On ϕ-biflatness-like properties of certain Banach algebras with applications

Solaleh Salimi ${ }^{\text {a }}$, Amin Mahmoodi ${ }^{\text {a }}$, Amir Sahami ${ }^{\text {b,* }}$, Mehdi Rostami ${ }^{\text {c }}$
${ }^{a}$ Department of Mathematics, Central Tehran Branch, Islamic Azad University, Tehran, Iran. ${ }^{b}$ Department of Mathematics, Faculty of Basic Science, Ilam University, P.O. Box 69315-516 Ilam, Iran.
${ }^{c}$ Department of Mathematics and Computer Science, Amirkabir University of Technology (Tehran Polytechnic), Iran.

Abstract

In this paper left ϕ-biflatness of abstract Segal algebras is investigated. For a locally compact group G, we show that any abstract Segal algebra with respect to $L^{1}(G)$ is left ϕ-biflat if and only if the underlying group G is amenable. We then prove that the Lipschitz algebras $\operatorname{Lip}_{\alpha}(X)$ and $\operatorname{lip}_{\alpha}(X)$ are left C - ϕ-biflat if and only if X is finite. Finally, we also study left ϕ-biflatness of lower triangular matrix algebras.

1. Introduction and preliminaries

The homological concept of biflatness for Banach algebras, introduced by Helemskii [5], has proved to be of great importance in Banach algebra theory. Left ϕ-biflatness which is a modification of biflatness was introduced in [13]. We recall the definition in the sequel. In the current paper we continue the investigation of this notion.

Given a Banach algebra A, we let $\pi_{A}: A \otimes_{p} A \rightarrow A$ denote the multiplication operator, i.e., $\pi_{A}(a \otimes b)=a b$ for all $a, b \in A$. It is known that the projective tensor product $A \otimes_{p} A$ becomes a Banach A-bimodule in a canonical way, turning π_{A} into a A-bimodule morphism. The character space of A is denoted by $\Delta(A)$, that is, the set of all non-zero multiplicative linear functionals on A.

Let A be a Banach algebra and let $\phi \in \Delta(A)$. We recall that A is left ϕ-amenable if there exists an element $m \in A^{* *}$ such that $a m=\phi(a) m$ and $\tilde{\phi}(m)=1$ for all $a \in A$, where $\tilde{\phi}$ is the unique extension of ϕ to $A^{* *}$ given by $\tilde{\phi}(F)=F(\phi)$ for all $F \in A^{* *}$. This concept of amenability as a generalization of left amenability of Lau algebras has been recently introduced and investigated by Kaniuth, Lau and Pym [10] under the name of ϕ-amenability; see also Monfared [11].

More recently, the authors in [13] introduced and studied the homological concept of left ϕ-biflatness of Banach algebras. Precisely, A is called left ϕ-biflat if there exists a bounded linear map $\rho: A \rightarrow\left(A \otimes_{p} A\right)^{* *}$ such that $\rho(a b)=\phi(b) \rho(a)=a \cdot \rho(b)$ and $\tilde{\phi} \circ \pi_{A}^{* *} \circ \rho(a)=\phi(a)$ for each $a, b \in A$. Also A is left $C-\phi$-biflat if there exists $C>0$ such that $\|\rho\| \leq C$. The reader may also see [12] for definition of φ-biflat Banach algebras.

The content of the paper is as follows. In Section 2, we investigate relations between left ϕ-biflatness and left ϕ-amenability of (abstract) Segal algebras. For a locally compact group G, we prove that an abstract

[^0]Segal algebra with respect to $L^{1}(G)$ is left ϕ-biflat if and only if G is an amenable group. In Section 3, we study left ϕ-biflatness of some (concrete) Banach algebras including Lipschitz algebras $\operatorname{Lip}_{\alpha}(X)$ and $\ell_{i p_{\alpha}}(X)$, lower triangular matrices $L O(I, A)$ and also $C^{1}[0,1]$.

2. Left ϕ-biflatness of abstract Segal algebras

Let A be a Banach algebra with the norm $\|\cdot\|_{A}$. We recall that a Banach algebra B with the norm $\|\cdot\|_{B}$ is an abstract Segal algebra with respect to A if
(i) B is a dense left ideal in A,
(ii) there exists $M>0$ such that $\|b\|_{A} \leq M\|b\|_{B}$ for every $b \in B$,
(iii) there exists $C>0$ such that $\|a b\|_{B} \leq C\|a\|_{A}\|b\|_{B}$ for every $a \in A$ and $b \in B$.

It is known that $\Delta(B)=\left\{\left.\phi\right|_{B}: \phi \in \Delta(A)\right\}$, [2, Lemma 2.2].
Two following lemmas will be needed.
Lemma 2.1. ([16, Lemma 2.2]) Let A be a Banach algebra and let $\phi \in \Delta(A)$. If A is left ϕ-amenable, then A is left ϕ-biflat.

In the following example we show that the converse of Lemma 2.1 is not true necessarily.
Example 2.2. Suppose that S is a left zero semigroup with $|S| \geq 2$, that is, a semigroup with action st $=s$ for every $s, t \in S$. This semigroup action induces a product on the related semigroup algebra $\ell^{1}(S)$. Indeed, we have $f g=\phi_{S}(g) f$, where ϕ_{S} is the augmentation character on $\ell^{1}(S)$ given by $\phi_{S}\left(\sum_{s \in S} \alpha_{s} \delta_{s}\right)=\sum_{s \in S} \alpha_{s}$, for all $f, g \in \ell^{1}(S)$.
First we show that $\ell^{1}(S)$ is left ϕ_{S}-biflat. To see this, suppose that f_{0} is an element in $\ell^{1}(S)$ such that $\phi_{S}\left(f_{0}\right)=1$. Define $\rho: \ell^{1}(S) \rightarrow\left(\ell^{1}(S) \otimes_{p} \ell^{1}(S)\right)^{* *}$ by $\rho(f)=f \otimes f_{0}$ for all $f \in \ell^{1}(S)$. One can see that

$$
f \cdot \rho(g)=\rho(f g), \quad \rho(f g)=\phi_{S}(g) \rho(f)
$$

and

$$
\tilde{\phi}_{S} \circ \pi_{A}^{* *} \circ \rho(f)=\phi_{S}\left(f_{0} f\right)=\phi_{S}(f)
$$

for each $f, g \in \ell^{1}(S)$.
Now, we show that $\ell^{1}(S)$ is not left ϕ_{S}-amenable, whenever $|S| \geq 2$. We assume in contradiction and suppose that $\ell^{1}(S)$ is left ϕ_{S}-amenable. Then there exists a bounded net $\left(f_{\alpha}\right)$ in $\ell^{1}(S)$ such that

$$
\phi_{S}\left(f_{\alpha}\right)=1, \quad \phi_{S}\left(f_{\alpha}\right) f-\phi_{S}(f) f_{\alpha}=f f_{\alpha}-\phi_{S}(f) f_{\alpha} \rightarrow 0 \quad\left(f \in \ell^{1}(S)\right)
$$

It gives that $f-\phi_{s}(f) f_{\alpha} \rightarrow 0$ for each $f \in \ell^{1}(S)$. Since S has at least two distinct elements s_{1} and s_{2}, consider $\delta_{s_{1}}$ and $\delta_{s_{2}}$ and replace them in $f-\phi_{s}(f) f_{\alpha} \rightarrow 0$. It follows that $\delta_{s_{1}}=\delta_{s_{2}}$, so $s_{1}=s_{2}$ which is impossible.

Lemma 2.3. ([13, Lemma 2.1]) Suppose that A is a left ϕ-biflat Banach algebra with $\overline{A \operatorname{ker} \phi}{ }^{\|\cdot\|}=\operatorname{ker} \phi$. Then A is left ϕ-amenable.
In the following example we show that the condition $\overline{A \operatorname{ker} \phi}^{\|\cdot\|}=\operatorname{ker} \phi$ is necessary in the above lemma.
Example 2.4. Let $A=\left\{\left[\begin{array}{cc}\alpha & -\beta \\ \beta & \alpha\end{array}\right]: \alpha, \beta \in \mathbb{C}\right\}$ be a two-dimensional subspace of $\mathbb{M}_{2}(\mathbb{C})$ with the multiplication

$$
\left[\begin{array}{cc}
\alpha & -\beta \\
\beta & \alpha
\end{array}\right]\left[\begin{array}{cc}
\gamma & -\theta \\
\theta & \gamma
\end{array}\right]=\left[\begin{array}{cc}
\alpha \theta & -\beta \theta \\
\beta \theta & \alpha \theta
\end{array}\right]
$$

and with the ℓ^{1}-norm. Consider a character $\phi: A \longrightarrow \mathbb{C}$ by

$$
\phi\left(\left[\begin{array}{cc}
\alpha & -\beta \\
\beta & \alpha
\end{array}\right]\right)=\beta
$$

Then $\operatorname{ker} \phi=\mathbb{C}$ and so $\overline{A \operatorname{ker} \phi} \neq \operatorname{ker} \phi$. It is easy to verify that the map $\rho: A \longrightarrow\left(A \otimes_{p} A\right)^{* *}$ define by

$$
\rho\left(\left[\begin{array}{cc}
\alpha & -\beta \\
\beta & \alpha
\end{array}\right]\right)=\left[\begin{array}{cc}
\alpha & -\beta \\
\beta & \alpha
\end{array}\right] \otimes\left[\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right]
$$

implies that A is left ϕ-biflat. But A is not left ϕ-amenable, since otherwise there exists a bounded net $m_{j}=$ $\left[\begin{array}{cc}\alpha_{j} & -\beta_{j} \\ \beta_{j} & \alpha_{j}\end{array}\right] \in A$ such that $a m_{j}-\phi(a) m_{j} \rightarrow 0$ for all $a \in A$ and $\phi\left(m_{j}\right)=1$ for all j. The second equation implies that $\beta_{j}=1$ for all j and the first relation for $a=I$, the identity matrix, implies that $\operatorname{Im}_{j}-\phi(I) m_{j}=I m_{j}=I \rightarrow 0$ that is a contradiction.

Theorem 2.5. Let A be a Banach algebra and let $\phi \in \Delta(A)$. Suppose that B is an abstract Segal algebra with respect to A which posses an approximate identity. Then the following statements are equivalent:
(i) A is left ϕ-biflat;
(ii) B is left $\left.\phi\right|_{B}$-biflat;
(iii) B is left $\left.\phi\right|_{B}$-amenable;
(iv) A is left ϕ-amenable.

Proof. (i) \Rightarrow (ii) Suppose that A is left ϕ-biflat. Then there exists a bounded liner map $\Gamma: A \rightarrow\left(A \otimes_{p} A\right)^{* *}$ such that $\Gamma(a b)=a \cdot \Gamma(b)=\phi(b) \Gamma(a)$ and $\tilde{\phi} \circ \pi_{A}^{* *} \circ \Gamma(a)=\phi(a)$, for all $a, b \in A$. Since B is dense in A, we can choose i_{0} in B such that $\phi\left(i_{0}\right)=1$. Define $R_{i_{0}}: A \rightarrow B$ by $R_{i_{0}}(a)=a i_{0}$, for each $a \in A$. Clearly $R_{i_{0}}$ is a bounded linear map. Set

$$
\rho:=\left.\left(R_{i_{0}} \otimes R_{i_{0}}\right)^{* *} \circ \Gamma\right|_{B}: B \rightarrow\left(B \otimes_{p} B\right)^{* *} .
$$

One can see that ρ is a bounded linear map such that

$$
\rho\left(b_{1} b_{2}\right)=b_{1} \rho\left(b_{2}\right)=\phi\left(b_{2}\right) \rho\left(b_{1}\right), \quad\left(b_{1}, b_{2} \in B\right)
$$

and

$$
\tilde{\left.\phi\right|_{B} \circ \pi_{B}^{* *} \circ \rho\left(b_{1}\right)=\left.\tilde{\left.\phi\right|_{B}} \circ \pi_{B}^{* *} \circ\left(R_{i_{0}} \otimes R_{i_{0}}\right)^{* *} \circ \Gamma\right|_{B}\left(b_{1}\right)=\tilde{\phi} \circ \pi_{A}^{* *} \circ \Gamma\left(b_{1}\right)=\phi\left(b_{1}\right)}
$$

It follows that B is left $\left.\phi\right|_{B}$-biflat.
(ii) \Rightarrow (iii) It is immediate by Lemma 2.3.
(iii) \Rightarrow (iv) See [2, Proposition 2.3].
$(i v) \Rightarrow(i)$ This is Lemma 2.1.
Inspired by the argument in [13, Lemma 2.1] we give the following result.
Theorem 2.6. Let A be a Banach algebra with a left approximate identity and let $\phi \in \Delta(A)$. Suppose that B is an abstract Segal algebra with respect to A. Then B is left $\left.\phi\right|_{B}$-biflat if and only if B is left $\left.\phi\right|_{B}$-amenable.

Proof. Suppose that B is left ϕ-biflat. Then there exists a bounded linear map $\rho: B \rightarrow\left(B \otimes_{p} B\right)^{* *}$ such that $\tilde{\phi} \circ \pi_{B}^{* *} \circ \rho(b)=\phi(b)$ for all $b \in B$. Let i_{0} and $R_{i_{0}}$ be as in the proof of Theorem 2.5. We denote \imath for the inclusion map from B into A. Set

$$
\lambda:=(\imath \otimes \imath)^{* *} \circ \rho \circ R_{i_{0}}: A \rightarrow\left(A \otimes_{p} A\right)^{* *}
$$

It is easy to see that λ is a bounded linear map such that

$$
\tilde{\phi} \circ \pi_{A}^{* *} \circ \lambda(a)=\tilde{\phi} \circ \pi_{A}^{* *} \circ(\imath \otimes \imath)^{* *} \circ \rho \circ R_{i_{0}}(a)=\tilde{\phi} \circ \pi_{B}^{* *} \circ \rho \circ R_{i_{0}}(a)=\phi(a),
$$

and

$$
\begin{aligned}
b_{1} \cdot \lambda\left(b_{2}\right) & =b_{1} \cdot(\imath \otimes \imath)^{* *} \circ \rho \circ R_{i_{0}}\left(b_{2}\right) \\
& =(\imath \otimes \imath)^{* *} \circ \rho \circ R_{i_{0}}\left(b_{1} b_{2}\right) \\
& =\phi\left(b_{2}\right)(\imath \otimes \imath)^{* *} \circ \rho \circ R_{i_{0}}\left(b_{1}\right) \\
& =\phi\left(b_{2}\right) \lambda\left(b_{1}\right), \quad\left(b_{1}, b_{2} \in B\right) .
\end{aligned}
$$

Suppose that $K=\operatorname{ker} \phi(\operatorname{in} A)$. We denote $\operatorname{id}_{\mathrm{A}}$ for the identity map and $q: A \rightarrow \frac{A}{K}$ for the quotient map. Let ζ be the bounded linear map specified by

$$
\zeta:=\left(\operatorname{id}_{A} \otimes q\right)^{* *} \circ \lambda: A \rightarrow\left(A \otimes_{p} \frac{A}{K}\right)^{* *}
$$

Since A has a left approximate identity, $\overline{A K}^{\|\cdot\|}=K$. Thus for each $k \in K$ we have

$$
\zeta(k)=\left(\mathrm{id}_{A} \otimes q\right)^{* *} \circ \lambda(k)=\left(\operatorname{id}_{A} \otimes q\right)^{* *} \circ \lambda\left(\lim _{n} a_{n} k_{n}\right)=\lim _{n} \phi\left(k_{n}\right)\left(\operatorname{id}_{A} \otimes q\right)^{* *} \circ \lambda\left(a_{n}\right)=0
$$

for some sequences $\left(a_{n}\right)$ in A and $\left(k_{n}\right)$ in K. So ζ induces a map on $\frac{A}{K}$ which still is denoted by ζ. Since $\frac{A}{K} \cong \mathbb{C}$, we have $A \otimes_{p} \frac{A}{K} \cong A$. So we can assume that $m=\zeta\left(i_{0}+K\right) \in A^{* *}$. Consider

$$
\begin{equation*}
b m=b \zeta\left(i_{0}+K\right)=\zeta\left(b i_{0}+K\right)=\zeta\left(\phi(b) i_{0}+K\right)=\phi(b) m, \quad(b \in B) \tag{1}
\end{equation*}
$$

also

$$
(\phi \otimes \bar{\phi})^{* *} \circ \lambda(b)=\tilde{\phi} \circ \pi_{B}^{* *} \circ \rho(b)=\phi(b), \quad(b \in B)
$$

and $\tilde{\phi} \circ\left(\mathrm{id}_{A} \otimes \bar{\phi}\right)^{* *}=(\phi \otimes \bar{\phi})^{* *}$, where $\bar{\phi}$ is a character on $\frac{A}{K}$ given by $\bar{\phi}(a+K)=\phi(a)$ for each $a \in A$. These facts follow that

$$
\begin{align*}
\tilde{\phi}(m)=\tilde{\phi} \circ \zeta\left(i_{0}+K\right) & =\tilde{\phi} \circ\left(\mathrm{id}_{A} \otimes q\right)^{* *} \circ \lambda\left(i_{0}\right) \\
& =(\phi \otimes \bar{\phi})^{* *} \circ \lambda\left(i_{0}\right) \tag{2}\\
& =\tilde{\phi} \circ \pi_{B}^{* *} \circ \rho\left(i_{0}\right) \\
& =\phi\left(i_{0}\right)=1 .
\end{align*}
$$

Since B is dense in A, by (1) $a m=\phi(a) m$ for all $a \in A$. It follows that A is left ϕ-amenable. Replacing m with $m i_{0}$, we can assume that $m \in B^{* *}$. So B is left $\left.\phi\right|_{B}$-amenable. The converse is valid by Lemma 2.1.

A Banach algebra A with $\phi \in \Delta(A)$ is called ϕ-inner amenable if there exists a bounded net $\left(a_{\alpha}\right)$ in A such that $a a_{\alpha}-a_{\alpha} a \rightarrow 0$ and $\phi\left(a_{\alpha}\right)=1$ for all $a \in A$, [8].

Lemma 2.7. Let A be a Banach algebra and let $\phi \in \Delta(A)$. Suppose that A is left ϕ-biflat and ϕ-inner amenable. Then A is left ϕ-amenable.

Proof. Suppose that A is left ϕ-biflat. Then there exists a bounded linear map $\rho: A \rightarrow\left(A \otimes_{p} A\right)^{* *}$ such that $\rho(a b)=a \cdot \rho(b)=\phi(b) \rho(a)$ and $\tilde{\phi} \circ \pi_{A}^{* *} \circ \rho(a)=\phi(a)$, for all $a, b \in A$. Since A is ϕ-inner amenable, there exists a bounded linear net $\left(a_{\alpha}\right)$ in A such that $a a_{\alpha}-a_{\alpha} a \rightarrow 0$ and $\phi\left(a_{\alpha}\right)=1$, for all $a \in A$. Define $m_{\alpha}=\rho\left(a_{\alpha}\right)$. It is easy to see that $\left(m_{\alpha}\right)$ is a bounded net in $\left(A \otimes_{p} A\right)^{* *}$ such that

$$
a \cdot m_{\alpha}-\phi(a) m_{\alpha} \rightarrow 0, \quad \tilde{\phi} \circ \pi_{A}^{* *}\left(m_{\alpha}\right) \rightarrow 1, \quad(a \in A)
$$

Using Banach-Alaoglu theorem $\left(m_{\alpha}\right)$ has a w^{*}-cluster point in $\left(A \otimes_{p} A\right)^{* *}$, say M. One can show that

$$
a \cdot M=\phi(a) M, \quad \tilde{\phi} \circ \pi_{A}^{* *}(M)=1, \quad(a \in A)
$$

So

$$
a \pi_{A}^{* *}(M)=\phi(a) \pi_{A}^{* *}(M), \quad \tilde{\phi} \circ \pi_{A}^{* *}(M)=1, \quad(a \in A)
$$

It follows that A is left ϕ-amenable.

Proposition 2.8. Let A be an ϕ-inner amenable Banach algebra and $\phi \in \Delta(A)$. Suppose that B is an abstract Segal algebra with respect to A. Then B is left $\left.\phi\right|_{B}$-biflat if and only if B is left $\left.\phi\right|_{B}$-amenable.

Proof. Suppose that B is left ϕ-biflat. Let $R_{i_{0}}, \imath, q, \mathrm{id}_{A}, \rho, \lambda$, and ζ are the same as in the proof of Theorem 2.5. Since A is ϕ-inner amenable, there exists a bounded net $\left(a_{\alpha}\right)$ in A such that $a a_{\alpha}-a_{\alpha} a \rightarrow 0$ and $\phi\left(a_{\alpha}\right)=1$, for all $a \in A$. Define $m_{\alpha}=\zeta\left(a_{\alpha}\right) \in\left(A \otimes \frac{A}{K}\right)^{* *} \cong A^{* *}$. Clearly $\left(m_{\alpha}\right)$ is a bounded net in $A^{* *}$. Consider

$$
\begin{aligned}
& b m_{\alpha}-\phi(b) m_{\alpha} \\
& =b\left(\mathrm{id}_{A} \otimes q\right)^{* *} \circ(\imath \otimes \imath)^{* *} \circ \rho \circ R_{i_{0}}\left(a_{\alpha}\right)-\phi(b)\left(\operatorname{id}_{A} \otimes q\right)^{* *} \circ(\imath \otimes \imath)^{* *} \circ \rho \circ R_{i_{0}}\left(a_{\alpha}\right) \\
& =\left(\mathrm{id}_{A} \otimes q\right)^{* *} \circ(\imath \otimes \imath)^{* *} \circ \rho \circ R_{i_{0}}\left(b a_{\alpha}\right)-\left(\operatorname{id}_{A} \otimes q\right)^{* *} \circ(\imath \otimes \imath)^{* *} \circ \rho \circ R_{i_{0}}\left(a_{\alpha} b\right) \\
& =\left(\mathrm{id}_{A} \otimes q\right)^{* *} \circ(\imath \otimes \imath)^{* *} \circ \rho \circ R_{i_{0}}\left(b a_{\alpha}-a_{\alpha} b\right) \rightarrow 0, \quad(b \in B) .
\end{aligned}
$$

Also

$$
\tilde{\phi}\left(m_{\alpha}\right)=\tilde{\phi} \circ\left(\operatorname{id}_{A} \otimes q\right)^{* *} \circ(\imath \otimes \imath)^{* *} \circ \rho \circ R_{i_{0}}\left(a_{\alpha}\right)=\tilde{\phi} \circ \pi_{B} \circ \rho \circ R_{i_{0}}\left(a_{\alpha}\right)=\phi\left(a_{\alpha}\right)=1
$$

Thus we found a bounded net $\left(m_{\alpha}\right)$ in $A^{* *}$ such that $b m_{\alpha}-\phi(b) m_{\alpha} \rightarrow 0$ and $\tilde{\phi}\left(m_{\alpha}\right)=1$, for all $b \in B$. Since (m_{α}) is a bounded net in $A^{* *}$, Banach-Alaoglu theorem yields $\left(m_{\alpha}\right)$ has a w^{*}-limit point, say M. Thus $b M=\phi(b) M$ and $\tilde{\phi}(M)=1$ for all $b \in B$. Since B is dense in $A, a M=\phi(a) M$ and $\tilde{\phi}(M)=1$, for all $a \in A$. It follows that A is left ϕ-amenable. So by [2, Proposition 2.3], B is left $\left.\phi\right|_{B}$-amenable. The converse is true by Lemma 2.1.

Let $L^{1}(G)$ be the group algebra of a locally compact group G with the convolution product defined by

$$
(f * g)(x)=\int_{G} f(y) g\left(y^{-1} x\right) d y \quad(x \in G)
$$

for $f, g \in L^{1}(G)$ and with the norm $\|\cdot\|_{1}$. Let \widehat{G} denote the dual group of G consisting of all continuous homomorphisms v from G into the unit circle \mathbb{T}. Define the character $\phi_{v} \in \Delta\left(L^{1}(G)\right)$ by

$$
\phi_{v}(h)=\int_{G} \overline{v(x)} h(x) d x \quad\left(h \in L^{1}(G)\right)
$$

It is known that

$$
\Delta\left(L^{1}(G)\right)=\left\{\phi_{v}: v \in \widehat{G}\right\}
$$

see, for example [6, Theorem 23.7].
Corollary 2.9. Let G be a locally compact group and let $\phi \in \Delta\left(L^{1}(G)\right)$. Then the following statements are equivalent:
(i) $L^{1}(G)$ is left ϕ-biflat.
(ii) Each abstract Segal algebra with respect to $L^{1}(G)$ is left ϕ-biflat.
(iii) There exists a left ϕ-biflat abstract Segal algebra with respect to $L^{1}(G)$.
(iv) G is amenable.

Proof. (i) \Rightarrow (ii) Suppose that $L^{1}(G)$ is left ϕ-biflat. By Lemma $2.3 L^{1}(G)$ is left ϕ-amenable, since $L^{1}(G)$ has a bounded approximate identity. From [2, Proposition 2.3] it follows that each abstract Segal algebra with respect to $L^{1}(G)$ is left ϕ-amenable. Then by Lemma 2.1, each abstract Segal algebra with respect to $L^{1}(G)$ is left ϕ-biflat.
(ii) \Rightarrow (iii) It is clear.
(iii) \Rightarrow (iv) Suppose that an abstract Segal algebra B with respect to $L^{1}(G)$ is left $\left.\phi\right|_{B}$-biflat. Since $L^{1}(G)$ has a bounded approximate identity, $L^{1}(G)$ is ϕ-inner amenable. By Proposition $2.8, B$ is left $\left.\phi\right|_{B}$-amenable. It then follows from [2, Corollary 3.4] that G is amenable.
$(i v) \Rightarrow(i)$ Since G is amenable, $L^{1}(G)$ is left ϕ-amenable by [2, Corollary 3.4]. Now $L^{1}(G)$ is left ϕ-biflat by Lemma 2.1.

Remark 2.10. Let G be a locally compact group and $L^{\infty}(G)$ be the usual Lebesgue space as defined in [6] equipped with the essential supremum norm $\|\cdot\|_{\infty}$ and the convolution product. Since G is compact so $L^{\infty}(G) \subseteq L^{1}(G)$ and then $L^{1}(G)$ has a bounded approximate identity $\left(e_{i}\right)$ such that it is an approximate identity for $L^{\infty}(G)$. Also as $L^{1}(G) * L^{\infty}(G) * L^{1}(G) \subseteq L^{\infty}(G)$ with $\max \left\{\|f * g\|_{\infty},\|g * f\|_{\infty}\right\} \leq\|f\|_{1}\|g\|_{\infty}$ for $f \in L^{1}(G)$ and $g \in L^{\infty}(G)$, we conclude that the convolution Banach algebra $L^{\infty}(G)$ is an abstract Segal algebra with respect to $L^{1}(G)$. Moreover, $\Delta\left(L^{\infty}(G)\right)=\left\{\phi_{v}: v \in \widehat{G}\right\}$, where

$$
\phi_{v}(h)=\int_{G} \overline{v(x)} h(x) d x \quad\left(h \in L^{\infty}(G)\right)
$$

and so by Corollary $2.9 L^{\infty}(G)$ is left ϕ_{v}-biflat and thus by Theorem 2.5 it is left ϕ_{v}-biflat for all $\phi_{v} \in \Delta\left(L^{\infty}(G)\right)$.
Corollary 2.11. Let A be a Banach algebra and let $\phi \in \Delta(A)$. Suppose that B is an abstract Segal algebra with respect to A which is $\left.\phi\right|_{B}$-inner amenable. Then B is left $\left.\phi\right|_{B}$-biflat if and only if A is left ϕ-amenable.

Proof. If B is left $\left.\phi\right|_{B}$-biflat, then B is left $\left.\phi\right|_{B}$-amenable, by Lemma 2.7. Thus A is left ϕ-amenable, by [2, Proposition 2.3].

Conversely, suppose that A be left ϕ-amenable. Then B is left ϕ-amenable, by [2, Proposition 2.3]. Now Lemma 2.1 gives us the result.

3. Applications to some specified Banach algebras

Let (X, d) be a compact metric space and $\alpha>0$. Set

$$
\operatorname{Lip}_{\alpha}(X)=\left\{f: X \rightarrow \mathbb{C}: p_{\alpha}(f)<\infty\right\}
$$

where

$$
p_{\alpha}(f)=\sup \left\{\frac{|f(x)-f(y)|}{d(x, y)^{\alpha}}: x, y \in X, x \neq y\right\}
$$

and also

$$
\operatorname{lip}_{\alpha}(X)=\left\{f \in \operatorname{Lip}_{\alpha}(X): \frac{|f(x)-f(y)|}{d(x, y)^{\alpha}} \rightarrow 0 \quad \text { as } \quad d(x, y) \rightarrow 0\right\}
$$

Define

$$
\|f\|_{\alpha}=\|f\|_{\infty}+p_{\alpha}(f)
$$

where

$$
\|f\|_{\infty}=\sup \{|f(x)|: x \in X\}
$$

With the pointwise multiplication and the norm $\|\cdot\|_{\alpha}, \operatorname{Lip}_{\alpha}(X)$ and $\operatorname{lip}_{\alpha}(X)$ become Banach algebras, called Lipschitz algebra of order α and little Lipschitz algebra of order α, respectively. It is well-known [14, Lemma 3.2] that each nonzero multiplicative linear functional on $\operatorname{Lip}_{\alpha}(X)$ or $\operatorname{lip}_{\alpha}(X)$ has a form ϕ_{x}, where $\phi_{x}(f)=f(x)$ for every $x \in X$. It is worthwile to mention that if X is not compact, then $\operatorname{Lip}_{\alpha}(X)$ is always a Banach algebra, assuming that $\operatorname{Lip}_{\alpha}(X)$ contains all bounded functions $f\left(\right.$ i.e. $\left.\|f\|_{\infty}<\infty\right)$ such that $p_{\alpha}(f)<\infty$. In this case and if $\operatorname{Lip}_{\alpha}(X)$ separates the points of X, the set $\left\{\phi_{x}: x \in X\right\}$ is dense in $\operatorname{Lip}_{\alpha}(X)$, in the Gelfand topology. This result is actually a consequence of the general theory of function algebras and holds for any algebra of functions on a set that is self-adjoint, inverse-closed and separates the points of X. For further information about Lipschitz algebras see [3], [14] and [15]. Hu, Monfared and Traynor in [7] studied character amenability of Lipschitz algebras. Recently C-character amenability of Lipschitz algebras have been investigated in [4].

Theorem 3.1. Let X be a compact metric space and let A be either $\operatorname{Lip}_{\alpha}(X)$ or $\operatorname{lip}_{\alpha}(X)$ and $x \in X$. Then the following statements are equivalent:
(i) A is left $C-\phi_{x}$-biflat;
(ii) X is finite.

Proof. (i) \Rightarrow (ii) Suppose that A is left C - ϕ_{x}-biflat. Since A is unital so by Lemma 2.7, left C - ϕ_{x}-biflatness of A implies that $C \geq 1$ and A is left $C-\phi_{x}$-amenable. It follows from [4, Proposition 2.1] that $\left\|\phi_{x}-\phi_{y}\right\| \geq C^{-1}$ for each distinct elements $x, y \in X$. On the other hand

$$
\left\|\phi_{x}-\phi_{y}\right\|=\sup _{\|f\|_{\alpha} \leq 1}\left|\phi_{x}(f)-\phi_{y}(f)\right|=\sup _{\|f\|_{\alpha} \leq 1}|f(x)-f(y)| \leq d(x, y)^{\alpha} .
$$

Hence $d(x, y)^{\alpha} \geq C^{-1}$, whence X is uniformly discrete. So X is finite.
(ii) \Rightarrow (i) It is clear.

In the sequel we study left ϕ-biflatness of lower triangular Banach algebras.
Suppose that I is a totally ordered set which has a smallest element. $L O(I, A)$ is denoted for the set of all lower triangular matrices which the entries come from A. With usual matrix operations and also with the finite ℓ^{1}-norm, one can see that $L O(I, A)$ is a Banach algebra. Let i_{0} be the smallest element of I and also $\phi \in \Delta(A)$. Define $\psi_{i_{0}}: L O(I, A) \rightarrow \mathbb{C}$ by $\left.\psi_{i_{0}}\left[a_{i j}\right]\right)=\phi\left(a_{i_{0} i_{0}}\right)$, for each $\left[a_{i j}\right] \in L O(I, A)$. We can see that $\psi_{i_{0}}$ is a non-zero character on $L O(I, A)$.

We recall that a Banach algebra A with $\phi \in \Delta(A)$ is approximately left ϕ-amenable if there exists a (not necessarily bounded) net (m_{α}) in A such that $a m_{\alpha}-\phi(a) m_{\alpha} \rightarrow 0$ and $\phi\left(m_{\alpha}\right)=1$ for all $a \in A$, [1].

Theorem 3.2. Let A be a Banach algebra and let $\phi \in \Delta(A)$. Suppose that A has an element a_{0} such that a $a_{0}=a_{0} a$ and $\phi\left(a_{0}\right)=1$. Let I be a totally ordered set with smallest element. Then $L O(I, A)$ is left $\psi_{i_{0}}$-biflat if and only if $|I|=1$ and A is left ϕ-biflat.

Proof. Suppose that $L O(I, A)$ is left $\psi_{i_{0}}$-biflat. We denote $F(I)$ for the collection of all finite subsets of I. It is known that by inclusion $F(I)$ is an ordered set. For each $\gamma \in F(I)$, put $e_{\gamma}=\left[a_{i j}\right]_{i, j \in I}$, with $a_{i j}=a_{0}$ whenever $i=j \in \gamma$ otherwise $a_{i j}=0$. It is easy to see that $a e_{\gamma}-e_{\gamma} a \rightarrow 0$ and $\psi_{i_{0}}\left(e_{\gamma}\right)=1$, for each $a \in L O(I, A)$. By similar arguments as in Lemma 2.7 it is easy to see that left $\psi_{i_{0}}$-biflatness of $L O(I, A)$ gives that $L O(I, A)$ is approximately left $\psi_{i_{0}}$-amenable. So there exists a net $\left(a_{\alpha}\right)$ in $L O(I, A)$ such that $a a_{\alpha}-\psi_{i_{0}}(a) a_{\alpha} \rightarrow 0$ and $\psi_{i_{0}}\left(a_{\alpha}\right)=1$, for all $a \in L O(I, A)$. Set

$$
L=\left\{\left[a_{i j}\right] \in L O(I, A): a_{i j}=0, \text { whenever } \quad j \neq i_{0}\right\} .
$$

It is easy to see that L is a closed ideal of $L O(I, A)$ with $\left.\psi_{i_{0}}\right|_{L} \neq 0$. Suppose that i_{1} is an element of L such that $\psi_{i_{0}}\left(i_{1}\right)=1$. Replacing the net $\left(a_{\alpha}\right)$ with $\left(a_{\alpha} i_{1}\right)$, we can assume that $a_{\alpha} \in L$ such that $a a_{\alpha}-\psi_{i_{0}}(a) a_{\alpha} \rightarrow 0$ and $\psi_{i_{0}}\left(a_{\alpha}\right)=1$, for all $a \in L$. We claim that $|I|=1$. Suppose conversely that $|I|>1$. Set

$$
a_{\alpha}=\left[\begin{array}{ccccc}
a_{i 0_{0}}^{\alpha} & 0 & \cdots & 0 & \cdots \\
a_{k k^{\prime}}^{\alpha} & 0 & \cdots & 0 & \cdots \\
\vdots & : & : & : & : \\
a_{s s^{\prime}}^{\alpha} & 0 & \cdots & 0 & \cdots \\
: & : & : & : & :
\end{array}\right], \quad l=\left[\begin{array}{ccccc}
0 & 0 & \cdots & 0 & \cdots \\
a_{0} & 0 & \cdots & 0 & \cdots \\
: & : & : & : & : \\
0 & 0 & \cdots & 0 & \cdots \\
: & : & : & : & :
\end{array}\right],
$$

where $a_{i_{0} i_{0}}^{\alpha}$ is an element of A such that $\phi\left(a_{i_{0} i_{0}}^{\alpha}\right)=1$. Thus $l a_{\alpha}-\psi_{i_{0}}(l) a_{\alpha} \rightarrow 0$, follows that $a_{0} a_{i_{0} i_{0}}^{\alpha} \rightarrow 0$. Take ϕ on this equation gives that $\phi\left(a_{0} a_{i_{0} i_{0}}^{\alpha}\right)=\phi\left(a_{0}\right) \phi\left(a_{i_{0} i_{0}}^{\alpha}\right)=\phi\left(a_{i_{0} i_{0}}^{\alpha}\right) \rightarrow 0$. But $\phi\left(a_{i_{0} i_{0}}^{\alpha}\right)=\psi_{i_{0}}\left(a_{\alpha}\right)=1$, which is a contradiction. So $|I|=1$ and A is left ϕ-biflat.
The converse is clear.
At the end we illustrate an example of a Banach algebra which is neither left ϕ-biflat nor left ϕ-amenable.
Example 3.3. Let $A=C^{1}[0,1]$, the space of all complex-valued differentiable maps on $[0,1]$ with continuous derivative. With the pointwise multiplication and $\|f\|_{C^{1}[0,1]}=\|f\|_{\infty}+\left\|f^{\prime}\right\|_{\infty}$, A becomes a Banach algebra. We know from [9, Example 2.2.9] that the character space of A is

$$
\Delta(A)=\left\{\phi_{t}: \phi_{t}(f)=f(t) \text { for each } t \in[0,1]\right\}
$$

Clearly A is commutative, so A is ϕ_{t}-inner amenable. The map $D: A \rightarrow \mathbb{C}$ given by $D(f)=f^{\prime}(t)$, is a non-zero point derivation at ϕ_{t} for arbitrary $t \in[0,1]$. Thus by [10, Remark 2.4] A is not left ϕ_{t}-amenable for each $t \in[0,1]$. Next, we claim that A is not left ϕ_{t}-biflat for each $t \in[0,1]$. For if A is left ϕ_{t}-biflat for some $t \in[0,1]$, then it must be left ϕ_{t}-amenable by Lemma 2.7, which is not the case.

Acknowledgment: The authors wish to thank the anonymous referee for his/her careful reading of the manuscript and his/her useful suggestions and comments.

References

[1] H. P. Aghababa, L. Y. Shi and Y. J. Wu, Generalized notions of character amenability, Acta Math. Sin. (Engl. Ser.) 29 (7) (2013) 1329-1350.
[2] M. Alaghmandan, R. Nasr-Isfahani and M. Nemati, Character amenability and contractibility of abstract Segal algebras, Bull. Aust. Math. Soc. 82 (2) (2010) 274-281.
[3] W.G. Bade, P.C. Curtis Jr. and H.G. Dales, Amenability and weak amenability for Beurling and Lipschitz algebras, Proc. London Math. Soc. 55 (3) (1987) 359-377.
[4] M. Dashti, R. Nasr-Isfahani, and A. Soltani Renani, Character amenability of Lipschitz algebras, Canad. Math. Bull. 57 (1) (2014) 37-41.
[5] A. Ya. Helemskii, The homology of Banach and topological algebras, Kluwer Academic Publishers, Holland, 1989.
[6] E. Hewitt and K. Ross, Abstract Harmonic Analysis I, Die Grundlehren der Mathematischen Wissenschaften, 115, Springer-Verlag, Berlin, 1963.
[7] Z. Hu, M. S. Monfared and T. Traynor, On character amenable Banach algebras, Studia Math. 193 (1) (2009) 53-78.
[8] A. Jabbari, T. Mehdi Abad and M. Zaman Abadi, On ϕ-inner amenable Banach algebras, Colloq. Math. 122 (1) (2011) 1-10.
[9] E. Kaniuth, A course in commutative Banach algebras, Graduate Texts in Mathematics, 246, Springer, New York, 2009.
[10] E. Kaniuth, A. T. Lau and J. Pym, On ϕ-amenability of Banach algebras, Math. Proc. Cambridge Philos. Soc. 44 (1) (2008) 85-96.
[11] M. S. Monfared, Character amenability of Banach algebras, Math. Proc. Cambridge Philos. Soc. 144 (3) (2008) 697-706.
[12] A. Sahami, A. Pourabbas, On ϕ-biflat and ϕ-biprojective Banach algebras, Bull. Belg. Math. Soc. Simon Stevin 20 (5) (2013) 789-801.
[13] A. Sahami, M. Rostami and A. Pourabbas; On left ϕ-biflat Banach algebras, Comment. Math. Univ. Carolin. 61 (3) (2020) 337-344.
[14] D. R. Sherbert, Banach algebras of Lipschitz functions, Pacific J. Math. 13 (1963) 1387-1399.
[15] N. Weaver, Lipschitz Algebras, World Scientific Publishing Co., Inc., River Edge, NJ, 1999.
[16] S. Salimi, A. Mahmoodi, M. Rostami, and A. Sahami, Left ϕ-biflatness and ϕ-biprojectivity of certain Banach algebras, Preprint.

[^0]: 2020 Mathematics Subject Classification. Primary 46M10; Secondary 43A07, 43A20.
 Keywords. Left ϕ-biflat; Segal algebra; Lipschitz algebra; Locally compact group.
 Received: 02 June 2022; Accepted: 12 October 2022
 Communicated by Dijana Mosić

 * Corresponding author: Amir Sahami

 Email addresses: s.salimi28@yahoo.com (Solaleh Salimi), a_mahmoodi@iauctb.ac.ir (Amin Mahmoodi), a.sahami@ilam.ac.ir (Amir Sahami), mross@aut.ac.ir (Mehdi Rostami)

