Filomat 37:11 (2023), 3551–3558 https://doi.org/10.2298/FIL2311551S

Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

On ϕ -biflatness-like properties of certain Banach algebras with applications

Solaleh Salimi^a, Amin Mahmoodi^a, Amir Sahami^{b,*}, Mehdi Rostami^c

^aDepartment of Mathematics, Central Tehran Branch, Islamic Azad University, Tehran, Iran. ^bDepartment of Mathematics, Faculty of Basic Science, Ilam University, P.O. Box 69315-516 Ilam, Iran. ^cDepartment of Mathematics and Computer Science, Amirkabir University of Technology (Tehran Polytechnic), Iran.

Abstract. In this paper left ϕ -biflatness of abstract Segal algebras is investigated. For a locally compact group *G*, we show that any abstract Segal algebra with respect to $L^1(G)$ is left ϕ -biflat if and only if the underlying group *G* is amenable. We then prove that the Lipschitz algebras Lip_{*a*}(X) and lip_{*a*}(X) are left *C*- ϕ -biflat if and only if X is finite. Finally, we also study left ϕ -biflatness of lower triangular matrix algebras.

1. Introduction and preliminaries

The homological concept of biflatness for Banach algebras, introduced by Helemskii [5], has proved to be of great importance in Banach algebra theory. Left ϕ -biflatness which is a modification of biflatness was introduced in [13]. We recall the definition in the sequel. In the current paper we continue the investigation of this notion.

Given a Banach algebra A, we let $\pi_A : A \otimes_p A \to A$ denote the multiplication operator, i.e., $\pi_A(a \otimes b) = ab$ for all $a, b \in A$. It is known that the projective tensor product $A \otimes_p A$ becomes a Banach A-bimodule in a canonical way, turning π_A into a A-bimodule morphism. The character space of A is denoted by $\Delta(A)$, that is, the set of all non-zero multiplicative linear functionals on A.

Let *A* be a Banach algebra and let $\phi \in \Delta(A)$. We recall that *A* is *left* ϕ -*amenable* if there exists an element $m \in A^{**}$ such that $am = \phi(a)m$ and $\tilde{\phi}(m) = 1$ for all $a \in A$, where $\tilde{\phi}$ is the unique extension of ϕ to A^{**} given by $\tilde{\phi}(F) = F(\phi)$ for all $F \in A^{**}$. This concept of amenability as a generalization of left amenability of Lau algebras has been recently introduced and investigated by Kaniuth, Lau and Pym [10] under the name of ϕ -amenability; see also Monfared [11].

More recently, the authors in [13] introduced and studied the homological concept of left ϕ -biflatness of Banach algebras. Precisely, A is called *left* ϕ -*biflat* if there exists a bounded linear map $\rho : A \to (A \otimes_p A)^{**}$ such that $\rho(ab) = \phi(b)\rho(a) = a \cdot \rho(b)$ and $\tilde{\phi} \circ \pi_A^{**} \circ \rho(a) = \phi(a)$ for each $a, b \in A$. Also A is *left* C- ϕ -*biflat* if there exists C > 0 such that $\|\rho\| \leq C$. The reader may also see [12] for definition of φ -biflat Banach algebras.

The content of the paper is as follows. In Section 2, we investigate relations between left ϕ -biflatness and left ϕ -amenability of (abstract) Segal algebras. For a locally compact group *G*, we prove that an abstract

²⁰²⁰ Mathematics Subject Classification. Primary 46M10; Secondary 43A07, 43A20.

Keywords. Left ϕ -biflat; Segal algebra; Lipschitz algebra; Locally compact group.

Received: 02 June 2022; Accepted: 12 October 2022

Communicated by Dijana Mosić

^{*} Corresponding author: Amir Sahami

Email addresses: s.salimi28@yahoo.com (Solaleh Salimi), a_mahmoodi@iauctb.ac.ir (Amin Mahmoodi), a.sahami@ilam.ac.ir (Amir Sahami), mross@aut.ac.ir (Mehdi Rostami)

Segal algebra with respect to $L^1(G)$ is left ϕ -biflat if and only if G is an amenable group. In Section 3, we study left ϕ -biflatness of some (concrete) Banach algebras including Lipschitz algebras $Lip_{\alpha}(X)$ and $\ell ip_{\alpha}(X)$, lower triangular matrices LO(I, A) and also $C^1[0, 1]$.

2. Left ϕ -biflatness of abstract Segal algebras

Let *A* be a Banach algebra with the norm $\|\cdot\|_A$. We recall that a Banach algebra *B* with the norm $\|\cdot\|_B$ is an *abstract Segal algebra* with respect to *A* if

- (i) *B* is a dense left ideal in A,
- (ii) there exists M > 0 such that $||b||_A \le M ||b||_B$ for every $b \in B$,
- (iii) there exists C > 0 such that $||ab||_B \le C ||a||_A ||b||_B$ for every $a \in A$ and $b \in B$.

It is known that $\Delta(B) = \{\phi|_B : \phi \in \Delta(A)\}$, [2, Lemma 2.2]. Two following lemmas will be needed.

Lemma 2.1. ([16, Lemma 2.2]) Let A be a Banach algebra and let $\phi \in \Delta(A)$. If A is left ϕ -amenable, then A is left ϕ -biflat.

In the following example we show that the converse of Lemma 2.1 is not true necessarily.

Example 2.2. Suppose that *S* is a left zero semigroup with $|S| \ge 2$, that is, a semigroup with action st = s for every $s, t \in S$. This semigroup action induces a product on the related semigroup algebra $\ell^1(S)$. Indeed, we have $fg = \phi_S(g)f$, where ϕ_S is the augmentation character on $\ell^1(S)$ given by $\phi_S(\sum_{s\in S} \alpha_s \delta_s) = \sum_{s\in S} \alpha_s$, for all $f, g \in \ell^1(S)$. First we show that $\ell^1(S)$ is left ϕ_S -biflat. To see this, suppose that f_0 is an element in $\ell^1(S)$ such that $\phi_S(f_0) = 1$. Define $\rho : \ell^1(S) \to (\ell^1(S) \otimes_p \ell^1(S))^{**}$ by $\rho(f) = f \otimes f_0$ for all $f \in \ell^1(S)$. One can see that

$$f \cdot \rho(g) = \rho(fg), \quad \rho(fg) = \phi_S(g)\rho(f)$$

and

$$\tilde{\phi}_S \circ \pi_A^{**} \circ \rho(f) = \phi_S(f_0 f) = \phi_S(f)$$

for each $f, g \in \ell^1(S)$.

Now, we show that $\ell^1(S)$ is not left ϕ_S -amenable, whenever $|S| \ge 2$. We assume in contradiction and suppose that $\ell^1(S)$ is left ϕ_S -amenable. Then there exists a bounded net (f_α) in $\ell^1(S)$ such that

$$\phi_S(f_\alpha) = 1, \quad \phi_S(f_\alpha)f - \phi_S(f)f_\alpha = ff_\alpha - \phi_S(f)f_\alpha \to 0 \quad (f \in \ell^1(S)).$$

It gives that $f - \phi_S(f) f_\alpha \to 0$ for each $f \in \ell^1(S)$. Since S has at least two distinct elements s_1 and s_2 , consider δ_{s_1} and δ_{s_2} and replace them in $f - \phi_S(f) f_\alpha \to 0$. It follows that $\delta_{s_1} = \delta_{s_2}$, so $s_1 = s_2$ which is impossible.

Lemma 2.3. ([13, Lemma 2.1]) Suppose that A is a left ϕ -biflat Banach algebra with $\overline{A \ker \phi}^{\|\cdot\|} = \ker \phi$. Then A is left ϕ -amenable.

In the following example we show that the condition $\overline{A \ker \phi}^{\|\cdot\|} = \ker \phi$ is necessary in the above lemma.

Example 2.4. Let $A = \left\{ \begin{bmatrix} \alpha & -\beta \\ \beta & \alpha \end{bmatrix} : \alpha, \beta \in \mathbb{C} \right\}$ be a two-dimensional subspace of $\mathbb{M}_2(\mathbb{C})$ with the multiplication

$$\begin{bmatrix} \alpha & -\beta \\ \beta & \alpha \end{bmatrix} \begin{bmatrix} \gamma & -\theta \\ \theta & \gamma \end{bmatrix} = \begin{bmatrix} \alpha\theta & -\beta\theta \\ \beta\theta & \alpha\theta \end{bmatrix}$$

and with the ℓ^1 -norm. Consider a character $\phi : A \longrightarrow \mathbb{C}$ by

$$\phi\left(\left[\begin{array}{cc} \alpha & -\beta \\ \beta & \alpha \end{array}\right]\right) = \beta$$

Then ker $\phi = \mathbb{C}I$ and so $\overline{A \ker \phi} \neq \ker \phi$. It is easy to verify that the map $\rho : A \longrightarrow (A \otimes_p A)^{**}$ define by

$$\rho\left(\left[\begin{array}{cc} \alpha & -\beta \\ \beta & \alpha \end{array}\right]\right) = \left[\begin{array}{cc} \alpha & -\beta \\ \beta & \alpha \end{array}\right] \otimes \left[\begin{array}{cc} 0 & -1 \\ 1 & 0 \end{array}\right]$$

implies that A is left ϕ *-biflat. But A is not left* ϕ *-amenable, since otherwise there exists a bounded net* $m_j = \begin{bmatrix} \alpha_j & -\beta_j \\ \beta_j & \alpha_j \end{bmatrix} \in A$ such that $am_j - \phi(a)m_j \to 0$ for all $a \in A$ and $\phi(m_j) = 1$ for all *j*. The second equation implies that $\beta_j = 1$ for all *j* and the first relation for a = I, the identity matrix, implies that $Im_j - \phi(I)m_j = Im_j = I \to 0$ that is a contradiction.

Theorem 2.5. Let A be a Banach algebra and let $\phi \in \Delta(A)$. Suppose that B is an abstract Segal algebra with respect to A which posses an approximate identity. Then the following statements are equivalent:

- (*i*) A is left ϕ -biflat;
- (*ii*) *B* is left $\phi|_{B}$ -biflat;
- (*iii*) *B* is left $\phi|_B$ -amenable;
- (*iv*) A is left ϕ -amenable.

Proof. (*i*) \Rightarrow (*ii*) Suppose that *A* is left ϕ -biflat. Then there exists a bounded liner map $\Gamma : A \to (A \otimes_p A)^{**}$ such that $\Gamma(ab) = a \cdot \Gamma(b) = \phi(b)\Gamma(a)$ and $\tilde{\phi} \circ \pi_A^{**} \circ \Gamma(a) = \phi(a)$, for all $a, b \in A$. Since *B* is dense in *A*, we can choose i_0 in *B* such that $\phi(i_0) = 1$. Define $R_{i_0} : A \to B$ by $R_{i_0}(a) = ai_0$, for each $a \in A$. Clearly R_{i_0} is a bounded linear map. Set

$$\rho := (R_{i_0} \otimes R_{i_0})^{**} \circ \Gamma|_B : B \to (B \otimes_p B)^{**}.$$

One can see that ρ is a bounded linear map such that

$$\rho(b_1b_2) = b_1\rho(b_2) = \phi(b_2)\rho(b_1), \quad (b_1, b_2 \in B),$$

and

$$\phi \tilde{|}_B \circ \pi_B^{**} \circ \rho(b_1) = \phi \tilde{|}_B \circ \pi_B^{**} \circ (R_{i_0} \otimes R_{i_0})^{**} \circ \Gamma|_B(b_1) = \tilde{\phi} \circ \pi_A^{**} \circ \Gamma(b_1) = \phi(b_1)$$

It follows that *B* is left $\phi|_B$ -biflat.

 $(ii) \Rightarrow (iii)$ It is immediate by Lemma 2.3.

 $(iii) \Rightarrow (iv)$ See [2, Proposition 2.3].

 $(iv) \Rightarrow (i)$ This is Lemma 2.1. \Box

Inspired by the argument in [13, Lemma 2.1] we give the following result.

Theorem 2.6. Let A be a Banach algebra with a left approximate identity and let $\phi \in \Delta(A)$. Suppose that B is an abstract Segal algebra with respect to A. Then B is left $\phi|_B$ -biflat if and only if B is left $\phi|_B$ -amenable.

Proof. Suppose that *B* is left ϕ -biflat. Then there exists a bounded linear map $\rho : B \to (B \otimes_p B)^{**}$ such that $\tilde{\phi} \circ \pi_B^{**} \circ \rho(b) = \phi(b)$ for all $b \in B$. Let i_0 and R_{i_0} be as in the proof of Theorem 2.5. We denote *i* for the inclusion map from *B* into *A*. Set

$$\lambda := (\iota \otimes \iota)^{**} \circ \rho \circ R_{i_0} : A \to (A \otimes_v A)^{**}.$$

It is easy to see that λ is a bounded linear map such that

$$\tilde{\phi} \circ \pi_A^{**} \circ \lambda(a) = \tilde{\phi} \circ \pi_A^{**} \circ (\iota \otimes \iota)^{**} \circ \rho \circ R_{i_0}(a) = \tilde{\phi} \circ \pi_B^{**} \circ \rho \circ R_{i_0}(a) = \phi(a),$$

and

$$b_1 \cdot \lambda(b_2) = b_1 \cdot (\iota \otimes \iota)^{**} \circ \rho \circ R_{i_0}(b_2)$$

= $(\iota \otimes \iota)^{**} \circ \rho \circ R_{i_0}(b_1b_2)$
= $\phi(b_2)(\iota \otimes \iota)^{**} \circ \rho \circ R_{i_0}(b_1)$
= $\phi(b_2)\lambda(b_1), \quad (b_1, b_2 \in B).$

Suppose that $K = \ker \phi$ (in A). We denote id_A for the identity map and $q : A \to \frac{A}{K}$ for the quotient map. Let ζ be the bounded linear map specified by

$$\zeta := (\mathrm{id}_A \otimes q)^{**} \circ \lambda : A \to (A \otimes_p \frac{A}{K})^{**}$$

Since *A* has a left approximate identity, $\overline{AK}^{\|\cdot\|} = K$. Thus for each $k \in K$ we have

$$\zeta(k) = (\mathrm{id}_A \otimes q)^{**} \circ \lambda(k) = (\mathrm{id}_A \otimes q)^{**} \circ \lambda(\lim_n a_n k_n) = \lim_n \phi(k_n)(\mathrm{id}_A \otimes q)^{**} \circ \lambda(a_n) = 0,$$

for some sequences (a_n) in A and (k_n) in K. So ζ induces a map on $\frac{A}{K}$ which still is denoted by ζ . Since $\frac{A}{K} \cong \mathbb{C}$, we have $A \otimes_p \frac{A}{K} \cong A$. So we can assume that $m = \zeta(i_0 + K) \in A^{**}$. Consider

$$bm = b\zeta(i_0 + K) = \zeta(bi_0 + K) = \zeta(\phi(b)i_0 + K) = \phi(b)m, \quad (b \in B)$$
(1)

also

$$(\phi \otimes \overline{\phi})^{**} \circ \lambda(b) = \tilde{\phi} \circ \pi_B^{**} \circ \rho(b) = \phi(b), \quad (b \in B)$$

and $\tilde{\phi} \circ (\mathrm{id}_A \otimes \overline{\phi})^{**} = (\phi \otimes \overline{\phi})^{**}$, where $\overline{\phi}$ is a character on $\frac{A}{K}$ given by $\overline{\phi}(a + K) = \phi(a)$ for each $a \in A$. These facts follow that

$$\begin{split} \tilde{\phi}(m) &= \tilde{\phi} \circ \zeta(i_0 + K) = \tilde{\phi} \circ (\mathrm{id}_A \otimes q)^{**} \circ \lambda(i_0) \\ &= (\phi \otimes \overline{\phi})^{**} \circ \lambda(i_0) \\ &= \tilde{\phi} \circ \pi_B^{**} \circ \rho(i_0) \\ &= \phi(i_0) = 1. \end{split}$$

$$(2)$$

Since *B* is dense in *A*, by (1) $am = \phi(a)m$ for all $a \in A$. It follows that *A* is left ϕ -amenable. Replacing *m* with mi_0 , we can assume that $m \in B^{**}$. So *B* is left $\phi|_B$ -amenable. The converse is valid by Lemma 2.1. \Box

A Banach algebra *A* with $\phi \in \Delta(A)$ is called ϕ -*inner amenable* if there exists a bounded net (a_{α}) in *A* such that $aa_{\alpha} - a_{\alpha}a \rightarrow 0$ and $\phi(a_{\alpha}) = 1$ for all $a \in A$, [8].

Lemma 2.7. Let A be a Banach algebra and let $\phi \in \Delta(A)$. Suppose that A is left ϕ -biflat and ϕ -inner amenable. Then A is left ϕ -amenable.

Proof. Suppose that *A* is left ϕ -biflat. Then there exists a bounded linear map $\rho : A \to (A \otimes_p A)^{**}$ such that $\rho(ab) = a \cdot \rho(b) = \phi(b)\rho(a)$ and $\tilde{\phi} \circ \pi_A^{**} \circ \rho(a) = \phi(a)$, for all $a, b \in A$. Since *A* is ϕ -inner amenable, there exists a bounded linear net (a_α) in *A* such that $aa_\alpha - a_\alpha a \to 0$ and $\phi(a_\alpha) = 1$, for all $a \in A$. Define $m_\alpha = \rho(a_\alpha)$. It is easy to see that (m_α) is a bounded net in $(A \otimes_p A)^{**}$ such that

$$a \cdot m_{\alpha} - \phi(a)m_{\alpha} \to 0, \quad \tilde{\phi} \circ \pi_A^{**}(m_{\alpha}) \to 1, \qquad (a \in A)$$

Using Banach-Alaoglu theorem (m_{α}) has a w^* -cluster point in ($A \otimes_p A$)**, say M. One can show that

$$a \cdot M = \phi(a)M, \quad \tilde{\phi} \circ \pi_A^{**}(M) = 1, \qquad (a \in A).$$

So

$$a\pi_A^{**}(M) = \phi(a)\pi_A^{**}(M), \quad \tilde{\phi} \circ \pi_A^{**}(M) = 1, \qquad (a \in A).$$

It follows that *A* is left ϕ -amenable. \Box

3554

Proposition 2.8. Let A be an ϕ -inner amenable Banach algebra and $\phi \in \Delta(A)$. Suppose that B is an abstract Segal algebra with respect to A. Then B is left $\phi|_B$ -biflat if and only if B is left $\phi|_B$ -amenable.

Proof. Suppose that *B* is left ϕ -biflat. Let R_{i_0} , ι , q, id_A , ρ , λ , and ζ are the same as in the proof of Theorem 2.5. Since *A* is ϕ -inner amenable, there exists a bounded net (a_α) in *A* such that $aa_\alpha - a_\alpha a \to 0$ and $\phi(a_\alpha) = 1$, for all $a \in A$. Define $m_\alpha = \zeta(a_\alpha) \in (A \otimes \frac{A}{K})^{**} \cong A^{**}$. Clearly (m_α) is a bounded net in A^{**} . Consider

$$\begin{split} bm_{\alpha} &- \phi(b)m_{\alpha} \\ &= b(\mathrm{id}_{A} \otimes q)^{**} \circ (\iota \otimes \iota)^{**} \circ \rho \circ R_{i_{0}}(a_{\alpha}) - \phi(b)(\mathrm{id}_{A} \otimes q)^{**} \circ (\iota \otimes \iota)^{**} \circ \rho \circ R_{i_{0}}(a_{\alpha}) \\ &= (\mathrm{id}_{A} \otimes q)^{**} \circ (\iota \otimes \iota)^{**} \circ \rho \circ R_{i_{0}}(ba_{\alpha}) - (\mathrm{id}_{A} \otimes q)^{**} \circ (\iota \otimes \iota)^{**} \circ \rho \circ R_{i_{0}}(a_{\alpha}b) \\ &= (\mathrm{id}_{A} \otimes q)^{**} \circ (\iota \otimes \iota)^{**} \circ \rho \circ R_{i_{0}}(ba_{\alpha} - a_{\alpha}b) \to 0, \quad (b \in B). \end{split}$$

Also

$$\tilde{\phi}(m_{\alpha}) = \tilde{\phi} \circ (\mathrm{id}_A \otimes q)^{**} \circ (\iota \otimes \iota)^{**} \circ \rho \circ R_{i_0}(a_{\alpha}) = \tilde{\phi} \circ \pi_B \circ \rho \circ R_{i_0}(a_{\alpha}) = \phi(a_{\alpha}) = 1$$

Thus we found a bounded net (m_{α}) in A^{**} such that $bm_{\alpha} - \phi(b)m_{\alpha} \rightarrow 0$ and $\tilde{\phi}(m_{\alpha}) = 1$, for all $b \in B$. Since (m_{α}) is a bounded net in A^{**} , Banach-Alaoglu theorem yields (m_{α}) has a w^* -limit point, say M. Thus $bM = \phi(b)M$ and $\tilde{\phi}(M) = 1$ for all $b \in B$. Since B is dense in A, $aM = \phi(a)M$ and $\tilde{\phi}(M) = 1$, for all $a \in A$. It follows that A is left ϕ -amenable. So by [2, Proposition 2.3], B is left $\phi|_B$ -amenable. The converse is true by Lemma 2.1.

Let $L^{1}(G)$ be the group algebra of a locally compact group G with the convolution product defined by

$$(f * g)(x) = \int_G f(y)g(y^{-1}x)dy \qquad (x \in G)$$

for $f, g \in L^1(G)$ and with the norm $\|\cdot\|_1$. Let \widehat{G} denote the dual group of *G* consisting of all continuous homomorphisms ν from *G* into the unit circle **T**. Define the character $\phi_{\nu} \in \Delta(L^1(G))$ by

$$\phi_{\nu}(h) = \int_{G} \overline{\nu(x)} h(x) dx \quad (h \in L^{1}(G)).$$

It is known that

$$\Delta(L^1(G)) = \{\phi_\nu : \nu \in \widehat{G}\};\$$

see, for example [6, Theorem 23.7].

Corollary 2.9. Let G be a locally compact group and let $\phi \in \Delta(L^1(G))$. Then the following statements are equivalent:

- (*i*) $L^1(G)$ is left ϕ -biflat.
- (ii) Each abstract Segal algebra with respect to $L^1(G)$ is left ϕ -biflat.
- (iii) There exists a left ϕ -biflat abstract Segal algebra with respect to $L^1(G)$.
- (*iv*) *G* is amenable.

Proof. (*i*) \Rightarrow (*ii*) Suppose that $L^1(G)$ is left ϕ -biflat. By Lemma 2.3 $L^1(G)$ is left ϕ -amenable, since $L^1(G)$ has a bounded approximate identity. From [2, Proposition 2.3] it follows that each abstract Segal algebra with respect to $L^1(G)$ is left ϕ -amenable. Then by Lemma 2.1, each abstract Segal algebra with respect to $L^1(G)$ is left ϕ -biflat.

 $(ii) \Rightarrow (iii)$ It is clear.

 $(iii) \Rightarrow (iv)$ Suppose that an abstract Segal algebra *B* with respect to $L^1(G)$ is left $\phi|_B$ -biflat. Since $L^1(G)$ has a bounded approximate identity, $L^1(G)$ is ϕ -inner amenable. By Proposition 2.8, *B* is left $\phi|_B$ -amenable. It then follows from [2, Corollary 3.4] that *G* is amenable.

(*iv*) ⇒ (*i*) Since *G* is amenable, $L^1(G)$ is left ϕ -amenable by [2, Corollary 3.4]. Now $L^1(G)$ is left ϕ -biflat by Lemma 2.1. \Box

Remark 2.10. Let G be a locally compact group and $L^{\infty}(G)$ be the usual Lebesgue space as defined in [6] equipped with the essential supremum norm $\|\cdot\|_{\infty}$ and the convolution product. Since G is compact so $L^{\infty}(G) \subseteq L^{1}(G)$ and then $L^1(G)$ has a bounded approximate identity (e_i) such that it is an approximate identity for $L^{\infty}(G)$. Also as $L^{1}(G) * L^{\infty}(G) * L^{1}(G) \subseteq L^{\infty}(G)$ with $\max\{\|f * g\|_{\infty}, \|g * f\|_{\infty}\} \leq \|f\|_{1}\|g\|_{\infty}$ for $f \in L^{1}(G)$ and $g \in L^{\infty}(G)$, we conclude that the convolution Banach algebra $L^{\infty}(G)$ is an abstract Segal algebra with respect to $L^{1}(G)$. Moreover, $\Delta(L^{\infty}(G)) = \{\phi_{\nu} : \nu \in G\}, where$

$$\phi_{\nu}(h) = \int_{G} \overline{\nu(x)} h(x) dx \quad (h \in L^{\infty}(G)),$$

and so by Corollary 2.9 $L^{\infty}(G)$ is left ϕ_{ν} -biflat and thus by Theorem 2.5 it is left ϕ_{ν} -biflat for all $\phi_{\nu} \in \Delta(L^{\infty}(G))$.

Corollary 2.11. Let A be a Banach algebra and let $\phi \in \Delta(A)$. Suppose that B is an abstract Segal algebra with respect to A which is $\phi|_B$ -inner amenable. Then B is left $\phi|_B$ -biflat if and only if A is left ϕ -amenable.

Proof. If B is left $\phi|_B$ -biflat, then B is left $\phi|_B$ -amenable, by Lemma 2.7. Thus A is left ϕ -amenable, by [2, Proposition 2.3].

Conversely, suppose that A be left ϕ -amenable. Then B is left ϕ -amenable, by [2, Proposition 2.3]. Now Lemma 2.1 gives us the result. \Box

3. Applications to some specified Banach algebras

Let (*X*, *d*) be a compact metric space and $\alpha > 0$. Set

$$Lip_{\alpha}(X) = \{f : X \to \mathbb{C} : p_{\alpha}(f) < \infty\},\$$

where

$$p_{\alpha}(f) = \sup\{\frac{|f(x) - f(y)|}{d(x, y)^{\alpha}} : x, y \in X, x \neq y\}$$

and also

$$\ell i p_{\alpha}(X) = \{ f \in Lip_{\alpha}(X) : \frac{|f(x) - f(y)|}{d(x, y)^{\alpha}} \to 0 \quad \text{as} \quad d(x, y) \to 0 \}.$$

. . .

II £II

Define

where

$$\|f\|_{\alpha}=\|f\|_{\infty}+p_{\alpha}(f),$$

 $||f||_{\infty} = \sup\{|f(x)| : x \in X\}.$

With the pointwise multiplication and the norm $\|\cdot\|_{\alpha}$, $Lip_{\alpha}(X)$ and $\ell ip_{\alpha}(X)$ become Banach algebras, called Lipschitz algebra of order α and little Lipschitz algebra of order α , respectively. It is well-known [14, Lemma 3.2] that each nonzero multiplicative linear functional on $Lip_{\alpha}(X)$ or $\ell ip_{\alpha}(X)$ has a form ϕ_x , where $\phi_x(f) = f(x)$ for every $x \in X$. It is worthwile to mention that if X is not compact, then $Lip_\alpha(X)$ is always a Banach algebra, assuming that $Lip_{\alpha}(X)$ contains all bounded functions f (i.e. $||f||_{\infty} < \infty$) such that $p_{\alpha}(f) < \infty$. In this case and if $Lip_{\alpha}(X)$ separates the points of X, the set $\{\phi_x : x \in X\}$ is dense in $Lip_{\alpha}(X)$, in the Gelfand topology. This result is actually a consequence of the general theory of function algebras and holds for any algebra of functions on a set that is self-adjoint, inverse-closed and separates the points of X. For further information about Lipschitz algebras see [3], [14] and [15]. Hu, Monfared and Traynor in [7] studied character amenability of Lipschitz algebras. Recently C-character amenability of Lipschitz algebras have been investigated in [4].

Theorem 3.1. Let X be a compact metric space and let A be either $Lip_{\alpha}(X)$ or $\ell ip_{\alpha}(X)$ and $x \in X$. Then the following statements are equivalent:

(*i*) A is left C- ϕ_x -biflat;

(ii) X is finite.

3556

Proof. (*i*) \Rightarrow (*ii*) Suppose that *A* is left *C*- ϕ_x -biflat. Since *A* is unital so by Lemma 2.7, left *C*- ϕ_x -biflatness of *A* implies that $C \ge 1$ and *A* is left *C*- ϕ_x -amenable. It follows from [4, Proposition 2.1] that $||\phi_x - \phi_y|| \ge C^{-1}$ for each distinct elements $x, y \in X$. On the other hand

$$||\phi_x - \phi_y|| = \sup_{\|f\|_{\alpha} \le 1} |\phi_x(f) - \phi_y(f)| = \sup_{\|f\|_{\alpha} \le 1} |f(x) - f(y)| \le d(x, y)^{\alpha}.$$

Hence $d(x, y)^{\alpha} \ge C^{-1}$, whence *X* is uniformly discrete. So *X* is finite. (*ii*) \Rightarrow (*i*) It is clear. \Box

In the sequel we study left ϕ -biflatness of lower triangular Banach algebras.

Suppose that *I* is a totally ordered set which has a smallest element. LO(I, A) is denoted for the set of all lower triangular matrices which the entries come from *A*. With usual matrix operations and also with the finite ℓ^1 -norm, one can see that LO(I, A) is a Banach algebra. Let i_0 be the smallest element of *I* and also $\phi \in \Delta(A)$. Define $\psi_{i_0} : LO(I, A) \to \mathbb{C}$ by $\psi_{i_0}([a_{i_j}]) = \phi(a_{i_0i_0})$, for each $[a_{i_j}] \in LO(I, A)$. We can see that ψ_{i_0} is a non-zero character on LO(I, A).

We recall that a Banach algebra A with $\phi \in \Delta(A)$ is *approximately left* ϕ *-amenable* if there exists a (not necessarily bounded) net (m_{α}) in A such that $am_{\alpha} - \phi(a)m_{\alpha} \rightarrow 0$ and $\phi(m_{\alpha}) = 1$ for all $a \in A$, [1].

Theorem 3.2. Let A be a Banach algebra and let $\phi \in \Delta(A)$. Suppose that A has an element a_0 such that $aa_0 = a_0a$ and $\phi(a_0) = 1$. Let I be a totally ordered set with smallest element. Then LO(I, A) is left ψ_{i_0} -biflat if and only if |I| = 1 and A is left ϕ -biflat.

Proof. Suppose that LO(I, A) is left ψ_{i_0} -biflat. We denote F(I) for the collection of all finite subsets of I. It is known that by inclusion F(I) is an ordered set. For each $\gamma \in F(I)$, put $e_{\gamma} = [a_{ij}]_{i,j \in I}$, with $a_{ij} = a_0$ whenever $i = j \in \gamma$ otherwise $a_{ij} = 0$. It is easy to see that $ae_{\gamma} - e_{\gamma}a \to 0$ and $\psi_{i_0}(e_{\gamma}) = 1$, for each $a \in LO(I, A)$. By similar arguments as in Lemma 2.7 it is easy to see that left ψ_{i_0} -biflatness of LO(I, A) gives that LO(I, A) is approximately left ψ_{i_0} -amenable. So there exists a net (a_{α}) in LO(I, A) such that $aa_{\alpha} - \psi_{i_0}(a)a_{\alpha} \to 0$ and $\psi_{i_0}(a_{\alpha}) = 1$, for all $a \in LO(I, A)$. Set

$$L = \{[a_{ij}] \in LO(I, A) : a_{ij} = 0, \text{ whenever } j \neq i_0\}.$$

It is easy to see that *L* is a closed ideal of LO(I, A) with $\psi_{i_0}|_L \neq 0$. Suppose that i_1 is an element of *L* such that $\psi_{i_0}(i_1) = 1$. Replacing the net (a_α) with $(a_\alpha i_1)$, we can assume that $a_\alpha \in L$ such that $aa_\alpha - \psi_{i_0}(a)a_\alpha \to 0$ and $\psi_{i_0}(a_\alpha) = 1$, for all $a \in L$. We claim that |I| = 1. Suppose conversely that |I| > 1. Set

	$a^{\alpha}_{i_0i_0}$	0	•••	0	••••]		0	0	•••	0	•••	1
	$a_{kk'}^{\alpha}$	0	•••	0	•••		<i>l</i> =	a_0	0	•••	0	• • •	,
	:	:	:	:	:			:	:	:	:	:	
	$a_{ss'}^{\alpha}$	0	•••	0	•••			0	0	•••	0	•••	
	:	:	:	:	: .			:	:	:	:	:	

where $a_{i_0i_0}^{\alpha}$ is an element of A such that $\phi(a_{i_0i_0}^{\alpha}) = 1$. Thus $la_{\alpha} - \psi_{i_0}(l)a_{\alpha} \to 0$, follows that $a_0a_{i_0i_0}^{\alpha} \to 0$. Take ϕ on this equation gives that $\phi(a_0a_{i_0i_0}^{\alpha}) = \phi(a_0)\phi(a_{i_0i_0}^{\alpha}) = \phi(a_{i_0i_0}^{\alpha}) \to 0$. But $\phi(a_{i_0i_0}^{\alpha}) = \psi_{i_0}(a_{\alpha}) = 1$, which is a contradiction. So |I| = 1 and A is left ϕ -biflat. The converse is clear. \Box

At the end we illustrate an example of a Banach algebra which is neither left ϕ -biflat nor left ϕ -amenable.

Example 3.3. Let $A = C^{1}[0,1]$, the space of all complex-valued differentiable maps on [0,1] with continuous derivative. With the pointwise multiplication and $||f||_{C^{1}[0,1]} = ||f||_{\infty} + ||f'||_{\infty}$, A becomes a Banach algebra. We know from [9, Example 2.2.9] that the character space of A is

$$\Delta(A) = \{ \phi_t : \phi_t(f) = f(t) \text{ for each } t \in [0, 1] \}.$$

Clearly A is commutative, so A is ϕ_t -inner amenable. The map $D : A \to \mathbb{C}$ given by D(f) = f'(t), is a non-zero point derivation at ϕ_t for arbitrary $t \in [0, 1]$. Thus by [10, Remark 2.4] A is not left ϕ_t -amenable for each $t \in [0, 1]$. Next, we claim that A is not left ϕ_t -biflat for each $t \in [0, 1]$. For if A is left ϕ_t -biflat for some $t \in [0, 1]$, then it must be left ϕ_t -amenable by Lemma 2.7, which is not the case.

Acknowledgment: The authors wish to thank the anonymous referee for his/her careful reading of the manuscript and his/her useful suggestions and comments.

References

- H. P. Aghababa, L. Y. Shi and Y. J. Wu, Generalized notions of character amenability, Acta Math. Sin. (Engl. Ser.) 29 (7) (2013) 1329–1350.
- [2] M. Alaghmandan, R. Nasr-Isfahani and M. Nemati, Character amenability and contractibility of abstract Segal algebras, Bull. Aust. Math. Soc. 82 (2) (2010) 274–281.
- [3] W.G. Bade, P.C. Curtis Jr. and H.G. Dales, Amenability and weak amenability for Beurling and Lipschitz algebras, Proc. London Math. Soc. 55 (3) (1987) 359–377.
- [4] M. Dashti, R. Nasr-Isfahani, and A. Soltani Renani, Character amenability of Lipschitz algebras, Canad. Math. Bull. 57 (1) (2014) 37–41.
- [5] A. Ya. Helemskii, The homology of Banach and topological algebras, Kluwer Academic Publishers, Holland, 1989.
- [6] E. Hewitt and K. Ross, Abstract Harmonic Analysis I, Die Grundlehren der Mathematischen Wissenschaften, 115, Springer-Verlag, Berlin, 1963.
- [7] Z. Hu, M. S. Monfared and T. Traynor, On character amenable Banach algebras, Studia Math. 193 (1) (2009) 53–78.
- [8] A. Jabbari, T. Mehdi Abad and M. Zaman Abadi, On φ-inner amenable Banach algebras, Colloq. Math. 122 (1) (2011) 1–10.
- [9] E. Kaniuth, A course in commutative Banach algebras, Graduate Texts in Mathematics, 246, Springer, New York, 2009.
- [10] E. Kaniuth, A. T. Lau and J. Pym, On ϕ -amenability of Banach algebras, Math. Proc. Cambridge Philos. Soc. 44 (1) (2008) 85–96.
- [11] M. S. Monfared, Character amenability of Banach algebras, Math. Proc. Cambridge Philos. Soc. 144 (3) (2008) 697–706.
 [12] A. Sahami, A. Pourabbas, On φ-biflat and φ-biprojective Banach algebras, Bull. Belg. Math. Soc. Simon Stevin 20 (5) (2013) 789–801.
- [13] A. Sahami, M. Rostami and A. Pourabbas; On left φ-biflat Banach algebras, Comment. Math. Univ. Carolin. 61 (3) (2020) 337-344.
- [14] D. R. Sherbert, Banach algebras of Lipschitz functions, Pacific J. Math. 13 (1963) 1387–1399.
- [15] N. Weaver, Lipschitz Algebras, World Scientific Publishing Co., Inc., River Edge, NJ, 1999.
- [16] S. Salimi, A. Mahmoodi, M. Rostami, and A. Sahami, Left ϕ -biflatness and ϕ -biprojectivity of certain Banach algebras, Preprint.