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Abstract. In this paper left ϕ-biflatness of abstract Segal algebras is investigated. For a locally compact
group G, we show that any abstract Segal algebra with respect to L1(G) is left ϕ-biflat if and only if the
underlying group G is amenable. We then prove that the Lipschitz algebras Lipα(X) and lipα(X) are left
C-ϕ-biflat if and only if X is finite. Finally, we also study leftϕ-biflatness of lower triangular matrix algebras.

1. Introduction and preliminaries

The homological concept of biflatness for Banach algebras, introduced by Helemskii [5], has proved to
be of great importance in Banach algebra theory. Left ϕ-biflatness which is a modification of biflatness was
introduced in [13]. We recall the definition in the sequel. In the current paper we continue the investigation
of this notion.

Given a Banach algebra A, we let πA : A⊗p A→ A denote the multiplication operator, i.e., πA(a⊗ b) = ab
for all a, b ∈ A. It is known that the projective tensor product A ⊗p A becomes a Banach A-bimodule in a
canonical way, turning πA into a A-bimodule morphism. The character space of A is denoted by ∆(A), that
is, the set of all non-zero multiplicative linear functionals on A.

Let A be a Banach algebra and let ϕ ∈ ∆(A). We recall that A is left ϕ-amenable if there exists an element
m ∈ A∗∗ such that am = ϕ(a)m and ϕ̃(m) = 1 for all a ∈ A, where ϕ̃ is the unique extension of ϕ to A∗∗ given
by ϕ̃(F) = F(ϕ) for all F ∈ A∗∗. This concept of amenability as a generalization of left amenability of Lau
algebras has been recently introduced and investigated by Kaniuth, Lau and Pym [10] under the name of
ϕ-amenability; see also Monfared [11].

More recently, the authors in [13] introduced and studied the homological concept of left ϕ-biflatness of
Banach algebras. Precisely, A is called left ϕ-biflat if there exists a bounded linear map ρ : A → (A ⊗p A)∗∗

such that ρ(ab) = ϕ(b)ρ(a) = a · ρ(b) and ϕ̃ ◦ π∗∗A ◦ ρ(a) = ϕ(a) for each a, b ∈ A. Also A is left C-ϕ-biflat if there
exists C > 0 such that ||ρ|| ≤ C. The reader may also see [12] for definition of φ-biflat Banach algebras.

The content of the paper is as follows. In Section 2, we investigate relations between left ϕ-biflatness
and left ϕ-amenability of (abstract) Segal algebras. For a locally compact group G, we prove that an abstract
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Segal algebra with respect to L1(G) is left ϕ-biflat if and only if G is an amenable group. In Section 3, we
study left ϕ-biflatness of some (concrete) Banach algebras including Lipschitz algebras Lipα(X) and ℓipα(X),
lower triangular matrices LO(I,A) and also C1[0, 1].

2. Left ϕ-biflatness of abstract Segal algebras

Let A be a Banach algebra with the norm || · ||A. We recall that a Banach algebra B with the norm || · ||B is
an abstract Segal algebra with respect to A if

(i) B is a dense left ideal in A,
(ii) there exists M > 0 such that ||b||A ≤M||b||B for every b ∈ B,

(iii) there exists C > 0 such that ||ab||B ≤ C||a||A||b||B for every a ∈ A and b ∈ B.

It is known that ∆(B) = {ϕ|B : ϕ ∈ ∆(A)}, [2, Lemma 2.2].
Two following lemmas will be needed.

Lemma 2.1. ([16, Lemma 2.2]) Let A be a Banach algebra and let ϕ ∈ ∆(A). If A is left ϕ-amenable, then A is left
ϕ-biflat.

In the following example we show that the converse of Lemma 2.1 is not true necessarily.

Example 2.2. Suppose that S is a left zero semigroup with |S| ≥ 2, that is, a semigroup with action st = s for every
s, t ∈ S. This semigroup action induces a product on the related semigroup algebra ℓ1(S). Indeed, we have f1 = ϕS(1) f ,
where ϕS is the augmentation character on ℓ1(S) given by ϕS(

∑
s∈S αsδs) =

∑
s∈S αs, for all f , 1 ∈ ℓ1(S).

First we show that ℓ1(S) is left ϕS-biflat. To see this, suppose that f0 is an element in ℓ1(S) such that ϕS( f0) = 1.
Define ρ : ℓ1(S)→ (ℓ1(S) ⊗p ℓ1(S))∗∗ by ρ( f ) = f ⊗ f0 for all f ∈ ℓ1(S). One can see that

f · ρ(1) = ρ( f1), ρ( f1) = ϕS(1)ρ( f )

and
ϕ̃S ◦ π

∗∗

A ◦ ρ( f ) = ϕS( f0 f ) = ϕS( f )

for each f , 1 ∈ ℓ1(S).
Now, we show that ℓ1(S) is not left ϕS-amenable, whenever |S| ≥ 2. We assume in contradiction and suppose that
ℓ1(S) is left ϕS-amenable. Then there exists a bounded net ( fα) in ℓ1(S) such that

ϕS( fα) = 1, ϕS( fα) f − ϕS( f ) fα = f fα − ϕS( f ) fα → 0 ( f ∈ ℓ1(S)).

It gives that f −ϕS( f ) fα → 0 for each f ∈ ℓ1(S). Since S has at least two distinct elements s1 and s2, consider δs1 and
δs2 and replace them in f − ϕS( f ) fα → 0. It follows that δs1 = δs2 , so s1 = s2 which is impossible.

Lemma 2.3. ([13, Lemma 2.1]) Suppose that A is a left ϕ-biflat Banach algebra with A kerϕ
||·||

= kerϕ. Then A is
left ϕ-amenable.

In the following example we show that the condition A kerϕ
||·||

= kerϕ is necessary in the above lemma.

Example 2.4. Let A =
{[

α −β
β α

]
: α, β ∈ C

}
be a two–dimensional subspace ofM2(C) with the multiplication

[
α −β
β α

] [
γ −θ
θ γ

]
=

[
αθ −βθ
βθ αθ

]
and with the ℓ1-norm. Consider a character ϕ : A −→ C by

ϕ

([
α −β
β α

])
= β.
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Then kerϕ = CI and so A kerϕ , kerϕ. It is easy to verify that the map ρ : A −→ (A ⊗p A)∗∗ define by

ρ

([
α −β
β α

])
=

[
α −β
β α

]
⊗

[
0 −1
1 0

]
implies that A is left ϕ-biflat. But A is not left ϕ-amenable, since otherwise there exists a bounded net m j =[
α j −β j
β j α j

]
∈ A such that am j −ϕ(a)m j → 0 for all a ∈ A and ϕ(m j) = 1 for all j. The second equation implies that

β j = 1 for all j and the first relation for a = I, the identity matrix, implies that Im j − ϕ(I)m j = Im j = I → 0 that is a
contradiction.

Theorem 2.5. Let A be a Banach algebra and let ϕ ∈ ∆(A). Suppose that B is an abstract Segal algebra with respect
to A which posses an approximate identity. Then the following statements are equivalent:

(i) A is left ϕ-biflat;
(ii) B is left ϕ|B-biflat;

(iii) B is left ϕ|B-amenable;
(iv) A is left ϕ-amenable.

Proof. (i) ⇒ (ii) Suppose that A is left ϕ-biflat. Then there exists a bounded liner map Γ : A → (A ⊗p A)∗∗

such that Γ(ab) = a · Γ(b) = ϕ(b)Γ(a) and ϕ̃ ◦ π∗∗A ◦ Γ(a) = ϕ(a), for all a, b ∈ A. Since B is dense in A, we can
choose i0 in B such that ϕ(i0) = 1. Define Ri0 : A→ B by Ri0 (a) = ai0, for each a ∈ A. Clearly Ri0 is a bounded
linear map. Set

ρ := (Ri0 ⊗ Ri0 )∗∗ ◦ Γ|B : B→ (B ⊗p B)∗∗.

One can see that ρ is a bounded linear map such that

ρ(b1b2) = b1ρ(b2) = ϕ(b2)ρ(b1), (b1, b2 ∈ B),

and
ϕ̃|B ◦ π

∗∗

B ◦ ρ(b1) = ϕ̃|B ◦ π∗∗B ◦ (Ri0 ⊗ Ri0 )∗∗ ◦ Γ|B(b1) = ϕ̃ ◦ π∗∗A ◦ Γ(b1) = ϕ(b1).

It follows that B is left ϕ|B-biflat.
(ii)⇒ (iii) It is immediate by Lemma 2.3.
(iii)⇒ (iv) See [2, Proposition 2.3].
(iv)⇒ (i) This is Lemma 2.1.

Inspired by the argument in [13, Lemma 2.1] we give the following result.

Theorem 2.6. Let A be a Banach algebra with a left approximate identity and let ϕ ∈ ∆(A). Suppose that B is an
abstract Segal algebra with respect to A. Then B is left ϕ|B-biflat if and only if B is left ϕ|B-amenable.

Proof. Suppose that B is left ϕ-biflat. Then there exists a bounded linear map ρ : B → (B ⊗p B)∗∗ such that
ϕ̃◦π∗∗B ◦ρ(b) = ϕ(b) for all b ∈ B. Let i0 and Ri0 be as in the proof of Theorem 2.5. We denote ı for the inclusion
map from B into A. Set

λ := (ı ⊗ ı)∗∗ ◦ ρ ◦ Ri0 : A→ (A ⊗p A)∗∗.

It is easy to see that λ is a bounded linear map such that

ϕ̃ ◦ π∗∗A ◦ λ(a) = ϕ̃ ◦ π∗∗A ◦ (ı ⊗ ı)∗∗ ◦ ρ ◦ Ri0 (a) = ϕ̃ ◦ π∗∗B ◦ ρ ◦ Ri0 (a) = ϕ(a),

and

b1 · λ(b2) = b1 · (ı ⊗ ı)∗∗ ◦ ρ ◦ Ri0 (b2)
= (ı ⊗ ı)∗∗ ◦ ρ ◦ Ri0 (b1b2)
= ϕ(b2)(ı ⊗ ı)∗∗ ◦ ρ ◦ Ri0 (b1)
= ϕ(b2)λ(b1), (b1, b2 ∈ B).
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Suppose that K = kerϕ (in A). We denote idA for the identity map and q : A→
A
K

for the quotient map. Let
ζ be the bounded linear map specified by

ζ := (idA ⊗ q)∗∗ ◦ λ : A→ (A ⊗p
A
K

)∗∗.

Since A has a left approximate identity, AK
||·||

= K. Thus for each k ∈ K we have

ζ(k) = (idA ⊗ q)∗∗ ◦ λ(k) = (idA ⊗ q)∗∗ ◦ λ(lim
n

ankn) = lim
n
ϕ(kn)(idA ⊗ q)∗∗ ◦ λ(an) = 0,

for some sequences (an) in A and (kn) in K. So ζ induces a map on
A
K

which still is denoted by ζ. Since
A
K
� C, we have A ⊗p

A
K
� A. So we can assume that m = ζ(i0 + K) ∈ A∗∗. Consider

bm = bζ(i0 + K) = ζ(bi0 + K) = ζ(ϕ(b)i0 + K) = ϕ(b)m, (b ∈ B) (1)

also
(ϕ ⊗ ϕ)∗∗ ◦ λ(b) = ϕ̃ ◦ π∗∗B ◦ ρ(b) = ϕ(b), (b ∈ B)

and ϕ̃ ◦ (idA ⊗ ϕ)∗∗ = (ϕ ⊗ ϕ)∗∗, where ϕ is a character on
A
K

given by ϕ(a + K) = ϕ(a) for each a ∈ A. These
facts follow that

ϕ̃(m) = ϕ̃ ◦ ζ(i0 + K) = ϕ̃ ◦ (idA ⊗ q)∗∗ ◦ λ(i0)

= (ϕ ⊗ ϕ)∗∗ ◦ λ(i0)

= ϕ̃ ◦ π∗∗B ◦ ρ(i0)
= ϕ(i0) = 1.

(2)

Since B is dense in A, by (1) am = ϕ(a)m for all a ∈ A. It follows that A is left ϕ-amenable. Replacing m with
mi0, we can assume that m ∈ B∗∗. So B is left ϕ|B-amenable. The converse is valid by Lemma 2.1.

A Banach algebra A with ϕ ∈ ∆(A) is called ϕ-inner amenable if there exists a bounded net (aα) in A such that
aaα − aαa→ 0 and ϕ(aα) = 1 for all a ∈ A, [8].

Lemma 2.7. Let A be a Banach algebra and let ϕ ∈ ∆(A). Suppose that A is left ϕ-biflat and ϕ-inner amenable. Then
A is left ϕ-amenable.

Proof. Suppose that A is left ϕ-biflat. Then there exists a bounded linear map ρ : A → (A ⊗p A)∗∗ such that
ρ(ab) = a · ρ(b) = ϕ(b)ρ(a) and ϕ̃ ◦ π∗∗A ◦ ρ(a) = ϕ(a), for all a, b ∈ A. Since A is ϕ-inner amenable, there exists
a bounded linear net (aα) in A such that aaα − aαa → 0 and ϕ(aα) = 1, for all a ∈ A. Define mα = ρ(aα). It is
easy to see that (mα) is a bounded net in (A ⊗p A)∗∗ such that

a ·mα − ϕ(a)mα → 0, ϕ̃ ◦ π∗∗A(mα)→ 1, (a ∈ A).

Using Banach-Alaoglu theorem (mα) has a w∗-cluster point in (A ⊗p A)∗∗, say M. One can show that

a ·M = ϕ(a)M, ϕ̃ ◦ π∗∗A(M) = 1, (a ∈ A).

So
aπ∗∗A(M) = ϕ(a)π∗∗A(M), ϕ̃ ◦ π∗∗A(M) = 1, (a ∈ A).

It follows that A is left ϕ-amenable.
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Proposition 2.8. Let A be an ϕ-inner amenable Banach algebra and ϕ ∈ ∆(A). Suppose that B is an abstract Segal
algebra with respect to A. Then B is left ϕ|B-biflat if and only if B is left ϕ|B-amenable.

Proof. Suppose that B is left ϕ-biflat. Let Ri0 , ı, q, idA, ρ, λ, and ζ are the same as in the proof of Theorem
2.5. Since A is ϕ-inner amenable, there exists a bounded net (aα) in A such that aaα − aαa→ 0 and ϕ(aα) = 1,

for all a ∈ A. Define mα = ζ(aα) ∈ (A ⊗
A
K

)∗∗ � A∗∗. Clearly (mα) is a bounded net in A∗∗. Consider

bmα − ϕ(b)mα

= b(idA ⊗ q)∗∗ ◦ (ı ⊗ ı)∗∗ ◦ ρ ◦ Ri0 (aα) − ϕ(b)(idA ⊗ q)∗∗ ◦ (ı ⊗ ı)∗∗ ◦ ρ ◦ Ri0 (aα)
= (idA ⊗ q)∗∗ ◦ (ı ⊗ ı)∗∗ ◦ ρ ◦ Ri0 (baα) − (idA ⊗ q)∗∗ ◦ (ı ⊗ ı)∗∗ ◦ ρ ◦ Ri0 (aαb)
= (idA ⊗ q)∗∗ ◦ (ı ⊗ ı)∗∗ ◦ ρ ◦ Ri0 (baα − aαb)→ 0, (b ∈ B).

Also
ϕ̃(mα) = ϕ̃ ◦ (idA ⊗ q)∗∗ ◦ (ı ⊗ ı)∗∗ ◦ ρ ◦ Ri0 (aα) = ϕ̃ ◦ πB ◦ ρ ◦ Ri0 (aα) = ϕ(aα) = 1.

Thus we found a bounded net (mα) in A∗∗ such that bmα−ϕ(b)mα → 0 and ϕ̃(mα) = 1, for all b ∈ B. Since (mα)
is a bounded net in A∗∗, Banach-Alaoglu theorem yields (mα) has a w∗-limit point, say M. Thus bM = ϕ(b)M
and ϕ̃(M) = 1 for all b ∈ B. Since B is dense in A, aM = ϕ(a)M and ϕ̃(M) = 1, for all a ∈ A. It follows that A is
left ϕ-amenable. So by [2, Proposition 2.3], B is left ϕ|B-amenable. The converse is true by Lemma 2.1.

Let L1(G) be the group algebra of a locally compact group G with the convolution product defined by

( f ∗ 1)(x) =
∫

G
f (y)1(y−1x)dy (x ∈ G)

for f , 1 ∈ L1(G) and with the norm ∥ · ∥1. Let Ĝ denote the dual group of G consisting of all continuous
homomorphisms ν from G into the unit circle T. Define the character ϕν ∈ ∆(L1(G)) by

ϕν(h) =
∫

G
ν(x)h(x)dx (h ∈ L1(G)).

It is known that
∆(L1(G)) = {ϕν : ν ∈ Ĝ};

see, for example [6, Theorem 23.7].

Corollary 2.9. Let G be a locally compact group and let ϕ ∈ ∆(L1(G)). Then the following statements are equivalent:

(i) L1(G) is left ϕ-biflat.
(ii) Each abstract Segal algebra with respect to L1(G) is left ϕ-biflat.

(iii) There exists a left ϕ-biflat abstract Segal algebra with respect to L1(G).
(iv) G is amenable.

Proof. (i) ⇒ (ii) Suppose that L1(G) is left ϕ-biflat. By Lemma 2.3 L1(G) is left ϕ-amenable, since L1(G) has
a bounded approximate identity. From [2, Proposition 2.3] it follows that each abstract Segal algebra with
respect to L1(G) is left ϕ-amenable. Then by Lemma 2.1, each abstract Segal algebra with respect to L1(G) is
left ϕ-biflat.

(ii)⇒ (iii) It is clear.
(iii) ⇒ (iv) Suppose that an abstract Segal algebra B with respect to L1(G) is left ϕ|B-biflat. Since L1(G)

has a bounded approximate identity, L1(G) is ϕ-inner amenable. By Proposition 2.8, B is left ϕ|B-amenable.
It then follows from [2, Corollary 3.4] that G is amenable.

(iv) ⇒ (i) Since G is amenable, L1(G) is left ϕ-amenable by [2, Corollary 3.4]. Now L1(G) is left ϕ-biflat
by Lemma 2.1.
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Remark 2.10. Let G be a locally compact group and L∞(G) be the usual Lebesgue space as defined in [6] equipped
with the essential supremum norm ∥ · ∥∞ and the convolution product. Since G is compact so L∞(G) ⊆ L1(G)
and then L1(G) has a bounded approximate identity (ei) such that it is an approximate identity for L∞(G). Also
as L1(G) ∗ L∞(G) ∗ L1(G) ⊆ L∞(G) with max{∥ f ∗ 1∥∞, ∥1 ∗ f ∥∞} ≤ ∥ f ∥1∥1∥∞ for f ∈ L1(G) and 1 ∈ L∞(G), we
conclude that the convolution Banach algebra L∞(G) is an abstract Segal algebra with respect to L1(G). Moreover,
∆(L∞(G)) = {ϕν : ν ∈ Ĝ}, where

ϕν(h) =
∫

G
ν(x)h(x)dx (h ∈ L∞(G)),

and so by Corollary 2.9 L∞(G) is left ϕν-biflat and thus by Theorem 2.5 it is left ϕν-biflat for all ϕν ∈ ∆(L∞(G)).

Corollary 2.11. Let A be a Banach algebra and let ϕ ∈ ∆(A). Suppose that B is an abstract Segal algebra with respect
to A which is ϕ|B-inner amenable. Then B is left ϕ|B-biflat if and only if A is left ϕ-amenable.

Proof. If B is left ϕ|B-biflat, then B is left ϕ|B-amenable, by Lemma 2.7. Thus A is left ϕ-amenable, by [2,
Proposition 2.3].

Conversely, suppose that A be left ϕ-amenable. Then B is left ϕ-amenable, by [2, Proposition 2.3]. Now
Lemma 2.1 gives us the result.

3. Applications to some specified Banach algebras

Let (X, d) be a compact metric space and α > 0. Set

Lipα(X) = { f : X→ C : pα( f ) < ∞},

where

pα( f ) = sup{
| f (x) − f (y)|

d(x, y)α
: x, y ∈ X, x , y}

and also

ℓipα(X) = { f ∈ Lipα(X) :
| f (x) − f (y)|

d(x, y)α
→ 0 as d(x, y)→ 0}.

Define
|| f ||α = || f ||∞ + pα( f ),

where
∥ f ∥∞ = sup{| f (x)| : x ∈ X}.

With the pointwise multiplication and the norm || · ||α, Lipα(X) and ℓipα(X) become Banach algebras, called
Lipschitz algebra of order α and little Lipschitz algebra of order α, respectively. It is well-known [14,
Lemma 3.2] that each nonzero multiplicative linear functional on Lipα(X) or ℓipα(X) has a form ϕx, where
ϕx( f ) = f (x) for every x ∈ X. It is worthwile to mention that if X is not compact, then Lipα(X) is always a
Banach algebra, assuming that Lipα(X) contains all bounded functions f (i.e. ∥ f ∥∞ < ∞) such that pα( f ) < ∞.
In this case and if Lipα(X) separates the points of X, the set {ϕx : x ∈ X} is dense in Lipα(X), in the Gelfand
topology. This result is actually a consequence of the general theory of function algebras and holds for
any algebra of functions on a set that is self-adjoint, inverse-closed and separates the points of X. For
further information about Lipschitz algebras see [3], [14] and [15]. Hu, Monfared and Traynor in [7] studied
character amenability of Lipschitz algebras. Recently C-character amenability of Lipschitz algebras have
been investigated in [4].

Theorem 3.1. Let X be a compact metric space and let A be either Lipα(X) or ℓipα(X) and x ∈ X. Then the following
statements are equivalent:

(i) A is left C-ϕx-biflat;
(ii) X is finite.
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Proof. (i)⇒ (ii) Suppose that A is left C-ϕx-biflat. Since A is unital so by Lemma 2.7, left C-ϕx-biflatness of
A implies that C ≥ 1 and A is left C-ϕx-amenable. It follows from [4, Proposition 2.1] that ||ϕx − ϕy|| ≥ C−1

for each distinct elements x, y ∈ X. On the other hand

||ϕx − ϕy|| = sup
|| f ||α≤1

|ϕx( f ) − ϕy( f )| = sup
|| f ||α≤1

| f (x) − f (y)| ≤ d(x, y)α.

Hence d(x, y)α ≥ C−1, whence X is uniformly discrete. So X is finite.
(ii)⇒ (i) It is clear.

In the sequel we study left ϕ-biflatness of lower triangular Banach algebras.
Suppose that I is a totally ordered set which has a smallest element. LO(I,A) is denoted for the set of all
lower triangular matrices which the entries come from A. With usual matrix operations and also with the
finite ℓ1-norm, one can see that LO(I,A) is a Banach algebra. Let i0 be the smallest element of I and also
ϕ ∈ ∆(A). Define ψi0 : LO(I,A) → C by ψi0 ([ai j]) = ϕ(ai0i0 ), for each [ai j] ∈ LO(I,A). We can see that ψi0 is a
non-zero character on LO(I,A).

We recall that a Banach algebra A with ϕ ∈ ∆(A) is approximately left ϕ-amenable if there exists a (not
necessarily bounded) net (mα) in A such that amα − ϕ(a)mα → 0 and ϕ(mα) = 1 for all a ∈ A, [1].

Theorem 3.2. Let A be a Banach algebra and let ϕ ∈ ∆(A). Suppose that A has an element a0 such that aa0 = a0a
and ϕ(a0) = 1. Let I be a totally ordered set with smallest element. Then LO(I,A) is left ψi0 -biflat if and only if |I| = 1
and A is left ϕ-biflat.

Proof. Suppose that LO(I,A) is left ψi0 -biflat. We denote F(I) for the collection of all finite subsets of I. It is
known that by inclusion F(I) is an ordered set. For each γ ∈ F(I), put eγ = [ai j]i, j∈I, with ai j = a0 whenever
i = j ∈ γ otherwise ai j = 0. It is easy to see that aeγ − eγa → 0 and ψi0 (eγ) = 1, for each a ∈ LO(I,A). By
similar arguments as in Lemma 2.7 it is easy to see that left ψi0 -biflatness of LO(I,A) gives that LO(I,A)
is approximately left ψi0 -amenable. So there exists a net (aα) in LO(I,A) such that aaα − ψi0 (a)aα → 0 and
ψi0 (aα) = 1, for all a ∈ LO(I,A). Set

L = {[ai j] ∈ LO(I,A) : ai j = 0, whenever j , i0}.

It is easy to see that L is a closed ideal of LO(I,A) with ψi0 |L , 0. Suppose that i1 is an element of L such that
ψi0 (i1) = 1. Replacing the net (aα) with (aαi1), we can assume that aα ∈ L such that aaα − ψi0 (a)aα → 0 and
ψi0 (aα) = 1, for all a ∈ L. We claim that |I| = 1. Suppose conversely that |I| > 1. Set

aα =


aαi0i0

0 · · · 0 · · ·

aαkk′ 0 · · · 0 · · ·

: : : : :
aαss′ 0 · · · 0 · · ·

: : : : :

 , l =


0 0 · · · 0 · · ·

a0 0 · · · 0 · · ·

: : : : :
0 0 · · · 0 · · ·

: : : : :

 ,
where aαi0i0

is an element of A such that ϕ(aαi0i0
) = 1. Thus laα − ψi0 (l)aα → 0, follows that a0aαi0i0

→ 0. Take
ϕ on this equation gives that ϕ(a0aαi0i0

) = ϕ(a0)ϕ(aαi0i0
) = ϕ(aαi0i0

) → 0. But ϕ(aαi0i0
) = ψi0 (aα) = 1, which is a

contradiction. So |I| = 1 and A is left ϕ-biflat.
The converse is clear.

At the end we illustrate an example of a Banach algebra which is neither leftϕ-biflat nor leftϕ-amenable.

Example 3.3. Let A = C1[0, 1], the space of all complex-valued differentiable maps on [0, 1] with continuous
derivative. With the pointwise multiplication and || f ||C1[0,1] = || f ||∞ + || f ′||∞, A becomes a Banach algebra. We know
from [9, Example 2.2.9] that the character space of A is

∆(A) = {ϕt : ϕt( f ) = f (t) for each t ∈ [0, 1]}.
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Clearly A is commutative, so A is ϕt-inner amenable. The map D : A→ C given by D( f ) = f ′(t), is a non-zero point
derivation at ϕt for arbitrary t ∈ [0, 1]. Thus by [10, Remark 2.4] A is not left ϕt-amenable for each t ∈ [0, 1]. Next,
we claim that A is not left ϕt-biflat for each t ∈ [0, 1]. For if A is left ϕt-biflat for some t ∈ [0, 1], then it must be left
ϕt-amenable by Lemma 2.7, which is not the case.

Acknowledgment: The authors wish to thank the anonymous referee for his/her careful reading of the
manuscript and his/her useful suggestions and comments.
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