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Bisimulations for weighted networks with weights in a quantale
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Abstract. In this paper we introduce two types of simulations (forward and backward) and five types
of bisimulations (forward, backward, forward-backward, backward-forward, and regular) for weighted
networks with weights taken in a quntale, we describe their basic properties and provide procedures for
testing the existence of a simulation or bisimulation of a given type and computing the greatest one, in cases
when such simulations or bisimulations exist. We also describe basic properties of homogeneous simulations
and bisimulations, which relate actors within the same weighted network, and establish relationships
between heterogeneous bisimulations between two different networks and homogeneous bisimulations
on these networks. In addition, we characterize the greatest forward, backward and regular bisimulations
between weighted networks by means of multi-valued multimodal logics.

1. Introduction and preliminaries

A large number of natural and man-made systems are structured in the form of networks. Typical exam-
ples include technological infrastructures (the Internet, the World Wide Web, telephone networks, power
grids), transportation infrastructures (road, rail, and airline routes, public transport networks), production
systems (company or cross-company owned systems with geographically dispersed plants), distribution
systems (oil and gas pipelines, water and sewerage lines, post office and package delivery routes), biological
systems (gene and protein interaction networks), various social interaction structures, and others. Along
with a complex topological structure, real networks display a large heterogeneity in the capacity and inten-
sity of the connections. Weighted networks have been extensively studied because they can cope with this
heterogeneity. In weighted networks, each connection has additional information called ‘weight’. Weights
are important for representing many interesting phenomena emerging from such networks. For example,
in real weighted networks such as traffic networks, brain networks, and social networks, the weight repre-
sents the number of commuters between towns, the magnitudes of correlational interactions between brain
regions, and the intimacy between humans.

Weights are usually taken to be real numbers (often only integers or natural numbers are used), and clas-
sical algebraic operations and/or functions on real numbers are used to manipulate weights. However, in
many situations, it is more convenient to take weights from some other algebraic structures. Typical exam-
ples are classic unweighted networks, which can be treated as weighted networks that take Boolean values
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1 (”there is a connection”) and 0 (”no connection”) as weights. To handle such weights logical operations in
the two-element Boolean algebra are used. Here we are dealing with weighted networks with weights taken
from much more general algebraic structures called quantales. Quantales were introduced by C.J. Mulvey in
1986, in order to provide a general algebraic framework for studying the extension of the Gelfand-Naimark
representation of commutative C∗-algebras to the non-commutative case. The motivating example of a quan-
tale was the involutive quantale MaxA of all closed linear subspaces of a non-commutative C∗-algebra A,
from which the algebra A can be reconstructed. However, quantales were present even earlier as lattices of
ideals, subgroups, and other suitable substructures of algebras. Natural examples of quantales are lattices
of relations on a set and lattices of linear relations on a Hilbert space. It is important to note that quantales
are also applied in linear and other substructural logics and automata theory. In particular, quantales give
a semantics for propositional linear logic in the same way as Boolean algebras give a semantics for classical
propositional logic.

We use quantales as weight structures for weighted networks for several reasons. The main reason is
that quantales possess residuation, which we need in solving systems of inequations with weighted rela-
tions we discuss in the paper. Another reason is that quantales include two extremely important algebraic
structures, complete residuated lattices and max-plus quantales, and everything that is proven for weighted
networks with weights in quantales also applies to weighted networks with weights taken in these struc-
tures. Complete residuated lattices represent the structure of truth values widely used in fuzzy logic and
fuzzy set theory, research approaches that deal with problems relating to ambiguous, subjective, and impre-
cise judgments. Given that relationships between individuals are essentially vague and uncertain, weighted
networks with weights taken in complete residuated lattices, commonly referred to as fuzzy networks, have
a very prominent place in social network analysis. On the other hand, the max-plus quantale is an algebraic
structure derived from the field of real numbers by replacing addition by max-operation and multiplication
by addition, as well as adding minus and plus infinity as the smallest and greatest element. Max-plus
quantales and related max-plus algebras are very successfully used in representing the behaviour of timed
discrete event systems with synchronization of tasks and resource sharing, such us, for instance, production
systems, railroad networks, urban traffic networks, queuing systems, array processors, and others.

In this paper, weighted networks are studied from the point of view of social network analysis. A weighted
social network, which for simplicity we call only a weighted network, consists of a set of actors and ties
between them that carry certain weights. As we have already said, weights are taken from quantales. The
weighted networks we work with here are also multi-relational, which means that there can be many differ-
ent types of ties, and are multi-attribute, which means that there can be many different types of attributes
assigned to actors. The problems we deal with belong to the field of positional analysis of social networks,
whose main task is to determine the positions or roles of actors in the network based on the interrelation-
ships between actors. For example, in a terrorist or criminal network, we should infer the role of the actors
on the basis of mutual communication, without insight into the content of the communication (which could
be encrypted). The basic tools used in the positional analysis of classical unweighted networks are regular
equivalences. Informally speaking, any equivalence class of a regular equivalence is composed of actors who
have similar relations to members of other equivalence classes. This means that two actors can be considered
regularly equivalent if they occupy the same position, that is, positions can be understood as equivalence
classes of a regular equivalence. Regular equivalences were introduced by White and Reitz in 1983, and later
they were studied in numerous articles. For more information about them we refer to [5, 18, 25, 36]. In the
context of weighted networks, more precisely for fuzzy networks, weighted (fuzzy) versions of regular
equivalences were studied by Fan, Liau, and Lin [23, 24], Ćirić and Bogdanović [9] (see also [28, 30]), and
Fan and Liau [22].

Regular equivalences describe structural similarities between actors within the same network. In this
paper, we explore structural similarities between actors from two different networks and look for the same
positions in different networks. The main tools we use for this purpose are bisimulations. Bisimulations have
been introduced in the early 1980s by Milner and Park, as a very powerful tool used in many areas of com-
puter science to match moves and compare the behaviour of various systems, as well as to reduce the
number of states of these systems. Roughly at the same time they have been also discovered in some areas
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of mathematics, e.g., in modal logic and set theory. The use of bisimulations has gained a long and rich
history and their various forms have been defined and applied to different systems. They are employed to-
day in the study of functional languages, object-oriented languages, types, datatypes, domains, databases,
compiler optimizations, program analysis, verification tools, etc.

In social network analysis, in the context of unweighted networks, bisimulations first appeared in the
paper of Marx and Masuch [32], and later they were studied in [6, 7]. In the context of weighted networks,
bisimulations have not been studied so far, with the exception of the aforementioned weighted regular
equivalences, which are a special case of bisimulations connecting actors within the same network. Motiva-
ted by concepts of simulations and bisimulations for fuzzy and weighted automata developed in [12–14],
in Section 4 we introduce two types of simulations (forward and backward) and five types of bisimulations
(forward, backward, forward-backward, backward-forward, and regular) for weighted networks, and we
describe their basic properties (Theorems 4.1 and 4.2). Then in Section 5 we provide procedures for testing
the existence of a simulation or bisimulation of a given type and computing the greatest one, in cases when
such simulations or bisimulations exist (Theorems 5.1 and 5.2).

Simulations and bisimultions discussed in Sections 4 and 5 are heterogeneous, they connect actors from
different weighted networks. In Section 6 we deal with homogeneous simulations and bisimulations, which
relate actors within the same weighted network. We prove the existence of the greatest homogeneous sim-
ulations and bisimulations on a weighted network (Theorems 6.1 and 6.2), and besides, we show that the
greatest homogeneous simulations are weighted quasi-orders (Theorem 6.1) and that the greatest homoge-
neous forward, backward and regular bisimulations are weighted eqivalences (Theorem 6.2). In Section 7 we
establish certain relationships between heterogeneous bisimulations between two different networks and
homogeneous bisimulations on these networks. Finally, in Section 8 we characterize the greatest forward,
backward and regular bisimulations between weighted networks by means of multi-valued multimodal
logics. Informally speaking, we show that forward bisimulations preserve compound attributes expressed
by plus formulas, backward bisimulations preserve attributes expressed by minus formulas, whereas reg-
ular bisimulations preserve attributes expressed by arbitrary multimodal formulas.

In Sections 4 and 5 we deal with weighted networks with weights taken in an arbitrary quantale, while
in Section 6 we require that quantale to be integral. Since in Section 7 we use results from [11] proved for
weighted relations with weights in a complete residuated lattice, in that section we require weights to be
taken in such a structure. Also, in Section 8 we use concepts and results from [37, 38] concerning multi-
valued multimodal logics over a complete Heyting algebra, so weighted networks considered in that section
also take weights in a complete Heyting algebra.

2. Basic notions and notation

2.1. Quantales, complete residuated lattices and Heyting algebras

A quantale is defined as an algebra Q = (Q,∧,∨,⊗, 0, 1) satisfying the following conditions:

(Q1) (Q,∧,∨, 0, 1) is a complete lattice in which 0 is the least element and 1 is the greatest element;
(Q2) (Q,⊗) is a semigroup, which does not have to be commutative;
(Q3) for arbitrary a ∈ Q and {bi}i∈I ⊆ Q the following infinite distributive laws hold

a ⊗
(∨

i∈I

bi

)
=
∨
i∈I

(a ⊗ bi),
(∨

i∈I

bi

)
⊗ a =

∨
i∈I

(bi ⊗ a). (1)

The operation ⊗ is called a multiplication, and if it is a commutative operation, then Q is called a commutative
quantale. If the semigroup (Q,⊗) has an identity, then Q is called a unital quantale, and if this identity coincides
with the greatest element 1, then Q is called an integral quantale. One can easily check that the least element 0
is the zero of the semigroup (Q,⊗), i.e., a ⊗ 0 = 0 ⊗ a = 0, for every a ∈ Q.

If Q = (Q,∧,∨,⊗, 0, 1) is a quantale, then Qs = (Q,∨,⊗, 0) is a semiring (with zero, but not necessarily
with identity), which is called the semiring reduct of Q.
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For an arbitrary quantale Q we can define two more binary operations \ and / on its carrier Q as follows:

a\b =
∨
{x ∈ Q | a ⊗ x ⩽ b}, b/a =

∨
{y ∈ Q | y ⊗ a ⩽ b}, (2)

for any a, b ∈ Q. We call a\b the right residual of b by a, and b/a the left residual of b by a. The right residual a\b
can be understood as what remains of b on the right when divided by a on the left, and similarly the left
residual can be understood. Due to infinite distributivity, a\b and b/a belong to the sets {x ∈ Q | a ⊗ x ⩽ b}
and {y ∈ Q | y ⊗ a ⩽ b}, respectively, and they are their greatest elements.

The key relationship between multiplication and residuals in the quantale Q is given by the formula

a ⊗ b ⩽ c ⇔ a ⩽ c/b ⇔ b ⩽ a\c, (3)

for all a, b, c ∈ Q, which is called the residuation property. According to (1) and (2) we get that for each a ∈ Q
the mappings x 7→ a⊗ x, x 7→ x⊗ a, x 7→ a\x and x 7→ x/a are isotone (order-preserving) mappings of Q into
itself, that is, for all a, b, c ∈ Q we have that

b ⩽ c ⇒ a ⊗ b ⩽ a ⊗ c & b ⊗ a ⩽ c ⊗ a & a\b ⩽ a\c & b/a ⩽ c/a. (4)

For a quantale Q = (Q,∧,∨,⊗, 0, 1), the algebra Q♯ = (Q,∧,∨,⊗, \, /) will be called the extended quantale.
A commutative integral quantale is called a complete residuated lattice. Due to the commutativity we have

that a\b = b/a, for all a, b ∈ Q, which means that the operations \ and / coincide, and in that case they are
denoted by→. Then the residuation property (3) becomes

a ⊗ b ⩽ c ⇔ a ⩽ b→ c, (5)

for all a, b, c ∈ Q.
In many sources, in the definition of a complete residuated lattice, infinite distributivity (1) is replaced by

the residuation property (5), that is, a complete residuated lattice is defined as an algebra (Q,∧,∨,⊗,→, 0, 1)
that satisfies (Q1), (Q2) (with the additional assumptions that the multiplication ⊗ is commutative and 1 is
a multiplicative identity) and the residuation property (5) (cf. [3]).

A complete residuated lattice in which ⊗ = ∧ is called a complete Heyting algebra. If the underlying or-
dering ⩽ is linear, we say that this Heyting algebra is linearly ordered.

For the main examples of quantales we refer to [29], while for the main examples of complete residuated
lattices and Heyting algebras we refer to [3, 12, 37].

2.2. Weighted sets and relations

A weighted subset of a set A, with weights taken in a quantale Q = (Q,∧,∨,⊗, 0, 1), is defined as any map-
ping f : A→ Q. For a ∈ A, its image f (a) is called the weight of a and can be understood as a measure of the
membership of the element a to the weighted subset f . Ordinary subsets of A can be viewed as weighted
subsets taking weights in the set {0, 1} ⊆ Q. The collection of all weighted subsets of a set A, with weights
taken in Q is denoted by QA. A weighted set f : A→ Q is empty if f (a) = 0, for all a ∈ A, and otherwise, it is
non-empty. The equality of weighted subsets is defined as the equality of mappings, i.e., f = 1 if and only if
f (a) = 1(a), for each a ∈ A, and the inclusion f ⩽ 1 is also defined pointwise: f ⩽ 1 if and only if f (a) ⩽ 1(a),
for every a ∈ A. The intersection

∧
i∈I fi and the union

∨
i∈I fi of a collection { fi}i∈I of weighted subsets of A

are weighted subsets of A defined by(∧
i∈I

fi
)
(x) =

∧
i∈I

fi(x),
(∨

i∈I

fi
)
(x) =

∨
i∈I

fi(x).

A weighted relation between non-empty sets A and B (in this order) is defined as a weighted subset R of A×B,
i.e., a mapping R : A × B→ Q. If A = B, we say that R is a weighted relation on A. The notions of equality,
inclusion, intersection and union of weighted relations are obtained directly from the definitions of the
corresponding notions concerning weighed subsets. The inverse weighted relation of R : A×B→ Q (which is
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also called a converse weighted relation) is a weighted relation R−1 : B × A→ Q defined by R−1(b, a) = R(a, b),
for all a ∈ A and b ∈ B. It is clear that (R−1)−1 = R.

The product of weighted relations R : A×B→ Q and S : B×C→ Q is a weighted relation R◦S : A×C→ Q
defined for any a ∈ A and c ∈ C by

(R ◦ S)(a, c) =
∨
b∈B

R(a, b) ⊗ S(b, c).

On the other hand, for a weighted relation R : A × B→ C and weighted sets f : A→ Q and 1 : B→ Q, the
weighted set-relation product f ◦ R : B → Q and weighted relation-set product R ◦ 1 : A → Q are weighted sets
defined for any b ∈ B and a ∈ A by

( f ◦ R)(b) =
∨
a′∈A

f (a′) ⊗ R(a′, b), (R ◦ 1)(a) =
∨
b′∈B

R(a, b′) ⊗ 1(b′).

It should be noted that if A and B are finite sets, A with m elements and B with n elements, then a weighted
relation R : A × b → Q can be viewed as an m × n matrix with entries in Q, while weighted sets f : A → Q
and 1 : B → Q can be viewed as vectors from semilinear spaces Qm and Qn over the semiring reduct Qs

of Q, respectively. In this case, the products f ◦ R and R ◦ 1 are the usual vector-matrix and matrix-vector
products. Moreover, if A, B and C are finite sets, then the product R ◦ S of weighted relations R : A×B→ Q
and 1 : B × C→ Q is the usual product of matrices over the semiring Qs.

For all R,Ri ∈ QA×B (i ∈ I), S,S1,S2,Si ∈ QB×C (i ∈ I), T ∈ QC×D, f ∈ QA, 1 ∈ QB and h ∈ QC we have that:

(R ◦ S) ◦ T = R ◦ (S ◦ T); (6)

R ◦
(∨

i∈I

Si

)
=
∨
i∈I

(R ◦ Si),
(∨

i∈I

Ri

)
◦ S =

∨
i∈I

(Ri ◦ S); (7)

(R ◦ S)−1 = S−1
◦ R−1; (8)(∨

i∈I

Ri

)−1
=
∨
i∈I

R−1
i ; (9)

f ◦
(∨

i∈I

Ri

)
=
∨
i∈I

( f ◦ Ri),
(∨

i∈I

Ri

)
◦ 1 =

∨
i∈I

(Ri ◦ 1); (10)

S1 ⩽ S2 ⇒ S−1
1 ⩽ S−1

2 & R ◦ S1 ⩽ R ◦ S2 & S1 ◦ T ⩽ S2 ◦ T & 1 ◦ S1 ⩽ 1 ◦ S2 & S1 ◦ h ⩽ S2 ◦ h; (11)
( f ◦ R) ◦ S = f ◦ (R ◦ S), ( f ◦ R) ◦ 1 = f ◦ (R ◦ 1), (R ◦ S) ◦ h = R ◦ (S ◦ h). (12)

If, in addition, the multiplication ⊗ is commutative, then for any R ∈ QA×B, f ∈ QA and 1 ∈ QB we have that

R−1
◦ f = f ◦ R, 1 ◦ R−1 = R ◦ 1. (13)

It is evident that (QA×B,∧,∨, ∅,A× B) is a complete lattice, and if Q is a unital quantale with identity 1⊗,
then by (6) and (7) it follows that (QA×A,∧,∨, ◦, ∅,A×A) is also a unital quantale with the identity∆A, where
∆A is the ordinary equality relation on A which is defined as a weighted relation by∆A(a, b) = 1⊗, if a = b, and
∆A(a, b) = 0, if a , b. This means that we can define residuals for weighted relations on A using formulas (2).
However, residuals of weighted relations can be defined in a more general context, as follows. For weighted
relations R ∈ QA×B, S ∈ QB×C and T ∈ QA×C, where A, B and C are non-empty sets, we define weighted
relations R\T ∈ QB×C and T/S ∈ QA×B by

(R\T)(b, c) =
∧
a′∈A

R(a′, b)\T(a′, c), (T/S)(a, b) =
∧
c′∈C

S(b, c′)/T(a, c′), (14)

for all a ∈ A, b ∈ B and c ∈ C (on the right hand side, the residuals in the quantale Q are used). As in quantales,
R\T is called the right residual of T by R, and T/S is called the left residual of T by S. It can be easily proven that

R\T =
∨
{U ∈ QB×C

| R ◦U ⩽ T}, T/S =
∨
{V ∈ QA×B

| V ◦ S ⩽ T},
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and therefore, the following residuation property for weighted relations holds

R ◦ S ⩽ T ⇔ R ⩽ T/S ⇔ S ⩽ R\T. (15)

In addition, for weighted sets f ∈ QA and 1 ∈ QB, where A and B are non-empty sets, we define weighted
relations f\1, f/1 ∈ QA×B by

( f\1)(a, b) = f (a)\1(b), ( f/1)(a, b) = f (a)/1(b), (16)

for all a ∈ A and b ∈ B. We call f\1 the right residual of 1 by f , and f/1 the left residual of f by 1. We have that

f\1 =
∨
{R ∈ QA×B

| f ◦ R ⩽ 1}, f/1 =
∨
{R ∈ QA×B

| R ◦ 1 ⩽ f },

whence it follows that for each R ∈ QA×B the following residuation property holds

f ◦ R ⩽ 1 ⇔ R ⩽ f\1, R ◦ 1 ⩽ f ⇔ R ⩽ f/1. (17)

According to (4), for all R ∈ QA×B, X,Y ∈ QB×C, and S ∈ QC×D we have that

X ⩽ Y ⇒ R ◦ X ⩽ R ◦ Y & X ◦ S ⩽ Y ◦ S, (18)

while for all R ∈ QA×B, X,Y ∈ QA×C, and S ∈ QB×C we have that

X ⩽ Y ⇒ R\X ⩽ R\Y & X/S ⩽ Y/S. (19)

2.3. Other necessary notions and notation
Throughout the paper,N denotes the set of natural numbers (without zero).
Let (P,⩽) be a partially ordered set. A sequence {an}n∈N of elements of P is called a decreasing sequence if

an+1 ⩽ an, for each n ∈ N, and it is called strictly decreasing if an+1 < an, for each n ∈ N. We say that (P,⩽)
satisfies the descending chain condition, briefly DCC, if for every descending sequence {an}n∈N of elements of
P there exists m ∈N such that am = am+k, for every k ∈N. If m ∈N is the smallest natural number for which
this holds, we say that the sequence {an}n∈N stabilizes after m steps.

3. Weighted networks

A weighted network, with weights taken in a quantale Q, is a triple N = (A, {Ri}i∈I, {p j} j∈J), where A is a
non-empty set, {Ri}i∈I is a collection of non-empty weighted relations on A, and {p j} j∈J is a collection of non-
empty weighted subsets of A. The members of the set A are called actors (when it comes to social networks)
or nodes. A network can be understood as a system whose elements are somehow connected or interact with
each other. The role of each of the weighted relations Ri is to establish certain connections among interacting
elements from A. Depending on the context, these connections are called ties, links or edges. For arbitrary
a, b ∈ A, the weight Ri(a, b) is understood as the strength of the tie between a and b which corresponds to Ri.
On the other hand, for any a ∈ A the weight p j(a) is understood as the extent to which a has an attribute
associated to p j. In social network analysis weighted networks are also called valued networks [36, 39].

A weighted network N = (A, {Ri}i∈I, {p j} j∈J) in which A, I and J are finite sets is called a finite weighted
network. In practice, we encounter only such weighted networks. However, here we still allow weighted net-
works to be infinite, because most of the results obtained are valid in such cases. The cases in which we
assume that weighted networks are finite will be especially emphasized.

Two weighted networks N ′ and N ′′ are said to be weighted networks of the same type if their collections of
weighted relations and weighted subsets are indexed by the same sets I and J, i.e., N ′ = (A′, {R′i }i∈I, {p′j} j∈J)
and N ′′ = (A′′, {R′′i }i∈I, {p′′j } j∈J). This means that for each i ∈ I both R′i and R′′i represent the same kind of
ties, and for each j ∈ J both p′j and p′′j represent the same kind of attributes.

Weighted networks N ′ = (A′, {R′i }i∈I, {p′j} j∈J) and N ′′ = (A′′, {R′′i }i∈I, {p′′j } j∈J) of the same type are said to
be isomorphic if there exists a bijective mappingψ : A′ → A′′ such that the following holds: p′j(a

′) = p′′j (ψ(a′)),
for all a′ ∈ A′ and j ∈ J, and R′i (a

′

1, a
′

2) = R′′i (ψ(a′1), ψ(a′2)), for all a′1, a
′

2 ∈ A′ and i ∈ I.
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4. Simulations and bisimulations between weighted networks

Hereinafter, let N ′ = (A′, {R′i }i∈I, {p′j} j∈J) and N ′′ = (A′′, {R′′i }i∈I, {p′′j } j∈J) be two weighted networks of the
same type and let X be a non-empty weighted relation between A′ and A′′. If X satisfies the conditions

p′j ⩽ p′′j ◦ X−1, for every j ∈ J, (fs-1)

X−1
◦ R′i ⩽ R′′i ◦ X−1, for every i ∈ I, (fs-2)

X−1
◦ p′j ⩽ p′′j , for every j ∈ J, (fs-3)

then it is called a forward simulation between N ′ and N ′′, and if X satisfies

p′j ⩽ X ◦ p′′j , for every j ∈ J, (bs-1)

R′i ◦ X ⩽ X ◦ R′′i , for every i ∈ I, (bs-2)
p′j ◦ X ⩽ p′′j , for every j ∈ J, (bs-3)

then it is called a backward simulation between N ′ and N ′′. According to Lemma ??, if Q is a commutative
quantale, then (fs-1) coincides with (bs-1) and (fs-3) coincides with (bs-3).

Before we continue with the definitions of bisimulations, we will explain the meaning of simulations. It is
most convenient to explain their meaning in the case of unweighted networks, where Ri’s and p j’s are ordi-
nary relations and sets. This case is obtained when a quantale Q is taken to be the two-element Boolean
algebra ({0, 1},∧,∨, 0, 1) (assuming that the multiplication ⊗ coincides with the conjunction ∧). Under these
circumstances, let us consider a tie between actors a′ and b′ in the network N ′. The condition (fs-1) says
that if a′ has a certain attribute associated to p j, then a′ is simulated by some a′′ ∈ A′′ with the same attribute,
after which (fs-3) says that a′′ has all the attributes that a′ has. Then condition (fs-2) says that a′′ is tied to
some b′′ ∈ A′′which simulates b′, and again, (fs-3) says that b′′ has all the attributes that b′ has (see Fig. 1 (a)).
This means that the tie between a′′ and b′′ consistently simulates the tie between a′ and b′ .

Conditions (bs-1)–(bs-3) are used in an opposite way. Let us start again from a tie between actors a′ and
b′ in the network N ′. According to (bs-1), if b′ has a certain attribute associated to p j, then b′ is simulated by
some b′′ ∈ A′′ with the same attribute, after which (bs-3) says that b′′ has all the attributes that b′ has. Then,
according to (bs-2), there is some a′′ ∈ A′′, tied to b′′, which simulates a′, and finnaly, (bs-3) says that a′′ has
all the attributes that a′ has (see Fig. 1 (b)). And again we have that the tie between a′′ and b′′ consistently
simulates the tie between a′ and b′.

As we have considered here the case when the underlying quantale is the two-element Boolean algebra,
which is a commutative quantale, the condition (bs-1) has the same meaning as (fs-1) and (bs-3) has the
same meaning as (fs-3), but for non-commutative quantales the meanings of these conditions differ.

a′ a′′

b′ b′′

X

X

R′i R′i

a′ a′′

b′ b′′

X

X

R′i R′i

(a) (b)
Figure 1: Graphic representation of conditions (fs-2) and (bs-2).

We continue with weighted networks N ′ = (A′, {R′i }i∈I, {p′j} j∈J) and N ′′ = (A′′, {R′′i }i∈I, {p′′j } j∈J) and a
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weighted relation X between A′ and A′′. If both X and X−1 are forward simulations, i.e., if they satisfy

p′j ⩽ p′′j ◦ X−1, p′′j ⩽ p′j ◦ X, for every j ∈ J, (fb-1)

X−1
◦ R′i ⩽ R′′i ◦ X−1, X ◦ R′′i ⩽ R′i ◦ X, for every i ∈ I, (fb-2)

X−1
◦ p′j ⩽ p′′j , X ◦ p′′j ⩽ p′j, for every j ∈ J, (fb-3)

then X is called a forward bisimulation between N ′ and N ′′, and if both X and X−1 are backward simulations,
i.e., if they satisfy

p′j ⩽ X ◦ p′′j , p′′j ⩽ X−1
◦ p′j, for every j ∈ J, (bb-1)

R′i ◦ X ⩽ X ◦ R′′i , R′′i ◦ X−1 ⩽ X−1
◦ R′i , for every i ∈ I, (bb-2)

p′j ◦ X ⩽ p′′j , p′′j ◦ X−1 ⩽ p′j, for every j ∈ J, (bb-3)

then X is called a backward bisimulation between N ′ and N ′′.
On the other hand, if X is a forward simulation and X−1 is a backward simulation, i.e., if

p′j ⩽ p′′j ◦ X−1, p′′j ⩽ X−1
◦ p′j, for every j ∈ J, (fbb-1)

X−1
◦ R′i ⩽ R′′i ◦ X−1, R′′i ◦ X−1 ⩽ X−1

◦ R′i , for every i ∈ I, (fbb-2)

X−1
◦ p′j ⩽ p′′j , p′′j ◦ X−1 ⩽ p′j, for every j ∈ J, (fbb-3)

then it is called a forward-backward bisimulation between N ′ and N ′′, and if X is a backward simulation and
X−1 is a forward simulation, i.e., if

p′j ⩽ X ◦ p′′j , p′′j ⩽ p′j ◦ X, for every j ∈ J, (bfb-1)

R′i ◦ X ⩽ X ◦ R′′i , X ◦ R′′i ⩽ R′i ◦ X, for every i ∈ I, (bfb-2)
p′j ◦ X ⩽ p′′j , X ◦ p′′j ⩽ p′j, for every j ∈ J, (bfb-3)

then it is called a backward-forward bisimulation between N ′ and N ′′.
Note that (fbb-2) can be written in a simpler way as X−1

◦ R′i = R′′i ◦ X−1, whereas (bfb-2) can be
written as R′i ◦ X = X ◦ R′′i . In addition, inequalities that form (fbb-1) and (fbb-3) can be combined to give
p′j = p′′j ◦X−1 and p′′j = X−1

◦p′j, and inequalities from (bfb-1) and (bfb-3) can be combined to give p′j = X◦p′′j
and p′′j = p′j ◦ X. However, for methodological reasons, the conditions that define forward-backward and
backward-forward bisimulations are written as above.

Finally, X is called a regular bisimulation if it is both a forward and backward bisimulation. In other
words, X is a regular bisimulation if the following assertions are true:

p′j ⩽ p′′j ◦ X−1, p′′j ⩽ p′j ◦ X, p′j ⩽ X ◦ p′′j , p′′j ⩽ X−1
◦ p′j, for every j ∈ J,

(rb-1)

X−1
◦ R′i ⩽ R′′i ◦ X−1, X ◦ R′′i ⩽ R′i ◦ X, R′i ◦ X ⩽ X ◦ R′′i , R′′i ◦ X−1 ⩽ X−1

◦ R′i , for every i ∈ I,
(rb-2)

X−1
◦ p′j ⩽ p′′j , X ◦ p′′j ⩽ p′j, p′j ◦ X ⩽ p′′j , p′′j ◦ X−1 ⩽ p′j, for every j ∈ J,

(rb-3)

It is clear that a regular bisimulation is also a forward-backward and backward-forward bisimulation. The
name regular bisimulation is chosen because of its connection with regular equivalences, a very important
concept of social network analysis. That connection will be discussed later.

For θ ∈ {fs, bs}, a weighted relation satisfying (θ-2) and (θ-3) will be called a presimulation of type θ, or
more simply a θ-presimulation, and a weighted relation satisfying all three conditions (θ-1), (θ-2) and (θ-3)
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will be called a simulation of type θ, or shortly a θ-simulation. The set of all simulations of type θ between
weighted networks N ′ and N ′′ will be denoted by S θ(N ′,N ′′), and the set of all presimulations of type
θ between N ′ and N ′′ will be denoted by S θ

∗ (N ′,N ′′).
Similarly, for θ ∈ {fb, bb, fbb, bfb, rb}, a weighted relation satisfying (θ-2) and (θ-3) will be called a prebi-

simulation of type θ or a θ-prebisimulation, and a weighted relation satisfying all three conditions (θ-1), (θ-2)
and (θ-3) will be called a bisimulation of typeθor aθ-bisimulation. The set of all bisimulations of typeθbetween
weighted networks N ′ and N ′′ will be denoted by Bθ(N ′,N ′′), and the set of all prebisimulations of type
θ between N ′ and N ′′ will be denoted by Bθ

∗ (N ′,N ′′).
Simulations and bisimulations between different weighted networks will be called heterogeneous, while

simulations and bisimulations between a weighted network and itself will be called homogeneous.
In the continuation of this section, we describe the basic properties of simulations and bisimulations.

Theorem 4.1. Let θ ∈ {fs, bs} and let N ′ and N ′′ be weighted networks. If S θ
∗ (N ′,N ′′) is non-empty, then the

following assertions are true:

(a) S θ
∗ (N ′,N ′′) is closed under unions and products of weighted relations;

(b) S θ
∗ (N ′,N ′′) has the greatest element X;

(c) If X satisfies (θ-1), then it is also the greatest element of S θ(N ′,N ′′);

(d) If X does not satisfy (θ-1), then S θ(N ′,N ′′) is empty.

Proof. (a) Closedness under unions follows directly from (7), (9) and (10), while closedness under products
follows from (6), (8), (11) and (12).

(b) Due to closedness under unions, the union X of all members of the set S θ
∗ (N ′,N ′′) is contained in

this set and it is its greatest element.
(c) If X satisfies (θ-1), then it belongs to S θ(N ′,N ′′), and since S θ(N ′,N ′′) ⊆ S θ

∗ (N ′,N ′′), we have
that X is greater than all the elements from S θ(N ′,N ′′). Hence, X is the greatest element of S θ(N ′,N ′′).

(d) Assume that X does not satisfy (θ-1) and suppose that S θ(N ′,N ′′) is non-empty, i.e., that there
exists Y ∈ S θ(N ′,N ′′). Then Y ∈ S θ

∗ (N ′,N ′′), so Y ⩽ X. Now, according to (11) and the assumption
that Y satisfies (θ-1), for any j ∈ J we obtain that

p′j ⩽ p′′j ◦ Y−1 ⩽ p′′j ◦ X−1,

if θ = fs, and

p′j ⩽ Y ◦ p′′j ⩽ X ◦ p′′j ,

if θ = bs. Therefore, in both cases we have obtained that X satisfies (θ-1), which is in contradiction with the
starting assumption. Consequently, we conclude that if X does not satisfy (θ-1), then S θ(N ′,N ′′) must
be empty.

Theorem 4.2. Let θ ∈ {fb, bb, fbb, bfb, rb} and let N ′ and N ′′ be weighted networks. If Bθ
∗ (N ′,N ′′) is non-

empty, then the following assertions are true:

(a) Bθ
∗ (N ′,N ′′) is closed under unions and products of weighted relations;

(b) Bθ
∗ (N ′,N ′′) has the greatest element X;

(c) If θ ∈ {fb, bb, rb}, then X satisfies X ◦ X−1
◦ X ⩽ X;

(d) If X satisfies (θ-1), then it is also the greatest element of Bθ(N ′,N ′′);

(e) If X does not satisfy (θ-1), then Bθ(N ′,N ′′) is empty.

Proof. Except the condition (c), everything else is proved in the same way as in the previous theorem.
(c) Let us prove X ◦ X−1

◦ X ⩽ X assuming that X is the greatest element of Bθ
∗ (N ′,N ′′). Starting from

the fact that X satisfies (θ-2) and (θ-3), and using (11), a straightforward verification yields that X ◦X−1
◦X

satisfies (θ-2) and (θ-3), which means that X ◦ X−1
◦ X ∈ Bθ

∗ (N ′,N ′′), and therefore, X ◦ X−1
◦ X ⩽ X.
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Let N ′ and N ′′ be weighted networks and let θ ∈ {fb, bb, fbb, bfb, rb}. If Bθ
∗ (N ′,N ′′) has the greatest

element, it is denoted by Xθ and called a θ-bisimilarity between N ′ and N ′′. In particular, Xfb is the forward
bisimilarity, Xbb is the backward bisimilarity, and Xrb is the regular bisimilarity.

5. Testing the existence and computing the greatest simulations and bisimulations

Let N ′ = (A′, {R′i }i∈I, {p′j} j∈J) and N ′′ = (A′′, {R′′i }i∈I, {p′′j } j∈J) be two weighted networks of the same
type. For any θ ∈ {fs, bs, fb, bb, fbb, bfb, rb}we define a mapping ϕθ : QA′×A′′

→ QA′×A′′ as follows:

ϕfs(X) =
∧
i∈I

[(R′′i ◦ X−1)/R′i ]
−1, ϕbs(X) =

∧
i∈I

[R′i\(X ◦ R′′i )],

ϕfb(X) =
∧
i∈I

[(R′′i ◦ X−1)/R′i ]
−1
∧ [(R′i ◦ X)/R′′i ], ϕbb(X) =

∧
i∈I

[R′i\(X ◦ R′′i )] ∧ [R′′i \(X
−1
◦ R′i )]

−1,

ϕfbb(X) =
∧
i∈I

[(R′′i ◦ X−1)/R′i ]
−1
∧ [R′′i \(X

−1
◦ R′i )]

−1, ϕbfb(X) =
∧
i∈I

[R′i\(X ◦ R′′i )] ∧ [(R′i ◦ X)/R′′i ],

ϕrb(X) =
∧
i∈I

[(R′′i ◦ X−1)/R′i ]
−1
∧ [(R′i ◦ X)/R′′i ] ∧ [R′i\(X ◦ R′′i )] ∧ [R′′i \(X

−1
◦ R′i )]

−1,

for each X ∈ QA′×A′′ . In addition, for each θ ∈ {fs, bs, fb, bb, fbb, bfb, rb} we also define a weighted relation
πθ ∈ QA′×A′′ as follows:

πfs =
∧
j∈J

(p′′j /p
′

j)
−1, πbs =

∧
j∈J

p′j\p
′′

j ,

πfb =
∧
j∈J

(p′′j /p
′

j)
−1
∧ (p′j/p

′′

j ), πbb =
∧
j∈J

(p′j\p
′′

j ) ∧ (p′′j \p
′

j)
−1,

πfbb =
∧
j∈J

(p′′j /p
′

j)
−1
∧ (p′′j \p

′

j)
−1, πbfb =

∧
j∈J

(p′j\p
′′

j ) ∧ (p′j/p
′′

j ),

πrb =
∧
j∈J

(p′′j /p
′

j)
−1
∧ (p′j/p

′′

j ) ∧ (p′j\p
′′

j ) ∧ (p′′j \p
′

j)
−1.

Theorem 5.1. Let N ′ = (A′, {R′i }i∈I, {p′j} j∈J) and N ′′ = (A′′, {R′′i }i∈I, {p′′j } j∈J) be weighted networks. For an arbitrary
θ ∈ {fs, bs, fb, bb, fbb, bfb, rb} the following statements are true:

(a) ϕθ is an isotone mapping of a complete lattice QA′×A′′ into itself;
(b) for any non-empty X ∈ QA′×A′′ we have that X satisfies (θ-2) and (θ-3) if an only it it satisfies

X ⩽ ϕθ(X), X ⩽ πθ. (θ-4)

Proof. We will provide a proof for the case θ = fb. Similar proofs can be provided in all other cases.
(a) Let X,Y ∈ QA′×A′′ such that X ⩽ Y. According to (11), (18), and (19), for an arbitrary i ∈ I we have that

[(R′′i ◦ X−1)/R′i ]
−1 ⩽ [(R′′i ◦ Y−1)/R′i ]

−1 and (R′i ◦ X)/R′′i ⩽ (R′i ◦ Y)/R′′i , which implies that

ϕfb(X) =
∧
i∈I

[(R′′i ◦ X−1)/R′i ]
−1
∧ [(R′i ◦ X)/R′′i ] ⩽

∧
i∈I

[(R′′i ◦ Y−1)/R′i ]
−1
∧ [(R′i ◦ Y)/R′′i ] = ϕfb(Y).

Therefore, ϕfb is an isotone mapping.
(b) For every i ∈ I have that

X−1
◦ R′i ⩽ R′′i ◦ X−1

⇔ X−1 ⩽ R′i\(R
′′

i ◦ X−1) ⇔ X ⩽ [R′i\(R
′′

i ◦ X−1)]−1,

and, on the other hand,

X ◦ R′′i ⩽ R′i ◦ X ⇔ X ⩽ (R′i ◦ X)/R′′i .
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Hence, X satisfies (fb-2) if an only if X ⩽ [R′i\(R
′′

i ◦X−1)]−1
∧ (R′i ◦X)/R′′i , for each i ∈ I, which is equivalent to

X ⩽
∧
i∈I

[R′i\(R
′′

i ◦ X−1)]−1
∧ (R′i ◦ X)/R′′i = ϕ

fb(X).

Moreover, for every j ∈ J we have that

X−1
◦ p′J ⩽ p′′j ⇔ X−1 ⩽ p′′j /p

′

j ⇔ X ⩽ (p′′j /p
′

j)
−1, X ◦ p′′j ⩽ p′j ⇔ X ⩽ p′j/p

′′

j ,

so (fb-3) is equivalent to

X ⩽
∧
j∈J

(p′′j /p
′

j)
−1
∧ p′j/p

′′

j = π
fb.

This completes the proof of the theorem.

For weighted networks N ′ = (A′, {R′i }i∈I, {p′j} j∈J) and N ′′ = (A′′, {R′′i }i∈I, {p′′j } j∈J), by Q♯(N ′,N ′′) we de-

note the subalgebra of Q♯ generated by all values from Q taken by weighted relations R′i and R′′i (i ∈ I), and
weighted sets p′j and p′′j ( j ∈ J).

Theorem 5.2. Let N ′ = (A′, {R′i }i∈I, {p′j} j∈J) and N ′′ = (A′′, {R′′i }i∈I, {p′′j } j∈J) be weighted networks. For an arbitrary
θ ∈ {fs, bs, fb, bb, fbb, bfb, rb} let us define a sequence {Xn}n∈N of weighted relations between A′ and A′′ as follows:

X1 = π
θ, Xn+1 = Xn ∧ ϕ

θ(Xn), for each n ∈N. (20)

Then the following statements are true:

(a) the sequence {Xn}n∈N is decreasing;
(b) for any n ∈N, Xn satisfies (θ-4) if and only if Xn = Xn+1;
(c) if there exists n ∈N such that Xn = Xn+1, then Xn is the greatest weighted relation that satisfies (θ-4);
(d) if A′, A′′, I and J are finite sets and Q♯(N ′,N ′′) satisfies DCC, then the sequence {Xn}n∈N is finite and there

exists n ∈N such that Xn = Xn+1.

Proof. (a) It follows directly from (20) that Xn+1 ⩽ Xn, for each n ∈ N, so {Xn}n∈N is indeed a descending
sequence.

(b) Consider an arbitrary n ∈N. If Xn satisfies (θ-4), then Xn ⩽ ϕθ(Xn), whence Xn+1 = Xn∧ϕθ(Xn) = Xn.
Conversely, if Xn = Xn+1, then

Xn = Xn+1 = Xn ∧ ϕ
θ(Xn) ⩽ ϕθ(Xn),

which means that Xn satisfies the first inequality in (θ-4). As it is clear that Xn ⩽ X1 = πθ, we conclude that
Xn satisfies (θ-4).

(c) Let X be an arbitrary weighted relation between A′ and A′′ that satisfies (θ-4). We will prove by
induction that X ⩽ Xn, for every n ∈ N. It is clear that X ⩽ πθ = X1. Suppose that X ⩽ Xn, for some n ∈ N.
Since X satisfies (θ-4) and ϕθ is isotone, we get that X ⩽ ϕθ(X) ⩽ ϕθ(Xn), whence

X ⩽ Xn ∧ ϕ
θ(Xn) = Xn+1.

This completes our prof by induction.
Now, assume that there exists n ∈N such that Xn = Xn+1. According to (b) we get that Xn satisfies (θ-4),

and as we have just proved, for every weighted relation X between A′ and A′′ which satisfies (θ-4) we have
that X ⩽ Xn. Therefore, Xn is the greatest weighted relation between A′ and A′′ that satisfies (θ-4).

(d) Let A′, A′′, I and J be finite sets, and let Q♯(N ′,N ′′) satisfy DCC.
For every pair (a′, a′′) ∈ A′×A′′, {Xn(a′, a′′)}n∈N is a decreasing sequence of elements of Q♯(N ′,N ′′), so it

stabilizes after n(a′, a′′) steps. Let n be the greatest element of the set {n(a′, a′′) | (a′, a′′) ∈ A′×A′′}. This greatest
element exists because A′ and A′′ are finite sets. Then Xn(a′, a′′) = Xn+1(a′, a′′), for all (a′, a′′) ∈ A′ × A′′, so
we conclude that Xn = Xn+1, which had to be proved.
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6. Homogeneous simulations and bisimulations

In this section we require the underlying quantale Q to be an integral quantale, that is, we require that
the greatest element 1 of Q is a multuplicative identity. A weighted relation R ∈ QA×A is called a reflexive
weighted relation if R(a, a) = 1, for all a ∈ A. The least reflexive weighted relation on A is the equality relation
∆A, and moreover, R ∈ QA×A is a reflexive weighted relation if and only if ∆A ⩽ R.

We also say that R ∈ QA×A is a symmetric weighted relation if R(a, b) = R(b, a), for all a, b ∈ A, and that it is a
transitive weighted relation if R(a, b)⊗R(b, c) ⩽ R(a, c), for all a, b, c ∈ A. It is evident that a weighted relation R
is symmetric if and only if R−1 = R, and it easy to verify that R is transitive if and only if R◦R ⩽ R. A reflexive
and transitive weighted relation is called a weighted quasi-order, and a reflexive, symmetric and transitive
weighted relation is called a weighted equivalence. It is important to note that R ◦R = R for each weighted
quasi-order R (and therefore for each weighted equivalence).

Theorem 6.1. Let N be a weighted network and θ ∈ {fs, bs}. Then the following statements are true:

(a) S θ
∗ (N ) is non-empty and it is closed under unions and products of weighted relations;

(b) S θ
∗ (N ) has the greatest element X which is a weighted quasi-order;

(c) X is also the greatest element of S θ(N ).

Proof. Let N = (A, {Ri}i∈I, {p j} j∈J).
(a) It is clear that ∆A satisfies (θ-2) and (θ-3), which means that ∆A ∈ S θ

∗ (N ), and therefore, S θ
∗ (N ) is

non-empty. According to Theorem 4.1, S θ
∗ (N ) is closed under unions and products of weighted relations.

(b) Again according to Theorem 4.1, S θ
∗ (N ) has the greatest element X. Let us prove that X is a weighted

quasi-order. Since X is the greatest element of S θ
∗ (N ) and ∆A ∈ S θ

∗ (N ), we have that ∆A ⩽ X, so X is a
reflexive weighted relation.

Assume that θ = fs. Then according to (fs-2) and (fs-3) we get that

(X ◦ X)−1
◦ Ri = X−1

◦ X−1
◦ Ri ⩽ X−1

◦ Ri ◦ X−1 ⩽ Ri ◦ X−1
◦ X−1 = Ri ◦ (X ◦ X)−1,

(X ◦ X)−1
◦ p j = X−1

◦ X−1
◦ p j ⩽ X−1

◦ p j ⩽ p j,

for all i ∈ I and j ∈ J, whence it follows that X ◦X satisfies (fs-2) and (fs-3), that is, X ◦X ∈ S fs
∗ (N ). Since X

is the greatest element of S fs
∗ (N ), we conclude that X ◦X ⩽ X, which means that X is a transitive weighted

relation. As we have already proved that X is reflexive, we get that X is a weighted quasi-order.
In the same way we prove that X is a weighted quasi-order in the case when θ = bs.
(c) Due to the reflexivity of the weighted relations X and X−1 we have that

p j = p j ◦ ∆A ⩽ p j ◦ X−1 and p j = ∆A ◦ p j ⩽ X ◦ p j,

for each j ∈ J, whence it follows that X satisfies (θ-2) and (θ-3). This means that X ∈ S θ(N ), and clearly, X
is the greatest element of S θ(N ).

Theorem 6.2. Let N be a weighted network and θ ∈ {fb, bb, fbb, bfb, rb}. Then the following statements are true:

(a) Bθ
∗ (N ) is non-empty and it is closed under unions and products of weighted relations;

(b) Bθ
∗ (N ) has the greatest element X;

(c) If θ ∈ {fb, bb, rb}, then X is a weighted equivalence;
(d) X is also the greatest element of Bθ(N ).

Proof. We will prove only the statement (c). Everything else is proved in a similar way as in the proof of the
previous theorem.

(c) In the same way as in the previous theorem we get that X is a reflexive and transitive weighted
relation. It remains to prove that X is symmetric.

Indeed, it follows directly from (θ-2) and (θ-3) that X−1 also satisfies (θ-2) and (θ-3), that is, X−1
∈ Bθ

∗ (N ),
which implies that X−1 ⩽ X, and this means that X is symmetric.
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Let E ∈ QA×A be a weighted equivalence. For an arbitrary a ∈ A we define a weighted set Ea ∈ QA by
Ea(x) = E(a, x), for each x ∈ A. We call Ea the equivalence class of E determined by a. One can simply check that
Ea1 = Ea2 if and only if E(a1, a2) = 1, for all a1, a2 ∈ A. The set of all equivalence classes of E is denoted by A/E.

Further, let N = (A, {Ri}i∈I, {p j} j∈J) be a weighted network and let E ∈ QA×A be a weighted equivalence.
For all i ∈ I and j ∈ J we define a weighted relation R̄i ∈ Q(A/E)×(A/E) and a weighted set p̄ j ∈ QA/E as follows:

R̄i(Ea1 ,Ea2 ) = (E ◦ Ri ◦ E)(a1, a2) = Ea1 ◦ Ri ◦ Ea2 , (21)
p̄ j(Ea) = (E ◦ p j)(a) = Ea ◦ p j, (22)

for arbitrary a, a1, a2 ∈ A. Then R̄i and p̄ j are well-defined, i.e., they do not depend on the choice of repre-
sentatives of the equivalence classes of E, and N /E = (A/E, {R̄i}i∈I, {p̄ j} j∈J) is a weighted network which is
called the quotient network of N with respect to E.

7. Relationship between heterogeneous and homogeneous bisimulations

In investigating the relationship between heterogeneous and homogeneous bisimulations, which will be
conducted in this section, we will use the results from [11, 12] concerning uniform weighted relations. As these
results were proven for uniform weighted relations over a complete residuated lattice (which were called
uniform fuzzy relations there), throughout this section the unederlying quantale Q will be a complete
residuated lattice. Weighted sets and weighted relations with weights taken in a complete residuated lattice
are usually called fuzzy sets and fuzzy relations. However, in order to achieve consistency in terminology
throughout the paper, we will retain the names weighted sets and weighted relations.

Let A and B be non-empty sets. A weighted relation X ∈ QA×B is a weighted mapping or a weighted function
if for every a ∈ A there exists b ∈ B such that X(a, b) = 1. It can be easily shown that X is a weighted mapping
if and only if there exists an ordinary mapping ψ : A → B such that X(a, ψ(a)) = 1, for every a ∈ A (cf.
[15, 16]). A mapping ψwith such a property is called a crisp description of X. The set of all crisp descriptions
of X is denoted by CR(X). A weighted relation X ∈ QA×B is called surjective if for every b ∈ B there exists
a ∈ A such that X(a, b) = 1.

Recall that the greatest bisimulation of type θ between two weighted networks (where θ ∈ {fb, bb, rb}), if
it exists, satisfies X◦X−1

◦X ⩽ X. A weighted relation between two sets which satisfies X◦X−1
◦X ⩽ X and it

is a surjective weighted mapping is called a uniform weighted relation. Such weighted relations were studied
in detail in [10–12] (under the name uniform fuzzy relations). It is important to note that a uniform weighted
relation X also satisfies X ◦ X−1

◦ X = X (cf. [12]).

Theorem 7.1. Let N ′ = (A′, {R′i }i∈I, {p′j} j∈J) and N ′′ = (A′′, {R′′i }i∈I, {p′′j } j∈J) be weighted networks and X ∈ QA′×A′′ .
Then the following statements are true:

(a) X ◦ X−1 and X−1
◦ X are symmetric.

(b) If X ◦ X−1
◦ X ⩽ X, then X ◦ X−1 and X−1

◦ X are transitive.
(c) If X is a surjective weighted mapping then X ◦ X−1 and X−1

◦ X are reflexive.
(d) If θ ∈ {fb, bb, rb} and X ∈ Bθ(N ′,N ′′), then X ◦ X−1

∈ Bθ(N ′) and X−1
◦ X ∈ Bθ(N ′′).

Proof. (a) This statement follows directly from (8) and the fact that (X−1)−1 = X.
(b) According to (11), it follows from X ◦X−1

◦X ⩽ X that (X ◦X−1)2 ⩽ X ◦X−1 and (X−1
◦X)2 ⩽ X−1

◦X,
which means that X ◦ X−1 and X−1

◦ X are transitive.
(c) Let X be a weighted mapping. Then for an arbitrary a′ ∈ A′ there exists a′′ ∈ A′′ such that X(a′, a′′) = 1,

whence it follows that

(X ◦ X−1)(a′, a′) =
∨

b′′∈A′′
X(a′, b′′) ⊗ X−1(b′′, a′) ⩾ X(a′, a′′) ⊗ X−1(a′′, a′) = X(a′, a′′) ⊗ X(a′, a′′) = 1,

and we conclude that (X ◦ X−1)(a′, a′) = 1, for each a′ ∈ A′. This means that X ◦ X−1 is reflexive.
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Let X be a surjective weighted relation. Then in the same way we get that (X−1
◦X)(a′′, a′′) = 1, for every

a′′ ∈ A′′, which means that X−1
◦ X is reflexive.

(d) We will prove the case when θ = fb. Other cases are proven similarly.
Let X satisfy (fb-1), (fb-2) and (fb-3). Then according to (11), for arbitrary j ∈ J and i ∈ I we get that

p′j ⩽ p′′j ◦ X−1 ⩽ p′j ◦ X ◦ X−1,

X ◦ X−1
◦ R′i ⩽ X ◦ R′′i ◦ X−1 ⩽ R′i ◦ X ◦ X−1,

X ◦ X−1
◦ p′j ⩽ X ◦ p′′j ⩽ p′j,

which means that X ◦ X−1
∈ Bfb(N ′). In the same way we get that X−1

◦ X ∈ Bfb(N ′′).

Let A′ and A′′ be non-empty sets and let X ∈ QA′×A′′ be a uniform weighted relation. According to Theo-
rem 7.1, X◦X−1 and X−1

◦X are weighted equivalences on A′ and A′′, respectively. For the sake of simplicity,
we will use notation E′X = X ◦ X−1 and E′′X = X−1

◦ X. In [11, 12] it has been proven that

E′X(a′1, a
′

2) = (X ◦ X−1)(a′1, a
′

2) =
∨

a′′∈A′′
X(a′1, a

′′) ⊗ X(a′2, a
′′) =

∧
a′′∈A′′

X(a′1, a
′′)↔ X(a′2, a

′′), (23)

for all a′1, a
′

2 ∈ A′, and

E′′X(a′′1 , a
′′

2 ) = (X−1
◦ X)(a′′1 , a

′′

2 ) =
∨

a′∈A′
X(a′, a′′1 ) ⊗ X(a′, a′′2 ) =

∧
a′∈A′

X(a′, a′′1 )↔ X(a′, a′′2 ), (24)

for all a′′1 , a
′′

2 ∈ A′′. In cases when it is clear that we deal with weighted equivalences that correspond to the
weighted relation X, the subscript X in E′X and E′′X will be omitted, and we will simply write E′ and E′′.

A mapping ΦX : A′/E′ → A′′/E′′ given by

ΦX(E′a′ ) = E′′ψ(a′) for any a′ ∈ A′ and ψ ∈ CR(X), (25)

is well-defined (it does not depend on the choice of a′ ∈ A′ and ψ ∈ CR(X)), and it is a bijective mapping
which satisfies Φ−1

X = ΦX−1 (cf. Lemma 4.5 [12]).
The next lemma is a part of Theorem 3.2 [11] (see also Theorem 4.2 [12]).

Lemma 7.2. Let X ∈ QA′×A′′ be a uniform weighted relation. Then the following statements are true:

(a) X(a′1, ψ(a′2)) = E′(a′1, a
′

2), for all a′1, a
′

2 ∈ A′ and ψ ∈ CR(X).
(b) X(a′, a′′) = E′′(ψ(a′), a′′), for all a′ ∈ A′, a′′ ∈ A′′ and ψ ∈ CR(X).

Theorem 7.3. Let N ′ = (A′, {R′i }i∈I, {p′j} j∈J) and N ′′ = (A′′, {R′′i }i∈I, {p′′j } j∈J) be weighted networks, let X ∈ QA′×A′′

be a uniform weighted relation, and let θ ∈ {fb, bb, rb}. Then X ∈ Bθ(N ′,N ′′) if and only if the following conditions
are satisfied:

(i) E′X ∈ Bθ(N ′);
(ii) E′′X ∈ Bθ(N ′′);

(iii) ΦX is an isomorphism of quotient networks N ′/E′X and N ′′/E′′X.

Proof. Let X ∈ Bθ(N ′,N ′′). According to the previous theorem we have that E′ = E′X = X ◦X−1
∈ Bθ(N ′)

and E′′ = E′′X = X−1
◦ X ∈ Bθ(N ′′). Thus, it remains to prove that (iii) holds.

As we noted earlier, ΦX is a bijective mapping. To prove that ΦX is an isomorphism, we first consider
an arbitrary j ∈ J. According to (fb-3), (fb-1) and (13) we get that

E′ ◦ p′j = X ◦ X−1
◦ p′j ⩽ X ◦ p′′j ⩽ X ◦ p′j ◦ X = X ◦ X−1

◦ p′j = E′ ◦ p′j,
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and hence, E′ ◦ p′j = X ◦ p′′j . Besides, according to Lemma 7.2 (b), for any a′ ∈ A′ and ψ ∈ CR(X) we have that

p̄′′j (ΦX(E′a′ ) = p̄′′j (E′′ψ(a′)) = (E′′ ◦ p′′j )(ψ(a′)) =
∨

a′′∈A′′
E′′(ψ(a′), a′′) ⊗ p′′j (a′′) =

∨
a′′∈A′′

X(a′, a′′) ⊗ p′′j (a′′)

= (X ◦ p′′j )(a′) = (E′ ◦ p′j)(a
′) = p̄′j(E

′

a′ ).

Next, consider an arbitrary i ∈ I. According to (fb-2) and (11) we have that

E′′ ◦ R′′i ◦ E′′ = X−1
◦ X ◦ R′′i ◦ X−1

◦ X ⩽ X−1
◦ R′i ◦ X ◦ X−1

◦ X = X−1
◦ R′i ◦ X

= X−1
◦ X ◦ X−1

◦ R′i ◦ X ⩽ X−1
◦ X ◦ R′′i ◦ X−1

◦ X = E′′ ◦ R′′i ◦ E′′,

and thus, E′′ ◦ R′′i ◦ E′′ = X−1
◦ R′i ◦ X. According to Lemma 7.2 (a), for all a′1, a

′

2 ∈ A′ and ψ ∈ CR(X) the
following is true:

R̄′′i (ΦX(E′a′1 ),ΦX(E′a′2 )) = R̄′′i (E′′ψ(a′1),E
′′

ψ(a′2)) = (E′′ ◦ R′′i ◦ E′′)(ψ(a′1), ψ(a′2)) = (X−1
◦ R′i ◦ X)(ψ(a′1), ψ(a′2))

=
∨

a′3,a
′

4∈A′
X−1(ψ(a′1), a′3) ⊗ R′i (a

′

3, a
′

4) ⊗ X(a′4, ψ(a′2)) =
∨

a′3,a
′

4∈A′
X(a′3, ψ(a′1)) ⊗ R′i (a

′

3, a
′

4) ⊗ X(a′4, ψ(a′2))

=
∨

a′3,a
′

4∈A′
E′(a′3, a

′

1) ⊗ R′i (a
′

3, a
′

4) ⊗ E′(a′4, a
′

2) =
∨

a′3,a
′

4∈A′
E′(a′1, a

′

3) ⊗ R′i (a
′

3, a
′

4) ⊗ E′(a′4, a
′

2)

= (E′ ◦ R′i ◦ E′)(a′1, a
′

2) = R̄′i (E
′

a′1
,E′a′2 ).

Therefore, we have proved that ΦX is an isomorphism of weighted networks N ′/E′X and N ′′/E′′X.
In the converse, we will prove only the case when θ = fb. The remaining cases are proven in a similar

manner. So, let the conditions (i), (ii) and (iii) be satisfied for θ = fb.
Consider an arbitrary j ∈ J. Due to (i) we have that p′j = E′ ◦ p′j, and according to Lemma 7.2 (b), for an

arbitrary a′ ∈ A′ we get that

p′j(a
′) = (E′ ◦ p′j)(a

′) = p̄′j(E
′

a′ ) = p̄′′j (ΦX(E′a′ )) = p̄′′j (E′′ψ(a′)) = (E′′ ◦ p′′j )(ψ(a′))

=
∨

a′′∈A′′
E′′(ψ(a′), a′′) ⊗ p′′j (a′′) =

∨
a′′∈A′′

X(a′, a′′) ⊗ p′′j (a′′) = (X ◦ p′′j )(a′).

Together with (13), this implies that p′j = X ◦ p′′j = p′′j ◦ X−1.
In the same way, using the isomorphism Φ−1

x = ΦX−1 instead of the isomorphism ΦX and an arbitrary
ξ ∈ CR(X−1) instead of ψ ∈ CR(X) (and also using Lemma 4.5 [12]), we obtain that p′′j = X−1

◦ p′j = p′j ◦ X.
Therefore, we have proved that X satisfies (fb-1) and (fb-3).
In order to prove that X satisfies (fb-2) consider an arbitrary i ∈ I. According to (ii), E′′ satisfies (fb-2),

that is, E′′ ◦R′′i ⩽ R′′i ◦ E′′, whence E′′ ◦R′′i ◦ E′′ ⩽ R′′i ◦ E′′ ◦ E′′ = R′′i ◦ E′′, and since the opposite inequality
holds due to the reflexivity of E′′, we conclude that E′′ ◦ R′′i ◦ E′ = R′′i ◦ E′′. Due to the reflexivity of E′ we
also have that E′ ◦ R′i ⩽ E′ ◦ R′i ◦ E′.

Now, for arbitrary a′ ∈ A′, a′′ ∈ A′′, ξ ∈ CR(X−1) and ψ ∈ CR(X) we have that

(X−1
◦ R′i )(a

′′, a′) =
∨

a′1∈A′
X−1(a′′, a′1) ⊗ R′i (a

′

1, a
′) =

∨
a′1∈A′

E′(ξ(a′′), a′1) ⊗ R′i (a
′

1, a
′) = (E′ ◦ R′i )(ξ(a′′), a′)

⩽ (E′ ◦ R′i ◦ E′)(ξ(a′′), a′) = R̄′i (E
′

ξ(a′′),E
′

a′ ) = R̄′′i (ΦX(E′ξ(a′′)),ΦX(E′a′ )) = R̄′′i (ΦX(ΦX−1 (E′′a′′ )),ΦX(E′a′ ))

= R̄′′i (E′′a′′ ,E
′′

ψ(a′)) = (E′′ ◦ R′′i ◦ E′′)(a′′, ψ(a′)) = (R′′i ◦ E′′)(a′′, ψ(a′))

=
∨

a′′1 ∈A′′
R′′i (a′′, a′′1 ) ⊗ E′′(a′′1 , ψ(a′)) =

∨
a′′1 ∈A′′

R′′i (a′′, a′′1 ) ⊗ E′′(ψ(a′), a′′1 ) =
∨

a′′1 ∈A′′
R′′i (a′′, a′′1 ) ⊗ X(a′, a′′1 )

=
∨

a′′1 ∈A′′
R′′i (a′′, a′′1 ) ⊗ X−1(a′′1 , a

′) = (R′′i ◦ X−1)(a′′, a′),
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which implies X−1
◦R′i ⩽ R′′i ◦X−1. In the same way we prove that X satisfies the second inequality in (fb-2).

Therefore, we have proved that X is a forward bisimulation. This completes the proof of the theorem.

The previous theorem showed that for two weighted networks N ′ and N ′′ and X ∈ Bθ(N ′,N ′′) we
have that E′X ∈ Bθ(N ′) and E′′X ∈ Bθ(N ′′). The following question naturally arises: if weighted equiva-
lences E′ ∈ Bθ(N ′) and E′′ ∈ Bθ(N ′′) are given, under what conditions does X ∈ Bθ(N ′,N ′′) exists so
that E′ = E′X and E′′ = E′′X. The answer to this question is given by the following theorem.

Theorem 7.4. Let weighted networks N ′ = (A′, {R′i }i∈I, {p′j} j∈J) and N ′′ = (A′′, {R′′i }i∈I, {p′′j } j∈J) and weighted equi-
valences E′ ∈ Bθ(N ′) and E′′ ∈ Bθ(N ′′) be given, where θ ∈ {fb, bb, rb}.

Then there exists X ∈ Bθ(N ′,N ′′) which is a uniform weighted relation and satisfies E′X = E′ and E′′X = E′′ if
and only if there exists an isomorphism Φ : N ′/E′ → N ′′/E′′ such that for all a′1, a

′

2 ∈ A′ the following is true

Ẽ′(E′a′1 ,E
′

a′2
) = Ẽ′′(Φ(E′a′1 ),Φ(E′a′2 )). (26)

Proof. Let there exists X ∈ Bθ(N ′,N ′′) which is a uniform relation and satisfies E′X = E′ and E′′X = E′′. Let
us consider an arbitrary ψ ∈ CR(X). Then, according to the definitions of the relations Ẽ′ and Ẽ′′ and the
mapping ΦX, we get that

Ẽ′(E′a′1 ,E
′

a′2
) = E′(a′1, a

′

2) = E′′(ψ(a′1), ψ(a′2)) = Ẽ′′(E′′ψ(a′1),E
′′

ψ(a′2)) = Ẽ′′(ΦX(E′a′1 ),ΦX(E′a′2 )),

and by Theorem 7.3 it follows that ΦX is an isomorphism between N ′/E′ and N ′′/E′′ which satisfies (26).
Conversely, let there exists an isomorphismΦ : N ′/E′ → N ′′/E′′ such that (26) holds. Define mappings

Φ′ : A′ → A′/E′, Φ′′ : A′′/E′′ → A′′ and ψ : A′ → A′′ as follows:

(i) For each a′ ∈ A′ we put Φ′(a′) = E′a′ ;
(ii) For each α ∈ A′′/E′′ we put Φ′′(α) = a′′, where a′′ ∈ A′′ is an arbitrary element such that α = E′′a′′ ;

(iii) ψ = Φ′ ◦Φ ◦Φ′′.

In addition, define a weighted relation X ∈ QA′×A′′ by

X(a′, a′′) = E′′(ψ(a′), a′′),

for all a′ ∈ A′ and a′′ ∈ A′′. According to the proof of Theorem 3.4 [11], we have that X is a uniform weighted
relation such that E′X = E′, E′′X = E′′ and ψ ∈ CR(X).

For an arbitrary a′ ∈ A′ let Φ(E′a′ ) = E′′a′′ , for some a′′ ∈ A′′. Then we have that

ψ(a′) = Φ′′(Φ(Φ′(a′))) = Φ′′(Φ(E′a′ )) = Φ
′′(E′′a′′ ) = a′′1 ,

where a′′1 ∈ A′′ is an element such that E′′a′′1
= E′′a′′ , whence

Φx(E′a′ ) = E′′ψ(a′) = E′′a′′1 = E′′a′′ = Φ(E′a′ ),

and hence, Φ = Φx. Now, according to Theorem 7.3, we conclude that X ∈ Bθ(N ′,N ′′).

The previous theorems dealt with θ-simulations in the case when θ ∈ {fb, bb, rb}. The remaining cases,
when θ ∈ {fbb, bfb}, are considered in the next theorems.

Theorem 7.5. Let weighted networks N ′ = (A′, {R′i }i∈I, {p′j} j∈J) and N ′′ = (A′′, {R′′i }i∈I, {p′′j } j∈J) and a uniform
weighted relation X ∈ QA′×A′′ be given. Then the following statements are true:

(a) If X ∈ Bbfb(N ′,N ′′), then X ◦ X−1
∈ Bfb(N ′) and X−1

◦ X ∈ Bbb(N ′′).
(b) If X ∈ Bfbb(N ′,N ′′), then X ◦ X−1

∈ Bbb(N ′) and X−1
◦ X ∈ Bfb(N ′′).
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Proof. We will prove only (a). The statement (b) can be proved in a similar way.
(a) Let X satisfy (bfb-1), (bfb-2) and (bfb-3). Due to the reflexivity of X ◦X−1 we get that X ◦X−1 satisfies

(fb-1). Further, according to (11) and (bfb-2), the reflexivity of X ◦X−1, and the fact that X ◦X−1
◦X ⩽ X, we

obtain that

X ◦ X−1
◦ R′i ⩽ X ◦ X−1

◦ R′i ◦ X ◦ X−1 ⩽ X ◦ X−1
◦ X ◦ R′′i ◦ X−1 ⩽ X ◦ R′′i ◦ X−1 ⩽ R′i ◦ X ◦ X−1,

for each i ∈ I, which means that X ◦ X−1 satisfies (fb-2).
Finally, according to (13) and (bfb-3), we have that

X ◦ X−1
◦ p′j ⩽ (X ◦ X−1)−1

◦ p′j = p′j ◦ X ◦ X−1 ⩽ p′′j ◦ X−1 = X ◦ p′′j ⩽ p′j,

for every j ∈ J, so we conclude that X ◦ X−1 satisfies (fb-3). Thus, X ◦ X−1 is a forward bisimulation on N ′.
In the same way we prove that X−1

◦ X is a backward bisimulation on N ′′.

The next two theorems can be proved in a similar way as Theorem 7.3, so their proofs will be omitted.

Theorem 7.6. Let N ′ = (A′, {R′i }i∈I, {p′j} j∈J) and N ′′ = (A′′, {R′′i }i∈I, {p′′j } j∈J) be weighted networks, and X ∈ QA′×A′′

be a uniform weighted relation. Then X ∈ Bbfb(N ′,N ′′) if and only if the following conditions are satisfied:

(i) E′X ∈ Bfb(N ′);
(ii) E′′X ∈ Bbb(N ′′);

(iii) ΦX is an isomorphism of quotient networks N ′/E′X and N ′′/E′′X.

Theorem 7.7. Let N ′ = (A′, {R′i }i∈I, {p′j} j∈J) and N ′′ = (A′′, {R′′i }i∈I, {p′′j } j∈J) be weighted networks, and X ∈ QA′×A′′

be a uniform weighted relation. Then X ∈ Bfbb(N ′,N ′′) if and only if the following conditions are satisfied:

(i) E′X ∈ Bbb(N ′);
(ii) E′′X ∈ Bfb(N ′′);

(iii) ΦX is an isomorphism of quotient networks N ′/E′X and N ′′/E′′X.

It should be noted that theorems analogous to Theorem 7.4 can also be stated and proved for backward-
forward and forward-backward bisimulations. In order to save space, we will not state these theorems.

8. Weighted networks and many-valued multimodal logics

In this section, we deal with the connections between weighted networks and many-valued multimodal
logics. For this purpose, we will use the results from [37, 38] concerning many-valued multimodal logics over
complete Heyting algebras. Consequently, in this section, the underlying quantale Q will be a complete
Heyting algebra, that is, the multiplication ⊗ coincides with the meet operation ∧. In the final part of the
section we will also assume that Q is linearly ordered.

A many-valued multimodal logic over Q is defined as follows. For a non-empty set I of indices, an
alphabet of a many-valued multimodal logic Q({□i,♢i,□−i ,♢

−

i }i∈I) consists of
– a countable set of propositional symbols PV,
– a set of truth constants Q = {q | q ∈ Q},
– logical connectives ∧ (conjunction) and→ (implication), and
– four families of modal operators: {□i}i∈I and {□−i }i∈I (necessity operators), {♢i}i∈I and {♢−i }i∈I (possibility operators).

The set of formulas ΦI,Q of a many-valued modal logic is the smallest set containing propositional symbols
and truth constants, and is closed under logical connectives and modal operators:

A := q | p | A ∧ B | A→ B | □iA | ♢iA | □−i A | ♢−i A

where q ∈ Q, p ∈ PV, i ∈ I, and A and B are formulas from ΦI,Q. We use the following well-known
abbreviations:
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¬A ≡ A→ 0 (negation),

A↔ B ≡ (A→ B) ∧ (B→ A) (equivalence),

A ∨ B ≡ ((A→ B)→ B) ∧ ((B→ A)→ A) (disjunction),

1 ≡ 0→ 0 (top).

Recall that 0 is the least element in Q and 0 is the corresponding truth constant. The set of all formulas
over the alphabet Q({□i,♢i}i∈I), i.e., the set of those formulas from ΦI,Q that do not contain any of the modal
operators □−i and ♢−i , i ∈ I, will be denoted by ΦI,Q

+ . Similarly, the set of all formulas over the alphabet
H ({□−i ,♢

−

i }i∈I), i.e., the set of those formulas fromΦI,Q that do not contain any of the modal operators□i and
♢i, i ∈ I, will be denoted byΦI,Q

− . For the sake of simplicity, formulas fromΦI,Q
+ will be called plus-formulas,

and formulas from ΦI,Q
− will be called minus-formulas.

A weighted Kripke frame is a structure F = (W, {Ri}i∈I) where W is a nonempty set of possible worlds (or
states or points) and Ri ∈ F (W × W) is a weighted relation on W, for every i ∈ I, called the accessibility
weighted relation of the frame. It is usually assumed that I is a finite set with n elements, and then F is called
a weighted Kripke n-frame.

A weighted Kripke model forΦI,Q is a structureM = (W, {Ri}i∈I,V) such that (W, {Ri}i∈I) is a weighted Kripke
frame and V : W × (PV ∪ Q) → Q is a truth assignment function, called the evaluation of the model, which
assigns an Q-truth value to propositional variables (and truth constants) in each world, such that V(w, q) = q,
for every w ∈ W and q ∈ Q. It is usually assumed that I is a finite set with n elements, and thenM is called
a weighted Kripke n-model.

The truth assignment function V can be inductively extended to a function V : W ×ΦI,Q → Q by:

V(w,A ∧ B) = V(w,A) ∧ V(w,B); (V1)
V(w,A→ B) = V(w,A)→ V(w,B); (V2)

V(w,□iA) =
∧
u∈W

Ri(w,u)→ V(u,A), for every i ∈ I; (V3)

V(w,♢iA) =
∨
u∈W

Ri(w,u) ∧ V(u,A), for every i ∈ I; (V4)

V(w,□−i A) =
∧
u∈W

Ri(u,w)→ V(u,A), for every i ∈ I; (V5)

V(w,♢−i A) =
∨
u∈W

Ri(u,w) ∧ V(u,A), for every i ∈ I. (V6)

Note that the same symbols are used for ∧ and→ in both sides of formulas (V1)–(V6). The meaning is clear
from the context, so we keep the notation simple. For each world w ∈W the truth assignment V determines
a function Vw : ΦI,Q → Q given by Vw(A) = V(w,A), for every A ∈ ΦI,Q, and vice versa, for each A ∈ ΦI,Q
the truth assignment V determines a function VA : W → Q given by VA(w) = V(w,A), for every w ∈W.

As we use the letter A here to denote modal formulas, the sets of actors of the considered weighted net-
works will be denoted in this section by W, W′, W′′, etc. The key point in this section is the observation that
a weighted network N = (W, {Ri}i∈I, {p j} j∈J) can be treated as a weighted Kripke modelM = (W, {Ri}i∈I,V),
where PV = {p j} j∈J and the evaluation V is defined so that V(a, p j) = p j(a), for all a ∈ W and j ∈ J. Here we
assume that J is a countable set. We callM a weighted Kripke model corresponding to the weighted network
N . Such an approach allows consideration of complex attributes that actors may have, which are defined
by modal formulas from ΦI,Q. Namely, for each formula A ∈ ΦI,Q and any a ∈W the value VA(a) = V(a,A),
i.e., the extent to which a satisfies the modal formula A, is also understood as the extent to which a has an
attribute associated to A.

Let N ′ = (W′, {R′i }i∈I, {p′j} j∈J) and N ′′ = (W′′, {R′i }i∈I, {p′j} j∈J) be weighted networks of the same type, and let
M′ = (W′, {R′i }i∈I,V′) andM′′ = (W′′, {R′′i }i∈I,V′′) be the corresponding weighted Kripke models. For a set of
formulas Φ ⊆ ΦI,Q, the degree of similarity of the actors a′ ∈W′ and a′′ ∈W′′ with respect to formulas from
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Φ, denoted by SΦ(a′, a′′), is defined by

SΦ(a′, a′′) =
∧
A∈Φ

V′A(a′)↔ V′′A(a′′).

In other words, SΦ(a′, a′′) can be understood as the extent to which a′ and a′′ have the same complex attributes
associated with the formulas from Φ.

If SΦ(a′, a′′) = 1, i.e., if V′A(a′) = V′′A(a′′), for every A ∈ Φ, then we say that a′ and a′′ are Φ-equivalent
actors. Moreover, N ′ and N ′′ are said to be Φ-equivalent weighted networks if each a′ ∈ W′ is Φ-equivalent
to some a′′ ∈W′′, and vice versa, each a′′ ∈W′′ is Φ-equivalent to some a′ ∈W′.

As we have said in Section 3, although in practical applications we encounter only finite weighted net-
works, here we still allow weighted networks to be infinite. However, in the following considerations, we
will require weighted networks to satisfy certain properties weaker than finiteness. Namely, a weighted
network N = (W, {Ri}i∈I, {p j} j∈J) is called image-finite if for all a ∈ W and i ∈ I the set {b ∈ W | Ri(a, b) > 0} is
finite, it is called domain-finite if for all b ∈ W and i ∈ I the set {a ∈ W | Ri(a, b) > 0} is finite, and it is called
degree-finite if it is both image-finite and domain-finite.

In the case when the underlying Heyting algebra Q is linearly ordered, the following can be proved:

Theorem 8.1. Let N ′ = (W′, {R′i }i∈I, {p′j} j∈J) and N ′′ = (W′′, {R′i }i∈I, {p′j} j∈J) be weighted networks of the same type
over a linearly ordered Heyting algebra Q, and letM′ = (W′, {R′i }i∈I,V′) andM′′ = (W′′, {R′′i }i∈I,V′′) be the corre-
sponding weighted Kripke models. Then the following statements are true:

(a) If N ′ and N ′′ are image-finite, and if there exists the greatest forward bisimulation Xfb between N ′ and N ′′,
then for arbitrary a′ ∈ A′ and a′′ ∈ A′′ we have that

Xfb(a′, a′′) = SΦI,Q
+ (a′, a′′) =

∧
A∈ΦI,Q

+

V′A(a′)↔ V′′A(a′′); (27)

(b) If N ′ and N ′′ are domain-finite, and if there exists the greatest backward bisimulation Xbb between N ′ and
N ′′, then for arbitrary a′ ∈ A′ and a′′ ∈ A′′ we have that

Xbb(a′, a′′) = SΦI,Q
− (a′, a′′) =

∧
A∈ΦI,Q

−

V′A(a′)↔ V′′A(a′′); (28)

(c) If N ′ and N ′′ are degree-finite, and if there exists the greatest regular bisimulation Xrb between N ′ and N ′′,
then for arbitrary a′ ∈ A′ and a′′ ∈ A′′ we have that

Xrb(a′, a′′) = SΦI,Q (a′, a′′) =
∧

A∈ΦI,Q

V′A(a′)↔ V′′A(a′′). (29)

The proofs of these statements follow immediately from Theorems 2, 3 and 4 from [38] and they will
be omitted. We will only provide their interpretation. Namely, the previous theorem says that the forward
bisimilarity, if it exists, expresses the degree of similarity of actors with respect to plus formulas, while
the backward bisimilarity expresses the degree of similarity with respect to minus formulas, and the
regular bisimilarity expresses the degree of similarity with respect to all modal formulas from ΦI,Q. In the
unweighted case we can say that the forward bisimilarity preserves plus formulas, backward bisimilarity
preserves minus formulas, and regular bisimilarity preserves all modal formulas.

Theorem 8.2. Let θ ∈ {fb, bb, rb}, let N = (W, {Ri}i∈I, {p j} j∈J) be a weighted network, let E ∈ QW×W be a weighted
equivalence, and let N /E = (A/E, {R̄i}i∈I, {p̄ j} j∈J) be the quotient network of N with respect to E.

Let us define a weighted relation X ∈ QW×(W/E) by

X(a,Eb) = E(a, b), for all a, b ∈W. (30)

Then the following statement is true
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(a) E ∈ Bθ(N ) if and only if X ∈ Bθ(N ,N /E).

In addition, if Q is a linearly ordered Heyting algebra, then the following statements are also true:

(b) If E ∈ Bfb(N ) and N is image-finite, then N and N /E are ΦI,Q
+ -equivalent weighted networks;

(c) If E ∈ Bbb(N ) and N is domain-finite, then N and N /E are ΦI,Q
− -equivalent weighted networks;

(d) If E ∈ Brb(N ) and N is degree-finite, then N and N /E are ΦI,Q-equivalent weighted networks.

The proofs of these statements follow from Theorems 7.6, 7.7, 7.8 and 7.9 from [37]. The statements (b), (c)
and (d) say that the quotient weighted network with respect to a forward bisimulation equivalence inherits
from the original weighted network those complex attributes expressed by plus formulas, and similarly, the
quotient weighted network with respect to a backward bisimulation equivalence inherits those attributes
expressed by minus formulas, and the quotient weighted network with respect to a regular bisimulation
equivalence inherits those attributes expressed by all formulas from ΦI,Q.
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[13] M. Ćirić, J. Ignjatović, I. Jančić, N. Damljanović, Computation of the greatest simulations and bisimulations between fuzzy

automata, Fuzzy Sets and Systems 208 (2012) 22–42.
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