.
As an alternative proof, if E∗ has the weak∗ sequentially continuous lattice operations, then by [18, Propo-
sition 2.1], each order interval in E is limited and so it is weakly compact, thanks to the BD property of E.
So [2, Theorem 4.9], implies that E has order continuous norm and so it has the strong BD property.

The following theorem is proved by a similar method of Theorem 2.6.

Theorem 2.7. Let E be a Banach lattice such that E∗ has the weak∗ sequentially continuous lattice operations, the
following are equivalent:

(a) E has the strong GP property,

(b) E has the GP property.

Proof. (a)⇒ (b). It is obvious.
(b) ⇒ (a). Let A be an almost limited set in E. Since E∗ has the weak∗ sequentially continuous lattice
operations, so E has the property (d) and by [20], B = Sol(A) is almost limited. By the hypothesis and from
[18, Theorem 2.6], B is limited. Since E has the GP property, B = Sol(A) (and hence A itself) is relatively
compact. Hence E has the strong GP property.
Also, we give an alternative proof for it. In fact, if E∗ has the weak∗ sequentially continuous lattice operations,
then by [18, Proposition 2.1] order interval in E is limited and so it is relatively compact, by the GP property
of E. So by [1, Theorem 21.13], E is discrete with order continuous norm and so by [3, Theorem 2.1] it has
the strong GP property.
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Every Banach lattice with the strong GP property has the strong BD property, but the converse is false. In
fact, each non discrete Banach lattice with order continuous norm has the strong BD property, but from [3,
Theorem 2.3], it does not have the strong GP property. For examples, L1[0, 1] and the dual Banach lattice
(C[0, 1])∗ are two cases of such Banach lattices.

Example 2.8. Consider C(K), where K is the Cantor set. Then C(K) has the GP property, but it does not have
the strong BD property.

Proof. Since C(K), where K is the Cantor set, is isomorphic to C[0, 1], then it is seperable and so it has the GP
property. Now we show that it does not have the strong BD (strong GP) property. Consider the Rademacher
sequence in C(K):

r1 = 1, on [0,
1
3

] ∩ K,

r1 = −1, on [
2
3
, 1] ∩ K,

r2 = 1, on ([0,
1
9

] ∪ [
2
3
,

7
9

]) ∩ K,

r2 = −1, on ([
2
9
,

1
3

] ∪ [
8
9
, 1]) ∩ K,

etc.

This sequence is not compact (weakly compact), since it is equivalent to the unit vector basis of ℓ1. In fact,
let (an) be a real sequence. One can find a point t ∈ [0, 1] so that, sign an = sign rn(t) for all n. Then

∥

∞∑
n=1

anrn∥ ≥

∞∑
n=1

(anrn(t)) =
∞∑

n=1

|an|.

But the sequence (rn) is almost limited. Indeed if (xn) is a convergent sequence of distinct points in K, then
the point functionals at (xn) converges weak∗ to the point functional at 0. So the the sequence of functionals
δ(x2n) − δ(x2n−1) is weak∗ null, disjoint and converges uniformly to 0 on (rn). Since ext(BC(K)∗ ) = {±δt : t ∈ K},
so every weak∗ null and disjoint sequenec (µn) in C(K)∗ converges uniformly to 0 on (rn); that is the sequence
(rn) is almost limited.

Recall from [18] that a Banach lattice E has the dual Schur property if every disjoint and weak∗ null sequence
in E∗ is norm null. In other words, the closed unit ball BE is almost limited.
A Banach space X has the DP∗ property whenever every relatively weakly compact set in X is limited [5].
Also a Banach lattice E has the weak DP∗ property if every relatively weakly compact set in E is almost
limited [9]. Since every Banach lattice with order continuous norm is a GP space, E has the Schur property
if and only if E has both order continuous norm and the DP∗ property. From [9, Prposition 3.3], every
Banach lattice with the positive Schur (i.e., if every weakly null sequence with positive terms is norm null,
or equivalently, every disjoint weakly null sequence is norm null [22]) and without Schur has the weak DP∗

property, but it does not have the DP∗ property.

Theorem 2.9. If a Banach lattice E has the dual Schur and strong BD properties, then E is finite dimensional.

Proof. If E has the dual Schur property, then the closed unit ball BE is almost limited and so it is relatively
weakly compact, by the strong BD property of E. Hence E is reflexive and so E has order continuous norm.
But, dual Schur property of E implies that each disjoint weak∗ null sequence ( fn) ⊂ (E∗)+ is norm null and
then by [24, Propositions 2.3, Proposition 2.1], the norm on E is not order continuous when E is infinite
dimensional. Hence E must be finite dimensional.

The first part (a) of the following lemma follows from [8] and the second part (b) is proved similar to (a).

Lemma 2.10. Let E be a Banach lattice. Then
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(a) E has the DP∗ property iff conditionally weakly compact sets and limited sets in X coincide,

(b) E has the weak DP∗ property iff every conditionally weakly compact set in E is almost limited.

Theorem 2.11. For a Banach lattice E, the following are equivalent:

(a) E has the BD and DP∗ properties,

(b) E is a KB-space with the DP∗ property,

(c) E has order continuous norm and the DP∗ property,

(d) E has the Schur property.

Proof. (a)⇒ (b). Let (xn) be a weakly Cauchy sequence in E. Since E has the DP∗ property, then by Lemma
2.10, (xn) is limited and so it is relatively weakly compact, by the BD property of E. Hence E is a KB-space.
(b)⇒ (c). Each KB-space has order continuous norm.
(c)⇒ (d). Let A be a relatively weakly compact set in E. Then by the DP∗ property of E, A is limited. Since
E has order continuous norm, hence it has the GP properrty, and then A is relatively compact; that is, E has
the Schur property.
(d)⇒ (a). It is clear that, every Banach lattice with the Schur property is a KB-space with the DP∗ property.

We note that every KB-space has the BD property, but the converse is false. In fact c0 has the BD property,
but it is not a KB-space.

Theorem 2.12. For a Banach lattice E, the following are equivalent:

(a) E has the strong BD and weak DP∗ properties,

(b) E is a KB-space with the weak DP∗ property,

(c) E has order continuous norm and the weak DP∗ property,

(d) E has the positive Schur property.

Proof. (a) ⇒ (b). Let (xn) be a weakly Cauchy sequence in E. Since E has the weak DP∗ property, then by
Lemma 2.10, (xn) is almost limited and so it is relatively weakly compact by the strong BD property of E.
Hence E is a KB-space.
(b)⇒ (c). Each KB-space has order continuous norm.
(c) ⇒ (d). Let A be a relatively weakly compact set in E. Then by the weak DP∗ property of E, A is almost
limited. Since E has order continuous norm, then by [9, Theorem 2.6] A is L-weakly compact. So by [19,
Corollary 3.6.8], E has the positive Schur property.
(d) ⇒ (a). It is clear. Since every Banach lattice with the positive Schur property is a KB- space with the
weak DP∗ property.

Theorem 2.13. Let E be a Banach lattice such that E∗ has a weak unit. Then the following are equivalent:

(a) E has the dual Schur property,

(b) E has the weak DP∗ property and E does not contain ℓ1.

Proof. (a)⇒ (b). If E has the dual Schur property, then the closed unit ball BE is almost limited and so by [3,
Theorem 2.14], it is conditionally weakly compact. Now by Rosenthal’s ℓ1-Theorem, E does not contain ℓ1.
Clearly, every relatively weakly compact set in E is almost limited; that is, E has the weak DP∗ property.
(b)⇒ (a). If E does not contain ℓ1, by Rosenthal’s ℓ1-Theorem, the closed unit ball BE is conditionally weakly
compact and so it is almost limited by the weak DP∗ property and Lemma 2.10 (b). Hence E has the dual
Schur property.
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We note that ℓ∞ has the dual Schur and weak DP∗ properties, but ℓ∞ contain ℓ1. In fact ℓ∞ does not have
order continuous norm and (ℓ∞)∗ dose not have any weak unit.
If a Banach lattice E has the strong BD property, then every weakly Cauchy and almost limited sequence in
E is weakly convergent. The following theorem shows that the converse is false, in general.

Theorem 2.14. Let K be a compact metric space. Then every weakly Cauchy and almost limited sequence in C(K) is
weakly convergent (actually norm convergent).

Proof. Let ( fn) be a weakly Cauchy and almost limited sequence in C(K). Then the sequence ( fn − fm) is
weakly null and almost limited, so by [3, Theorem 2.12] it is norm null; that is, the sequence ( fn) is Cauchy
and so it is norm convergent in C(K).

Theorem 2.15. Let E be a Banach lattice such that E∗ has a weak unit. Then E has the strong BD property if and
only if every weakly Cauchy and almost limited sequence in E is weakly convergent.

Proof. The direct implication is clear. For the converse, let A be an almost limited subset of E. Then by
[3] every sequence (xn) in A has a subsequence, denoted again by (xn), that is weakly Cauchy. Since, the
sequence (xn) is almost limited, by the hypothesis, it is weakly convergent. Thus A is relatively weakly
compact.

It should be noted that every weakly Cauchy and almost limited sequence in a Banach lattice is not weakly
convergent, in general. For example, ℓ∞ is not a KB-space and so there is a weakly Cauchy sequence in
ℓ∞ which is not weakly convergent. But since ℓ∞ has the dual Schur property, the closed unit ball Bℓ∞ is
almost limited. Therefore there is a weakly Cauchy and almost limited sequence in ℓ∞ which is not weakly
convergent.

Theorem 2.16. Let E be a Banach lattice such that E∗ has a weak unit or E has order continuous norm. Then the
following are equivalent:

(a) E∗ has the positive Schur property,

(b) E has the weak DP property and E does not contain ℓ1.

Proof. (a) ⇒ (b). If E∗ has the positive Schur property, then the closed unit ball BE is almost DP and by [4,
Theorem 2.8] it is conditionally weakly compact. Now by Rosenthal’s ℓ1-Theorem, E does not contain ℓ1.
Clearly, every relatively weakly compact set in E is almost DP; that is, E has the weak DP property.
(b)⇒ (a). If E does not contain ℓ1, by Rosenthal’s ℓ1-Theorem, the closed unit ball BE is conditionally weakly
compact and so it is almost DP by the weak DP property. Then E∗ has the positive Schur property.

We know that by [24, Propositin 2.5], (ℓ∞)∗ has the positive Schur property. Also ℓ∞ has the weak DP
property and it contains ℓ1. As we mentioned before, ℓ∞ does not have order continuous norm and (ℓ∞)∗

does not have any weak unit. So the assumptions of Theorem 2.16 are essential.

Theorem 2.17. For a Banach lattice E, the following assertions are equivalent:

(a) E has the RDP∗ property,

(b) every weakly Cauchy and almost DP sequence in E is weakly convergent,

(c) every weakly Cauchy and DP sequence in E is weakly convergent.

Proof. (a)⇒ (b). If E has the RDP∗ property, then it is a KB-space and so by [19, Theorem 2.5.6], every weakly
Cauchy (and almost DP) sequence in E is weakly convergent.
(b)⇒ (c). Since each DP set is almost DP, it is clear.
(c) ⇒ (a). If every weakly Cauchy and DP sequence in E is weakly convergent, then E does not contain a
copy of c0. Since for standard basis sequence (en) in c0, the sequence fn =

∑n
i=1 ei is weakly Cauchy and it is

a DP sequenece, but it is not weakly convergent. Then by [19, Theorem 2.5.6], E is a KB-space; that is, it has
the RDP∗ property.
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3. Almost limited weakly completely continuous operators

An operator T : X → Y is called weakly completely continuous (wcc), if T carries weakly Cauchy
sequences in X to weakly convergent ones, and the class of them is denoted by Wcc(X,Y). Also, T is
limited weakly completely continuous (lwcc), if T carries weakly Cauchy and limited sequences to weakly
convergent ones and the class of them is denoted by Lwcc(X,Y) [15].
We say that an operator T : X → Y is DP weakly completely continuous (DPwcc), if T carries weakly
Cauchy and DP sequences in X to weakly convergent ones, and we use the class of DPwcc operators from
X to Y by DPwcc(X,Y). Also we define almost limited weakly completely continuous (alwcc) and almost
DP weakly completely continuous (aDPwcc) operators and establish some additional properties of them.

Definition 3.1. An operator T : E → Y is alwcc (aDPwcc), if T carries weakly Cauchy and almost limited
(almost DP) sequences in E to weakly convergent ones, and the class of alwcc and aDPwcc operators are
denoted by Lawcc(E,Y) and DPawcc(E,Y).

If a Banach lattice E has the DP∗ property, then, for every Banach space Y, Lawcc(E,Y) = Lwcc(E,Y) =
Wcc(E,Y).
Also, if a Banach lattice E has the DP property, then for every Banach space Y, DPawcc(E,Y) = DPwcc(E,Y) =
Wcc(E,Y).

Theorem 3.2. An operator T on E is an alwcc (aDPwcc) operator if, for each almost limited (almost DP) set A ⊂ E,
the set T(A) is relatively weakly compact.

Proof. Let (xn) be a weakly Cauchy and almost limited (almost DP) sequence in E. Then by hypothesis, the
sequence (Txn) is relatively weakly compact, and so it has a weakly convergent subsequence (Txnk ). Since
T carries weakly Cauchy sequences to weakly Cauchy ones, the sequence (Txn) is weakly Cauchy. This
shows that the sequence (Txn) is weakly convergent, and then T is alwcc (aDPwcc).

It should be noted that the converse of the theorem is false, in general. In fact, let K be a compact metric space.
Then by Theorem 2.14, every weakly Cauchy and almost limited sequence in C(K) is weakly convergent
(actually norm convergent) and so the identity operator IdC(K) is alwcc, but as we said before, there exists an
almost limited set A in C(K) such that A is not relatively weakly compact. The following theorem garanties
that under the containment a weak unit of E∗, the converse is true.

Theorem 3.3. Let T : E → Y be an alwcc (aDPwcc) operator such that E has order continuous norm or E∗ has a
weak unit. Then, for every almost limited (almost DP) set A in E, T(A) is relatively weakly compact.

Proof. Let A ⊂ E be almost limited (almost DP). Then by hypothesis, every sequence (xn) in A has a
subsequence, denoted again by (xn), that is weakly Cauchy. On the other hand (xn) is almost limited (almost
DP) and then the sequence (Txn) is weakly convergent. Thus T(A) is relatively weakly compact.

In the following theorem, we give a characterization of the strong BD property, with respect to alwcc
operators.

Theorem 3.4. If E∗ has a weak unit, then the following are equivalent:

(a) E has the strong BD property,

(b) L(E,Y) = Lawcc(E,Y), for each Banach space Y,

(c) L(E, ℓ∞) = Lawcc(E, ℓ∞).

Proof. (a)⇒ (b). Let A ⊂ E be almost limited and T ∈ L(E,Y). Since E has the strong BD property, A and so
T(A) are relatively weakly compact. Now by Theorem 3.2, T is alwcc; that is L(E,Y) = Lawcc(E,Y).
(b)⇒ (c). It is clear.
(c) ⇒ (a). Assume that E does not have the strong BD property. Since E∗ has a weak unit, then there is a
weakly Cauchy and almost limited sequence (xn) in E which is not weakly convergent. Let F be the closed
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subspace of E spanned by this sequence. Then F is separable and so it is isomorphic to a closed subspace
of ℓ∞. Let T be such an isomorphic embedding from F to ℓ∞. Since ℓ∞ is injective, we can extend T to all of
E. Hence T is not wcc and this completes the proof of the theorem.

Note that if E∗ does not have a weak unit, then Theorem 3.4 may be false. In fact, every weakly Cauchy and
almost limited sequence in C(K), where K is the compact metric space, is norm convergent and so every
operator on C(K) is alwcc, but C(K) does not have the strong BD property.
Also note that continuous linear images of limited sets or sequences are limited, but the same conclusion
is false for almost limited sets or sequences, in general. In fact, for the operator T : L1[0, 1] → c0 defined

by T f = (
∫ 1

0 f (t)rn(t)dt) for all f ∈ L1[0, 1] the Rademacher sequence fn(t) = rn(t) is weakly null and so it is
almost limited, by the weak DP∗ property of L1[0, 1], but (T fn) = (en) is not almost limited.
The next theorem is a characterization of Banach lattices with the RDP∗ property using aDPwcc operators.
In [6, Theorem 2.10] and [13, Proposition 3.14], it has been shown that, E has the RDP∗ property iff E is a
KB-space.

Theorem 3.5. For a Banach lattice E, the following are equivalent:

(a) E has the RDP∗ property,

(b) L(E,F) =Wcc(E,F), for each Banach lattice F,

(c) L(E,F) = DPawcc(E,F), for each Banach lattice F,

(d) L(E,F) = DPwcc(E,F), for each Banach lattice F,

Proof. (a)⇒ (b). If E has the RDP∗ property, then each weakly Cauchy sequence in E is weakly convergent,
and so L(E,F) =Wcc(E,F), for each Banach lattice F.
(b)⇒ (c). It is obvious.
(c)⇒ (d). It is obvious.
(d)⇒ (a). If F = E, then (d) implies that the identity operator on E is DPwcc; that is, every weakly Cauchy
and DP sequence in E is weakly convergent. Then E does not contain a copy of c0 and so it has the RDP∗

property.

A similar proof shows that if one replace the role of E and F in cases (b), (c) and (d) of theorem, then the
conclusion holds.

Corollary 3.6. Every bounded linear operator on a Banach lattice E with order continuous norm is an alwcc operator.
Also if E is a KB-space, then every operator on E is an aDPwcc operator.

Recall from [19] that a positive linear operator T : E → F is almost interval preserving, if T[0, x] is dense
in [0,Tx], for every x ∈ E+. In [3, Theorem 3.8] and [4, Theorem 3.12], we establish some conditions which
guarantees the continuous linear images of almost limited (resp. almost DP) sets are also almost limited
(resp. almost DP).

Corollary 3.7. (a) Let F be a Banach lattice with the strong BD property. Then every almost interval preserving
operator T : E→ F is alwcc.

(b) Let T : E→ F and S : F→ G be almost interval preserving operators such that S or T is alwcc (resp. aDPwcc).
Then the composition operator ST is alwcc (resp. aDPwcc).

Proposition 3.8. (a) Let E and F have the property (d), and let T : E→ F be an order bounded operator. If F has
the strong BD property, then T is an alwcc operator.

(b) Let T : E → F be an order bounded linear operator between two Banach lattices with the property (d) and let
S : F→ G be an operator such that S or T is alwcc. Then the composition operator ST is alwcc.
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Proof. (a). Suppose that (xn) is a weakly Cauchy and almost limited sequence in E and A = sol((xn)n). From
[20, Lemma 2.1, Theorem 2.3], A and also T(A) are almost limited. Since the sequence (Txn) ⊂ T(A), then
(Txn) is weakly Cauchy and almost limited. Since F has the strong BD property, (Txn) is weakly convergent
and so T is alwcc.
(b). Let S be an alwcc operator and let (xn) be a weakly Cauchy and almost limited sequence in E. Let
A = Sol((xn)n). As we said in the proof of (a), (Txn) is weakly cauchy and almost limited. Since S is an alwcc
operator, (ST(xn)) is weakly convergent and so the composition operator ST is alwcc. If T is alwcc, then
clearly the operator ST is alwcc.

Theorem 3.9. If E∗ has a weak unit or E has order continuous norm and T : X → E is an operator. Then for the
following assertions:

(a) T is almost limited; that is, T(BX) is almost limited in E,

(b) for each Banach space Y and each alwcc operator S : E→ Y, the operator ST is weakly compact,

(c) for each almost interval preserving operator S : E→ F, where F has the strong BD property, the operator ST is
weakly compact,

the implications (a)⇒ (b)⇒ (c) valid.

Proof. (a) ⇒ (b). If T is almost limited, then T(BX) is almost limited in E. Since S : E → Y is alwcc, then by
Theorem 3.3, S(T(BX)) is relatively weakly compact. So the operator ST is weakly compact.
(b) ⇒ (c). By Corolllary 3.7, almost interval preserving operators are alwcc and from (b) the result is
clear.

In the same way, the following theorem can be expressed for RDP∗ property using almost DP sets.

Theorem 3.10. Let T : X→ E be an operator and E∗ has a weak unit or E has order continuous norm. Then for the
following assertions:

(a) T is almost weakly limited; that is, T(BX) is almost DP in E,

(b) for each Banach space Y and each aDPwcc operator S : E→ Y, the operator ST is weakly compact,

(c) for each operator S : E→ F, where F has the RDP∗ property, the operator ST is weakly compact,

the implications (a)⇒ (b)⇒ (c) valid.

Proof. (a) ⇒ (b). If T is almost weakly limited, then T(BX) is almost DP in E. Since S : E → Y is aDPwcc,
then by Theorem 3.3, S(T(BX)) is relatively weakly compact. So the operator ST is weakly compact.
(b) ⇒ (c). Since F has the RDP∗ property, then by Theorem 3.5, each operator S : E → F is aDPwcc. From
(b), the operator ST is weakly compact.

Recall from [7] that A ⊂ X is limited iff for every operator S : X → c0, S(A) is a relatively compact set in c0.
Recently, using the concept of disjoint operators from E into c0 (are uniquely determined by disjoint weak∗

null sequences in E∗) a similar characterization for almost limited sets is obtained in [14]. In fact, A ⊂ E is
almost limited iff for each disjoint operator S : E → c0, S(A) of c0 is a relatively compact subset of c0. To
prove the following proposition, let us recall that, an operator is regular if it can be written as difference of
two positive operators and regular operators are order bounded.

Proposition 3.11. For each operator T : E → F such that E∗ has a weak unit or the norm of E is order continuous
and F has the property (d), the following are equivalent:

(a) T is almost limited,

(b) For each Banach space Z and each alcc (resp. alwcc) operator S : F→ Z, the composition operator ST is compact
(resp. weakly compact),
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(c) For each disjoint operator S : F→ c0 , the operator ST is compact (weakly compact).

Proof. (a)⇒ (b). If T is almost limited, then by Theorem 3.3, S(T(BX)) is relatively compact (resp. relatively
weakly compact). So the operator ST is compact (resp. weakly compact).
(b)⇒ (c). From [20, Proposition 3.10], each disjoint operator S : F→ c0 is alcc (resp. alwcc) and apply (b).
(c)⇒ (a). For every disjoint operator S : F→ c0, the operator ST is compact (resp. weakly compact); that is,
S(T(BX) is relatively compact (resp. relatively weakly compact) and so by [14], T(BX) is almost limited in F.
So T is almost limited.

Theorem 3.12. Continuous linear image of an almost limited set under a quotient map is almost limited.

Proof. Let F be a closed ideal of a Banach lattice E. Consider the quotient map Q : E → E/F. If A ⊂ E is
almost limited, we show that Q(A) is an almost limited set in E/F; that is, for all weak∗ null and disjoint
sequence ( fn) in (E/F)∗ = F⊥, supx∈A |⟨ fn, x⟩| → 0.
For each x ∈ E, x + F ∈ E/F. Let ( fn) be a disjoint weak∗ unll sequence in F⊥. So ⟨ fn, x⟩ = ⟨ fn, x + F⟩ → 0, as
n→∞; that is ( fn) is weak∗ null in E∗. Also for all m , n, ⟨ fn ∧ fm, x⟩ = ⟨ fn ∧ fm, x + F⟩ = 0. Then ( fn) in E∗ is
disjoint and so

sup
x∈A
|⟨ fn,Q(x)⟩| = sup

x∈A
|⟨ fn, x⟩| → 0.

To prove the theorem 3.14, we need the following lemma of [17]:

Lemma 3.13. Let X be a Banach space and Y be a reflexive subspace of X. Let Q : X → X/Y denotes the quotient
map. Let (xn) be a bounded sequence in X such that (Q(xn)) converges weakly to some Q(x) ∈ X/Y. Then (xn) is
relatively weakly compact.

Theorem 3.14. Let E be a Banach lattice and F be a reflexive closed ideal of E. If E/F has the strong BD property,
then E has the same property.

Proof. Let (xn) be an almost limited sequence in E. If Q : E → E/F denotes the quotient map, then by
Theorem 3.12, (Q(xn)) is an almost limited sequence in E/F and, by our assumption, it must be relatively
weakly compact; hence some subsequence (Q(xnk )) has to converge weakly to some element of E/F, say
Q(x). Thanks Lemma 3.13 a further subsequence of (xnk ) has to converge weakly in E.

We conclude this section with some results about the strong BD property of a Banach lattice M of some
operator spaces. IfM ⊂ L(X,Y) is a Banach lattice with the strong BD (resp., RDP*) property, then all of
evaluation operators ϕx and ψy∗ are alwcc (resp., aDPwcc), where ϕx(T) = Tx and ψy∗ (T) = T∗y∗ for x ∈ X,
y∗ ∈ Y∗ and T ∈ M. In the rest of this section, we provide some conditions such that the alwcc ness of
evaluation operators is a sufficient condition for the strong BD property of their domain.

Theorem 3.15. Let L(X,Y) = K(X,Y) andM ⊂ K(X,Y) be a Banach lattice andM∗ has a weak unit and all of ϕx
and ψy∗ are alwcc (resp. aDPwcc) operators, thenM has the strong BD (resp. RDP*) property.

Proof. Let H be an almost limited (resp. almost DP) set inM. SinceM∗ has a weak unit, then by Theorem
3.3, ϕx(H) = Hx andψy∗ (H) = H∗y∗ are relatively weakly compact, for all x ∈ X and y∗ ∈ Y∗. Also by Theorem
2.14 of [3] (resp. Theorem 2.8 of [4]), H is conditionally weakly compact. Hence by [16, Theorem 4.10], H is
relatively weakly compact; that is,M has the strong BD (resp. RDP*) property.

Theorem 3.16. Let E has the strong GP property andM ⊂ Kw∗ (E∗,Y) be a Banach lattice such thatM∗ has a weak
unit. If for each x∗ ∈ E∗, the evaluation operator ϕx∗ onM is alwcc, thenM has the strong BD property.

Proof. Let H be an almost limited set inM and let (Tn) be a sequence in H. SinceM∗ has a weak unit, then
by Theorem 2.14 of [3], H is conditionally weakly compact. Without loss of generality, we can assume that
(Tn) is weakly Cauchy. Let x∗ ∈ E∗. Since ϕx∗ on M is alwcc, then (ϕx∗Tn) = (Tnx∗) is weakly convergent.
Define T : E∗ → Y by Tx∗ = w−lim Tnx∗, for each x∗ ∈ E∗. Note that T is w∗-w continuous. We show that
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T∗(BY∗ ) is almost limited in E, or equivalently, for every disjoint and weak∗ null sequence (x∗i ) ⊂ E∗ and every
sequence (y∗i ) ⊂ BY∗ , ⟨x∗i ,T

∗(y∗i )⟩ → 0 as i → ∞. Note that (x∗i ⊗ y∗i ) is a disjoint and weak∗ null sequence in
M
∗ (see [2, page, 75]) and so the operator L :M ⊂ Kw∗ (E∗,Y)→ c0 defined by

L(S) = (⟨x∗i ⊗ y∗i ,S⟩)i = (⟨x∗i ,S
∗y∗i ⟩)i, S ∈M

is a bounded well-defined operator. Since (Tn) is an almost limited sequence inM, then

sup
n
|L(Tn)(i)| = sup

n
|⟨x∗i ,T

∗

ny∗i ⟩| = sup
n
|⟨x∗i ⊗ y∗i ,Tn⟩| → 0,

as i → ∞. Now by [2, page, 168], the sequence L(Tn) is relatively compact in c0 (one can also use [14,
Proposition 2.3]). Note that ⟨x∗i ,T

∗
ny∗i ⟩ → ⟨x

∗

i ,T
∗y∗i ⟩ as n→ ∞. So ⟨x∗i ,T

∗y∗i ⟩ → 0 as i→ ∞. Then T∗(BY∗ ) is an
almost limited set in E, and so it is relatively compact, by the strong GP property of E. This proves that T∗

and so T is compact. Hence Tn → T weakly by [16, Lemma 4.7]. Thus H is relatively weakly compact, and
M has the strong BD property.

Under the same assumptions on E andM, a similar result by a similar proof can be inferred for a Banach
latticeM ⊂ K(E,Y), (with E∗ instead of E) and the isometry Kw∗ (E∗∗,Y) � K(E,Y):

Theorem 3.17. Let E∗ has the strong GP property andM ⊂ K(E,Y) be a Banach lattice andM∗ has a weak unit. If
for every x ∈ E, ϕx onM is alwcc, thenM has the strong BD property.
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