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Abstract. In this paper, we introduce and study the essential approximation S-spectrum and the essential
defect S-spectrum in a right quaternionic Hilbert space. Our results are used to describe the investigation
of the stability of the essential approximation S-spectrum and the essential defect S-spectrum of linear
operator A subjected to additive perturbation K such that (AK + KA + K2

− 2Re(q)K)Rq(A + K)−1 or Rq(A +
K)−1(AK + KA + K2

− 2Re(q)K) is a quasi-compact operator in the right quaternionic Hilbert space.

1. Introduction

We start from basic issues regarding the general notion of essential S-spectrum of an operator on a
quaternionic Hilbert space. For the definition of the spectrum we follow the viewpoint adopted in [6] for
quaternionic Banach modules. A pivotal tool in our investigation is the notion of slice function [7]. For
quaternionic Hilbert spaces, a formulation of the spectral theorem already exists [15] without any systematic
investigation of the continuous functional calculus. In fact, the spectral theory is applied to quantum theories
through functional calculus [1, 4, 5, 8]. However, several difficulties arise with quaternionic linear operators
due to their non-commutativity with quaternions, which hinder the generalization of results valid in the
complex set to the quaternionic space.

Due to the non-commutativity, in the quaternionic case, there are three types of Hilbert spaces: left, right,
and two-sided, depending on how vectors are multiplied by scalars. This fact can entail several problems.
For example, when a Hilbert spaceH is onesided (either left or right) the set of linear operators acting on it
does not have a linear structure. Moreover, in a one-sided quaternionic Hilbert space, given a linear operator
A and a quaternion q ∈ H, in general, we have that (qA)∗ , qA. As a solution, a notion of multiplication
can be introduced on both sides with a fixed arbitrary Hilbert basis ofH, which allows us to have a linear
structure on the set of linear operators and consequently develop a full theory. Thus, the framework of
this paper is, in part, a right quaternionic Hilbert space equipped with a left multiplication, introduced by
fixing a Hilbert basis. We will finally bring our own interpretation of the operator theory of Fredholm and
the S-essential spectrum has not yet been studied in the quaternionic framework. This interpretation is
based on the numerical study of the interactions between the spatial domain and the quaternion frequency
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domain. We will see that there are notably symmetry properties both on the spectrum and on its original
signal due to the use of this particular transform.

In the complex setting, in a Hilbert space h, a bounded linear operator, A, is not invertible if it is not
bounded below. The set of approximate eigenvalues which are λ ∈ C such that A − λIh, where Ih is the
identity operator on h, is not bounded below, equivalently, the set of λ ∈ C for which there is a sequence
of unit vectors ϕ1, ϕ2.. such that lim

n→∞
∥Aϕn − λϕn∥ = 0. The set of approximate eigenvalues is known as

the approximate spectrum. In the quaternionic setting, let VR
H

be a separable right Hilbert space, A be a
bounded right linear operator, and Rq(A) = A2

− 2Re(q)A + |q|2IV
HR

, with q ∈H, the set of all quaternions,
be the pseudo-resolvent operator, the set of right eigenvalues of A coincide with the point S-spectrum
(see proposition 4.5 in [6]). In this regard, it will be appropriate to define and study the quaternionic
approximate S-point spectrum as the quaternions for which Rq(A) in not bounded below.

Quaternions: LetHdenote the field of all quaternions andH∗ the group (under quaternionic multiplication)
of all invertible quaternions. A general quaternion can be written as

q = q0 + q1i + q2 j + q3k, q0,q1,q2,q3 ∈ R

where i, j, k are the three quaternionic imaginary units, satisfying i2 = j2 = k2 = −1 and i j = k = − ji,
jk = i = −kj, ki = j = −ik. The quaternionic conjugate of q is

q = q0 − q1i − q2 j − q3k,

while |q| = (qq)1/2 denotes the usual norm of the quaternion q. If q is a non-zero element, it has inverse
q−1 =

q
|q|2 . Finally, the set

S =
{
I = x1i + x2 j + x3k : x1, x2, x3 ∈ R and x2

1 + x2
2 + x2

3 = 1
}

contains all the elements whose square is −1. It is a 2-dimensional sphere inH identified with R4.

Quaternionic Hilbert spaces: In this subsection we discuss right quaternionic Hilbert spaces. For more
details we refer the reader to [1, 6, 15].
Right quaternionic Hilbert Space: Let VR

H
be a vector space under right multiplication by quaternions. For

ϕ,ψ,ω ∈ VR
H

and q ∈H, the inner product

< · | · >VR
H

: VR
H × VR

H −→ H

satisfies the following properties

1. < ϕ | ψ >VR
H
=< ψ | ϕ >VR

H

2. ∥ϕ∥2
VR
H

=< ϕ | ϕ >VR
H
> 0 unless ϕ = 0, a real norm

3. < ϕ | ψ + ω >VR
H
=< ϕ | ψ >VR

H
+ < ϕ | ω >VR

H

4. < ϕ | ψq >VR
H
=< ϕ | ψ >VR

H
q

5. < ϕq | ψ >VR
H
= q < ϕ | ψ >VR

H
, where q stands for the quaternionic conjugate.

It is always assumed that the space VR
H

is complete under the norm given above and separable. Then,
together with < · | · >VR

H
this defines a right quaternionic Hilbert space. Quaternionic Hilbert spaces share

many of the standard properties of complex Hilbert spaces.

Proposition 1.1. [6, Proposition 2. 5] Let O = {φk : k ∈ N} be an orthonormal subset of VR
H

. Then, the following
conditions are pairwise equivalent:

1. The closure of the linear combinations of elements in O with coefficients on the right is VR
H

.
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2. For every ϕ,ψ ∈ VR
H

, the series
∑
k∈N

< ϕ|φk >VR
H
< φk|ψ >VR

H
converges absolutely and it holds:

< ϕ|φk >VR
H
=
∑
k∈N

< ϕ|φk >VR
H
< φk|ψ >VR

H
.

3. For every ϕ ∈ VR
H

, it holds:
∥ϕ∥2VR

H

=
∑
k∈N

| < φk|ϕ >VR
H
|
2.

4. O⊥ = {0}.

Definition 1.2. The set O is called a Hilbert basis of VR
H

, if it satisfies the equivalent conditions stated in Proposition
1.1.

Remark 1.3. Every quaternionic Hilbert space VR
H

has a Hilbert basis. All the Hilbert bases of VR
H

have the same
cardinality. Furthermore, if O is a Hilbert basis of VR

H
, then every ϕ ∈ VR

H
can be uniquely decomposed as follows:

ϕ =
∑
k∈N

φk < φk|ϕ >VR
H
,

where the series
∑
k∈N

φk < φk|ϕ >VR
H

converges absolutely in VR
H

(see [6]).

The field of quaternions H it self can be turned into a left quaternionic Hilbert space by defining the inner product
< q,q′ >= qq′ or into a right quaternionic Hilbert space with < q,q′ >= qq′ .

We follow the work by Ghiloni et al. [6] to study the quaternionic version of some spectral properties
of compact operators. First, we recall the next definition from [6].

We end this introduction by mentioning, in order of expected difficulty. In Section 2, some notations,
basic concepts about right quaternionic linear operators, S-spectrum, and Fredholm operators are recalled.
in section 3, we interested in studying the stability problem of the essential approximation S-spectrum
and the essential defect S-spectrum. In Section 4, the concept of the quasi-compact in a right quaternionic
Hilbert space is introduced and its properties are studied, which we will need to characterize the essential
approximation S-spectrum and the essential defect S-spectrum in terms of the quasi-compact operators.

2. Preliminary results

2.1. Right quaternionic linear operators and some basic properties
In this subsection,we shall define right linear operators and recall some basic properties. Most of them

are very well known.

Definition 2.1. Let VR
H

be a right quaternionic Hilbert space. A rightH-linear operator, for simplicity, right linear
operator, is a map A : D(A) ⊆ VR

H
−→ VR

H
such that

A(ϕa + ψb) = (Aϕ)a + (Aψ)b and a,b ∈H

where the domainD(A) of A is a rightH-linear subspace of VR
H

.

The set of all right linear operators from VR
H

to UR
H

will be denoted byL(VR
H
,UR
H

) and the identity linear
operator on VR

H
will be denoted by IR

H
. For a given A ∈ L(VR

H
,UR
H

), the range and the kernel will be

R(A) =
{
ψ ∈ UR

H : Aϕ = ψ for ϕ ∈ D(A)
}

N(A) =
{
ϕ ∈ D(A) : Aϕ = 0

}
.
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We call an operator A ∈ L(VR
H
,UR
H

) bounded if

∥A∥ = sup
∥ϕ∥VR

H
=1
∥Aϕ∥UR

H
< ∞,

or equivalently, there exist K ≥ 0 such that ∥Aϕ∥UR
H
≤ K∥ϕ∥VR

H
for all ϕ ∈ D(A). The set of all bounded right

linear operators from VR
H

to UR
H

will be denoted by B(VR
H
,UR
H

). Set of all invertible bounded right linear
operators from VR

H
to UR

H
will be denoted by G(VR

H
,UR
H

). Assume that VR
H

is a right quaternionic Hilbert
space, A be an operator with dense domain acting on it. Then, there exists a unique linear operator A∗ such
that

< ψ | Aϕ >UR
H
=< A∗ψ | ϕ >VR

H
for all ϕ ∈ D(A), ψ ∈ D(A∗).

where the domainD(A∗) of A∗ is defined by

D(A∗) =
{
ψ ∈ UR

H : ∃φ such that < ψ | Aϕ >UR
H
=< φ | ϕ >VR

H

}
.

We define the natural domains of the sum A+B and of the composition AB by settingD(A+B) = D(A)∩D(B)
andD(AB) =

{
ϕ ∈ D(B) : Bϕ ∈ D(A)

}
. Note that B(VR

H
) has a natural structure of real algebra, in which the

sum is the usual point wise sum, the product is the composition and the real scalar multiplication

B(VR
H

) ×H −→ B(VR
H

)
(A, λ) 7−→ Aλ

is defined by setting
(Aλ)(ϕ) = A(ϕ)λ.

Lemma 2.2. [6, Proposition 2.11 (e)] Let A : D(A) ⊂ VR
H
−→ VR

H
be a right linear operator. If A ∈ B(VR

H
) is

surjective, then A is open. In particular, if A is bijective, then A−1
∈ B(VR

H
).

Definition 2.3. Let VR
H

and UR
H

be right quaternionic Hilbert spaces. A bounded operator K : VR
H
−→ UR

H
is

compact if K maps bounded sets into precompact sets. That is, K(U) is compact in UR
H

, where U =
{
ϕ ∈ VR

H
: |ϕ| < 1

}
.

Equivalently, for all bounded sequences ( fn) ∈ VR
H

the sequence (K fn) has a convergence subsequence in UR
H

.

We denote the set of all compact operators from VR
H

to UR
H

by B0(VR
H
,UR
H

) and the compact operators from
VR
H

from VR
H

will be denoted by B0(VR
H

).

2.2. Left scalar multiplications
We shall extract the definition and some properties of left scalar multiplication of vectors on UR

H
from

[6] as needed for the development of the manuscript. The left scalar multiplication of vectors on a right
quaternionic Hilbert space is an extremely non-canonical operation associated with a choice of preferred
Hilbert basis. From the Remark 1.3, UR

H
has a Hilbert basis

O =
{
ϕk : k ∈N

}
.

Definition 2.4. Let VR
H

be a separable right Hilbert space and let O its Hilbert basis. The left scalar multiplication
on VR

H
induced by O is defined as the map

R × VR
H
−→ VR

H

(q, ϕ) 7−→ qϕ =
∑
k∈N

φkq < φk, ϕ >

Let VR
H

be a separable right Hilbert space and let O its Hilbert basis. Then, the left scalar multiplication on
VR
H

satisfies the following properties.
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Proposition 2.5. [6, Proposition 3.1] For every ϕ,ψ ∈ VR
H

and q,p ∈H, we have

1. q(ϕ + ψ) = qϕ + qψ and q(ϕp) = (qϕ)p.
2. ∥qϕ∥ = |q||∥ϕ∥.
3. q(pϕ) = (qp)ϕ.
4. < qϕ,ψ >=< ϕ,qψ >.
5. qϕk = ϕkq for all k ∈N.

The quaternionic left scalar multiplication of linear operators is also defined in [6].

2.3. Spectral Mapping Theorem for Quaternionic Hilbert Space
In this subsection, we study some properties of various essential S-spectra of a quaternionic Hilbert

space.

Definition 2.6. Let A : D(A) ⊂ VR
H
−→ VR

H
be a right linear operator. The S-resolvent set (also called spherical

resolvent set) of A is the set σS(A)(⊂H) such that the three following conditions hold true:
(a) N(Rq(A)) =

{
0
}
.

(b) R(Rq(A)) is dense in VR
H

.
(c) Rq(A)−1 : R(Rq(A)) −→ D(A2) is bounded.
The S-spectrum (also called spherical spectrum) σS(A) of A is defined by setting σS(A) := H\ρS(A). For a bounded
linear operator A we can write the resolvent set as

ρS(A) =
{
q ∈H : Rq(A) ∈ G(VR

H)
}

=
{
q ∈H : Rq(A) has an inverse in B(VR

H)
}

=
{
q ∈H : N(Rq(A)) = {0} and R(Rq(A)) = VR

H

}
and the spectrum can be written as

σS(A) = H\ρS(A)

=
{
q ∈H : Rq(A) has no inverse in B(VR

H)
}

=
{
q ∈H : N(Rq(A)) , {0} or R(Rq(A)) , VR

H

}
.

The right S-spectrum σS
r and the left S-spectrum σS

l (A) are defined respectively as

σS
r =

{
q ∈H : Rq(A) in not right invertible in B(VR

H)
}

=
{
q ∈H : Rq(A) in not left invertible in B(VR

H)
}

The spectrum σS(A) decomposes into three major disjoint subsets as follows:
(i) The spherical point spectrum of A:

σS
p(A) :=

{
q ∈H : N(Rq(A)) , {0}

}
.

(ii) The spherical residual spectrum of A:

σS
r (A) :=

{
q ∈H : N(Rq(A)) = {0},R(Rq(A) , VR

H

}
.

(iii) The spherical continuous spectrum of A:

σS
c (A) :=

{
q ∈H : N(Rq(A)) = {0},R(Rq(A)) = VR

H,Rq(A)−1 < B(VR
H)
}
.
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In the complex setting Fredholm operators are studied in Banach spaces and Hilbert spaces for bounded and
even to unbounded linear operators. In this section we shall study the theory for quaternionic bounded lin-
ear operators on separable Hilbert spaces. In this regard let VR

H
and UR

H
be two separable right quaternionic

Hilbert spaces. A Fredholm operator is an operator A ∈ B(VR
H
,UR
H

) such that N(A) and coR(A) = UR
H
/R(A)

are finite dimensional. The dimension of the cokernel is called the codimension, and it is denoted by
codim(A). For A ∈ VR

H
, the nullity, α(A), of A is defined as the dimension of N(A) and the deficiency, β(A), of

A is defined as the codimension of R(A) in VR
H

.
When it is the case of A be a sequence of bounded right linear operators on VR

H
, the set of upper semi-

Fredholm relation is defined by:

Φ+(VR
H) =

{
q ∈H : α(Rq(A)) < ∞ and R(Rq(A)) is closed in VR

H

}
,

and the set of lower semi-Fredholm operator is defined by:

Φ−(VR
H) =

{
q ∈H : β(Rq(A)) < ∞ and R(Rq(A)) is closed in VR

H

}
.

Φ(VR
H) := Φ+(VR

H) ∩ Φ−(VR
H) denotes the set of bounded right linear operators on VR

H
and Φ±(VR

H) :=
Φ+(VR

H) ∪Φ−(VR
H) denotes the set of semi-Fredholm operator from VR

H
.

Theorem 2.7. [11, Theorem 6.16] Let A ∈ B(VR
H
,UR
H

), be a Fredholm operator, then for any compact operator
K ∈ B(VR

H
,UR
H

), A + K is a Fredholm operator and i(A + K) = i(A).

Theorem 2.8. [11, Theorem 6.13] Let VR
H
,UR
H

and WR
H

be right quaternionic Hilbert spaces. If A1 ∈ B(VR
H
,UR
H

)
and A2 ∈ B(UR

H
,WR
H

) are two Fredholm operators, then A2A1 ∈ B(VR
H
,WR
H

) is also a Fredholm operator, and it
satisfies i(A2A1) = i(A1) + i(A2).

Proposition 2.9. [11, Proposition 4.2] If A ∈ B(VR
H

), B ∈ B(VR
H

) and K ∈ B0(VR
H

), then AK and KB are compact
operators.

Corollary 2.10. [11, Corollary 6.14.] Let A ∈ B(VR
H
,UR
H

) and B ∈ B(UR
H
,VR
H

) such that AB = F and BA = G are
Fredholm operators. Then A and B are Fredholm operators and i(AB) = i(A) + i(B).

Among these essential S-spectra, the following sets are defined for a bounded linear operator A:

σS
e1(A) :=

{
q ∈H : Rq(A) < Φ+(VR

H)
}

σS
e2(A) :=

{
q ∈H : Rq(A) < Φ−(VR

H)
}

σS
e3(A) := σS

e1(A) ∩ σS
e2(A)

σS
e4(A) :=

{
q ∈H : Rq(A) < Φ(VR

H)
}

σS
e5(A) :=

⋂
K∈B0(VR

H
)

σS(A + K)

σS
eap(A) :=

⋂
K∈B0(VR

H
)

σS
ap(A + K)

σS
eδ(A) :=

⋂
K∈B0(VR

H
)

σS
δ(A + K).

σS
ap(A) := {q ∈ H : Rq(A) not bounded below}, where bounded below is injective and open and σS

δ(A) :=
{q ∈ H : Rq(A) is not surjective}. σeap(·) was introduced by V. Rakocevic in [12] and denotes the essential
approximate point spectrum and σeδ(·) is the essential defect spectrum and was introduced by C. Schmoeger
[13]. Note that all these sets are closed and in general satisfy the following inclusions

σS
e1(A) ∩ σS

e2(A) = σS
e3(A) ⊆ σS

e4(A) ⊆ σS
e5(A).
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σS
e1(A) ⊆ σS

eap(A), σS
e2(A) ⊆ σS

eδ(A) and σS
e5(A) ⊆ σS

eb(A).

The purpose of this section is to discuss the essential approximate point S-spectrum and the essential
defect S-spectrum of a bounded right quaternionic linear operator. We begin with the following useful
result.

Lemma 2.11. Let A ∈ Φ+(VR
H

). Then, the following statements are equivalent:
(i) i(A) ≤ 0.
(ii) A can be expressed in the form A = U +K where K ∈ B0(VR

H
) and U ∈ B(VR

H
) an operator with closed range and

α(U) = 0.

This lemma is well known for bounded upper semi-Fredholm operators. The proof is a straightforward
adaption of the proof of Theorem 3.9 in [17]. The results of the next proposition were established in [12] and
[13] for bounded linear operators. We will improve it for a bounded right quaternionic linear operator, in a
right quaternionic Hilbert space with a left multiplication s. This result is a characterization of the essential
approximate point S-spectrum (resp. the essential defect S-spectrum) by means of upper semi-Fredholm
(resp. lower semi-Fredholm).

Theorem 2.12. Let A ∈ B(VR
H

), then

(i) q < σS
eap(A) if, and only if, Rq(A) ∈ Φ+(VR

H
) and i(Rq(A)) ≤ 0.

(ii) q < σS
eδ(A) if, and only if, Rq(A) ∈ Φ−(VR

H
) and i(Rq(A)) ≥ 0.

Proof. (i) Let Rq(A) ∈ Φ+(VR
H

) such that i(Rq(A)) ≤ 0. Then by Lemma 2.11, Rq(A) can be expressed in the
form Rq(A) = U + K where K ∈ B0(VR

H
) and U ∈ B(VR

H
) an operator with closed range and α(U) = 0. Hence

by Theorem 5.1 p. 70 in [14], there exists a constant c > 0 such that ∥Ux∥ ≥ c∥x∥, for all x ∈ D(A). Thus
q < σS

ap(A + K) and therefore q < σS
eap(A). Conversely, if q < σS

eap(A), then there exists K ∈ B0(VR
H

) such that

inf
∥x∥=1, x∈D(A)

∥∥∥∥(Rq(A) − K)x
∥∥∥∥ > 0.

The use of Theorem 5.1 p. 70 in [14] leads to Rq(A) − K ∈ Φ+(VR
H

) and α(Rq(A) − K) = 0, hence it follows
from Theorem 2.7 that Rq(A) ∈ Φ+(VR

H
) and α(Rq(A)) = 0. This completes the proof of (i).

(ii) This assertion follows, immediately, from (i).

Corollary 2.13. Let A ∈ B(VR
H

), then

(i) σS
eap(A) = σS

e1(A)
⋃{

q ∈H : i
(
Rq(A)

)
> 0
}
.

(ii) σS
eδ(A) = σS

e2(A)
⋃{

q ∈H : i
(
Rq(A)

)
< 0
}
.

Proposition 2.14. (i) Let A ∈ B(VR
H

) and assume that σS
e1(A) is connected and ρS(A) , ∅. Then, σS

e1(A) = σS
eap(A).

(ii) Let A ∈ B(VR
H

) and assume that σS
e2(A) is connected and ρS(A) , ∅. Then, σS

e2(A) = σS
eδ(A).

Proof. (i) The first inclusion is a consequence of Corollary 2.13, then it easy to check that σS
e1(A) ⊂ σS

eap(A).
We prove that σS

eap(A) ⊂ σS
e1(A). Consequently, to establish the result, it suffices to show that:

σS
eap(A) ∩

(
H\σS

e1(A)
)
= ∅.

Suppose that, σS
eap(A) ∩

(
H\σS

e1(A)
)
, ∅, then there exists q0 ∈ H such that q0 ∈ σS

eap(A) ∩
(
H\σS

e1(A)
)
. Since

ρS(A) , ∅, then there exists q1 , ∅ such that N(Rq1 (A)) = {0} and R(Rq1 (A)) = VR
H

, therefore Rq1 (A) ∈ Φ(VR
H

)
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and i(Rq1 (A)) = 0. Since σS
e1(A) is connected, hence i

(
Rq1 (A)

)
is constant on any component in σS

e1(A).

Therefore, i
(
Rq1 (A)

)
= i
(
Rq0 (A)

)
= 0. Hence, it follows q0 < σS

eap(A). Thus, we obtain from the above that

σS
eap(A) = σS

e1(A).

The other two equalities follow in the same way.

Lemma 2.15. Let A ∈ B(VR
H

). If 0 ∈ ρS(A) and q , 0, then Rq(A) ∈ Φ(VR
H

) if and only if Rq−1 (A−1) ∈ Φ(VR
H

) and

i(Rq(A)) = i(Rq−1 (A−1))

Proof. (a) For all q , 0, we note that

Rq(A) = |q|2
(
Rq−1 (A−1)

)
A2. (1)

Now, let us suppose that |q|2
(
Rq−1 (A−1)

)
A2
∈ Φ(VR

H
). Since 0 ∈ ρS(A) Now, by applying Corollary 2.10, we

infer that Rq(A) ∈ Φ(VR
H

). Conversely, assume that Rq(A) ∈ Φ(VR
H

). Then, the product on the right-hand

side of Eq. (1) is in Φ(VR
H

). Besides, 0 ∈ ρS(A) implies that A2
∈ Φ(VR

H
), then |q|2

(
Rq−1 (A−1)

)
A2
∈ Φ(VR

H
).

Then, Rq−1 (A−1) ∈ Φ(VR
H

).
By using Corollary 2.10 and Eq. (1), we get the following result

i
(
Rq(A)

)
= i
(
|q|2
(
Rq−1 (A−1)

)
A2
)

= i
(
(Rq−1 (A−1))

)
+ i
(
A2
)

= i
(
(Rq−1 (A−1))

)
.

Theorem 2.16. Let T1,T2 ∈ B(VR
H

). If q ∈ ρS(T1) ∩ ρS(T2)\
{
0
}

and Rq−1 (T−1
2 ) − Rq−1 (T−1

1 ) ∈ B0(VR
H

), then

(i) σS
eap(T1) = σS

eap(T2).

(ii) σS
eδ(T1) = σS

eδ(T2).

Proof. (i) Let 0 ∈ ρS(T1), then Rq(T1) = |q|2
(
Rq−1 (T−1

1 )
)
T2

1. Implies that,{
N(Rq(T1)) = N(Rq−1 (T−1

1 ))
R(Rq(T1)) = R(Rq−1 (T−1

1 ))

hence ensuring that q ∈ σS
e1(T1) equivalent to Rq(T1) is upper semi-Fredholm if, and only if, Rq−1 (T−1

1 ) is
upper semi-Fredholm if, and only if, q−1

∈ σS
e1(T−1

1 ). Since Rq−1 (T−1
2 ) − Rq−1 (T−1

1 ) ∈ B0(VR
H

) and applying
Theorem 2.7 we have Rq−1 (T−1

1 ) + Rq−1 (T−1
2 ) − Rq−1 (T−1

1 ) = Rq−1 (T−1
2 ) is upper semi-Fredholm. We obtain that

q−1
∈ σS

e1(T−1
2 ) which is equivalent to say that q ∈ σS

e1(T2).

Now, in order to show that i
(
Rq(T1)

)
= i
(
Rq(T2)

)
. Since Rq−1 (T−1

2 )−Rq−1 (T−1
1 ) ∈ B0(VR

H
) and by using Lemma

2.15 and Theorem 2.7 we get

i
(
Rq(T1)

)
= i
(
Rq−1 (T−1

1 )
)

= i
(
Rq−1 (T−1

1 ) + Rq−1 (T−1
2 ) − Rq−1 (T−1

1 )
)

= i
(
Rq−1 (T−1

2 )
)

= i
(
Rq(T2)

)
.

(ii) This assertion follows, immediately, from (i).
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3. Stability of Essential S-Spectra

The reader interested in the results of this section may also refer to [10], which constitutes the real basis
of our work. The purpose of this section, is to present the following useful stability of essential spectra.

Theorem 3.1. Let A,B ∈ B(VR
H

) where A commutes with B. If every Rq(A) is Fredholm, there exists Aλl (resp. Aλr)
a left (resp. right) inverse modulo compact operator of Rq(A) such that If Rq(B)Aλl,AB + BA − |q|2 ∈ B0(VR

H
) (resp.

AλrRq(B),AB + BA − |q|2 ∈ B0(VR
H

)), then

σS
ei(A + B) ⊆ σS

ei(A) where i ∈ {1, 2, eap, eδ}.

Proof. Let q ∈ H, if Aλl is a left inverse modulo compact operators of Rq(A), then there exists K ∈ B0(VR
H

)
such that AλlRq(A) = I − K, thus, we can write

Rq(A + B) = (I + Rq(B)Aλl)Rq(A) + Rq(B)K + AB + BA − |q|2.

In the same way, if there exists Aλr), a right inverse modulo compact operators of Rq(A), we can write

Rq(A + B) = Rq(A)(I + AλrRq(B)) + K
′

Rq(B) + BA + AB − |q|2,

where K′ ∈ B0(VR
H

). Let q < σS
eap(A), then Rq(A) is upper semi-Fredholm and i(Rq(A)) ≤ 0. Set Aλl

(resp. Aλr) be a left (resp. right) inverse modulo compact operators of Rq(A). Since Rq(B)Aλl ∈ B0(VR
H

)
(resp. AλrRq(B) ∈ B0(VR

H
)), [11, Remark 6.9.] implies that (I + Rq(B)Aλl) is upper semi-Fredholm (resp.

(I + AλrRq(B)) is upper semi-Fredholm) thus applying Theorem 2.8 , we get (I + Rq(B)Aλl)Rq(A) is upper
semi-Fredholm (resp. Rq(A)(I+AλrRq(B)) is upper semi-Fredholm). Since Rq(B)K+AB+BA− |q|2 ∈ B0(VR

H
)

(resp. K′Rq(B) + AB + BA − |q|2 ∈ B0(VR
H

)), hence Rq(A + B) is upper semi-Fredholm. We conclude that
σS

e1(A + B) ⊆ σS
e1(A). Furthermore, by using Theorem 2.8 and Theorem 2.7 we have

i(Rq(A + B)) = i(Rq(A)).

Take the same approach to find

σS
ei(A + B) ⊆ σS

ei(A) where i ∈ {2, eap, eδ}.

The following theorem shows the relation between the essential spectra of the sum of the two bounded
linear operators and the essential spectra, where their products are Fredholm or semi-Fredholm perturba-
tions

Theorem 3.2. Let A,B ∈ B(VR
H

).

(i) If AB,BA ∈ B0(VR
H

), then σS
e1(A + B)\

{
0
}
=
[
σS

e1(A) ∪ σS
e1(B)
]
\

{
0
}
. Moreover, ifH\σS

e1(A) is connected, then

σS
eap(A + B)\

{
0
}
=
[
σS

eap(A) ∪ σS
eap(B)

]
\

{
0
}
.

(ii) If AB,BA ∈ B0(VR
H

), then σS
e2(A + B)\

{
0
}
=
[
σS

e2(A) ∪ σS
e2(B)
]
\

{
0
}
. Moreover, ifH\σS

e2(A) is connected, then

σS
eδ(A + B)\

{
0
}
=
[
σS

eδ(A) ∪ σS
eδ(B)
]
\

{
0
}
.

Proof. (i) For q ∈H, we can write

Rq(A + B) = A2 + AB + BA + B2
− Re(q)A − Re(q)B + |q|2. (2)
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Now, we have the equation:

Rq(A)Rq(B) =
(
A2
− Re(q)A + |q|2

)(
B2
− Re(q)B + |q|2

)
= A2B2

− Re(q)A2B + A2
|q|2 − Re(q)AB2 +

(
Re(q)

)2
AB

−Re(q)A|q|2 + B2
|q|2 − Re(q)B|q|2 + |q|4

= A2
|q|2 + B2

|q|2 − Re(q)A|q|2 − Re(q)B|q|2 + |q|4

+A2B2
− Re(q)A2B − Re(q)AB2 +

(
Re(q)

)2
AB.

From equation (2), it is easy to see,

Rq(A)Rq(B) = Rq(A + B)|q|2 − AB − BA + A2B2
− Re(q)A2B − Re(q)AB2 +

(
Re(q)

)2
AB, (3)

and

Rq(B)Rq(A) = Rq(B + A)|q|2 − BA − AB + B2A2
− Re(q)B2BA − Re(q)BA2 +

(
Re(q)

)2
BA. (4)

Let q <
[
σS

ei(A) ∪ σS
ei(B)
]
\

{
0
}
. Then, Rq(A) is Fredholm and Rq(B) is Fredholm. Theorem 2.8 ensures that

Rq(A)Rq(A) is Fredholm. Since AB,BA ∈ B0(VR
H

), then by using Proposition 2.9 we get −AB − BA + A2B2
−

Re(q)A2B − Re(q)AB2 +
(
Re(q)

)2
AB ∈ B0(VR

H
), and applying Eq. (3), we have Rq(A + B) is Fredholm. Hence

q < σS
e4(A + B), and we obtain

σS
e1(A + B)\

{
0
}
⊂

[
σS

e1(A) ∪ σS
e1(B)
]
\

{
0
}
.

Let q <
[
σS

eap(A) ∪ σS
eap(B)

]
\

{
0
}
, then by Corollary 2.13 we have Rq(A),Rq(B) are upper semi-Fredholm

and i
(
Rq(A)

)
=
(
Rq(B)

)
≤ 0. Therefore, Theorem 2.8 gives Rq(A)Rq(B) is upper semi-Fredholm and

i
(
Rq(A)Rq(B)

)
≤ 0. Moreover, since AB,BA ∈ B0(VR

H
), we can apply both Eq. (3) and Proposition 2.9,

hence ensuring that Rq(A + B) is upper semi-Fredholm and i
(
Rq(A + B)

)
≤ 0. Again, by applying Theorem

2.8, we infer that q < σS
eap(A + B) and, then

σS
eap(A + B)\

{
0
}
⊂

[
σS

eap(A) ∪ σS
eap(B)

]
\

{
0
}
.

Let us suppose that q < σS
e1(A + B). Then, Rq(A + B) is upper semi-Fredholm. Since AB ∈ B0(VR

H
) and

BA ∈ B0(VR
H

), then by using Eqs. (3) and (4), we have

Rq(A)Rq(B) and Rq(B)Rq(A)are upper semi-Fredholm.

Corollary 2.10 show clearly that Rq(A) is upper semi-Fredholm and Rq(B) is upper semi-Fredholm. We
conclude that q < σS

e1(A) ∪ σS
e1(B). Hence,

σS
e1(A + B)\

{
0
}
=
[
σS

e1(A) ∪ σS
e1(B)
]
\

{
0
}
.

Then, from Proposition 2.14 we deduce that

σS
eap(A + B)\

{
0
}
=
[
σS

eap(A) ∪ σS
eap(B)

]
\

{
0
}
.

Statement (ii) can be checked in the same way as (i).
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4. Quaternionic Quasi-Compact Operators

A systematic study of quaternionic quasi-compact operators has not appeared in the literature. In this
regard, in this section, as needed for our purpose, we provide certain significant results about compact
right linear operators on VR

H
.

This first definition was given by Yosida (1939) he called them operators almost completely continuous [16].

Definition 4.1. An operator T ∈ VR
H

is said to be quasi-compact operator if there exists a compact operator K and an
integer m such that ∥Tm

− K∥ < 1.

This definition is equivalent to the following: there exists a sequence (Kn)n of compact operators on VR
H

such that lim ∥Tn
− Kn∥ = 0.

It is obvious that any compact operator is almost compact. We note the set of quasi-compact operators by
QK(VR

H
). In what follows we show the equivalence of the definitions of quasi-compactness known in the

mathematical literature. We refer the reader to [9] for a detailed presentation of the quasi-compactness.

Remark 4.2. If T1 and T2 are quasi-compact, T1 + T2 is not generally quasi-compact. Likewise if T is quasi-compact
and A is a bounded operator, we do not necessarily have TA or AT quasi-compact. To illustrate this, consider the
following operators in l2(H): the space of complex sequences with summable square.

T1(x1, x2, x3, · · · ) = (x2, 0, x4, 0, x6, · · · )

and
T2(x1, x2, x3, · · · ) = (0, x3, 0, x5, 0, x7, 0, · · · )

T1 and T2 are almost compact since T2
1 = T2

2 = 0. But T1 + T2 = (x2, x3, x4, · · · ) and T1T2 = (x3, 0, x5, 0, x7, · · · ) are
not quasi-compact since their point spectrum is the set {q ∈ H : |q| < 1}. Still in the same space l2(H) consider the
operators

T(x1, x2, x3, · · · ) = (0, x1, 0, x2, 0, x3, · · · )

and
A(x1, x2, x3, · · · ) = (x2, x4, x6, · · · )

T is almost compact since T2 = 0 but AT is not almost compact (AT = I). Consequently the QKR
H

set is not closed for
the addition and multiplication of operators.

Theorem 4.3. If A ∈ QK(VR
H

), then for all quaternion number q such that |q| ≥ 1, then (q − A) is a Weyl operator.

Proof. The proof is obtained in the same way of the proof of Theorem [2, Theorem I.6].

We will give a result on the stability of the essential S-spectra of a bounded linear operator under a
quasi-compact perturbation. Let A ∈ B(VR

H
) define the sets:

OA(VR
H) =

{
K ∈ B(VR

H) :
(AK + KA + K2

− 2Re(q)K)Rq(A + K)−1
∈ QK(VR

H
)

for all q < σS(A + K)

}
VA(VR

H) =

{
K ∈ B(VR

H) :
Rq(A + K)−1(AK + KA + K2

− 2Re(q)K) ∈ QK(VR
H

)
for all q < σS(A + K)

}
.

Theorem 4.4. Let A ∈ B(VR
H

) with ρS(A) , ∅. Then,

(i) σS
eap(A) =

⋂
K∈OA(VR

H
)

σS
ap(A + K) =

⋂
K∈VA(VR

H
)

σS
ap(A + K).

(ii) σS
eδ(A) =

⋂
K∈OA(VR

H
)

σS
δ(A + K) =

⋂
K∈VA(VR

H
)

σS
δ(A + K).
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Proof. (i) Let A ∈ B(VR
H

), show that σS
eap(A) ⊂

⋂
K∈OA(VR

H
)

σS
ap(A + K). Indeed, let q <

⋂
K∈OA(VR

H
)

σS
ap(A + K), then

there exists K ∈ OA(VR
H

) such that q ∈ ρS
ap(A) and (AK+KA+K2

− 2Re(q)K)Rq(A+K)−1
∈ QK(VR

H
). By using

Theorem 4.3, we get I − (AK + KA + K2
− 2Re(q)K)Rq(A + K)−1

∈ Φ+(VR
H

) and

i(I − (AK + KA + K2
− 2Re(q)K)Rq((A + K)−1) ≤ 0.

Using the following relation

Rq(A) =
(
I − (AK + KA + K2

− 2Re(q)K)Rq(A + K)−1
)
Rq(A + K).

Hence, applying Theorem 2.8, we get Rq(A) ∈ Φ+(VR
H

) and i(Rq(A)) ≤ 0. We then conclude that, q <⋂
K∈OA(VR

H
)

σS
ap(A + K).

The other inclusion is a direct result of B0(VR
H

) ⊂ OA(VR
H

). Note that since B0(VR
H

) ⊂ OA(VR
H

) is the minimal
subspace (in the sense of inclusion) for which the theorem 4.3 remains true.
Continuing in the same way, we can find σS

eap(A) =
⋂

K∈VA(VR
H

)

σS
ap(A + K).

Statement (ii) can be checked in the same way as (i).

Corollary 4.5. Let A ∈ B(VR
H

) and U(VR
H

) and Z(VR
H

) be subspaces of B(VR
H

) (not necessarily ideals). If B0(VR
H

) ⊆
Z(VR

H
) ⊆ OA(VR

H
), B0(VR

H
) ⊆ U(VR

H
) ⊆ OA(VR

H
), then

(i) eS
eap(A) =

⋂
K∈Z(VR

H
)

σS
ap(A + K) =

⋂
K∈U(VR

H
)

σS
ap(A + K).

(ii) eS
eδ(A) =

⋂
K∈Z(VR

H
)

σS
δ(A + K) =

⋂
K∈U(VR

H
)

σS
δ(A + K).

Proof. (i) Since B0(VR
H

) ⊆ Z(VR
H

) ⊆ OA(VR
H

)(X) we obtain⋂
K∈OA(VR

H
)

σS
ap(A + K) ⊆

⋂
K∈Z(VR

H
)

σS
ap(A + K) ⊆ eS

eap(A).

Applying Theorem 4.3, we get

eS
eap(A) ⊆

⋂
K∈OA(VR

H
)

σS
ap(A + K) ⊆

⋂
K∈Z(VR

H
)

σS
ap(A + K).

which completes the proof of the first assertion. For the second, it suffices to replace Z(VR
H

) by U(VR
H

).

Statement (ii) can be checked in the same way as (i).
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