Bounded factorization property for ℓ-Köthe spaces

Murat Hayrettin Yurdakula ${ }^{\text {a,* }, ~ E m r e ~ T a s ̧ t u ̈ n e r ~}{ }^{\text {a }}$
${ }^{a}$ Middle East Technical University

Abstract

Let ℓ denote a Banach sequence space with a monotone norm in which the canonical system $\left(e_{n}\right)_{n}$ is an unconditional basis. We show that the existence of an unbounded continuous linear operator T between ℓ-Köthe spaces $\lambda^{\ell}(A)$ and $\lambda^{\ell}(C)$ which factors through a third ℓ-Köthe space $\lambda^{\ell}(B)$ causes the existence of an unbounded continuous quasidiagonal operator from $\lambda^{\ell}(A)$ into $\lambda^{\ell}(C)$ factoring through $\lambda^{\ell}(B)$ as a product of two continuous quasidiagonal operators. Using this result, we study when the triple $\left(\lambda^{\ell}(A), \lambda^{\ell}(B), \lambda^{\ell}(C)\right)$ satisfies the bounded factorization property $\mathcal{B F}$ (which means that all continuous linear operators from $\lambda^{\ell}(A)$ into $\lambda^{\ell}(C)$ factoring through $\lambda^{\ell}(B)$ are bounded). As another application, we observe that the existence of an unbounded factorized operator for a triple of ℓ-Köthe spaces, under some additional assumptions, causes the existence of a common basic subspace at least for two of the spaces.

1. Introduction

Dragilev [3] and Nurlu [6] proved that if X and Y are nuclear ℓ_{1}-Köthe spaces and there exists a continuous linear unbounded operator $T: X \rightarrow Y$, then there exists a continuous unbounded quasidiagonal operator $D: X \rightarrow Y$. Djakov and Ramanujan [1] sharpened this result by omitting the nuclearity condition. The ℓ-Köthe version of that result in [1] has recently been obtained in [11] by Uyanık and Yurdakul.
On the other hand, Nurlu and Terzioğlu [7] proved (under some conditions) that the existence of an unbounded continuous linear operator between nuclear ℓ_{1}-Köthe spaces X and Y implies the existence of a common basic subspace of X and Y; this result was generalized by Djakov and Ramanujan [1] to the non-nuclear case (see [11] also). In these works, Dragilev's theorem plays a crucial role.
Zahariuta in [13] observed that if the matrices of ℓ_{1}-Köthe spaces X and Y satisfy the conditions d_{2}, d_{1}, respectively, then every continuous linear operator from X into Y is bounded. This phenomenon was studied extensively by many authors; the most comprehensive result is due to Vogt [12], where all pairs of Fréchet spaces with this property are characterized.
Terzioğlu and Zahariuta [10] characterized those triples (X, Y, Z) of Fréchet spaces such that each continuous linear operator $T: X \rightarrow Z$ which factors through Y is automatically bounded.
The aim of the present work is to prove a factorization analogue of Dragilev's theorem [3] and its generalizations [1,11]. Namely, we prove that if there is an unbounded continuous linear operator $T: \lambda^{\ell}(A) \rightarrow \lambda^{\ell}(C)$ which factors through $\lambda^{\ell}(B)$, then, in fact, there exists an unbounded continuous quasidiagonal operator $D: \lambda^{\ell}(A) \rightarrow \lambda^{\ell}(C)$ that factors through $\lambda^{\ell}(B)$ as a product of two continuous quasidiagonal operators.

[^0]Terzioğlu, Yurdakul and Zahariuta [9] obtained the ℓ_{1}-Köthe version of our result by using the characterization of the bounded factorization property [10]. Our proof is the factorized analogue of the proof of Proposition 1 in [1].
Using this result, we study when the triple $\left(\lambda^{\ell}(A), \lambda^{\ell}(B), \lambda^{\ell}(C)\right)$ satisfies the bounded factorization property. Also, exactly as in [9], we show that the existence of an unbounded factorized operator for a triple of ℓ-Köthe spaces causes that, under some additional conditions, these spaces (or at least two of them) have a common basic subspace.

2. Bounded factorization property and $\boldsymbol{\ell}$-Köthe spaces

We denote by $L(X, Y)$ and $L B(X, Y)$ the spaces of all continuous linear operators and of all bounded linear operators from the locally convex space X into the locally convex space Y. If for each $S \in L(X, Y)$ and $R \in L(Y, Z)$ we have $T=R S \in L B(X, Z)$, we say (X, Y, Z) has the bounded factorization property and write $(X, Y, Z) \in \mathcal{B F}$ [10]. We simply write $(X, Y) \in \mathcal{B}$ when $L(X, Y)=L B(X, Y)$.
Notice that if $(X, Y) \in \mathcal{B}$ or $(Y, Z) \in \mathcal{B}$, then $(X, Y, Z) \in \mathcal{B F}$; and if $(X, Z) \in \mathcal{B}$, then $(X, Y, Z) \in \mathcal{B F}$ for any Y. The bounded factorization property is essential in the isomorphic classification of Cartesian products of locally convex spaces. See for example [2].
Dealing with several Fréchet spaces we always use the same notation $\left\{|\cdot|_{p}, p \in \mathbf{N}\right\}$ for a system of seminorms defining their topologies and $\left\{\left.|\cdot|\right|_{p} ^{*}, p \in \mathbf{N}\right\}$ for the corresponding system of polar norms in the dual spaces. For any operator $T \in L(E, F)$ we consider the following operator seminorms

$$
|T|_{p, q}=\sup \left\{|T x|_{p}:|x|_{q} \leq 1\right\}, \quad p, q \in \mathbf{N},
$$

which may take the value $+\infty$. In particular, for any one-dimensional operator $T=x^{\prime} \otimes y, x^{\prime} \in E^{\prime}, y \in F$, we have $|T|_{p, q}=\left|x^{\prime}\right|_{\sigma}^{*} \cdot|y|_{p}$. Notice that $T \in L(E, F)$ means that for some function $\sigma: \mathbb{N} \rightarrow \mathbb{N}$, we have $|T|_{p, \sigma(p)}<\infty$ for every $p \in \mathbb{N}$. Also T is bounded (i.e. $T \in L B(E, F)$) if there exists $r \in \mathbb{N}$ such that $|T|_{q, r}<\infty$ for every $q \in \mathbb{N}$.
Following [4], we denote by ℓ a Banach sequence space in which the canonical system $\left(e_{n}\right)_{n}$ is an unconditional basis. The norm $\|\cdot\|$ is called monotone if $\|x\| \leq\|y\|$ whenever $\left|x_{n}\right| \leq\left|y_{n}\right|, x=\left(x_{n}\right)_{n}, y=\left(y_{n}\right)_{n} \in \ell$, $n \in \mathbb{N}$. Let Λ be the class of such spaces with monotone norm. In particular, $\ell_{p}, c_{0} \in \Lambda$.
It is known that every Banach space with an unconditional basis $\left(x_{n}\right)_{n}$ has a monotone norm which is equivalent to its original norm.
Indeed, it is enough to put
$\|\cdot\|=\sup _{\mid x_{n} \leq 1}\left|\sum_{n} x_{n}{ }^{\prime}(.) \alpha_{n} x_{n}\right|$, where $|$.$| is the original norm of the Banach space and x_{n}{ }^{\prime}$ is the coefficient functional corresponding to x_{n} for each $n \in \mathbb{N}$.
Let $\ell \in \Lambda$ and $\|$.$\| be a monotone norm in \ell$.
If $A=\left(a_{n}^{k}\right)$ is a Köthe matrix, the ℓ-Köthe space $\lambda^{\ell}(A)$ is the Fréchet space of all sequences of scalars $\left(x_{n}\right)$ such that $\left(x_{n} a_{n}^{k}\right) \in \ell$ for all $k \in \mathbb{N}$ with the topology generated by the seminorms $\left\|\left(x_{n}\right)\right\|_{k}=\left\|\left(x_{n} a_{n}^{k}\right)\right\|, k \in \mathbb{N}$. Notice that $\left\|e_{n}\right\|_{k}=a_{n}^{k}, n, k \in \mathbb{N}$. We always assume that the matrix $A=\left(a_{n}^{k}\right)$ satisfies $a_{n}^{k} \leq a_{n}^{k+1}, n, k \in \mathbb{N}$. An operator $T \in L\left(\lambda^{\ell}(A), \lambda^{\ell}(B)\right)$ is quasidiagonal if $T\left(e_{n}\right)=t_{n} e_{\sigma(n)}, n \in \mathbb{N}$, for some bijective map $\sigma: \mathbb{N} \rightarrow \mathbb{N}$ and scalar sequence $\left(t_{n}\right)$.

3. Main Results

Our main result characterizes the bounded factorization property for triples of ℓ-Köthe spaces in terms of quasidiagonal operators, which is a natural generalization of Dragilev's theorem [1, 3, 11].

Proposition 3.1. If $\left(\lambda^{\ell}(A), \lambda^{\ell}(B), \lambda^{\ell}(C)\right) \notin \mathcal{B F}$, then there are continuous quasidiagonal operators $D_{1}: \lambda^{\ell}(A) \rightarrow \lambda^{\ell}(B)$ and $D_{2}: \lambda^{\ell}(B) \rightarrow \lambda^{\ell}(C)$ such that $D=D_{2} D_{1}$ is unbounded.

Proof. Let $T=R S: \lambda^{\ell}(A) \rightarrow \lambda^{\ell}(C)$ be a linear continuous unbounded operator which factors through $\lambda^{\ell}(B)$. Then $R: \lambda^{\ell}(B) \rightarrow \lambda^{\ell}(C)$ is also unbounded, because otherwise T would be bounded. Now, we want to argue according to the following observation in the spirit of the lemma in [8]:
Let U_{k}, V_{k}, W_{k} denote the closed unit balls defined by the $k^{\text {th }}$ seminorms on $\lambda^{\ell}(A), \lambda^{\ell}(B), \lambda^{\ell}(C)$, respectively. We start with an arbitrary ball W_{1} in $\lambda^{\ell}(C)$. Using the continuity of R we find a ball V_{1} in $\lambda^{\ell}(B)$ such that $R\left(V_{1}\right) \subset W_{1}$, and by the continuity of S we find a ball U_{1} in $\lambda^{\ell}(A)$ such that $S\left(U_{1}\right) \subset V_{1}$. Since R is unbounded, $R\left(V_{1}\right)$ is not absorbed by, say, the ball W_{2} contained in W_{1} and so $T\left(U_{1}\right)$ is not absorbed by W_{2}. For this W_{2}, we use the continuity of R to find a ball $V_{2} \subset V_{1}$ in $\lambda^{\ell}(B)$ and the continuity of S to find a ball $U_{2} \subset U_{1}$ in $\lambda^{\ell}(A)$ such that $R\left(V_{2}\right) \subset W_{2}$ and $S\left(U_{2}\right) \subset V_{2}$. Since $R\left(V_{2}\right)$ is not a bounded set, we can find a ball, say, W_{3} in $\lambda^{\ell}(C)$ such that $R\left(V_{2}\right) \not \subset \lambda W_{3}$ for all $\lambda>0$. Hence, using the continuities of R and S and unboundedness of R alternately, we find decreasing sequences of balls $\left(U_{k}\right)_{k},\left(V_{k}\right)_{k},\left(W_{k}\right)_{k}$ in $\lambda^{\ell}(A), \lambda^{\ell}(B), \lambda^{\ell}(C)$, respectively, such that $R\left(V_{k}\right) \subset W_{k}, S\left(U_{k}\right) \subset V_{k}$ and $T\left(U_{k}\right) \not \subset \lambda W_{k+1}$ for all $k \in \mathbb{N}$.
Keeping the observation above in our minds, without loss of generality, we may assume that
(i) $\|T x\|_{k} \leq \frac{1}{2^{k}}\|x\|_{k}$ for all $x \in \lambda^{\ell}(A), k=1,2,3, \ldots$
(ii) $\sup _{n} \frac{\left\|T e_{n}\right\|_{k+1}}{\left\|e_{n}\right\|_{k}}=\infty, k=1,2,3, \ldots$
(iii) $\sup _{\ell} \frac{\left\|R \widetilde{e_{\ell}}\right\|_{k+1}}{\left\|\widetilde{e_{\ell}}\right\|_{k}}=\infty, k=1,2,3, \ldots$
where $\left(e_{n}\right)_{n},\left(\widetilde{e_{\ell}}\right)_{\ell}$ and $\left(\widetilde{\tilde{e}_{v}}\right)_{v}$ denote the canonical bases in $\lambda^{\ell}(A), \lambda^{\ell}(B)$ and $\lambda^{\ell}(C)$, respectively.
Indeed, one may obtain these by using appropriate multipliers and passing to a subsequence of seminorms, if necessary.
Let $\left(k_{j}\right)_{j}$ be a sequence of integers such that each k appears in it infinitely many times and in view of (ii) choose inductively an increasing subsequence $\left(n_{j}\right)_{j}$ such that
(iv) $\frac{\left\|T e_{n_{j}}\right\|_{k_{j}+1}}{\left\|e_{n_{j}}\right\|_{k_{j}}} \geq 2^{j}$ for all j.

Let $S\left(e_{n}\right)=\sum_{\ell} \widetilde{\theta}_{n \ell} \widetilde{e}_{\ell}$ and $R\left(\widetilde{e}_{\ell}\right)=\sum_{v} \theta_{\ell v} \widetilde{\widetilde{e}}_{v}$.
Then $T\left(e_{n}\right)=\sum_{\ell} \widetilde{\theta}_{n \ell} R\left(\widetilde{e}_{\ell}\right)=\sum_{\ell} \widetilde{\theta}_{n \ell}\left(\theta_{\ell 1}, \theta_{\ell 2}, \theta_{\ell 3}, \ldots\right)$
So, $T\left(e_{n}\right)=\left(\widetilde{\theta}_{n 1} \theta_{11}, \widetilde{\theta}_{n 1} \theta_{12}, \widetilde{\theta}_{n 1} \theta_{13}, \ldots\right)+\left(\widetilde{\theta}_{n 2} \theta_{21}, \widetilde{\theta}_{n 2} \theta_{22}, \widetilde{\theta}_{n 2} \theta_{23}, \ldots\right)+\ldots=\left(\sum_{\ell} \widetilde{\theta}_{n \ell} \theta_{\ell 1}, \sum_{\ell} \widetilde{\theta}_{n \ell} \theta_{\ell 2}, \sum_{\ell} \widetilde{\theta}_{n \ell} \theta_{\ell 3}, \ldots\right)$
i.e. $T\left(e_{n}\right)=\sum_{v}\left(\sum_{\ell} \widetilde{\theta}_{n \ell} \theta_{\ell v}\right) \widetilde{\widetilde{e}}_{v}$.

Consider
$\sup _{\left|\alpha_{v}\right| \leq 1}\left|\sum_{v}\left(\sum_{\ell} \widetilde{\theta}_{n \ell} \theta_{\ell v}\right) \alpha_{v}\left(\sup _{k} \frac{c_{v}^{k}}{b_{\ell}^{k}}\right)\left(\sup _{k} \frac{b_{\ell}^{k}}{a_{n}^{k}}\right) \widetilde{\widetilde{e}_{v}}\right| \leq \sup _{\left|\alpha_{v}\right| \leq 1}\left|\sum_{v}\left(\sum_{\ell} \widetilde{\theta}_{n \ell} \theta_{\ell v}\right) \alpha_{v} \sum_{k} \frac{c_{v}^{k}}{a_{n}^{k}} \widetilde{\widetilde{e}}_{v}\right|$
$\leq \sum_{k} \frac{1}{a_{n}^{k}} \sup _{\left|\alpha_{v}\right| \leq 1}\left|\sum_{v}\left(\sum_{\ell} \widetilde{\theta}_{n \ell} \theta_{\ell v}\right) \alpha_{v} c_{v}^{k} \widetilde{\widetilde{e}_{v}}\right| \leq \sum_{k} \frac{\left\|T e_{n}\right\|_{k}}{\left\|e_{n}\right\|_{k}} \leq \sum_{k} \frac{1}{2^{k}} \leq 1$.
Thus, for each $j=1,2, \ldots$, we obtain in view of (iv)
(v) $\sup _{\left|\alpha_{v}\right| \leq 1}\left|\sum_{v}\left(\sum_{\ell} \widetilde{\theta}_{n_{j} \ell} \theta_{\ell v}\right) \alpha_{v}\left(\sup _{k} \frac{c_{v}^{k}}{b_{\ell}^{k}}\right)\left(\sup _{k} \frac{b_{\ell}^{k}}{a_{n_{j}}^{k}}\right) \widetilde{\widetilde{e}_{v}}\right| \leq 1 \leq 2^{-j} \sup _{\left|\alpha_{v}\right| \leq 1}\left|\sum_{v}\left(\sum_{\ell} \widetilde{\theta}_{n_{j} \ell} \theta_{\ell v}\right) \alpha_{v} \frac{c_{v}^{k_{j}+1}}{a_{n_{j}}^{k_{j}}} \widetilde{\widetilde{e}}_{v}\right|$.

Hence, there is v_{j} such that
(vi) $\left(\sup _{k} \frac{c_{v_{j}}^{k}}{b_{\ell}^{k}}\right)\left(\sup _{k} \frac{b_{\ell}^{k}}{a_{n_{j}}^{k}}\right) \leq \frac{1}{2^{j}} \frac{c_{v_{j}}^{k_{j}+1}}{a_{n_{j}}^{k_{j}}}$

Otherwise, we obtain a contradiction to (v) by monotonicity of $\|$.$\| .$
Notice that (vi) holds for any ℓ.

Because of (iii) we would choose inductively an increasing subsequence $\left(\ell_{j}\right)$ such that $\frac{\left\|R \widetilde{e}_{\ell_{j}}\right\|_{k_{j}+1}}{\left\|\widetilde{e}_{\ell_{j}}\right\|_{k_{j}}} \geq 2^{j}$ for all $j=1,2, \ldots$.
Let $\lambda_{j}=\sup _{k} \frac{c_{v_{j}}^{k}}{b_{\ell_{j}}^{k}}, \mu_{j}=\sup _{k} \frac{b_{\ell_{j}}^{k}}{a_{n_{j}}^{k}}$ so that
(vii) $\lambda_{j} \mu_{j} \leq \frac{1}{2^{j}} \frac{c_{v_{j}}^{k_{j}+1}}{a_{n_{j}}^{k_{j}}}$.

Consider the quasidiagonal operator $D_{1}: \lambda^{\ell}(A) \rightarrow \lambda^{\ell}(B)$ defined by
$D_{1} e_{n_{j}}=\mu_{j}^{-1} \widetilde{e}_{\ell_{j}}, j=1,2, \ldots ; D_{1} e_{n}=0$ if $n \neq n_{j}$, and the quasidiagonal operator $D_{2}: \lambda^{\ell}(B) \rightarrow \lambda^{\ell}(C)$ defined by $D_{2} \widetilde{e}_{\ell}=\lambda_{j}{ }^{-} \widetilde{\widetilde{e}}_{v_{j}}, j=1,2, \ldots ; D_{2} \widetilde{e}_{\ell}=0$ if $\ell \neq \ell$.
Hence, the quasidiagonal operator $D: \lambda^{\ell}(A) \rightarrow \lambda^{\ell}(C)$ is defined by
$D e_{n_{j}}=D_{2} D_{1} e_{n_{j}}=\left(\lambda_{j} \mu_{j}\right)^{-1} \widetilde{\widetilde{e}}_{v_{j}}=\left(\sup _{k} \frac{c_{v_{j}}^{k}}{a_{n_{j}}^{k}}\right)^{-1} \widetilde{\widetilde{e}}_{v_{j}}=: t_{j}^{-1} \widetilde{\widetilde{e}}_{v_{j}}, j=1,2, \ldots ; D e_{n}=0$ if $n \neq n_{j}$.
If $x=\sum_{j} x_{n_{j}} e_{n_{j}} \in \lambda^{\ell}(A)$, then $D_{1} x=\sum_{j} x_{n_{j}}\left(\mu_{j}\right)^{-1} \widetilde{\mathcal{e}}_{\ell_{j}}$.
Since $\left|x_{n_{j}}\left(\mu_{j}\right)^{-1} b_{\ell_{j}}^{k}\right| \leq\left|x_{n_{j}} a_{n_{j}}^{k}\right|$ for all j, by monotonicity of $\|$.$\| , we obtain that \left\|\left(x_{n_{j}}\left(\mu_{j}\right)^{-1} b_{\ell_{j}}^{k}\right)\right\| \leq\left\|\left(x_{n_{j}} a_{n_{j}}^{k}\right)\right\|$, i.e.
$\left\|D_{1} x\right\|_{k} \leq\|x\|_{k}$ for all k. Hence, D_{1} is continuous.
If $x=\sum_{j} x_{\ell_{j}} \widetilde{e}_{\ell_{j}} \in \lambda^{\ell}(B)$, then $D_{2} x=\sum_{j} x_{\ell_{j}}\left(\lambda_{j}\right)^{-1} \dot{\widetilde{\mathcal{e}}}_{v_{j}}$.
Since $\left|x_{\ell_{j}}\left(\lambda_{j}\right)^{-1} c_{v_{j}}^{k}\right| \leq\left|x_{\ell_{j}} b_{\ell_{j}}^{k}\right|$ for all j, by monotonicity of $\|$.$\| , we obtain that \left\|\left(x_{\ell_{j}}\left(\lambda_{j}\right)^{-1} c_{v_{j}}^{k}\right)\right\| \leq\left\|\left(x_{\ell_{j}} b_{\ell_{j}}^{k}\right)\right\|$, i.e. $\left\|D_{2} x\right\|_{k} \leq\|x\|_{k}$ for all k. Hence, D_{2} is continuous. So, D is continuous (or it can be shown similarly).
In addition, D is unbounded, because if k is fixed, then for some subsequence $\left(j_{s}\right)$ we have $k_{j_{s}}=k$, $s=1,2,3, \ldots$ and by (vii), $\frac{\left\|D e_{n_{j s}}\right\|_{k+1}}{\left\|e_{n_{j s}}\right\|_{k}} \geq 2^{j_{s}} \rightarrow \infty$ as $s \rightarrow \infty$.

The next theorem gives a necessary and sufficient condition for $\left(\lambda^{\ell}(A), \lambda^{\ell}(B), \lambda^{\ell}(C)\right) \in \mathcal{B F}$. Formally in ℓ_{1}-Köthe case this condition coincides with the one given by Terzioğlu, Zahariuta (see [10], Theorem 3.5), but its sufficiency in our case cannot be obtained directly for a general map, since continuity at any e_{n} does not imply continuity at $x \in \lambda^{\ell}(A)$. Proposition 3.1 gets rid of this difficulty.

Theorem 3.2. We have $\left(\lambda^{\ell}(A), \lambda^{\ell}(B), \lambda^{\ell}(C)\right) \in \mathcal{B \mathcal { F }}$ if and only if for each non-decreasing map $\pi: \mathbb{N} \rightarrow \mathbb{N}$ there exists $r \in \mathbb{N}$ such that for all $q \in \mathbb{N}$ there exist $s \in \mathbb{N}$ and $C>0$ so that the inequality
(viii) $\frac{c_{i}^{q}}{a_{j}^{r}} \leq C \max _{k=1, \ldots, s}\left(\frac{c_{i}^{k}}{b_{v}^{\pi(k)}}\right) \max _{k=1, \ldots, s}\left(\frac{b_{v}^{k}}{a_{j}^{\pi(k)}}\right)$ holds for all $i, j, v \in \mathbb{N}$.

Notice that Theorem 3.2 above is the factorized analogue of Theorem 2.2 in [11]. In its proof we will use the following result from [10].

Proposition 3.3. For Fréchet spaces E, F, G we have $(E, G, F) \in \mathcal{B F}$ if and only if for each non-decreasing map $\pi: \mathbb{N} \rightarrow \mathbb{N}$ there exists $r \in \mathbb{N}$ such that for all $q \in \mathbb{N}$ there exist $s=s(q) \in \mathbb{N}$ and $C=C(q)>0$ so that the following inequality
$\|T\|_{q, r} \leq C \max _{k=1, \ldots, s}\left(\|R\|_{k, \pi(k)}\right) \max _{k=1, \ldots, s}\left(\|S\|_{k, \pi(k)}\right)$
is satisfied for every $R \in L(G, F), S \in L(E, G)$ where $T=R S$.

Now we are ready to prove Theorem 3.2.
Proof. Suppose $\left(\lambda^{\ell}(A), \lambda^{\ell}(B), \lambda^{\ell}(C)\right) \in \mathcal{B F}$.
Let $R=e_{v}^{\prime} \otimes e_{i}, S=e_{j}^{\prime} \otimes e_{v}$ so that $T=R S=e_{j}^{\prime} \otimes e_{i}$ is an operator of rank one. Note that
$\|R\|_{k, \pi(k)}=\frac{c_{i}^{k}}{b_{v}^{\pi(k)}},\|S\|_{k, \pi(k)}=\frac{b_{v}^{k}}{a_{j}^{\pi(k)}}$, and $\|T\|_{q, r}=\frac{c_{i}^{q}}{a_{j}^{r}}$.
Then results follows from Proposition 3.3 above.
In view of Proposition 3.1 it is enough to prove the converse for quasidiagonal operators.
Let $S\left(e_{j}\right)=s_{j} \widetilde{e}_{v(j)}, R\left(\widetilde{e}_{v}\right)=t_{v} \widetilde{\widetilde{e}}_{i(v)}$, and $T\left(e_{j}\right)=R S\left(e_{j}\right)=s_{j} t_{v(j)} \widetilde{\widetilde{e}}_{i(v(j))}, j \in \mathbb{N}$ define a continuous quasidiagonal operator on $\lambda^{\ell}(A)$ to $\lambda^{\ell}(C)$ which factors through $\lambda^{\ell}(B)$.
We determine $\pi: \mathbb{N} \rightarrow \mathbb{N}$ such that $\|S\|_{k, \pi(k)}<\infty$ and $\|R\|_{k, \pi(k)}<\infty$ for each $k \in \mathbb{N}$ (Remember our observation at the beginning of the proof of our Proposition 3.1) and find $r \in \mathbb{N}$ such that for every q there exists $C>0$ and $s \in \mathbb{N}$ so that the relation (viii) holds. We observe that
$\|T\|_{q, r}=\sup _{j} \frac{\left|s_{j} \| t_{v(j)}\right| c_{i(v(j))}^{q}}{a_{j}^{r}}$,
$\|S\|_{k, \pi(k)}=\sup _{j} \frac{\left|s_{j}\right| b_{v(j)}^{k}}{a_{j}^{\pi(k)}}$ and $\|R\|_{k, \pi(k)}=\sup _{j} \frac{\left|t_{v(j)}\right| c_{i(v(j))}^{k}}{b_{v(j)}^{\pi(k)}}$.
Then, using (viii) we get
$\|T\|_{q, r}=\sup _{j} \frac{\left|s_{j}\right|\left|t_{v(j)}\right| c_{i(v(j))}^{q}}{a_{j}^{r}} \leq C \sup _{j}\left(\left|s_{j} \| t_{v(j)}\right| \max _{k=1, \ldots, s}\left(\frac{c_{i(v(j))}^{k}}{b_{v(j)}^{\pi(k)}}\right) \max _{k=1, \ldots, s}\left(\frac{b_{v(j)}^{k}}{a_{j}^{\pi(k)}}\right)\right)$
$\leq C \max _{k=1, \ldots, s}\left(\sup _{j} \frac{\left|t_{v(j)}\right| c_{i(v(j))}^{k}}{b_{v(j)}^{\pi(k)}}\right) \max _{k=1, \ldots, s}\left(\sup _{j} \frac{\left|s_{j}\right| b_{v(j)}^{k}}{a_{j}^{\pi(k)}}\right)$
$=C \max _{k=1, \ldots, s}\|R\|_{k, \pi(k)} \max _{k=1, \ldots, s}\|S\|_{k, \pi(k)}<\infty$.
Hence, T is bounded.

Vogt characterized the pairs $\left(\lambda(A), \lambda^{\infty}(B)\right) \in \mathcal{B}([12]:$ Satz 1.5). The relation $(\lambda(A), \lambda(B)) \in \mathcal{B}$ was investigated by a different approach in [1] and the relation $\left(\lambda^{\ell}(A), \lambda^{\ell}(B)\right) \in \mathcal{B}$ was obtained in [11] similarly. A complete characterization of this case is an immediate by-product of our previous theorem.

Corollary 3.4. We have $\left(\lambda^{\ell}(A), \lambda^{\ell}(B)\right) \in \mathcal{B}$ if and only if for each non-decreasing $\pi: \mathbb{N} \rightarrow \mathbb{N}$ there exists $r \in \mathbb{N}$ such that for each $q \in \mathbb{N}$ we can find $C>0$ and $s \in \mathbb{N}$ so that the inequality $\frac{b_{i}^{q}}{a_{j}^{r}} \leq C \max _{k=1, \ldots, s}\left(\frac{b_{i}^{k}}{a_{j}^{\pi(k)}}\right)$ holds for all $i, j \in \mathbb{N}$.

4. Common Subspaces

Following [9], we say that a pair (F, E) of Fréchet spaces satisfies the condition \mathcal{S} if there is a mapping $\tau: \mathbb{N} \rightarrow \mathbb{N}$ such that for each pair $p, r \in \mathbb{N}$ there exists a constant $C=C(p, r)$ such that the estimate
(ix) $\|T\|_{r, \tau(p)} \leq C \max \left(\|T\|_{\tau(p), p},\|T\|_{\tau(r), r}\right)$
holds for every one-dimensional operator $T=e^{\prime} \otimes f$, where $e^{\prime} \in E^{\prime}, f \in F$. A pair of ℓ-Köthe spaces $E=\lambda^{\ell}(A)$
and $F=\lambda^{\ell}(B)$ satisfies the condition \mathcal{S} if the condition (ix) holds for the operators $T=e_{i}^{\prime} \otimes e_{j}, i, j \in \mathbb{N}$ ([5]). If the estimate (ix) is true for arbitrary bounded operators $T \in L(E, F)$ then we write $(F, E) \in \overline{\mathcal{S}}$.
Again following [9], a triple of Frechet spaces (F, G, E) satisfies the condition $\mathcal{S F}$ (we then write $(F, G, E) \in$ $\mathcal{S F}$) if for any one-dimensional operator $T=R S$, with both $S \in L(E, G)$ and $R \in L(G, F)$ also one-dimensional, the inequality
(x) \|T\| $\|_{r, \tau(p)} \leq C \max \left(\|R\|_{\tau(p), p},\|R\|_{\tau(r), r}\right) \max \left(\|S\|_{\tau(p), p},\|S\|_{\tau(r), r}\right)$
holds with the same requisites as in (ix).
If the condition (x) holds for an arbitrary bounded operator $T=R S$, with $S \in L(E, G)$ and $R \in L(G, F)$ we will write $(F, G, E) \in \overline{\mathcal{S F}}$.
We note that if $E=G$ or $G=F$ the condition $(F, G, E) \in \mathcal{S F}$ reduces simply to $(F, E) \in \mathcal{S}$ as well as $(F, G, E) \in \overline{\mathcal{S} \mathcal{F}}$ does so to $(F, E) \in \overline{\mathcal{S}}$.
The following example shows that $\mathcal{S F}$ is strictly weaker than \mathcal{S}. Here we use the notation $\Lambda_{\alpha}(a)=$ $\lambda\left(\exp \left(\alpha_{p} a_{i}\right)\right)$ with $\alpha_{p} \nearrow \alpha \leq \infty, a=\left(a_{i}\right)$.
Notice that the finite type power series space $\Lambda_{1}(a)$ has d_{2}-matrix and infinite type power series space $\Lambda_{\infty}(a)$ has d_{1}-matrix.

Example 4.1. Let $a=\left(a_{i}\right)$ be a positive sequence increasing to ∞. Since $\left(\Lambda_{1}(a), \Lambda_{\infty}(a)\right) \in \mathcal{B}$ ([13]), we have $\left(\Lambda_{1}(a), \Lambda_{\infty}(a), \Lambda_{1}(a)\right) \in \mathcal{B F}$ trivially. So we have $\left(\Lambda_{1}(a), \Lambda_{\infty}(a), \Lambda_{1}(a)\right) \in \overline{\mathcal{S F}}$ (hence $\left.\left(\Lambda_{1}(a), \Lambda_{\infty}(a), \Lambda_{1}(a)\right) \in \mathcal{S F}\right)$ by Proposition 7 in [9].
However, $\left(\Lambda_{1}(a), \Lambda_{\infty}(a)\right) \notin \mathcal{S}$.

In what follows we shall denote by $\lambda^{\ell}(A)_{L}$ the basic subspace of an ℓ-Köthe space $\lambda^{\ell}(A)$ which is the closed linear envelope of $\left\{e_{n}: n \in L\right\}, L \subset \mathbb{N}$.
Suppose now $\left(\lambda^{\ell}(A), \lambda^{\ell}(B), \lambda^{\ell}(C)\right) \notin \mathcal{B F}$ and $\left(\lambda^{\ell}(C), \lambda^{\ell}(A)\right) \in \mathcal{S}$. By Proposition 3.1, we know that there are $S: \lambda^{\ell}(A) \rightarrow \lambda^{\ell}(B) ; S\left(e_{i}\right)=t_{i} \widetilde{e}_{\sigma(i)}, i \in \mathbb{N}$, and $R: \lambda^{\ell}(B) \rightarrow \lambda^{\ell}(C) ; R \widetilde{R}_{v}=s_{v} \widetilde{\bar{e}}_{\rho(v)}, v \in \mathbb{N}$, with some bijective maps σ and ρ on \mathbb{N} such that $T=R S$ is an unbounded quasidiagonal operator. By Corollary 2.3 in [11] (see also Proposition 3 in [1]) there exists infinite subsets J and I of \mathbb{N} such that T maps $\lambda^{\ell}(A)_{J}$ isomorphically onto $\lambda^{\ell}(C)_{I}$. Then one can easily check that for $N=\sigma(J)=\rho^{-1}(I)$ both $S: \lambda^{\ell}(A)_{J} \rightarrow \lambda^{\ell}(B)_{N}$ and $R: \lambda^{\ell}(B)_{N} \rightarrow \lambda^{\ell}(C)_{I}$ are also isomorphisms. We have therefore proved that:

Proposition 4.2. Suppose that $\left(\lambda^{\ell}(A), \lambda^{\ell}(B), \lambda^{\ell}(C)\right) \notin \mathcal{B F}$ and $\left(\lambda^{\ell}(C), \lambda^{\ell}(A)\right) \in \mathcal{S}$. Then there is a common basic subspace for all three spaces.

Now proceeding exactly as in [9], we consider a generalization of Djakov-Ramanujan's result ([1], Proposition 3) in the context of factorization.

Theorem 4.3. Suppose that $\left(\lambda^{\ell}(A), \lambda^{\ell}(B), \lambda^{\ell}(C)\right) \notin \mathcal{B F}$ and $\left(\lambda^{\ell}(C), \lambda^{\ell}(B), \lambda^{\ell}(A)\right) \in \mathcal{S F}$. Then one of the pairs $\left(\lambda^{\ell}(A), \lambda^{\ell}(B)\right)$ or $\left(\lambda^{\ell}(B), \lambda^{\ell}(C)\right)$ has a common basic subspace.

Proof. By Proposition 3.1, there exists quasidiagonal operators $S: \lambda^{\ell}(A) \rightarrow \lambda^{\ell}(B)$ and $R: \lambda^{\ell}(B) \rightarrow \lambda^{\ell}(C)$ with bijective σ and ρ (as above) such that $T=R S$ is unbounded. Without loss of generality we assume in what follows that all three operators are identity embeddings, since otherwise we can get this property by considering a new triple of ℓ-Köthe spaces obtained from the original one by some permutations and normalizations of their canonical bases (note that the property $\mathcal{S \mathcal { F }}$ is preserved under such reconstruction). When applied to the above embeddings, the condition $\mathcal{S F}$ gives the following:
there is a map $\tau: \mathbb{N} \rightarrow \mathbb{N}$ such that
(xi) $\frac{c_{i}^{r}}{a_{i}^{\tau(p)}} \leq C \max \left(\frac{b_{i}^{\tau(p)}}{a_{i}^{p}}, \frac{b_{i}^{\tau(r)}}{a_{i}^{r}}\right) \max \left(\frac{c_{i}^{\tau(p)}}{b_{i}^{p}}, \frac{c_{i}^{\tau(r)}}{b_{i}^{r}}\right)$ for all $p, r, i \in \mathbb{N}$ with some constant $C=C(p, r)$.

It now suffices to prove that there is an infinite set $I \subset \mathbb{N}$ such that $\lambda^{\ell}(A)_{I}=\lambda^{\ell}(B)_{I}$ or $\lambda^{\ell}(B)_{I}=\lambda^{\ell}(C)_{I}$. Suppose that this assertion is false. Then for each infinite set $I \subset \mathbb{N}$ and $m \in \mathbb{N}$ there is $r \geq m$ such that
(xii) $\liminf _{i \in \mathbb{I}} \frac{b_{i}^{\tau(r)}}{a_{i}^{r}}=\liminf _{i \in \mathbb{I}} \frac{c_{i}^{\tau(r)}}{b_{i}^{r}}=0$.

We define inductively the sets $N_{0} \supset N_{1} \supset \ldots$ by
(xiii) $N_{0}:=\mathbb{N}, N_{p}:=\left\{i \in N_{p-1}: \max \left(\frac{b_{i}^{\tau(p)}}{a_{i}^{p}}, \frac{c_{i}^{\tau(p)}}{b_{i}^{p}}\right) \geq 1\right\}, p \in \mathbb{N}$
with τ from (xi).
We claim that for each $p \in \mathbb{N}$ the embedding T is bounded on the basic subspace X_{p} of $\lambda^{\ell}(A)$ spanned by $\left\{e_{i}: i \in N_{p-1} \backslash N_{p}\right\}$. If that is not so, then for each $q \in \mathbb{N}$ there is an infinite subset $I_{q} \subset N_{p-1} \backslash N_{p}$ and $m(q) \in \mathbb{N}$ with
(xiv) $\lim _{i \in I_{q}} \frac{c_{i}^{m(q)}}{a_{i}^{q}}=\infty$.

For $I=I_{q}$ we find $r \geq m(q)$ such that (xii) holds.
Then there is an infinite set $J_{q} \subset I_{q}$ with
(xv) $\max \left(\frac{c_{i}^{\tau(r)}}{b_{i}^{r}}, \frac{b_{i}^{\tau(r)}}{a_{i}^{r}}\right)<1, i \in J_{q}$.

On the other hand, by (xiii) we have
(xvi) $\max \left(\frac{c_{i}^{\tau(p)}}{b_{i}^{p}}, \frac{b_{i}^{\tau(p)}}{a_{i}^{p}}\right)<1, i \in I_{q}$.

Applying now (xi) with $q=\tau(p)$ and r chosen above and taking into account the estimates (xv) and (xvi), we obtain $\frac{c_{i}^{r}}{a_{i}^{q}} \leq C$ for all $i \in J_{q}$, which contradicts (xiv).
This proves our claim that the embedding T is bounded on each X_{p}. Hence, for every $p \in \mathbb{N}$, the operator T must be unbounded on the basic subspace Y_{p} generated by $\left\{e_{i}: i \in N_{p}\right\}$, which, particularly, implies that N_{p} is an infinite set.
Now we construct a sequence $I=\left\{i_{p}\right\}$ so that $i_{p} \in N_{p}, i_{p+1} \neq i_{p}, p \in \mathbb{N}$.
Then due to (xiii), there is an infinite set $J \subset I$ such that at least one of the inequalities $a_{i}^{p} \leq b_{i}^{\tau(p)}$ or $b_{i}^{p} \leq c_{i}^{\tau(p)}$ holds for all $p \in \mathbb{N}$ and $i \in J$ such that $i \geq p$, which contradicts the assumption (xii). This completes the proof.

References

[1] P. B. Djakov, M. S. Ramanujan, Bounded and unbounded operators between Köthe spaces, Studia Math., 152 (2002), 11-31.
[2] P. Djakov, T. Terzioğlu, M. Yurdakul, V. Zahariuta, Bounded operators and isomorphisms of Cartesian products of Fréchet spaces, Mich. Math. J., 45 (3) (1998), 599-610.
[3] M.M. Dragilev, Riesz classes and multiple regular-bases, Func. Anal. and Func. Theory, Kharkov, 15 (1972), 65-77 (in Russian).
[4] M.M. Dragilev, Bases in Köthe spaces, Rostov, Russia: Rostov University Press, (1983).
[5] J. Krone, D. Vogt, The splitting relation for Köthe spaces, Math. Z. 190 (1985), 387-400.
[6] Z. Nurlu, On pairs of Köthe spaces between which all operators are compact, Math. Nachr. 122 (1985), 277-287.
[7] Z. Nurlu, T. Terzioğlu, Consequences of the existence of a non-compact operator between nuclear Köthe spaces, Manuscripta Math. 47 (1984), 1-12.
[8] T. Terzioğlu, M. Yurdakul, Restrictions of unbounded continuous linear operators on Fréchet spaces, Arch. Math. 46 (1986), 547-550.
[9] T. Terzioğlu, M. Yurdakul, V. Zahariuta, Factorization of unbounded operators on Köthe spaces, Studia Math. 161(I) (2004), 61-70.
[10] T. Terzioğlu, V. Zahariuta, Bounded factorization property for Fréchet spaces, Math. Nachr., 253 (2003), 1-11.
[11] E. Uyanık, M. Yurdakul, A remark on a paper of P.B. Djakov and M.S. Ramanujan, Turk J Math. 43 (2019), 2494-2498.
[12] D. Vogt, Frécheträume, zwischen denen jede stetige lineare Abbildung beschränkt ist, J.Reine. Angew. Math., 345 (1983), 182-200.
[13] V. Zahariuta, On the isomorphism of Cartesian products of locally convex spaces, Studia Math. 46 (1973), 201-221.

[^0]: 2020 Mathematics Subject Classification. Primary 46A45.
 Keywords. Locally convex spaces; Unbounded operators; ℓ-Köthe spaces; Bounded factorization property.
 Received: 08 March 2022; Accepted: 17 April 2022
 Communicated by Erdal Karapınar

 * Corresponding author: Murat Hayrettin Yurdakul

 Email addresses: myur@metu.edu.tr (Murat Hayrettin Yurdakul), tastuner@metu.edu.tr (Emre Taştüner)

