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Abstract. In this paper, new classes of extended multi-valued pseudocontractive mappings are introduced.
It is established that the type-one subclass of the extended strictly pseudocontractive mappings is more
closely related to the class of single-valued strictly pseudocontractive mappings in the sense that the
possession of L-Lipschitzian and demiclosedness properties as well as closed and convex set of fixed points
are guaranteed. Also, we introduce an extended Mann and an extended Ishikawa iteration schemes for
approximating a common fixed point of a finite family of mappings. Furthermore, using the extended
Mann and the extended Ishikawa iteration schemes, we prove weak and strong convergence theorems
for our new classes of extended strictly pseudocontractive and pseudocontractive mappings, respectively.
Numerical examples are also included to illustrate our results. The results obtained improve, complement
and extend the results on multi-valued and single-valued mappings in the contemporary literature.

1. Introduction

Let X be a normed space. A subset C of X is called proximinal if for each 1 ∈ X there exists k ∈ C such that

||1 − k|| = inf{||1 − h|| : h ∈ C} = d(1,C). (1)

It is known that every closed convex subset of a uniformly convex Banach space is proximinal. We shall
denote the collection of all nonempty closed and bounded subsets of X by CB(X), the collection of all
nonempty closed and convex subsets of X by CC(X), the collection of all nonempty subsets of X by 2X and
the collection of all proximinal subsets of X by P(X), for a nonempty set X.
Let X be a nonempty set and let T : X→ X be a mapping. A point 1 ∈ X is called a fixed point of T if 1 = T1.
If T : X→ 2X is a multi-valued mapping then 1 is a fixed point of T if 1 ∈ T1. If T1 = {1} then 1 is called a strict
fixed point of T. The set F(T) = {1 ∈ D(T) : 1 ∈ T1}(respectively F(T) = {1 ∈ D(T) : 1 = T1} ) is called the fixed
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point set of multi-valued(respectively single-valued) mapping T, while the set Fs(T) = {1 ∈ D(T) : T1 = {1}}
is called the strict fixed point set of T.
Let X be a metric space, the Hausdorff metric induced on CB(X) by the metric d on X is defined for every
A,B ∈ CB(X) by

H(A,B) = max{sup
a∈A

d(a,B), sup
b∈B

d(b,A)}. (2)

Let X be a normed space and T : X → P(X) a multi-valued mapping. The mapping PT is defined for each
x ∈ X by PTx = {y ∈ Tx : ||x − y|| = d(x,Tx)}.
Recall that one of the applications of fixed point theory is to solve the problem that arises from initial value
problems of differential inclusion of the form

0 ∈
dU
dt
+ A(t)U(t), (3)

which describes an evolution system where A is in general nonlinear, set valued and accretive.
At equilibrium or stable state of the system, dU

dt = 0 and U(t) is constant. Therefore, (3) becomes

0 ∈ A(t). (4)

Since A is in general nonlinear, there is no closed form solution of equation (4). The standard technique is
to introduce an operator T defined by

T = I − A, (5)

where I is the identity mapping on X. Such T is called a pseudocontraction (or pseudocontractive). Observe
that if 1 ∈ T1, then 1 = 1 − w for some w ∈ A(1). Consequently, we have that w = 0 ∈ A(1).
If A is single-valued, then (3) and (4) become

dU
dt
+ A(t)U(t) = 0 (6)

and

A(t) = 0 (7)

respectively.
It then follows from (5) that if 1 = T1 then 1 = 1 −A(1). Consequently A(1) = 0 (i.e., any zero of A is a fixed
point of T).
In real Banach spaces, authors have studied extensively the fixed point problems of single-valued classes
of pseudocontractive mappings (see for example [7, 14, 31, 44] and references therein). Some of the single-
valued mappings were introduced as follows.

Definition 1.1. Let E be an arbitrary real Banach space. A mapping T : D(T) ⊆ E→ E is said to be
(i) Lipschitz continuous with constant L ≥ 0 if

∥Tx − Ty∥ ≤ L∥x − y∥ (8)

for all x, y ∈ D(T). If L ∈ (0, 1) , T is said to be a contraction. T is said to be nonexpansive if L = 1.
Nonepansive mappings are linked intimately with several other nonlinear mappings that are of interest in ordinary
and partial differential equations (see for example [3, 24]). Bruck [8] remarked that the intimate connection between
nonexpansive operators and accretive operators accounts partly for the importance of nonexpansive mappings. The
class of nonexpansive mappings is one of the initial classes of operators for which fixed point results were obtained
using the geometric structure of the underlying Banach space rather than the compactness property.
(ii) T is called quasi-nonexpansive if the fixed point set of T is nonempty and for all x ∈ D(T), p ∈ F(T),

∥Tx − p∥ ≤ ∥x − p∥. (9)

It is clear that every nonexpansive mapping with nonempty set of fixed points is quasi-nonexpansive.
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Closely related to the class of single-valued nonexpansive and quasi-nonexpansive mappings are the classes
of k−strictly psudocontractive and pseudocontractive mappings in the sense of Browder and Petryshyn
[7], demicontractive mappings of Hicks and Kubicek [14] and Hemicontractive mapping of Naimpally and
Singh [31]. These mappings are defined as follows.

Definition 1.2. Let H be a real Hilbert space and K a closed convex subset of H. A mapping T : K→ K is called
(i) k-strictly pseudocontractive mapping if there exists k ∈ [0, 1) such that

∥Tx − Ty∥2 ≤ ∥x − y∥2 + k∥x − Tx − (y − Ty)∥2, ∀x, y ∈ K. (10)

(ii) Pseudocontractive if

∥Tx − Ty∥2 ≤ ∥x − y∥2 + ∥x − Tx − (y − Ty)∥2, ∀x, y ∈ K. (11)

(iii) Demicontractive if F(T) , ∅ and

∥Tx − Tp∥2 ≤ ∥x − p∥2 + k∥x − Tx∥2, ∀x ∈ K, p ∈ F(T). (12)

(iv) Hemicontractive if

∥Tx − Tp∥2 ≤ ∥x − p∥2 + ∥x − Tx∥2, ∀x ∈ K, p ∈ F(T). (13)

In recent years, authors have introduced and studied different multi-valued versions of the above single-
valued pseudocontractive mappings using Hausdorff metric (see for example, [1, 9, 11, 17, 20, 23, 27, 37]).
Also, significant achievement has be recorded in the area of developing iteration schemes for approximating
their fixed points (see [37, 39]). Below are some of the different versions of the multi-valued mapping
considered recently by authors and also some contributions in the developments of the iteration schemes
for approximating fixed points.

Definition 1.3. Let X be a normed space. Let T : D(T) ⊆ X→ 2X be a multi-valued mapping on X. T is called
(i) L − Lipschitzian if there exists L ≥ 0 such that for all 1, h ∈ D(T)

H(T1,Th) ≤ L||1 − h||. (14)

In (14), if L ∈ [0, 1), T is said to be a contraction while T is nonexpansive if L = 1. T is called quasi-nonexpansive if
F(T) = {1 ∈ D(T) : 1 ∈ T1} , ∅ and for all p ∈ F(T),

H(T1,Tp) ≤ ||1 − p||. (15)

Clearly every nonexpansive mapping with nonempty fixed point set is quasi-nonexpansive.
(ii) T is said to be k-strictly pseudocontractive mapping of Chidume et. al [9] if there exists k ∈ (0, 1) such that

H2(T1,Th) ≤ ||1 − h||2 + k||1 − u − (h − v)||2, f or all u ∈ T1, v ∈ Th. (16)

If k = 1 in (1.16), T is said to be pseudocontractive.
(iii) T is said to be k-strictly pseudocontractive-type of Isiogugu (see [17]) if there exist k ∈ (0, 1) such that given any
pair 1, h ∈ D(T) and u ∈ T1, there exist v ∈ Th satisfying ||u − v|| ≤ H(T1,Th) and

H2(T1,Th) ≤ ||1 − h||2 + k||1 − u − (h − v)||2. (17)

If k = 1 in (17), T is said to be pseudocontractive-type. It is easy to see that any proximinal, pseudocontractive
mapping T of Chidume et. al [9] is pseudoconytractive-type in the sense of Isiogugu [17].
(iv) T is said to be demicontractive (see [20]) if F(T) , ∅ and there exists k ∈ [0, 1) such that given any pair 1 ∈ D(T)
and p ∈ F(T),

H2(T1,Tp) ≤ ||1 − p||2 + kd2(1,T1). (18)

If k = 1 in (18), T is said to be hemicontractive. T is called a quasi-nonexpansive mapping if k = 0. It is easy to see
that every k-strictly pseudocontractive (respectively, pseudocontractive) mapping T in the sense of Definition 1.3 (ii)
with nonempty set of fixed points is demicontractive (respectively, hemicontractive).
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(v) If a k-strictly pseudocontractive-type (respectively, pseudocontractive-type)mapping in Definition 1.3(i) has the
property that its set of strict fixed points Fs(T) , ∅, then it is demicontractive-type (respectively, hemicontractive-
type) with respect to its set of strict fixed points. That is, given any pair 1 ∈ D(T) and p ∈ Fs(T), and u ∈ T1,
||u − p|| ≤ H(T1,Tp) and

H2(T1,Tp) ≤ ||1 − p||2 + k||1 − u||2(respectively ||1 − p||2 + ||1 − u||2). (19)

Observe that a demicontractive (respectively, hemicontractive) in definition 1.3 (iv) is demicontractive-type (respec-
tively, hemicontractive-type) with respect to its set of strict fixed points.

Remark 1.4. The relationships between the classes of k-strictly pseudocontractive-type (respectively, pseudocontractive-
type) mappings in definition 1.3 (iii) and demicontractive(respectively, hemicontractive) mappings in definition 1.3
(iv) has been established with respect to the set of fixed points.

In 2005, Sastry and Babu [37] introduced Mann and Ishikawa iteration scheme for multi-valued nonexpan-
sive mappings as follows:
Let T : X→ P(X) and p be a fixed point of T. The sequence of Mann iterates is given for x0 ∈ X by

xn+1 = (1 − αn)xn + αnyn, ∀n ≥ 0 (20)

where yn ∈ Txn is such that ||yn − p|| = d(Txn, p) and αn is a real sequence in (0,1),
∑
∞

n=1 αn = ∞.
The sequence of Ishikawa iterates is given by{

yn = (1 − βn)xn + βnzn
xn+1 = (1 − αn)xn + αnun,

(21)

where zn ∈ Txn, un ∈ Tyn are such that ||zn−p|| = d(p,Txn), ||un−p|| = d(Tyn, p) and {αn}, {βn} are real sequences
satisfying (i) 0 ≤ αn, βn < 1; (ii) lim

n→∞
βn = 0; (iii)

∑
∞

n=1 αnβn = ∞. Using the above iterative schemes,
Panyanak [33], generalized the result proved in [37]. Song and Wang [41], observed that generating the
Mann and Ishikawa sequences in [33] are in some sense dependent on the knowledge of the fixed point.
Using the following Nadler’s Lemma (see [30], Lemma 1.0 (1.1)).

Lemma 1.5. let A,B ∈ CB(X) and a ∈ A, if γ > 0 then there exists b ∈ B such that

d(a, b) ≤ H(A,B) + γ, (22)

they modified the iteration process due to Panyanak [33] and improved the results therein. They gave their
iteration scheme as follows:{

yn = (1 − βn)xn + βnzn
xn+1 = (1 − αn)xn + αnun,

(23)

where zn ∈ Txn, un ∈ Tyn satisfy ||zn − un|| ≤ H(Txn,Tyn) + γn, ||zn+1 − un|| ≤ H(Txn+1,Tyn) + γn and {αn},{βn}

are real sequences in [0, 1) satisfying lim
n→∞
βn = 0,

∑
∞

n=1 αnβn = ∞. Using the above iteration, they proved the
following theorem:

Theorem 1.6. ([41], Theorem 1) Let K be a nonempty compact convex subset of a uniformly convex Banach space
X. Suppose that T : K → CB(K) is a multivalued nonexpansive mapping such that F(T) , ∅ and T(p) = {p} for all
p ∈ F(T). Then the Ishikawa sequence defined as above converges strongly to a fixed point of T.

Shahzad and Zegeye [38] observed that if X is a normed space and T : D(T) ⊆ E→ P(X) is a any multivalued
mapping, then the mapping PT : D(T)→ P(X) defined for each x by

PT(x) = {y ∈ Tx : d(x,Tx) = ∥x − y∥}, (24)

has the property that PT(q) = {q} for all q ∈ F(T). Using this idea, they removed the strong condition
“T(p) = {p} for all p ∈ F(T)” introduced by Song and Wang [41].
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Recently, Khan and Yildirim [25] introduced a new iteration scheme for multivalued nonexpansive map-
pings using the idea of the iteration scheme for single valued nearly asymptotically nonexpansive mapping
introduced by Agarwal et.al [2] as follows:

x1 ∈ K,
xn+1 = (1 − λ)vn + λun
yn = (1 − η)xn + ηvn,∀n ∈N.

(25)

where vn ∈ PT(xn), un ∈ PT(yn) and λ ∈ [0, 1). Also, using a lemma in Schu [40], the idea of removal of
the condition “T(p) = {p} for all p ∈ F(T)” introduced by Shahzad and Zegeye [38] and method of direct
construction of Cauchy sequence as indicated by Song and Cho [42], they stated the following theorem:

Theorem 1.7. ([25],Theorem 1) Let X be a uniformly convex Banach space satisfying Opial’s condition and K a
nonempty closed convex subset of X. Let T : K → P(K) be a multivalued mapping such that F(T) , ∅ and PT is a
nonexpansive mapping. Let {xn} be the sequence defined in (25). Let (I − PT) be demiclosed with respect to zero, then
{xn} converges weakly to a point of F(T).

In 2016, Isiogugu et al. [16], introduced the “type-one” condition which guarantees a weak convergence
of the Mann iteration schemes to a fixed point of multi-valued quasi-nonexpansive mappings without
imposing the condition that the fixed point set of T is strict in Hilbert spaces. They obtained the following
results.

Proposition 1.8. ([16]) Let H be a real Hilbert space. Let C be a nonempty weakly closed subset of H. Let
T : C ⊆ H→ P(H) be a multi-valued mapping from C into the collection of all proximinal subsets of H. Suppose that
T is a nonexpansive mapping which is of type-one. Then whenever {1n}

∞

n=1 ⊆ C is such that {1n} weakly converges to
p and a sequence {hn} with hn ∈ T1n and ||1n − hn|| = d(1n,T1n) for all n ∈N such that {1n − hn} strongly converges
to 0. Then 0 ∈ (I − T)p (i.e., p = v for some v ∈ Tp).

Theorem 1.9. ([16]) Let C be a nonempty closed and convex subset of a real Hilbert space H. Suppose that
T : C→ P(C) is of type-one and nonexpansive mapping from C into the collection of all proximinal subsets of C such
that F(T) , ∅. Then the Mann type sequence defined by

1n+1 = (1 − µn)1n + µnhn, (26)

weakly converges to q ∈ F(T), where hn ∈ T1n with ||1n−hn|| = d(1n,T1n) andµn ⊆ (0, 1) satisfying: µn → µ ∈ (0, 1).

Theorem 1.10. ([16]) Let C be a nonempty closed and convex subset of a real Hilbert space H. Suppose that
T : C→ P(C) is of type-one and quasi-nonexpansive mapping from C into the collection of all proximinal subsets of
C. If (I − T) satisfies Proposition 1.8, then the Mann type sequence defined by

1n+1 = (1 − µn)1n + µnhn, (27)

weakly converges to q ∈ F(T), where hn ∈ T1n with ||1n−hn|| = d(1n,T1n) andµn ⊆ (0, 1) satisfies: (i) µn → µ ∈ (0, 1).

In [19], the above results were extended to the more general class of Multi-valued pseudocontactive map-
pings of Chidume et. al [9]. The following results were obtained:

Proposition 1.11. ([19]) Let H be a real Hilbert space. Let C be a nonempty weakly closed subset of H. Let
T : C ⊆ H → P(H) be a multi-valued mapping from C into the collection of all nonempty proximinal subsets of H.
Suppose that T is a k-strictly pseudocontractive mapping and of type-one. Then (I − T) is demiclosed at zero (i.e., the
graph of I − T is closed at zero in σ(H,H∗) × (H, ∥.∥) or weakly demiclosed at zero).

Theorem 1.12. ([19]) Let C be a nonempty closed and convex subset of a real Hilbert space H. Suppose that
T : C → P(C) is k-strictly pseudocontractive mapping from C into the collection of all proximinal subsets of C with
k ∈ (0, 1) such that F(T) , ∅. If T is of type-one, then the Mann-type sequence defined by

1n+1 = (1 − µn)1n + µnhn, (28)
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weakly converges to q ∈ F(T), where hn ∈ T1n with ||1n−hn|| = d(1n,T1n) andµn ⊆ (0, 1) satisfies: (i) µn → µ < 1−k;

(ii) µ > 0; (iii)
∞∑

n=1
µn(1 − µn) = ∞.

Theorem 1.13. ([19]) Let C be a nonempty closed and convex subset of a real Hilbert space X. Suppose that
T : C → P(C) is of type-one and L-Lipschitzian pseudocontractive mapping from C into the collection of all
proximinal subsets of C such that F(T) , ∅. Suppose T satisfies condition (1). Then the Ishikawa sequence defined by{

hn = (1 − ξn)1n + ξnun
1n+1 = (1 − µn)1n + µnwn,

(29)

strongly converges to p ∈ F(T),where un ∈ T1n with ||1n−un|| = d(1n,T1n), wn ∈ Thn with ||hn−wn|| = d(hn,Thn) and
{µn} and {ξn} are real sequences satisfying (i) 0 ≤ µn ≤ ξn < 1; (ii) lim inf

n→∞
µn = µ > 0; (iii) sup

n≥1
ξn ≤ ξ ≤ 1

√

1+L2+1
.

Although authors have made significant improvement towards the study of multi-valued mappings and
the iteration schemes for the approximation of their fixed points, they are still confronted with many
unresolved challenges due to the complicated nature of multi-valued mappings. For instance, important
properties such as Lipschitzian, demiclosedness, as well as the property of the set of fixed points being
closed and convex could not be established for some of these classes of multi-valued mappings. Also, there
is imposition of strict set of fixed points condition on the multi-valued mapping. The summary of the main
challenges are given below.
P1. Type-one condition on the class of k-strictly pseudocontractive of Chidume et al. [9], guarantees the
possession of Lipschitzian and demiclosedness properties as well as closed and convex set of fixed points
(respectively, closed and convex set of strict fixed points) by the members of this class. Type-one condition
also gurantees the convergence of the Mann iterations to the fixed points of the mappings without the
imposition of strict set of fixed points. Unfortunately, it has not been established that this class of mappings
properly contains the class of multi-valued nonexpansive mappings and the class of single-valued strictly
pseudocontractive mappings of Browder and Petryshyn [7].
P2. The class of k-strictly pseudocontractive mappings in the sense of Isiogugu [17] properly contains
the class of multi-valued nonexpansive mappings and the class of single-valued strictly pseudocontractive
mappings of Browder and Petryshyn [7]. The mappings are Lipschitzian, type-one condition guarantees
the possession of closed and convex set of strict fixed points but authors are yet to establish the possession
of closed and convex set of fixed points as well as demiclosedness property by these mappings under type
one condition.
Therefore, the purpose of this work is to first, introduce the new classes of extended multi-valued pseudocon-
tractive mappings whose strictly pseudocontractive subclass of mappings will properly contain the classes
of single valued strictly pseudocontractive mappings of Browder and Petryshyn [7] and multi-valued non-
expansive mappings. The type-one condition on the strictly pseudocontractive subclass will guarantee the
possession of demiclosedness and Lipschitzian properties as well as closed and convex set of fixed point
properties. Second, establish the relationship between these new classes of mappings and other classes of
multi-valued pseudocontractive mappings which have been considered by authors. Third, established the
possession of Lipschtizan and demiclosedness properties as well as closed and convex set of fixed points
under type-one condition by the strictly pseudocontractive subclass. Fourth, introduce extended Mann
and Ishikawa iteration schemes for approximating a common fixed point of a finite family mappings. Fi-
nally, prove some weak and strong convergence theorems for finite family of pseudocontractive and strictly
pseudocontractive mappings using the extended Ishikawa and Mann iteration schemes, respectively. Thus,
the results extend, complement and improve the results of the multi-valued and single-valued mappings
in the contemporary literature.

2. Preliminaries

In the sequel, we shall need the following definitions and lemmas.
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Definition 2.1. (see e.g., [11, 12]) Let X be a Banach space. Let T : D(T) ⊆ X → 2X be a multi-valued mapping.
I − T is said to be weakly demiclosed at zero if for any sequence {1n}

∞

n=1 ⊆ D(T) such that {1n} converges weakly to p
and a sequence {hn} with hn ∈ T1n for all n ∈ N such that {1n − hn} strongly converges to zero. Then p ∈ Tp (i.e.,
0 ∈ (I − T)p).

Definition 2.2. A Banach X is said to satisfy Opial’s condition [32], if whenever a sequence {1n} weakly converges
to 1 ∈ X then it is the case that

lim inf ∥1n − 1∥ < lim inf ∥1n − h∥,

for all h ∈ X, h , 1.

Definition 2.3. ([41]) A multi-valued mapping T : C→ P(C) is said to satisfy condition (1) (see for example [41])
if there exists a nondecreasing function f : [0,∞)→ [0,∞) with f (0) = 0 and f (r) > 0 for all r ∈ (0,∞) such that

d(1,T1) ≥ f (d(1,F(T)), ∀1 ∈ C.

Definition 2.4. ([16]) Let X be a normed space and T : D(T) ⊆ X→ 2X be a multi-valued mapping. T is said to be
of type-one if given any pair 1, h ∈ D(T), then

||u − v|| ≤ H(T1,Th), f or all u ∈ PT1, v ∈ PTh.

Lemma 2.5. ([43]) Let {an}, {ξn} and {γn} be sequences of nonnegative real numbers satisfying the following relation:

an+1 ≤ (1 + ξn)an + γn, n ≥ n0,

where n0 is a nonnegative integer. If
∑
ξn < ∞,

∑
γn < ∞ . Then lim

n→∞
an exists.

Lemma 2.6. Let H be a real Hilbert space and {1n}
∞

n=1 is a sequence in H which weakly converges to z ∈ H then the
following holds

lim sup
n→∞
||1n − h||2 = lim sup

n→∞
||1n − z||2 + ||z − h||2, ∀ h ∈ H.

Lemma 2.7. [20] Let X be a metric space. If A,B ∈ P(X) and a ∈ A. If γ ≥ 0 then it is a simple consequence of the
Hausdorff metric H that there exists b ∈ B such that

d(a, b) ≤ H(A,B) + γ.

Let K be a nonempty closed and convex subset of a real Hilbert space H. Suppose that {Ti}
N
i=1, N ≥ 2 is

a finite family of mappings Ti : K → K, in [21](see also [22]) the authors consider the horizontal iteration
process generated from an arbitrary x1 for the finite family of mappings {Ti

}
N
i=1, using a finite family of the

control sequences {{αi
n}
∞

n=1}
N
i=1 as follows.

For N=2,
xn+1 = α

1
nxn + (1 − α1

n)[α2
nT1xn + (1 − α2

n)T2xn].

For N=3,
xn+1 = α

1
nxn + (1 − α1

n)[α2
nT1xn + (1 − α2

n)[α3
nT2xn + (1 − α3

n)T3xn]].

For an arbitrary but finite N≥ 2,

xn+1 = α1
nxn + (1 − α1

n)[α2
nT1xn + (1 − α2

n)[α3
nT2xn

+(1 − α3
n)[...[αNTN−1xn + (1 − αN)TNxn]...]]]

= α1
nxn +

N∑
i=2

αi
n

i−1∏
j=1

(1 − α j
n)Ti−1xn +

N∏
j=1

(1 − α j
n)TNxn, n ≥ 1.

The proofs of the following lemmas (Lemmas 2.7, 2.9 and 2.10) are given in [18], however, we reproduce
the proofs here for avoidance of doubt.
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Lemma 2.8. Let {αi}
N
i=1 be a countable subset of the set of real numbersR, where N ≥ 2 is an arbitrary integer. Then,

the following holds.

α1 +

N∑
i=2

αi

i−1∏
j=1

(1 − α j) +
N∏

j=1

(1 − α j) = 1. (30)

Proof. . For N = 2,

α1 +

2∑
i=2

αi

i−1∏
j=1

(1 − α j) +
2∏

j=1

(1 − α j) = α1 + α2(1 − α1) + (1 − α1)(1 − α2)

= α1 + (1 − α1)[α2 + (1 − α2)]

= α1 + (1 − α1) = 1.

We assume it is true for N and prove for N+1.

α1 +

N+1∑
i=2

αi

i−1∏
j=1

(1 − α j) +
N+1∏
j=1

(1 − α j) = α1 +

N∑
i=2

αi

i−1∏
j=1

(1 − α j) + αN+1

N∏
j=1

(1 − α j) +
N+1∏
j=1

(1 − α j),

= α1 +

N∑
i=2

αi

i−1∏
j=1

(1 − α j) +
N∏

j=1

(1 − α j)[αN+1 + (1 − αN+1)],

= α1 +

N∑
i=2

αi

i−1∏
j=1

(1 − α j) +
N∏

j=1

(1 − α j)

= 1.

Remark 2.9. Lemma 2.8 holds if {αi}
N
i=1 is replaced with {αi}

N
i=0, and N ≥ 2 is replaced with N ≥ 1.

Lemma 2.10. Let {αi}
N
i=k be a countable subset of the set of real numbers R, where k is a fixed non negative integer

and N ∈N is any integer with k + 1 ≤ N. Then the following holds,

αk +

N∑
i=k+1

αi

i−1∏
j=k

(1 − α j) +
N∏
j=k

(1 − α j) = 1. (31)

Proof. . For k = 0 and k = 1, the proofs follow from Remark 2.9 and Lemma 2.8, respectively. We assume it
is true for k and N. Now for k and N + 1,

αk +

N+1∑
i=k+1

αi

i−1∏
j=k

(1 − α j) +
N+1∏
j=k

(1 − α j) = αk +

N∑
i=k+1

αi

i−1∏
j=k

(1 − α j) + αN+1

N∏
j=k

(1 − α j) +
N+1∏
j=k

(1 − α j),

= αk +

N∑
i=k+1

αi

i−1∏
j=k

(1 − α j) +
N∏
j=k

(1 − α j)[αN+1 + (1 − αN+1)],

= αk +

N∑
i=k+1

αi

i−1∏
j=k

(1 − α j) +
N∏
j=k

(1 − α j) = 1.
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Lemma 2.11. Let t,u and v be arbitrary elements of a real Hilbert space H. Let k be a fixed non-negative integer
and N ∈ N be such that k + 1 ≤ N. Let {vi}

N−1
i=k ⊆ H and {αi}

N
i=k ⊆ [0, 1] be a countable finite subset of H and R,

respectively. Define

y = αkt +
N∑

i=k+1

αi

i−1∏
j=k

(1 − α j)vi−1 +

N∏
j=k

(1 − α j)v.

Then,

||y − u||2 = αk∥t − u∥2 +
N∑

i=k+1

αi

i−1∏
j=k

(1 − α j)∥vi−1 − u∥2 +
N∏
j=k

(1 − α j)∥v − u∥2

−αk

[ N∑
i=k+1

αi

i−1∏
j=k

(1 − α j)∥t − vi−1∥
2 +

N∏
j=k

(1 − α j)∥t − v∥2
]

−(1 − αk)
[ N−1∑

i=k+1

αi

i∏
j=k

(1 − α j)∥vi−1 − [αi+1vi + wi+1]∥2

+αN

N∏
j=k

(1 − α j)∥v − vN−1∥
2
]
,

where wk =
N∑

i=k+1
αi

i−1∏
j=k

(1 − α j)vi−1 +
N∏
j=k

(1 − α j)v, k = 1, 2, ...,N − 1 and wN = (1 − αN)v.

Proof. . Observe that for k ≤ N−1, wk = (1−αk)[αk+1vk+wk+1]. Consequently, using the well known identity:

||tx + (1 − t)y||2 = t||x||2 + (1 − t)||y||2 − t(1 − t)||x − y||2,

which holds for all x, y ∈ H and for all t ∈ [0, 1], we obtain that

||y − u||2 = ∥αkt +
N∑

i=k+1

αi

i−1∏
j=k

(1 − α j)vi−1 +

N∏
j=k

(1 − α j)v − u∥2,

= ∥αkt + wk − u∥2

= ∥αkt + (1 − αk)[αk+1vk + wk+1] − u]∥2

= αk∥t − u∥2 + (1 − αk)∥αk+1vk + wk+1 − u∥2

−αk(1 − αk)∥t − [αk+1vk + wk+1]∥2

= αk∥t − u∥2 + (1 − αk)[αk+1∥vk − u∥2

+(1 − αk+1)∥αk+2vk+1 + wk+2 − u∥2

−αk+1(1 − αk+1)∥vk − [αk+2vk+1 + wk+2]∥2]
−αk(1 − αk)[αk+1∥t − vk∥

2 + (1 − αk+1)∥t − [αk+2vk+1 + wk+2]∥2

−αk+1(1 − αk+1)∥vk − [αk+2vk+1 + wk+2]∥2]
= αk∥t − u∥2 + (1 − αk)αk+1∥vk − u∥2

+(1 − αk)(1 − αk+1)∥αk+2vk+1 + wk+2 − u∥2

−(1 − αk)αk+1(1 − αk+1)∥vk − [αk+2vk+1 + wk+2]∥2

−αk(1 − αk)αk+1∥t − vk∥
2

−αk(1 − αk)(1 − αk+1)∥t − [αk+2vk+1 + wk+2]∥2

+αk(1 − αk)αk+1(1 − αk+1)∥vk − [αk+2vk+1 + wk+2]∥2]
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= αk∥t − u∥2 + (1 − αk)αk+1∥vk − u∥2 − αk(1 − αk)αk+1∥t − vk∥
2

+(1 − αk)(1 − αk+1)∥αk+2vk+1 + wk+2 − u∥2

−αk(1 − αk)(1 − αk+1)∥t − [αk+2vk+1 + wk+2]∥2

−αk+1(1 − αk)(1 − αk+1)(1 − αk)∥vk − [αk+2vk+1 + wk+2]∥2

= αk∥t − u∥2 + (1 − αk)αk+1∥vk − u∥2 − αk(1 − αk)αk+1∥t − vk∥
2

−αk+1(1 − αk)(1 − αk+1)(1 − αk)∥vk − [αk+2vk+1 + wk+2]∥2

+(1 − αk)(1 − αk+1)∥αk+2vk+1 + wk+2 − u∥2

−αk(1 − αk)(1 − αk+1)∥t − [αk+2vk+1 + wk+2]∥2

= αk∥t − u∥2 + (1 − αk)αk+1∥vk − u∥2 − αk(1 − αk)αk+1∥t − vk∥
2

−αk+1(1 − αk)(1 − αk+1)(1 − αk)∥vk − [αk+2vk+1 + wk+2]∥2

+(1 − αk)(1 − αk+1)∥αk+2vk+1 + (1 − αk+2)[αk+3vk+2 + wk+3] − u∥2

−αk(1 − αk)(1 − αk+1)∥αk+2vk+1 + (1 − αk+2)[αk+3vk+2 + wk+3] − t∥2

= αk∥t − u∥2 + (1 − α1
n)αk+1∥vk − u∥2 − α1

n(1 − α1
n)αk+1∥t − vk∥

2

+(1 − αk)(1 − αk+1)αk+2∥vk+1 − u∥2

+(1 − αk)(1 − αk+1)(1 − αk+2)∥αk+3vk+2 + wk+3 − u∥2

−(1 − αk)(1 − αk+1)αk+2(1 − αk+2)∥vk+1 − [αk+3vk+2 + wk+3]∥2

−αk(1 − αk)(1 − αk+1)αk+2∥vk+1 − t∥2

−αk(1 − αk)(1 − αk+1)(1 − αk+2)∥αk+3vk+2 + wk+3 − t∥2

+αk(1 − αk)(1 − αk+1)αk+2(1 − αk+2∥vk+1 − αk+3vk+2 + wk+3∥
2

−αk+1(1 − αk)(1 − αk+1)(1 − αk)∥vk − [αk+2vk+1 + wk+2]∥2

= αk∥t − u∥2 + (1 − αk)αk+1∥vk − u∥2 − αk(1 − αk)αk+1∥t − vk∥
2

+(1 − αk)(1 − αk+1)αk+2∥vk+1 − u∥2

+(1 − αk)(1 − αk+1)(1 − αk+2)∥αk+3vk+2 + wk+3 − u∥2

−αk(1 − αk)(1 − αk+1)αk+2∥vk+1 − t∥2

−αk(1 − αk)(1 − αk+1)(1 − αk+2)∥αk+3vk+2 + wk+3 − t∥2

−αk+1(1 − αk)(1 − αk+1)(1 − αk)∥vk − [αk+2vk+1 + wk+2]∥2

−(1 − αk)2(1 − αk+1)αk+2(1 − αk+2)∥vk+1 − [αk+3vk+2 + wk+3]∥2

...

= αk∥t − u∥2 +
k+2∑

i=k+1

αi

i−1∏
j=k

(1 − α j)∥vi−1 − u∥2

−αk

[ k+2∑
i=k+1

αi

i−1∏
j=k

(1 − α j)∥t − vi−1∥
2
]

−(1 − αk)
[ k+2∑

i=k+1

αi

i∏
j=k

(1 − α j)∥vi−1 − [αi+1vi + wi+1]∥2

+

k+2∏
j=k

(1 − α j)∥[αk+3vk+2 + wk+3] − u∥2

−αk

k+2∏
j=k

(1 − α j)∥t − [αk+3vk+2 + wk+3]∥2
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= αk∥t − u∥2 +
N∑

i=k+1

αi

i−1∏
j=k

(1 − α j)∥vi−1 − u∥2 +
N∏
j=k

(1 − α j)∥v − u∥2

−αk

[ N∑
i=k+1

αi

i−1∏
j=k

(1 − α j)∥t − vi−1∥
2 +

N∏
j=k

(1 − α j)∥t − v∥2
]

−(1 − αk)
[ N−1∑

i=k+1

αi

i∏
j=k

(1 − α j)∥vi−1 − [αi+1vi + wi+1]∥2

+αN

N∏
j=k

(1 − α j)∥v − vN−1∥
2
]
.

3. Main Results

We now present the following results:

Proposition 3.1. Let H be a real Hilbert space and T : D(T) ⊆ H → P(H) be a multi-valued L−Lipschtizian
mapping, then, fixed point set of T is closed.

Proof. . Let {xn}
∞

n=1 ⊆ F(T) such that xn → x∗. Then,

d2(x∗,Tx∗) ≤ d(x∗, xn) + d(xn,Txn) +H(Txn,Tx∗)
= ∥x∗ − xn∥ +H(Txn,Tx∗)
≤ (1 + L)∥xn − x∗∥ → 0 as n→∞.

Therefore, d(x∗,Tx∗) = 0. Since T is proximinal, there exist v ∈ Tx∗ such that ∥x∗ − v∥ = d(x∗,Tx∗) = 0.
Consequently, x∗ ∈ Tx∗.

Definition 3.2. Let {T j}
N
j=1 be a finite collection of mappings such that

N⋂
j=1

F(T j) , ∅. T1,T2, ...,T j,T j+1, ...,TN are

said to satisfy condition 1 uniformly, if there exists a nondecreasing function f : [0,∞)→ [0,∞) with f (0) = 0 and
f (r) > 0 for all r ∈ (0,∞) such that

d(1,T j1) ≥ f (d(1,
N⋂

j=1

F(T j)), ∀1 ∈ C.

Definition 3.3. Let (X, ∥.∥) be a normed inner product space and T : D(T) ⊆ X→ P(X) be a multi-valued mapping.
T is said to be an extended k-strictly pseudocontactive mapping if there exists k ∈ [0, 1) such that given any pair
1, h ∈ D(T), then for all u ∈ PT1, v ∈ PTh, we have

H2(T1,Th) ≤ ||1 − h||2 + k||1 − u − (h − v)||2. (32)

If k = 1 in (32), then T is called an extended pseudocontactive mapping. T is called extended nonexpansive if k = 0.

Clearly,
(i) every multi-valued nonexpansive mapping is an extended k-strictly pseudocontactive.
(ii) every single-valued k-strictly pseudocontactive (respectively, pseudocontractive) mapping of [7](respectively,
[14]) is an extended k-strictly pseudocontractive (respectively, pseudocontractive) mapping.
(iii) every multi-valued k-strictly pseudocontactive (respectively pseudocontractive) mapping of [9] is an
extended k-strictly pseudocontactive (respectively pseudocontractive) mapping.
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The following example shows that the class of extended multi-valued k-strictly pseudocontactive (respec-
tively pseudocontractive) mappings properly generalises the class of multi-valued nonexpansive mappings,
single-valued k-strictly pseudocontactive mappings of [7] and multi-valued k-strictly pseudocontactive
mappings of [9], while extended multi-valued pseudocontactive properly extends the classes of single-
valued pseudocontactive mappings of [14] and multi-valued pseudocontactive mappings of [9].

Example 3.4. ([20], Example 3.4) Let X = R (the reals with usual metric). Define T : [0,∞) ⊆ (R)→ P(R) by

T1 = [−
51
2
,−21]. (33)

Then given any pair 1, h ∈ D(T)

H2(T1,Th) =
25
4
|1 − h|2 ≤ |1 − h|2 +

7
12
|1 − u − (h − v)|2

≤ |1 − h|2 + |1 − u − (h − v)|2,

for all u ∈ PT1, v ∈ PTh. Hence, T is not a multi-valued nonexpansive mapping but it is an extended multi-
valued k-strictly pseudocontactive mapping, consiquently, an extended pseudocontractive mapping. However, it was
shown in [20] that for x = 3, y = 2, if we choose u = −6 ∈ Tx and v = −5 ∈ Ty then H2(Tx,Ty) = 25

4 and
|x–y|2 + |x − u–(y–v)|2 = 5. Consequently, H2(Tx,Ty) > |x–y|2 + |x–u–(y–v)|2. Thus, T is not pseudocontactive of
[9]. Therefore, T is neither k-strictly pseudocontractive nor pseudocontractive mapping which were considered in [9].

The following example shows that extended pseudocontractive condition on a multi-valued mapping T
does not imply that the fixed point set of T is strict.

Example 3.5. Let X = R (the reals with usual metric). Define T : [0,∞) ⊆ (R)→ P(R) by

T1 = [−
51
2
− 1,−21]. (34)

Clearly, T is an extended pseudocontractive-type mapping whose set of fixed points F(T) is not empty, but its set of
strict fixed points Fs(T) is empty. Observe also that T has type-one property.

Remark 3.6. (i) The relationship between the class of extended multi-valued pseudocontractive mappings and the
class of multi-valued pseudocontractive-type mappings are yet to be established.

Definition 3.7. Let (X, ∥.∥) be a normed space and T : D(T) ⊆ X → P(X) be a multi-valued mapping. T is said to
be an extended demicontactive mapping if F(T) , ∅ and there exists k ∈ [0, 1) such that given any pair 1 ∈ D(T) and
p ∈ F(T) then for all u ∈ PT1, we have

H2(T1,Tp) ≤ ||1 − p||2 + k||1 − u||2. (35)

If k = 1 in (35), then T is called an extended hemicontactive mapping. T is called extended quasi-nonexpansive if
k = 0.

Clearly, if F(T) , ∅, for a extended strictly pseudocontractive (respectively, pseudocontractive) mapping
T, then T is extended demicontractive (respectively, hemicontractive) mappings. Also, demicontractive
(respectively, hemicontractive) mappings in the sense of [8] is an extended demicontractive (respectively,
hemicontractive) mapping because,

H2(T1,Tp) ≤ ||1 − p||2 + kd2(1,u), ∀ u ∈ T1, p ∈ F(T)
≤ ||1 − p||2 + k||1 − u||2, ∀ u ∈ PT1, p ∈ F(T). (36)

Obviously, Examples 3.4 and 3.5 are both extended demicontractive and hemicontractive mappings.
We now obtain a demiclosedness property in the sense that if {1n}

∞

n=1 ⊆ C is such that {1n}weakly converges
to p and a sequence {hn} with d(1n, hn) = d(1n,T1n) for all n ∈ N such that {1n − hn} strongly converges to 0,
then 0 ∈ (I − T)p (i.e., p = v for some v ∈ Tp).
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Proposition 3.8. Let H be a real Hilbert space. Let C be a nonempty weakly closed subset of H. Let T : C ⊆ H→ P(H)
be a multi-valued mapping from C into the collection of all nonempty proximinal subsets of H. Suppose that T is an
extended k-strictly pseudocontractive mapping with type-one property. Then (I − T) is demiclosed at zero (i.e., the
graph of I − T is closed at zero in σ(H,H∗)× (H, ∥.∥) or weakly demiclosed at zero), where I denotes the identity on H,
σ(H,H∗) the weak topology, (H, ||.||) the norm (or strong) topology.

Proof. . Let {1n}
∞

n=1 ⊆ C be such that {1n}weakly converges to p and a sequence {hn}with ||1n−hn|| = d(1n,T1n)
for all n ∈ N such that {1n − hn} strongly converges to 0. We prove that 0 ∈ (I − T)p (i.e., p = v for some
v ∈ Tp). Since {1n}

∞

n=1 converges weakly, it is bounded. Let q ∈ Tp with ||p − q|| = d(p,Tp). From type-one
property and the definition of extended k-strictly pseudocontractive, for each n ∈N, we have that

∥hn − q∥ ≤ H(T1n,Tp), (37)

and

H2(T1n,Tp) ≤ ||1n − p||2 + k∥1n − hn − (p − q)∥2. (38)

Thus, for each 1 ∈ H define f : H→ [0,∞) by

f (1) := lim sup
n→∞

||1n − 1||
2.

Then from Lemma 2.6, we obtain

f (1) = lim sup
n→∞

||1n − p||2 + ||p − 1||2 ∀1 ∈ H.

Thus
f (1) = f (p) + ||p − 1||2 ∀1 ∈ H.

Therefore,

f (q) = f (p) + ||p − q||2. (39)

Observe also that

f (q) = lim sup
n→∞

||1n − q||2

= lim sup
n→∞

||1n − hn + (hn − q)||2

= lim sup
n→∞

∥hn − q∥2

≤ lim sup
n→∞

H2(T1n,Tp)

≤ lim sup
n→∞

[
||1n − p||2 + k∥1n − hn − (p − q)∥2

]
= lim sup

n→∞
||1n − p||2 + k∥(p − q)∥2

= f (p) + k∥p − q∥2. (40)

Hence, it follows from (39) and (40) that (1 − k)||p − q||2 = 0. Therefore, p = q ∈ Tp.

Proposition 3.9. Let C be a nonempty subset of a real Hilbert space H. And let T : C → P(C) be an extended
k-strictly pseudocontractive mapping with type-one property such that F(T) is nonempty. Then
(a) F(T) is closed ; (b) F(T) is convex.
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Proof. . (a) Let {1n}
∞

n=1 ⊆ F(T) such that {1n}
∞

n=1 converges to 1 ∈ C. We show that 1 ∈ F(T). Let u ∈ PT1 be
arbitrary,

||1 − u|| ≤ ∥1 − 1n∥ + ||1n − u||
≤ ∥1 − 1n∥ +H(T1n,T1)

≤ ∥1 − 1n∥ + ∥1 − 1n∥ +
√

k||1 − u||.

Taking limits as n→∞, we have that ||1 − u|| ≤
√

k||1 − u||. Hence 1 ∈ T1
(b) We now prove that F(T) is convex. Let p1, p2 ∈ F(T) and z = αp1 + (1 − α)p2 then z − p1 = (1 − α)(p2 − p1)
and z − p2 = α(p1 − p2).

d2(z,Tz) ≤ ∥z − u∥2, ∀u ∈ Tz
= ∥αp1 + (1 − α)p2 − u∥2

= α∥p1 − u∥2 + (1 − α)∥p2 − u∥2 − α(1 − α)∥p2 − p1∥
2.

In particular, for u ∈ PTz, extended k-strictly pseudocontractive condition on T implies that

d2(z,Tz) ≤ αH2(Tz,Tp1) + (1 − α)H2(Tz,Tp2) − α(1 − α)∥p1 − p2∥
2

≤ α[∥z − p1∥
2 + k∥z − u∥2] + (1 − α)[∥z − p2∥

2 + k∥z − u∥2]
−α(1 − α)∥p1 − p2∥

2

= α[∥z − p1∥
2 + kd2(z,Tz)] + (1 − α)[∥z − p2∥

2 + kd2(z,Tz)]
−α(1 − α)∥p1 − p2∥

2

= ∥αp1 + (1 − α)p2 − z∥2 + kd(z,Tz) = kd(z,Tz).

Hence, z ∈ Tz.

Proposition 3.10. Let H be a real Hilbert space, C a closed convex subset of H and T : C ⊆ H → CC(C) be an
extended multi-valued, L−Lipschtizian pseudocontractive mapping which is also of type-one. If the set of fixed points
F(T) of T is nonempty, then, it is convex.

Proof. . Let p1, p2 ∈ F(T), we prove that p = λp1+(1−λ)p2 ∈ F(T). For each x ∈ D(T), let Tβx = T[(1−β)x+βux],
where ux ∈ Tx with d(x,Tx) = ∥x − ux∥ (i.e, ux ∈ PTx) and β ∈ (0, 1

√

1+L2+1
). Clearly, Tβx is well defined since

ux is unique (because Tx is closed and convex subset of a real Hilbert space) and C is convex. Also if
p∗ ∈ F(T), then, Tβp∗ = Tp∗. Observe that for any uβx ∈ Tβx = T[(1 − β)x + βux], given any p∗ ∈ F(T),
then H(T[(1 − β)x + βux],Tp∗) = H(Tβx,Tp∗). Hence, by type-one condition and the definition of extended
pseudocontractive mapping, we have

∥uβx − p∗∥2 ≤ H2(T[(1 − β)x + βux],Tp∗) = H2(Tβx,Tp∗)

≤ ∥(1 − β)x + βux − p∗∥2 + ∥((1 − β)x + βux) − uβx∥2.

Similarly,

∥ux − p∗∥2 ≤ H2(Tx,Tp∗)
≤ ∥x − p∗∥2 + ∥x − ux∥

2.

It follows that for the pair p, (1 − β)p + βup and up ∈ PTp, uβp ∈ PTβp = PT[(1 − β)p + βup], we have that
∥up − uβp∥ ≤ H(Tp,Tβp). Now,

d2(p,Tβp) ≤ ∥p − uβp∥2 = ∥λp1 + (1 − λ)p2 − uβp∥2

= ∥λ[p1 − uβp] + (1 − λ)[p2 − uβp]∥2

= λ∥p1 − uβp∥2 + (1 − λ)∥p2 − uβp∥2 − λ(1 − λ)∥p1 − p2∥
2.
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Also,

d2(p1,Tβp) ≤ ∥p1 − uβp∥2 ≤ H2(Tp1,Tβp)

≤ ∥[(1 − β)p + βup] − p1∥
2 + ∥[(1 − β)p + βup] − uβp∥2

= ∥(1 − β)[p − p1] + β[up − p1]∥2 + ∥(1 − β)[p − uβp] + β[up − uβp]∥2

= (1 − β)∥p − p1∥
2 + β∥up − p1∥

2
− β(1 − β)∥p − up∥

2

+(1 − β)∥p − uβp∥2 + β∥up − uβp∥2 − β(1 − β)∥p − up∥
2

≤ (1 − β)∥p − p1∥
2 + βH2(Tp,Tp1) − β(1 − β)∥p − up∥

2

+(1 − β)∥p − uβp∥2 + βH2(Tp,Tβp∥2 − β(1 − β)∥p − up∥
2

≤ (1 − β)∥p − p1∥
2 + β[∥p − p1∥

2 + ∥p − up∥
2] − β(1 − β)∥p − up∥

2.

+(1 − β)∥p − uβp∥2 + βL2
∥p − [(1 − β)p + βup]∥2 − β(1 − β)∥p − up∥

2

≤ (1 − β)∥p − p1∥
2 + β[∥p − p1∥

2 + ∥p − up∥
2] − β(1 − β)∥p − up∥

2

+(1 − β)∥p − uβp∥2 + βL2β2
∥p − up∥

2
− β(1 − β)∥p − up∥

2

= ∥p − p1∥
2
− β[1 − 2β − L2β2]∥p − up∥

2 + (1 − β)∥p − uβp∥2

≤ ∥p − p1∥
2 + (1 − β)∥p − uβp∥2.

Similarly,

d2(p2,Tβp) ≤ ∥p2 − uβp∥2 ≤ ∥p − p2∥
2 + (1 − β)∥p − uβp∥2.

Hence,

∥p − uβp∥2 ≤ λ[∥p − p1∥
2 + (1 − β)∥p − uβp∥2]

+(1 − λ)[∥p − p2∥
2 + (1 − β)∥p − uβp∥2]

−λ(1 − λ)∥p1 − p2∥
2

= ∥λp1 + (1 − λ)p2 − p∥2 + (1 − β)∥p − uβp∥2

= +(1 − β)∥p − uβp∥2.

This implies that 0 ≤ β∥p − uβp∥ ≤ 0. Since β ∈ (0, 1
√

1+L2+1
), we have that ∥p − uβp∥ = 0. Observe that

d(p,Tβp) ≤ ∥p − uβp∥ = 0 ≤ d(p,Tβp), therefore, d(p,Tβp) = ∥p − uβp∥ = 0 and p = uβp ∈ Tβp.

d(p,Tp) ≤ d(p,Tβp) +H(Tβp,Tp) ≤ L∥(1 − β)p + βup − p∥
= Lβd(p,Tp).

Thus, 0 ≤ (1 − βL)d(p,TP) ≤ 0. Consequently, d(p,Tp) = 0 and proximinal property of T (because Tx is a
closed and convex subset of a Hilbert space H) guarantees the existence of u ∈ Tp such that ∥u − p∥ = 0.
Hence, p ∈ Tp.

Remark 3.11. If αk = α, 1 ≤ k ≤ N, equation (31) in Lemma 2.10 becomes

α +
N∑

i=k+1

α(1 − α)i−1 + (1 − α)N = 1. (41)

Consequently, given any sequence {µn}
∞

n=1, for each n, we have

µn +

N∑
i=k+1

µn(1 − µn)i−1 + (1 − µn)N = 1. (42)
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Setting 1n+1 = y, 1n = t, p = u, k = 1, {αn,i}
N
i=1 = {µn} for all i = 1, 2, ...,N and hn,N ∈ TN1n = v in Lemma 2.11 and

interchanging the roll of µ and (1 − µ), we obtain the Extended Mann Sequence for finite family of mappings {Ti}
N
i=1

defined by

1n+1 = (1 − µn)1n +

N∑
i=2

µi−1
n (1 − µn)hn,i−1 + µ

N
n hn,N. (43)

Theorem 3.12. Let C be a nonempty closed and convex subset of a real Hilbert space H. Suppose for each j =
1, 2, ...,N, T j : C → P(C) is an extended λ j-strictly pseudocontractive mapping from C into the collection of all

proximinal subsets of C with λ j ∈ (0, 1). Assume that
N⋂

j=1
F(T j) , ∅, then, the extended Mann sequence for finite

family of mappings defined by

1n+1 = (1 − µn)1n +

N∑
j=2

µ j−1
n (1 − µn)hn, j−1 + µ

N
n hn,N,

weakly converges to q ∈
N⋂

j=1
F(T j), where hn, j ∈ T j1n with ||1n − hn, j|| = d(1n,T j1n) and µn ⊆ (0, 1) satisfies:

(i) µn → µ < 1 −maxλ j, j = 1, 2, ...,N; (ii) 1 > µ > 0; (iii) (1 − µn) > max{λ j}
N
j=1.

Proof. . Applying Remark 3.11 in Lemma 2.11

||1n+1 − p||2 ≤ (1 − µn)∥1n − p∥2 +
N∑

j=2

µ j−1
n (1 − µn)∥hn,( j−1) − p∥2

+µN
n ∥hn,N − p∥2

−(1 − µn)
[ N∑

j=2

µ j−1(1 − µn)∥1n − hn, j−1∥
2 + (1 − µn)N

∥1n − hn,N∥
2
]

= (1 − µn)∥1n − p∥2 +
N∑

j=2

µ j−1
n (1 − µn)H2(T j−11n,T j−1p)

+µN
n H2(TN1n,TNp)

(1 − µn)
[ N∑

j=2

µ j−1(1 − µn)∥1n − hn, j−1∥
2 + (1 − µn)N

∥1n − hn,N∥
2
]
.

Applying extended λ j-strictly pseudocontractive condition on each T j, we obtain

||1n+1 − p||2 ≤ (1 − µn)∥1n − p∥2 +
N∑

j=2

µ j−1
n (1 − µn)

[
∥1n − p∥2 + λ j−1∥1n − hn,( j−1)∥

2
]

+µN
n

[
∥1n − p∥2 + λN∥1n − hn,N∥

2
]

−(1 − µn)
[ N∑

j=2

µ j−1
n (1 − µn)∥1n − hn, j−1∥

2 + µN
n ∥1n − hn,N∥

2
]
,
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=
[
(1 − µn) +

N∑
j=2

µ j−1
n (1 − µn, j) + µN

n

]
∥1n − p∥2

−

N∑
j=2

µ j−1
n (1 − µn)[(1 − µn) − λ j−1]∥1n − hn, j−1∥

2

−µN
n [(1 − µn) − λN]∥1n − hn,N∥

2.

Consequently,

||1n+1 − p||2 ≤ ∥1n − p∥2−
[ N∑

j=2

µ j−1
n (1 − µn)[(1 − µn) − λ j−1]∥1n − hn, j−1∥

2

+µN
n [(1 − µn) − λN]∥1n − hn,N∥

2
]
.

It then follows that lim
n→∞
∥1n−p∥ exists and hence {1n} is bounded. Also,

∞∑
n=1
µ j

n(1−µn)[(1−µn)−λ j]∥1n−hn, j∥
2 <

∞, j = 1, 2, ...,N − 1 and
∞∑

n=1
µN

n [(1 − µn) − λN]∥1n − hn,N∥
2 < ∞. Since 1 > µ > 0 from (ii), we have that

lim
n→∞
||1n − hn, j|| = 0, for all j = 1, 2, ...,N. Also since C is closed and convex and {1n} ⊆ C with {1n} bounded,

there exist a subsequence {1nt } ⊆ {1n} such that {1nt }weakly converges to some q ∈ C. Also lim
n→∞
||1n−hn, j|| = 0

implies that lim
n→∞
||1nt, j − hnt, j|| = 0. Since (I − T j) is weakly demiclosed at zero for each j, we have that

q ∈ T jq, for all j = 1, 2, ...,N. Since H satisfies Opial’s condition [32], we have that {1n} weakly converges to

q ∈
N⋂

j=1
F(T j).

Theorem 3.13. Let C be a nonempty closed and convex subset of a real Hilbert space X. Suppose that for each
j = 1, 2, ...,N, T j : C→ CC(C) is an L j-Lipschitzian extended pseudocontractive mapping from C into the collection

of all closed and convex subsets of C such that
N⋂

j=1
F(T j) , ∅. Suppose T j is of type-one, for each j and T1,T2, ...,T j, ...,TN

satisfies condition (1) uniformly. Then the extended Ishikawa sequence defined by
hn, j = (1 − ξn, j)1n + ξn, jun, j

1n+1 = (1 − µn)1n +
N∑

j=2
µ j−1

n (1 − µn)wn, j−1 + µN
n wn,N.

(44)

strongly converges to p ∈ F(T), where un, j ∈ T j1n with ||1n − un, j|| = d(1n,T j1n), wn, j ∈ T jhn, j with ||hn, j − wn, j|| =
d(hn, j,T jhn, j), ||un, j − wn, j|| ≤ H2(T j1n,T jhn, j), and {µn} and {ξn, j} are real sequences satisfying (i) 0 ≤ µn ≤ ξn, j < 1
for each j = 1, 2, ...,N;(ii) lim inf

n→∞
µn = µ > 0; (iii) sup

n≥1
ξn, j ≤ ξ j ≤

1√
1+L2

j+1
.

Proof. . From Lemma 2.11 and Remark 3.11, we have

||1n+1 − p||2 ≤ (1 − µn)∥1n − p∥2 +
N∑

j=2

µ j−1
n (1 − µn)∥wn,( j−1) − p∥2

+µN
n ∥wn,N − p∥2

−(1 − µn)
[ N∑

j=2

µ j−1(1 − µn)∥1n − wn, j−1∥
2 + (1 − µn)N

∥1n − wn,N∥
2
]
.
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Type-one property of the mappings gives

||1n+1 − p||2 ≤ (1 − µn)∥1n − p∥2 +
N∑

j=2

µ j−1
n (1 − µn)H2(T j−1hn, j−1,T j−1p)

+µN
n H2(TNhn,N,TNp)

−(1 − µn)
[ N∑

j=2

µ j−1(1 − µn)∥1n − wn, j−1∥
2

+(1 − µn)N
∥1n − wn,N∥

2
]
.

wn, j ∈ PT j hn, j and p ∈ PT j p, for each j, it then follows from extended pseudocontractive mapping definition
that

||1n+1 − p||2 ≤ (1 − µn)∥1n − p∥2 +
N∑

j=2

µ j−1
n (1 − µn)

[
∥hn, j−1 − p)∥2 + ∥hn, j−1 − wn, j−1∥

2
]

+µN
n

[
∥hn,N − p∥2 + ∥hn,N − wn,N∥

2
]

−(1 − µn)
[ N∑

j=2

µ j−1(1 − µn)∥1n − wn, j−1∥
2

+(1 − µn)N
∥1n − wn,N∥

2
]
. (45)

Also,

||hn, j − wn, j||
2 = ||(1 − ξn, j)1n + ξn, jun, j − wn, j||

2

= ||(1 − ξn, j)(1n − wn, j) + ξn, j(un, j − wn, j)||2

= (1 − ξn, j)||1n − wn, j||
2 + ξn, j||un, j − wn, j||

2
− ξn, j(1 − ξn, j)||1n − un, j||

2. (46)

(45) and (46) imply that

||1n+1 − p||2 ≤ (1 − µn)∥1n − p∥2 +
N∑

j=2

µ j−1
n (1 − µn)

[
∥hn,i−1 − p)∥2

+(1 − ξn, j−1)||1n − wn, j−1||
2 + ξn, j−1||un, j−1 − wn, j−1||

2

−ξn, j−1(1 − ξn, j−1)||1n − un, j−1||
2
]

+µN
n

[
∥hn,N − p∥2 + (1 − ξn,N)||1n − wn,N ||

2 + ξn,N ||un,N − wn,N ||
2

−ξn,N(1 − ξn,N)||1n − un,N ||
2
]

−(1 − µn)
[ N∑

j=2

µ j−1(1 − µn)∥1n − wn, j−1∥
2

+(1 − µn)N
∥1n − wn,N∥

2
]
. (47)
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||hn, j − p||2 = ||(1 − ξn, j)1n + ξn, jun, j − p||2

= ||(1 − ξn, j)(1n − p) + ξn, j(un, j − p)||2

= (1 − ξn, j)||1n − p||2 + ξn, j||un, j − p||2 − ξn, j(1 − ξn, j)||1n − un, j||
2

≤ (1 − ξn, j)||1n − p||2 + ξn, jH2(T j1n,T jp) − ξn, j(1 − ξn, j)||1n − un, j||
2

≤ (1 − ξn, j)||1n − p||2 + ξn, j

[
||1n − p||2 + ||1n − un, j||

2
]
− ξn, j(1 − ξn, j)||1n − un, j||

2

= ||1n − p||2 + ξ2
n, j||1n − un, j||

2. (48)

(47) and (48) imply that

||1n+1 − p||2 ≤ (1 − µn)∥1n − p∥2 +
N∑

j=2

µ j−1
n (1 − µn)[||1n − p||2 + ξ2

n, j−1||1n − un, j−1||
2

+(1 − ξn, j−1)||1n − wn, j−1||
2 + ξn, j−1||un, j−1 − wn, j−1||

2

−ξn, j−1(1 − ξn, j−1)||1n − un, j−1||
2]

+µN
n [||1n − p||2 + ξ2

n,N ||1n − un,N ||
2 + (1 − ξn,N)||1n − wn,N ||

2

+ξn,N ||un,N − wn,N ||
2
− ξn,N(1 − ξn,N)||1n − un,N ||

2]

−(1 − µn)
[ N∑

j=2

µ j−1(1 − µn)ξn, j−1∥1n − wn, j−1∥
2

+(1 − µn)Nξn,N∥1n − wn,N∥
2
]

≤ (1 − µn)∥1n − p∥2 +
N∑

j=2

µ j−1
n (1 − µn)

[
||1n − p||2 + ξ2

n, j−1||1n − un, j−1||
2

+(1 − ξn, j−1)||1n − wn, j−1||
2 + ξn, j−1H2(T j−11n,T j−1hn, j−1)

−ξn, j−1(1 − ξn, j−1)||1n − un, j−1||
2
]

+µN
n

[
||1n − p||2 + ξ2

n,N ||1n − un,N ||
2 + (1 − ξn,N)||1n − wn,N ||

2

+ξn,NH2(TN1n,TNhn,N) − ξn,N(1 − ξn,N)||1n − un,N ||
2
]

−(1 − µn)
[ N∑

j=2

µ j−1(1 − µn)ξn, j−1∥1n − wn, j−1∥
2

+(1 − µn)Nξn,N∥1n − wn,N∥
2
]

≤ (1 − µn)∥1n − p∥2 +
N∑

j=2

µ j−1
n (1 − µn)

[
||1n − p||2 + ξ2

n, j−1||1n − un, j−1||
2

+(1 − ξn, j−1)||1n − wn, j−1||
2 + L2

j−1ξ
3
n, j−1∥1n − un, j−1∥

2

−ξn, j−1(1 − ξn, j−1)||1n − un, j−1||
2
]

+µN
n

[
||1n − p||2 + ξ2

n,N ||1n − un,N ||
2 + (1 − ξn,N)||1n − wn,N ||

2

+ξ3
n,NL2

N∥1n − un,N∥
2
− ξn,N(1 − ξn,N)||1n − un,N ||

2
]

−(1 − µn)
[ N∑

j=2

µ j−1(1 − µn)ξn, j−1∥1n − wn, j−1∥
2

+(1 − µn)Nξn,N∥1n − wn,N∥
2
]
. (49)
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From (49), we have that

∥1n+1 − p∥2 ≤ (1 − µn)∥1n − p∥2 +
N∑

j=2

µ j−1
n (1 − µn)||1n − p||2 + µN

n ||1n − p||2

+

N∑
j=2

µ j−1
n (1 − µn)ξ2

n, j−1||1n − un, j−1||
2

+

N∑
j=2

µ j−1
n (1 − µn)(1 − ξn, j−1)||1n − wn, j−1||

2

+

N∑
j=2

µ j−1
n (1 − µn)ξ3

n, j−1L2
j−1∥1n − un, j−1∥

2

−

N∑
j=2

µ j−1
n (1 − µn)ξn, j−1(1 − ξn, j−1)||1n − un, j−1||

2]

+µN
n ξ

2
n,N ||1n − un,N ||

2 + µN
n (1 − ξn,N)||1n − wn,N ||

2

+µN
n ξ

3
n,NL2

N∥1n − un,N∥
2
− µN

n ξn,N(1 − ξn,N)||1n − un,N ||
2

−(1 − µn)
[ N∑

j=2

µ j−1(1 − µn)ξn, j−1∥1n − wn, j−1∥
2

+(1 − µn)Nξn,N∥1n − wn,N∥
2
]
. (50)

Hence,

∥1n+1 − p∥2 ≤

[
(1 − µn) +

N∑
j=2

µ j−1
n (1 − µn) + µN

n

]
||1n − p||2

+

N∑
j=2

µ j−1
n (1 − µn)

[
ξ2

n, j−1 + ξ
3
n, j−1L2

j−1 − ξn, j−1(1 − ξn, j−1)
]
||1n − un, j−1||

2

+µN
n ξn,N

[
ξn,N + ξ

2
n,NL2

N − (1 − ξn,N)
]
||1n − un,N ||

2

+

N∑
j=2

µ j−1
n (1 − µn)

[
(1 − ξn, j−1) − (1 − µn)ξn, j−1

]
||1n − wn, j−1||

2

+µN
n

[
(1 − ξn,N) − (1 − µn)ξn,N

]
||1n − wn,N ||

2. (51)

It then follows that

∥1n+1 − p∥2 ≤ ||1n − p||2

−

N∑
j=2

µ j−1
n (1 − µn)ξn, j−1

[
1 − [2ξn, j−1 + ξ

2
n, j−1L2

j−1]
]
||1n − un, j−1||

2

−µN
n ξn,N

[
1 − [2ξn,N + ξ

2
n,NL2

N]
]
||1n − un,N ||

2

−

N∑
j=2

µ j−1
n (1 − µn)

[
ξn, j−1 − µn))]

∣∣∣|1n − wn, j−1||
2

−µN
n

[
(ξn,N) − µn)

]
||1n − wn,N ||

2. (52)
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Consequently, it then follows from Lemma 2.5 that lim
n→∞
∥1n − p∥ exists. Hence {1n} is bounded so also are

{un, j}
∞

j=1.
We then have from (52), (ii) and (iii) that
∞∑

n=1

µ j(1 − µ)ξ j[1 − 2ξ j − L2
jξ

2
j ]||1n − un, j||

2
≤

∞∑
n=1

µ j
n(1 − µ)ξn, j

[
1 − 2ξn, j

−L2
jξ

2
n, j

]
||1n − un, j||

2

≤

∞∑
n=0

[
||1n − p||2 − ||1n+1 − p||2

]
≤ ||10 − p||2 < ∞, j = 1, 2, ...,N − 1.

Similarly,
∞∑

n=0

µNξN[1 − 2ξN − L2
Nξ

2
N]||1n − un,N ||

2
≤

∞∑
n=0

µN
n ξn,N

[
1 − 2ξn,N

−L2
Nξ

2
n,N

]
||1n − un,N ||

2

≤

∞∑
n=0

[
||1n − p||2 − ||1n+1 − p||2

]
≤ ||10 − p||2 < ∞, j = N.

It then follows that lim
n→∞
||1n − un, j|| = 0, for all j = 1, 2, ...,N. Since un, j ∈ T j1n we have that d(1n,T j1n) ≤

||1n − un, j|| → 0 as n → ∞. Since T1,T2, ...,T j, ...,TN satisfy condition (1), uniformly, lim
n→∞

d(1n,
N⋂

j=1
F(T j)) = 0.

Thus there exists a subsequence {1nk } of {1n} such that ∥1nk − pk∥ ≤
1
2k for some {pk} ⊆

N⋂
j=1

F(T j).

From (52)
∥1nk+1 − pk∥ ≤ ∥1nk − pk∥.

We now show that {pk} is a Cauchy sequence in
N⋂

j=1
F(T j).

∥pk+1 − pk∥ ≤ ∥pk+1 − 1nk+1∥ + ∥1nk+1 − pk∥

≤
1

2k+1
+

1
2k

=
1

2k−1
.

Therefore {pk} is a Cauchy sequence and converges to some q ∈
N⋂

j=1
F(T j) because

N⋂
j=1

F(T j) is closed. Now,

∥1nk − q∥ ≤ ∥1nk − pk∥ + ∥pk − q∥.

Hence 1nk → q as k→∞.

d(q,T jq) ≤ ∥q − pk∥ + ∥pk − 1nk∥ + d(1nk ,T j1nk ) +H(T j1nk ,T jq)
≤ ∥q − pk∥ + ∥pk − 1nk∥ + d(1nk ,T j1nk ) + L j∥1nk − q∥.

Hence, q ∈ T jq for all j = 1, 2, ...,N and {1nk } strongly converges to q. Since lim ∥1n − q∥ exists we have that
1n strongly converges to q ∈ F(T).
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We now state the following Theorems which are the extensions of Theorems 3.12 and 3.13, respectively.

Theorem 3.14. Let C be a nonempty closed and convex subset of a real Hilbert space H. Suppose for each j =
1, 2, ...,N, T j : C→ P(C) is an extended demicontractive mapping from C into the collection of all proximinal subsets

of C with λ j ∈ (0, 1). Assume that
N⋂

j=1
F(T j) , ∅ and (I − T j) is demiclosed at zero for each j. Then, the extended

Mann sequence for finite family of mappings defined by

1n+1 = (1 − µn)1n +

N∑
i=2

µi−1
n (1 − µn)hn,i−1 + µ

N
n hn,N,

weakly converges to q ∈
N⋂

j=1
F(T j), where hn, j ∈ T j1n with ||1n − hn, j|| = d(1n,T j1n) and µn ⊆ (0, 1) satisfies:

(i) µn → µ < 1 −maxλ j, j = 1, 2, ...,N; (ii) 1 > µ > 0; (iii) (1 − µn) > max{λ j}
N
j=1.

Proof. . The method of proof is similar to that of Theorem 3.12, hence, it is omitted.

Theorem 3.15. Let C be a nonempty closed and convex subset of a real Hilbert space X. Suppose that for each
j = 1, 2, ...,N, T j : C→ CC(C) is an extended L j-Lipschitzian hemicontractive mapping from C into the collection of

all closed and convex subsets of C such that
N⋂

j=1
F(T j) , ∅. Suppose T j is of type-one, for each j and T1,T2, ...,T j, ...,TN

satisfies condition (1) uniformly. Then the extended Ishikawa sequence defined by
hn, j = (1 − ξn, j)1n + ξn, jun, j

1n+1 = (1 − µn)1n +
N∑

j=2
µ j−1

n (1 − µn)wn, j−1 + µN
n wn,N.

(53)

strongly converges to p ∈ F(T), where un, j ∈ T j1n with ||1n − un, j|| = d(1n,T j1n), wn, j ∈ T jhn, j with ||hn, j − wn, j|| =
d(hn, j,T jhn, j) and {µn} and {ξn, j} are real sequences satisfying (i) 0 ≤ µn ≤ ξn, j < 1 for each j = 1, 2, ...,N;(ii)
lim inf

n→∞
µn = µ > 0; (iii) sup

n≥1
ξn, j ≤ ξ j ≤

1√
1+L2

j+1
.

Proof. . The proof is similar to that of Theorem 3.13, therefore, it is omitted

Theorems 1.12 and 1.13 are corollaries which follow from Theorems 3.14 and 3.15, respectively.

4. Example

Example 4.1. Let H = R (the reals with the usual norm), j = 1, 2, and C = R. Then for each j, we define:

(i) T j : R→ CC(R) by

T j1 =

{
[−
√

10 j1,−2 j1], 1 ∈ [0,∞)
{−
√

10 j1}, 1 ∈ [−∞, 0).

Obviously, F(T1) = {0}, F(T2) = {0}, T10 = {0}, T20 = {0}. Also, T1 and T2, satisfy condition 1 uniformly since

d(1,
2⋂

j=1
F(T j)) = d(1, {0}) = |1 − 0| = |1|, while
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d(1,T j1) =

{
d(1, [−

√
10 j1,−2 j1]), 1 ∈ [0,∞)

d(1, {−
√

10 j1}), 1 ∈ (−∞, 0).

=

{
|1 − (−2 j1)|, 1 ∈ [0,∞)
|1 − (−

√
10 j1)|, 1 ∈ (−∞, 0).

≥ |1| = f (d(1,
2⋂

j=1

F(T j)), ∀ j.

Where f : [0.∞)→ [0,∞) is defined by f(r)=r.

Now, given any pair 1, h ∈ [0,∞),
H(T j1,T jh) =

√
10 j|1 − h|.

Also, given any u ∈ PT j1 = {−2 j1} and v ∈ PT j h = {−2 jh}, we have that

|u − v| = 2 j|1 − h| ≤ H(T j1,T jh).

Similarly, given any pair 1, h ∈ (−∞, 0),

H(T j1,T jh) =
√

10 j|1 − h|.

Also, given any u ∈ PT j1 = {−
√

10 j1} and v ∈ PT j h = {−
√

10 jh}, we have that

|u − v| =
√

10 j|1 − h| = H(T j1,T jh).

Furthermore, given 1 ∈ [0,∞), h ∈ (−∞, 0)

H(T j1,T jh) =
√

10 j|1 − h|.

Also, given any u ∈ PT j1 = {−2 j1} and v ∈ PT j h = {−
√

10 jh}, we obtain

|u − v| = |2 j1 −
√

10 jh| ≤ |
√

10 j1 −
√

10 jh| = H(T j1,T jh).

Observe that given any 1 ∈ [0,∞) and u ∈ PT j1 = {−2 j1}, |1 − u|2 = (1 + 2 j)2
|1|2. It then follows that

H2(T j1,T j0) = 10 j|1 − 0|2 = |1 − 0|2 +
10 j − 1

(1 + 2 j)2 |1 − u|2

≤ |1 − p|2 + |1 − u|2,∀ j = 1, 2.

Similarly, for any 1 ∈ (−∞, 0) and u ∈ PT j1 = {−
√

10 j1}, |1 − u|2 = (1 +
√

10 j)2
|1|2.

H2(T j1,T j0) = 10 j|1 − 0|2 = |1 − 0|2 +
10 j − 1

(1 +
√

10 j)2
|1 − u|2

≤ |1 − p|2 + |1 − u|2,∀ j = 1, 2.

Furthermore, for j = 1 and 1 ∈ [0,∞), we obtain from the above that

H2(T11,T10) = |1 − 0|2 + |1 − u|2

> |1 − 0|2 + k|1 − u|2,∀k ∈ [0, 1).
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Hence, T1 is not extended demicontractive mapping. Therefore, T j is an extended L j-Lipschitzian hemicontractive
mapping for each j = 1, 2, with L j =

√
10 j such that T1,T2 satisfy condition 1 uniformly. It then follows that:

(ii) un, j =

{
−2 j1n, 1n ∈ [0,∞)
−
√

10 j1n, 1n ∈ (−∞, 0).

(iii) {µn}
∞

n=1 =
10n−(n+1)(

√
1+10+1)

10n(
√

1+10+1)
.

(iv) {ξn, j}
∞

n=1 =
12nj−(n+1)(

√
1+10 j+1)

12nj(
√

1+10 j+1)
.

(v) hn, j = (1 − ξn, j)1n + ξn, jun, j.

(vi) wn, j =

{
−2 jhn, j, hn, j ∈ [0,∞)
−
√

10 jhn, j, hn, j ∈ (−∞, 0).

(vii) 1n+1 = (1 − µn)1n +
N∑

j=2
µ j−1

n (1 − µn)wn, j−1 + µN
n wn,N.

Table 1.
Case 1 x1 = 0.5 Case 2 x1 = −0.5

n xn n xn
1 0.5 1 -0.5
2 0.458533123 2 -0.44763782
3 0.369895634 3 -0.346489435
4 0.287022833 4 -0.258293596
5 0.218650314 5 -0.189422417
6 0.164791887 6 -0.137672294
7 0.123336315 7 -0.099498106
8 0.091857781 8 -0.071632881
9 0.068165192 9 -0.051428005

10 0.050442139 10 -0.036844362
11 0.037244238 11 -0.026352744
12 0.027449847 12 -0.018823704
13 0.020200877 13 -0.013431116
14 0.014847474 14 -0.009574693
15 0.010901018 15 -0.0068203
16 0.007996086 16 -0.00485507
17 0.005860508 17 -0.003454131
18 0.004292228 18 -0.002456204
19 0.003141632 19 -0.001745814
20 0.002298169 20 -0.001240397
21 0.001680305 21 -0.00088099
22 0.00122799 22 -0.000625523
23 0.000897059 23 -0.000444009
24 0.000655062 24 -0.000315085
25 0.000478181 25 -0.000223542
26 0.000348951 26 -0.000158562
27 0.000254571 27 -0.000112448
28 0.000185667 28 -0.00007973
29 0.000135379 29 -0.000056523
30 0.000098689 30 -0.000040064
31 0.000071926 31 -0.000028393
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