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Abstract. This article is a continuation of the study on K -starcompact and related spaces done in (Song,
Bull. Malays. Math. Sci. Soc., 30(1) (2007)). We also introduce and study nearly 1 1

2 -starcompact spaces as
a generalization of 1 1

2 -starcompact spaces.

1. Introduction

This article is a continuation of the study on K -starcompact and related spaces done in [11]. The
relationship between the variation of compactness using star operations is represented in the following
diagram, where an arrow denotes the implication.

starcompact K -starcompact 1 1
2 -starcompact star-Menger

The existence of a 1 1
2 -starcompact space which is not K -starcompact is still unknown. Though an

attempt was made in [11, Example 2.2] to produce an example of such a space, during our investigation it
has been observed that the considered space is indeed K -starcompact (see Example 3.3). So the following
problem remains open.

Problem 1.1. Does there exist a 1 1
2 -starcompact space which is notK -starcompact?

We introduce nearly 1 1
2 -starcompact spaces as a generalization of 1 1

2 -starcompact spaces and observe
that this class of spaces is distinct from both the class of star-Menger and 1 1

2 -starcompact spaces as well.
Accordingly the class of nearly 1 1

2 -starcompact spaces can be distinguished from the class ofK -starcompact
spaces. Few illustrative examples have been presented to study the behaviour of the extent of the spaces
considered here. Certain observations on the Alexandroff duplicates are obtained. We also discuss preser-
vation like properties of these spaces under certain topological operations.
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2. Preliminaries

Throughout the paper (X, τ) stands for a topological space. For undefined notions and terminologies
see [5].

For a subset A of a space X and a collection P of subsets of X, St(A,P) denotes the star of A with respect
to P, that is the set ∪{B ∈ P : A ∩ B , ∅}. For A = {x}, x ∈ X, we write St(x,P) instead of St({x},P) [5].

A space X is said to be 1 1
2 -starcompact [11] if for every open cover U of X there exists a finite V ⊆ U

such that St(∪V,U) = X. A space X is said to beK -starcompact [11] (resp. starcompact [11, 15]) if for every
open cover U of X there exists a compact (resp. finite) A ⊆ X such that St(A,U) = X. A space X is said
to be star-Menger [4, 6] (see also [7]) if for each sequence (Un) of open covers of X there exists a sequence
(Vn) such that for each n,Vn is a finite subset ofUn and ∪n∈ω{St(V,Un) : V ∈ Vn} is an open cover of X. A
space X is said to be star countable [15] if for every open coverU of X there exists a countable A ⊆ X such
that X = St(A,U).

A familyA ⊆ P(ω) is said to be an almost disjoint family if each A ∈ A is infinite and for any two distinct
elements B,C ∈ A, |B ∩ C| < ω. For an almost disjoint family A, let Ψ(A) = A ∪ ω be the Isbell-Mrówka
space (or, Ψ-space) (see [9]). It is well known that Ψ(A) is pseudocompact if and only if A is a maximal
almost disjoint family. In general, when talking about Isbell-Mrówka space we do not require the almost
disjoint family to be maximal or the space to be pseudocompact.

A subset A of a space X is said to be regular-closed in X if Cl(Int A) = A. For a space X, e(X) = sup{|Y| :
Y is a closed and discrete subspace of X} is said to be the extent of X.

We use |A| to denote the cardinality of a set A. For any cardinal κ, κ+ denotes the smallest cardinal
greater than κ. Letω be the first infinite cardinal,ω1 be the first uncountable cardinal and c be the cardinality
of the continuum. As usual, a cardinal is the initial ordinal and an ordinal is the set of smaller ordinals. A
cardinal is often viewed as a space with the usual order topology. For each pair of ordinals α, βwith α < β,
we write (α, β) = {γ : α < γ < β}, [α, β) = {γ : α ≤ γ < β}, (α, β] = {γ : α < γ ≤ β} and [α, β] = {γ : α ≤ γ ≤ β}.

3. Main results

3.1. Certain observations onK -starcompact and related spaces
We first introduce the following definition.

Definition 3.1. A space X is said to be nearly 1 1
2 -starcompact if for every open coverU of X there exists a

countable A ⊆ X and a finiteV ⊆ U such that X \ A ⊆ St(∪V,U).

Clearly, every countable space (and also every 1 1
2 -starcompact space) is nearly 1 1

2 -starcompact.
In the following example, we observe that there exists a nearly 1 1

2 -starcompact space which is not
1 1

2 -starcompact (hence notK -starcompact).

Example 3.2. There exists a Hausdorff nearly 1 1
2 -starcompact space which is not 1 1

2 -starcompact.

Proof. Let P = {xα : α < c}, Q = {yn : n ∈ ω} and Y = {⟨xα, yn⟩ : α < c,n ∈ ω}, and let X = Y ∪ P ∪ {p} where
p < Y ∪ P. We define a topology on X as follows: every point of Y is isolated, a basic neighbourhood of a
point xα ∈ P for each α < c is of the form

Uxα (n) = {xα} ∪ {⟨xα, ym⟩ : m > n}

for n ∈ ω and a basic neighbourhood of p is of the form

Up(A) = {p} ∪ {⟨xα, yn⟩ : xα ∈ P \ A,n ∈ ω}

for a countable subset A of P. It is clear that X is a Hausdorff space from the definition of the topology on
X. We now show that X is a nearly 1 1

2 -starcompact space. LetU be an open cover of X. Then we can find
a countable subset A of P and a member U ofU such that Up(A) ⊆ U. By the construction of the topology
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on X, we have (P \ A) ∪ Up(A) ⊆ St(U,U). For each xα ∈ A, Cxα = {xα} ∪ {⟨xα, yn⟩ : n ∈ ω} is countable.
Choose C = ∪xα∈ACxα . Thus C is a countable subset of X with X = C∪ (P \A)∪Up(A). Therefore X is nearly
1 1

2 -starcompact. But X is not 1 1
2 -starcompact. Indeed, consider the open cover

U = {Up(A)} ∪ {Uxα (0) : xα ∈ A} ∪ {{⟨xα, y0⟩} : xα ∈ A}

of X, where A is a countably infinite subset of P.

Also note that (ω + 1) × (ω + 1) \ {⟨ω,ω⟩} is another example of a nearly 1 1
2 -starcompact space which is

not 1 1
2 -starcompact.

In the next example, we observe that the conclusion of [11, Example 2.2] is not correct, where it was
shown that the considered space is notK -starcompact.

Example 3.3. The space X as in [11, Example 2.2] isK -starcompact.

Proof. Let X be the space as in [11, Example 2.2]. Then X = ω1 ∪ A, where A = {aα : α < ω1} is a set of
cardinality ω1 and the topology on X is defined as follows. ω1 has the usual order topology and is an open
subspace of X, a basic neighbourhood of a point aα ∈ A is of the form

Oβ(aα) = {aα} ∪ (β, ω1), where β < ω1.

We claim that for each α ∈ ω1, ω1∪ {aα} is a compact subspace of X. Let α ∈ ω1 be fixed andU be a cover
of ω1 ∪ {aα} by open sets in X. Then there exists a U ∈ U such that Oα(aα) ⊆ U. Since [0, α] is compact, we
get a finiteV ⊆ U with [0, α] ⊆ ∪V. It follows that ω1 ∪ {aα} ⊆ ∪({U} ∪ V) and hence ω1 ∪ {aα} is compact.
Thus for each α ∈ ω1, ω1 ∪ {aα} is a compact subspace of X. We pick an open coverW of X to show that X is
K -starcompact. Let β ∈ ω1 be fixed and choose K = ω1 ∪ {aβ}. Since K intersects every member ofW, thus
X = St(K,W). Consequently X isK -starcompact.

Theorem 3.4. Every nearly 1 1
2 -starcompact space is star-Menger.

Proof. Let X be a nearly 1 1
2 -starcompact space. We pick a sequence (Un) of open covers of X to show that X

is star-Menger. Since X is nearly 1 1
2 -starcompact, for each n there exists a finite Vn ⊆ Un and a countable

An ⊆ X such that X \ An ⊆ St(∪Vn,Un). Since A = ∪n∈ωAn is countable, we enumerate it as {an : n ∈ ω}.
For each n let Un ∈ Un with an ∈ Un. Then for each n ∈ ω, Hn = Vn ∪ {Un} is a finite subset of Un and
∪n∈ω{St(V,Un) : V ∈ Hn} is an open cover of X. Hence the result.

It is easy to observe that the set of all reals R is star-Menger but not nearly 1 1
2 -starcompact.

We now present a few illustrative examples to study the behaviour of the extent of K -starcompact
(1 1

2 -starcompact, nearly 1 1
2 -starcompact) spaces.

Example 3.5. For any infinite cardinalκ, there exists a TychonoffK -starcompact (and hence 1 1
2 -starcompact,

nearly 1 1
2 -starcompact) star countable space X(κ) with e(X(κ)) ≥ κ.

Proof. For each α < κ, choose a point fα ∈ {0, 1}κ which is defined by fα(α) = 1 and fα(β) = 0 if β , α. Let
D = { fα : α < κ}. Consider

X(κ) = ({0, 1}κ × (κ+ + 1)) \ (({0, 1}κ \D) × {κ+})

as a subspace of the product space {0, 1}κ × (κ+ + 1). In [8, Theorem 1], Matveev proved that X(κ) is a
Tychonoff star countable space and D × {κ+} is a closed and discrete subset of it i.e. e(X(κ)) ≥ κ. We now
show that X(κ) is K -starcompact. Let U be an open cover of X(κ). Then for each α < κ, we can say that
(Uα × (γ, κ+])∩X(κ) is contained in some element ofU, where Uα is an open set in {0, 1}κ containing fα ∈ D
and γ < κ+ is fixed. We can easily obtain a γ < β < κ+ such that K1 = {0, 1}κ × (β + 1) is compact and
D× {κ+} ⊆ St(K1,U). Now {0, 1}κ × {κ+} isK -starcompact since it is countably compact. It follows that there
exists a compact subspace K2 of X(κ) such that {0, 1}κ × {κ+} ⊆ St(K2,U). Then the set K1 ∪ K2 witnesses for
U that X(κ) isK -starcompact (and hence 1 1

2 -starcompact, nearly 1 1
2 -starcompact).
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For a Tychonoff space X, βX denotes the Čech-Stone compactification of X.

Example 3.6. For any infinite cardinal κ > ω, there exists a Tychonoff K -starcompact (and hence 1 1
2 -

starcompact, nearly 1 1
2 -starcompact) space Y(κ) with e(Y(κ)) ≥ κwhich is not star countable.

Proof. Let D = {dα : α < κ} be the discrete space of cardinality κ. Consider

Y(κ) = (βD × κ+) ∪ (D × {κ+})

as a subspace of βD × (κ+ + 1). By [14, Lemma 2.3], Y(κ) is a Tychonoff K -starcompact (and hence 1 1
2 -

starcompact, nearly 1 1
2 -starcompact) space. It can be easily concluded that D × {κ+} is a discrete closed set

in Y(κ). Thus e(Y(κ)) ≥ κ. Now Y(κ) is not star countable since for the open cover

U = {βD × κ+} ∪ {{dα} × (κ+ + 1) : α < κ},

Y(κ) has no countable subset A such that Y(κ) = St(A,U).

Recall that a space X is said to be metacompact (resp. subparacompact) [2] if every open cover of it
has a point-finite open refinement (resp. σ-discrete closed refinement). Since the spaces X(κ) and Y(κ)
contain a non-compact countably compact closed subspace which is homeomorphic to κ+, they are neither
metacompact nor subparacompact. Interestingly the following question can be made.

Problem 3.7. Can the extent of a metacompact (or, subparacompact) K -starcompact (1 1
2 -starcompact, nearly 1 1

2 -
starcompact) space be arbitrarily large?

In the next example, we answer the above question positively.

Example 3.8. For any infinite cardinal κ, there exists a Hausdorff (non-regular) metacompact subparacom-
pactK -starcompact (and hence 1 1

2 -starcompact, nearly 1 1
2 -starcompact) space Z(κ) with e(Z(κ)) ≥ κ (which

is not star countable when κ is uncountable).

Proof. Let D = {dα : α < κ} be the discrete space of cardinality κ and aD = D ∪ {∞} be the one point
compactification of D. In the product space aD × (ω + 1), replace the local base of the point ⟨∞, ω⟩ by the
family

B = {U \ (D × {ω}) : ⟨∞, ω⟩ ∈ U and U is an open set in aD × (ω + 1)}.

Let Z(κ) be the space obtained by such a replacement. By [10, Example 3.4], Z(κ) is a Hausdorff (non-regular)
metacompact subparacompact space and if κ is uncountable, then it is not star countable. To show that
Z(κ) isK -starcompact we pick an open coverU of it. We choose a V ∈ U such that ⟨∞, ω⟩ ∈ V. Then there
exists a U \ (D × {ω}) ∈ Bwith U \ (D × {ω}) ⊆ V. We now show that U \ (D × {ω}) is a compact subspace of
Z(κ). LetW be a cover of U \ (D × {ω}) by open sets in Z(κ). Then we get a W ∈ W containing ⟨∞, ω⟩ and
a H \ (D × {ω}) ∈ B with H \ (D × {ω}) ⊆ W. Since H \ (D × {ω}) contains all but finitely many elements of
U \ (D × {ω}), a finite subset ofW covers U \ (D × {ω}). It follows that U \ (D × {ω}) is a compact subspace
of Z(κ). It is easy to see that U \ (D × {ω}) does not contain only the points of D × {ω} and the points of
{⟨dα,m⟩ : α < α0 and m < m0} for some finite α0 < κ and for some m0 ∈ ω. Then

K = (U \ (D × {ω})) ∪ {⟨dα,m⟩ : α < α0 and m < m0}

witnesses forU that Z(κ) isK -starcompact because K intersects every member ofU.

Note that the K -starcompact property is not preserved under regular-closed subsets (see [11, Example
3.1]). Again if we consider the example [11, Example 3.1] and go through the proof of it, then we can say that
there exists a Tychonoff 1 1

2 -starcompact space having a regular-closed subset which is not 1 1
2 -starcompact.

We now give a counterexample in the context of nearly 1 1
2 -starcompact property. We first need the following

result from [1].
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Lemma 3.9. ([1, Corollary 11]) If |A| = c, thenΨ(A) is not star-Menger (hence not nearly 1 1
2 -starcompact).

Example 3.10. There exists a Tychonoff pseudocompact nearly 1 1
2 -starcompact space having a regular-

closed subset which is not nearly 1 1
2 -starcompact.

Proof. Consider X = Ψ(A). Suppose that A is a maximal almost disjoint family with |A| = c. Then X is a
Tychonoff pseudocompact space which is not nearly 1 1

2 -starcompact by Lemma 3.9. Let D = {dα : α < c}
be the discrete space with cardinality c and aD = D ∪ {d} be the one point compactification of D. Choose
Y = (aD × [0, c+]) \ {⟨d, c+⟩} as a subspace of aD × [0, c+]. Then Y is a Tychonoff pseudocompact nearly
1 1

2 -starcompact space (see [12, Example 2.2]). Let f : A → D × {c+} be a bijection and Z be the quotient
image of the topological sum X ⊕ Y obtained by identifying A of X with f (A) of Y for every A ∈ A. Let
q : X⊕Y→ Z be the quotient map. It is clear that q(X) is a regular-closed subset of Z, and q(X) is not nearly
1 1

2 -starcompact as q(X) is homeomorphic to X. Again by [12, Example 2.2], Z is a Tychonoff pseudocompact
nearly 1 1

2 -starcompact space.

In the following result, we observe that, like theK -starcompact and 1 1
2 -starcompact property, the nearly

1 1
2 -starcompact property is also preserved under clopen subsets.

Theorem 3.11. A clopen subset of a nearly 1 1
2 -starcompact space is nearly 1 1

2 -starcompact.

Proof. Let Y be a clopen subset of a nearly 1 1
2 -starcompact space X. Let U be an open cover of Y. Then

W = U ∪ {X \ Y} is an open cover of X. Applying the nearly 1 1
2 -starcompact property of X we obtain a

countable subset A of X and a finite subsetH ofW such that X \ A ⊆ St(∪H ,W). Choose B = A ∩ Y and
V = {U ∈ U : U ∈ H}. We now show that B and V guarantee for U that Y is nearly 1 1

2 -starcompact. Let
x ∈ Y \ B. This gives us x ∈ X \A and hence there exist U ∈ W and V ∈ H such that x ∈ U and U∩V , ∅. It
is easy to observe that U , X \ Y i.e. U ∈ U and so V ∈ V. Thus we can say that x ∈ St(∪V,U) and hence
Y \ B ⊆ St(∪V,U). This completes the proof.

Next, we turn our attention to the Alexandroffduplicate of the spaces considered here. We first recall that
the Alexandroff duplicate AD(X) of a space X (see [3, 5]) is defined as follows. AD(X) = X×{0, 1}; each point
of X×{1} is isolated and a basic neighbourhood of ⟨x, 0⟩ ∈ X×{0} is a set of the form (U×{0})∪((U×{1})\{⟨x, 1⟩}),
where U is a neighbourhood of x in X.

It is to be noted that if X is a K -starcompact (resp. 1 1
2 -starcompact) space, then AD(X) may not be

K -starcompact (resp. 1 1
2 -starcompact). The same is true for nearly 1 1

2 -starcompact spaces, the reason is as
follows. Consider X as in [11, Example 3.1]. Then X is a Tychonoff nearly 1 1

2 -starcompact space. Choose
D = {dα : α < c} and A = {⟨⟨dα, c+⟩, 1⟩ : α < c}. Clearly, A is a discrete clopen subset of AD(X) with |A| = c. By
Theorem 3.11, AD(X) is not nearly 1 1

2 -starcompact. However we obtain the following result.

Theorem 3.12. For a space X the following assertions hold.

(1) If AD(X) is a nearly 1 1
2 -starcompact space, then X is nearly 1 1

2 -starcompact.

(2) If AD(X) is a 1 1
2 -starcompact space, then X is 1 1

2 -starcompact.

(3) If AD(X) is aK -starcompact space, then X isK -starcompact.

Proof. (1) To show that X is nearly 1 1
2 -starcompact we pick an open coverU of X. ThenW = {U × {0, 1} :

U ∈ U} is an open cover of AD(X). Since AD(X) is nearly 1 1
2 -starcompact, there exists a finiteH ⊆W and

a countable A ⊆ AD(X) such that AD(X) \ A ⊆ St(∪H ,W). Choose V = {U ∈ U : U × {0, 1} ∈ H} and a
countable C ⊆ X such that A ⊆ C × {0, 1}. Clearly,V and C witness forU that X is nearly 1 1

2 -starcompact.
(3) LetU be an open cover of X. ThenW = {U × {0, 1} : U ∈ U} is an open cover of AD(X). Apply the

K -starcompact property of AD(X) toW to obtain a compact subset K of AD(X) such that St(K,W) = AD(X).
Put F = {x ∈ X : either ⟨x, 0⟩ ∈ K or ⟨x, 1⟩ ∈ K}. One can readily observe that F is a compact subset of X.
Then F guarantees forU that X isK -starcompact.
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Theorem 3.13. ([13, Theorem 2.5]) If X is a T1 star-Menger space with e(X) < ω1, then AD(X) is star-Menger.

Using Theorem 3.4 we obtain the following corollary.

Corollary 3.14. If X is a T1 nearly 1 1
2 -starcompact space with e(X) < ω1, then AD(X) is star-Menger.

Theorem 3.15. ([13, Theorem 2.5]) If X is a T1 space and AD(X) is a star-Menger space, then e(X) < ω1.

Corollary 3.16. If X is a T1 space and AD(X) is a nearly 1 1
2 -starcompact space, then e(X) < ω1.

3.2. Few more properties of nearly 1 1
2 -starcompact spaces

In this section we discuss certain preservation likes properties of the nearly 1 1
2 -starcompact property.

We start with the following basic observation.

Theorem 3.17. The union of finitely many nearly 1 1
2 -starcompact spaces is also nearly 1 1

2 -starcompact.

Proof. Let {Xk : 1 ≤ k ≤ n} be a finite family of nearly 1 1
2 -starcompact spaces and X = ∪n

k=1Xk. To show
that X is nearly 1 1

2 -starcompact we choose an open cover U of X. Since for each 1 ≤ k ≤ n, Xk is nearly
1 1

2 -starcompact, we get two finite families {Ak : 1 ≤ k ≤ n} and {Vk : 1 ≤ k ≤ n} such that Ak is a countable
subset of Xk andVk is a finite subset ofU and Xk \ Ak ⊆ St(∪Vk,U). Choose A = ∪n

k=1Ak andV = ∪n
k=1Vk.

We claim that A and V witnessed for U that X is nearly 1 1
2 -starcompact. Let x ∈ X \ A. Then x ∈ Xk0 for

some 1 ≤ k0 ≤ n and x < Ak for each 1 ≤ k ≤ n. It follows that x ∈ Xk0 \ Ak0 and hence x ∈ St(∪Vk0 ,U) i.e.
x ∈ St(∪V,U). Thus X \ A ⊆ St(∪V,U).

The above result need not be true if we consider countably many nearly 1 1
2 -starcompact spaces instead

of finitely many nearly 1 1
2 -starcompact spaces. Indeed, the set of all reals R is not nearly 1 1

2 -starcompact
and R = ∪n∈ω[−n,n] with each [−n,n] is nearly 1 1

2 -starcompact.

Theorem 3.18. Any continuous image of a nearly 1 1
2 -starcompact space is nearly 1 1

2 -starcompact.

Proof. Let X be a nearly 1 1
2 -starcompact space and f : X→ Y be a continuous mapping from X onto Y. We

pick an open coverU of Y to prove that Y is nearly 1 1
2 -starcompact. ChooseW = { f−1(U) : U ∈ U}. Then

W is an open cover of X and since X is nearly 1 1
2 -starcompact, we get a countable subset A of X and a finite

subset H of W such that X \ A ⊆ St(∪H ,W). Let V = {U ∈ U : f−1(U) ∈ H} and B = f (A). We claim
that B and V witnessed for U that Y is nearly 1 1

2 -starcompact. Let y ∈ Y \ B. Then there exists a x ∈ X
with x < A such that y = f (x). It follows that x ∈ X \ A and so x ∈ f−1(U) for some f−1(U) ∈ W satisfying
f−1(U)∩ f−1(V) , ∅ for some f−1(V) ∈ H . Thus y ∈ St(∪V,U) and consequently Y \ B ⊆ St(∪V,U). Hence
the result.

The K -starcompact property is an inverse invariant of open perfect continuous mappings (see [11,
Theorem 3.2]) and hence the product of a K -starcompact space and a compact space is K -starcompact. A
similar characterization for the 1 1

2 -starcompact property has been observed in the following result.

Theorem 3.19 (Folklore). If f : X→ Y is an open perfect continuous mapping from a space X onto a 1 1
2 -starcompact

space Y, then X is also 1 1
2 -starcompact.

Proof. Let U be an open cover of X and y ∈ Y. Since f−1(y) is compact, there exists a finite subset Vy of
U such that f−1(y) ⊆ ∪Vy and f−1(y) ∩ U , ∅ for each U ∈ Vy. Since f is closed, there exists an open
set Uy in Y containing y such that f−1(Uy) ⊆ ∪Vy. Then by the openness of f , we can find an open set
Vy in Y containing y such that Vy ⊆ ∩{ f (U) : U ∈ Vy} and f−1(Vy) ⊆ f−1(Uy). Thus we obtain an open
cover V = {Vy : y ∈ Y} of Y. Since Y is 1 1

2 -starcompact, we get a finite H ⊆ V such that St(∪H ,V) = Y.
ChooseH = {Vyi : 1 ≤ i ≤ k} andW = ∪1≤i≤kVyi . ThenW is a finite subset ofU. Since for each 1 ≤ i ≤ k,
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f−1(Vyi ) ⊆ ∪Vyi , we have f−1(∪H) ⊆ ∪W. We claim thatW guarantees forU that X is 1 1
2 -starcompact. Let

x ∈ X. Then f (x) ∈ St(∪H ,V) and subsequently we have a Vy0 ∈ V such that f (x) ∈ Vy0 and Vy0 ∩ (∪H) , ∅.
Since f−1(Uy0 ) ⊆ ∪Vy0 , we can find a U0 ∈ Vy0 such that x ∈ U0. On the other hand, Vy0 ⊆ ∩{ f (U) : U ∈ Vy0 }

gives Vy0 ⊆ f (U0). It follows that U0 ∩ f−1(∪H) , ∅ i.e. U0 ∩ (∪W) , ∅ and hence x ∈ St(∪W,U). Thus X
is 1 1

2 -starcompact.

Corollary 3.20. If X is a 1 1
2 -starcompact space and Y is a compact space, then X × Y is 1 1

2 -starcompact.

Next, we observe that the nearly 1 1
2 -starcompact property is not an inverse invariant of open perfect

continuous mappings. Let D1 = {aα : α < ω} and D2 = {dα : α < ω1} be two discrete spaces, and
aD2 = D2 ∪ {d} be the one point compactification of D2. Then D1 is a nearly 1 1

2 -starcompact space. Now
the open cover {{aα} × aD2 : α < ω}witnesses that D1 × aD2 is not nearly 1 1

2 -starcompact, but the projection
mapping p : D1 × aD2 → D1 is open perfect continuous. From this example, we can also conclude that
the product of a nearly 1 1

2 -starcompact and a compact space need not be nearly 1 1
2 -starcompact. It follows

that the product of two nearly 1 1
2 -starcompact spaces need not be nearly 1 1

2 -starcompact. The following
well-known example (see [11, Example 3.3]) shows that the product of two countably compact (hence nearly
1 1

2 -starcompact) spaces need not be nearly 1 1
2 -starcompact. For the sake of completeness, we give a sketch

of the proof.

Example 3.21. There exists two countably compact spaces X and Y such that X × Y is not nearly 1 1
2 -

starcompact.

Proof. Let D be the discrete space with cardinality c. Let X = ∪α<ω1 Eα and Y = ∪α<ω1 Fα, where Eα and Fα
are subsets of βD such that

(1) Eα ∩ Fβ = D if α , β;

(2) |Eα| ≤ c and |Fβ| ≤ c;

(3) every infinite subset of Eα (resp. Fα) has an accumulation point in Eα+1 (resp. Fα+1).

These sets Eα and Fα are well-defined as every infinite closed subset of βD has cardinality 2c (see [16]).
Then X and Y are countably compact. Since the diagonal {⟨d, d⟩ : d ∈ D} is a discrete clopen subset of X × Y
with cardinality c, by Theorem 3.11, {⟨d, d⟩ : d ∈ D} is nearly 1 1

2 -starcompact, which is absurd. Hence X × Y
is not nearly 1 1

2 -starcompact.

In [15, Example 3.3.3], van Douwen et al. gave an example showing that there exists a countably compact
(hence nearly 1 1

2 -starcompact) space and a Lindelöf space Y such that X × Y is not star countable. In the
next example, we observe that X × Y is not nearly 1 1

2 -starcompact.

Example 3.22. There exist a countably compact (hence nearly 1 1
2 -starcompact) space X and a Lindelöf space

Y such that X × Y is not nearly 1 1
2 -starcompact.

Proof. Let X = [0, ω1) with the usual order topology. Then X is a countably compact space. Let us define a
topology on Y = ω1+1 as follows: each point α < ω1 is isolated and a set U containingω1 is open if and only
if Y \U is countable. Clearly, Y is Lindelöf. We claim that X×Y is not nearly 1 1

2 -starcompact. Suppose that
X×Y is nearly 1 1

2 -starcompact. For each α < ω1, let Uα = [0, α]×[α,ω1] and Vα = (α,ω1)×{α}. It is immediate
that Uα ∩ Vβ = ∅ for any α, β < ω1 and Vα ∩ Vβ = ∅ if α , β. ChooseU = {Uα : α < ω1} ∪ {Vα : α < ω1} and
thenU is an open cover of X×Y. Applying the nearly 1 1

2 -starcompact property of X×Y we get a countable
subset C of X × Y and a finite subsetV ofU such that (X × Y) \ C ⊆ St(∪V,U). SinceV is a finite subset
of U, there exists a finite α0 < ω1 such that Vα < V for each α > α0. It follows that ⟨β + 1, β⟩ < St(∪V,U)
for each β > α0 as Vβ is the only member of U containing the point ⟨β + 1, β⟩ and Vβ ∩ V = ∅. Also
since C is a countable subset of X × Y, there exists a β0 ∈ (α0, ω1) such that ⟨β0 + 1, β0⟩ ∈ (X × Y) \ C and
⟨β0 + 1, β0⟩ < St(∪V,U), which is a contradiction. Thus X × Y is not nearly 1 1

2 -starcompact.
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We end this section with the following theorem in which we observe that the nearly 1 1
2 -starcompact

property is an inverse invariant of certain mappings. We say that a mapping f : X→ Y is countable-to-one
if for each y ∈ Y, f−1(y) is countable.

Theorem 3.23. If f is an open, closed, and countable-to-one continuous mapping from a space X onto a nearly
1 1

2 -starcompact space Y, then X is nearly 1 1
2 -starcompact.

Proof. To show that X is nearly 1 1
2 -starcompact we pick an open cover U of X. Let y ∈ Y. Then we get a

finite subsetVy ofU such that f−1(y) ⊆ ∪Vy and f−1(y)∩U , ∅ for each U ∈ Vy because f−1(y) is compact.
We can obtain an open set Uy in Y containing y such that f−1(Uy) ⊆ ∪Vy since f is closed. Again since f
is open, there is an open set Vy in Y containing y such that Vy ⊆ ∩{ f (U) : U ∈ Vy} and f−1(Vy) ⊆ f−1(Uy).
Thus we obtain an open cover V = {Vy : y ∈ Y} of Y. Applying the nearly 1 1

2 -starcompact property of
Y we get a finite H ⊆ V and a countable B ⊆ Y such that Y \ B ⊆ St(∪H ,V). Let H = {Vyi : 1 ≤ i ≤ k},
W = ∪1≤i≤kVyi and A = f−1(B). It follows thatW is a finite subset ofU and since f is countable-to-one, A
is a countable subset of X. Proceeding similarly as in the proof of Theorem 3.19, one can readily observe
thatW and A witness forU that X is nearly 1 1

2 -starcompact.

4. Concluding remarks and open problems

In this article, we only consider the generalization (nearly 1 1
2 -starcompact property) of the 1 1

2 -starcompact
property. Similar types of investigations on the generalizations (nearly starcompact and nearly K -
starcompact property) of the starcompact and K -starcompact property can be carried out. Next, we
give definitions of these generalized properties.

Definition 4.1. A space X is said to be

(1) nearly starcompact if for every open coverU of X there exists a countable A ⊆ X and a finite F ⊆ X such
that X \ A ⊆ St(F,U).

(2) nearly K -starcompact if for every open cover U of X there exists a countable A ⊆ X and a compact
K ⊆ X such that X \ A ⊆ St(K,U).

In addition to Problem 1.1, we are not able to find answers to the following problems during the
preparation of this article.

Problem 4.2. Find conditions under which the 1 1
2 -starcompact and nearly 1 1

2 -starcompact property are equivalent.

Problem 4.3. Find conditions under which the nearly 1 1
2 -starcompact and star-Menger property are equivalent.

Problem 4.4. Is the space AD(X) of a nearly 1 1
2 -starcompact space X with e(X) < ω1 also nearly 1 1

2 -starcompact?
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[6] Lj.D.R. Kočinac, Star-Menger and related spaces, Publ. Math. Debrecen 55 (1999) 421–431.



N. Alam / Filomat 37:11 (2023), 3591–3599 3599

[7] Lj.D.R. Kočinac, Star selection principles: A survey, Khayyam J. Math. 1 (2015) 82–106.
[8] M.V. Matveev, How weak is weak extent?, Topology Appl. 119 (2002) 229–232.
[9] S. Mrówka, On completely regular spaces, Fund. Math. 41 (1954) 105–106.

[10] M. Sakai, Star versions of the Menger property, Topology Appl. 176 (2014) 22–34.
[11] Y.-K. Song, OnK -starcompact spaces, Bull. Malays. Math. Sci. Soc. 30(1) (2007) 59–64.
[12] Y.-K. Song, R. Li, A note on star-Hurewicz spaces, Filomat 27(6) (2013) 1091–1095.
[13] Y.-K. Song, Remarks on star-Menger spaces II, Houston J. Math. 41 (2015) 357–366.
[14] Y.-K. Song, On star-K-Hurewicz spaces, Filomat 31 (2017) 1279–1285.
[15] E.K. van Douwen, G.M. Reed, A.W. Roscoe, I.J. Tree, Star covering properties, Topology Appl. 39 (1991) 71–103.
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