Filomat 37:11 (2023), 3631–3637 https://doi.org/10.2298/FIL2311631Y

Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

Bounded factorization property for *l*-Köthe spaces

Murat Hayrettin Yurdakul^{a,*}, Emre Taştüner^a

^aMiddle East Technical University

Abstract. Let ℓ denote a Banach sequence space with a monotone norm in which the canonical system $(e_n)_n$ is an unconditional basis. We show that the existence of an unbounded continuous linear operator T between ℓ -Köthe spaces $\lambda^{\ell}(A)$ and $\lambda^{\ell}(C)$ which factors through a third ℓ -Köthe space $\lambda^{\ell}(B)$ causes the existence of an unbounded continuous quasidiagonal operator from $\lambda^{\ell}(A)$ into $\lambda^{\ell}(C)$ factoring through $\lambda^{\ell}(B)$ as a product of two continuous quasidiagonal operators. Using this result, we study when the triple $(\lambda^{\ell}(A), \lambda^{\ell}(B), \lambda^{\ell}(C))$ satisfies the bounded factorization property \mathcal{BF} (which means that all continuous linear operators from $\lambda^{\ell}(A)$ into $\lambda^{\ell}(C)$ factoring through $\lambda^{\ell}(B)$ are bounded). As another application, we observe that the existence of an unbounded factorized operator for a triple of ℓ -Köthe spaces, under some additional assumptions, causes the existence of a common basic subspace at least for two of the spaces.

1. Introduction

Dragilev [3] and Nurlu [6] proved that if *X* and *Y* are nuclear ℓ_1 -Köthe spaces and there exists a continuous linear unbounded operator $T : X \to Y$, then there exists a continuous unbounded quasidiagonal operator $D : X \to Y$. Djakov and Ramanujan [1] sharpened this result by omitting the nuclearity condition. The ℓ -Köthe version of that result in [1] has recently been obtained in [11] by Uyanık and Yurdakul.

On the other hand, Nurlu and Terzioğlu [7] proved (under some conditions) that the existence of an unbounded continuous linear operator between nuclear ℓ_1 -Köthe spaces *X* and *Y* implies the existence of a common basic subspace of *X* and *Y*; this result was generalized by Djakov and Ramanujan [1] to the non-nuclear case (see [11] also). In these works, Dragilev's theorem plays a crucial role.

Zahariuta in [13] observed that if the matrices of ℓ_1 -Köthe spaces X and Y satisfy the conditions d_2 , d_1 , respectively, then every continuous linear operator from X into Y is bounded. This phenomenon was studied extensively by many authors; the most comprehensive result is due to Vogt [12], where all pairs of Fréchet spaces with this property are characterized.

Terzioğlu and Zahariuta [10] characterized those triples (*X*, *Y*, *Z*) of Fréchet spaces such that each continuous linear operator $T : X \rightarrow Z$ which factors through *Y* is automatically bounded.

The aim of the present work is to prove a factorization analogue of Dragilev's theorem [3] and its generalizations [1, 11]. Namely, we prove that if there is an unbounded continuous linear operator $T : \lambda^{\ell}(A) \to \lambda^{\ell}(C)$ which factors through $\lambda^{\ell}(B)$, then, in fact, there exists an unbounded continuous quasidiagonal operator $D : \lambda^{\ell}(A) \to \lambda^{\ell}(C)$ that factors through $\lambda^{\ell}(B)$ as a product of two continuous quasidiagonal operators.

²⁰²⁰ Mathematics Subject Classification. Primary 46A45.

Keywords. Locally convex spaces; Unbounded operators; *l*-Köthe spaces; Bounded factorization property.

Received: 08 March 2022; Accepted: 17 April 2022

Communicated by Erdal Karapınar

^{*} Corresponding author: Murat Hayrettin Yurdakul

Email addresses: myur@metu.edu.tr (Murat Hayrettin Yurdakul), tastuner@metu.edu.tr (Emre Taştüner)

Terzioğlu, Yurdakul and Zahariuta [9] obtained the ℓ_1 -Köthe version of our result by using the characterization of the bounded factorization property [10]. Our proof is the factorized analogue of the proof of Proposition 1 in [1].

Using this result, we study when the triple ($\lambda^{\ell}(A)$, $\lambda^{\ell}(B)$, $\lambda^{\ell}(C)$) satisfies the bounded factorization property. Also, exactly as in [9], we show that the existence of an unbounded factorized operator for a triple of ℓ -Köthe spaces causes that, under some additional conditions, these spaces (or at least two of them) have a common basic subspace.

2. Bounded factorization property and ℓ -Köthe spaces

We denote by L(X, Y) and LB(X, Y) the spaces of all continuous linear operators and of all bounded linear operators from the locally convex space X into the locally convex space Y. If for each $S \in L(X, Y)$ and $R \in L(Y, Z)$ we have $T = RS \in LB(X, Z)$, we say (X, Y, Z) has the *bounded factorization property* and write $(X, Y, Z) \in \mathcal{BF}$ [10]. We simply write $(X, Y) \in \mathcal{B}$ when L(X, Y) = LB(X, Y).

Notice that if $(X, Y) \in \mathcal{B}$ or $(Y, Z) \in \mathcal{B}$, then $(X, Y, Z) \in \mathcal{BF}$; and if $(X, Z) \in \mathcal{B}$, then $(X, Y, Z) \in \mathcal{BF}$ for any *Y*. The bounded factorization property is essential in the isomorphic classification of Cartesian products of locally convex spaces. See for example [2].

Dealing with several Fréchet spaces we always use the same notation $\{|\cdot|_p, p \in \mathbf{N}\}$ for a system of seminorms defining their topologies and $\{|\cdot|_p^*, p \in \mathbf{N}\}$ for the corresponding system of polar norms in the dual spaces. For any operator $T \in L(E, F)$ we consider the following operator seminorms

$$|T|_{p,q} = \sup\{|Tx|_p : |x|_q \le 1\}, p, q \in \mathbb{N},\$$

which may take the value $+\infty$. In particular, for any one-dimensional operator $T = x' \otimes y, x' \in E', y \in F$, we have $|T|_{p,q} = |x'|_q^* \cdot |y|_p$. Notice that $T \in L(E, F)$ means that for some function $\sigma : \mathbb{N} \to \mathbb{N}$, we have $|T|_{p,\sigma(p)} < \infty$ for every $p \in \mathbb{N}$. Also *T* is bounded (i.e. $T \in LB(E, F)$) if there exists $r \in \mathbb{N}$ such that $|T|_{q,r} < \infty$ for every $q \in \mathbb{N}$.

Following [4], we denote by ℓ a Banach sequence space in which the canonical system $(e_n)_n$ is an unconditional basis. The norm $\|\cdot\|$ is called monotone if $\|x\| \le \|y\|$ whenever $|x_n| \le |y_n|$, $x = (x_n)_n$, $y = (y_n)_n \in \ell$, $n \in \mathbb{N}$. Let Λ be the class of such spaces with monotone norm. In particular, ℓ_p , $c_0 \in \Lambda$.

It is known that every Banach space with an unconditional basis $(x_n)_n$ has a monotone norm which is equivalent to its original norm.

Indeed, it is enough to put

 $\|.\| = \sup_{|\alpha_n| \le 1} \left| \sum_n x_n'(.)\alpha_n x_n \right|$, where |.| is the original norm of the Banach space and x_n' is the coefficient func-

tional corresponding to x_n for each $n \in \mathbb{N}$.

Let $\ell \in \Lambda$ and $\|.\|$ be a monotone norm in ℓ .

If $A = (a_n^k)$ is a Köthe matrix, the ℓ -Köthe space $\lambda^{\ell}(A)$ is the Fréchet space of all sequences of scalars (x_n) such that $(x_n a_n^k) \in \ell$ for all $k \in \mathbb{N}$ with the topology generated by the seminorms $||(x_n)||_k = ||(x_n a_n^k)||, k \in \mathbb{N}$. Notice that $||e_n||_k = a_n^k, n, k \in \mathbb{N}$. We always assume that the matrix $A = (a_n^k)$ satisfies $a_n^k \leq a_n^{k+1}, n, k \in \mathbb{N}$. An operator $T \in L(\lambda^{\ell}(A), \lambda^{\ell}(B))$ is quasidiagonal if $T(e_n) = t_n e_{\sigma(n)}, n \in \mathbb{N}$, for some bijective map $\sigma : \mathbb{N} \to \mathbb{N}$ and scalar sequence (t_n) .

3. Main Results

Our main result characterizes the bounded factorization property for triples of ℓ -Köthe spaces in terms of quasidiagonal operators, which is a natural generalization of Dragilev's theorem [1, 3, 11].

Proposition 3.1. If $(\lambda^{\ell}(A), \lambda^{\ell}(B), \lambda^{\ell}(C)) \notin \mathcal{BF}$, then there are continuous quasidiagonal operators $D_1 : \lambda^{\ell}(A) \to \lambda^{\ell}(B)$ and $D_2 : \lambda^{\ell}(B) \to \lambda^{\ell}(C)$ such that $D = D_2D_1$ is unbounded.

Proof. Let $T = RS : \lambda^{\ell}(A) \to \lambda^{\ell}(C)$ be a linear continuous unbounded operator which factors through $\lambda^{\ell}(B)$. Then $R : \lambda^{\ell}(B) \to \lambda^{\ell}(C)$ is also unbounded, because otherwise *T* would be bounded. Now, we want to argue according to the following observation in the spirit of the lemma in [8]:

Let U_k , V_k , W_k denote the closed unit balls defined by the k^{th} seminorms on $\lambda^{\ell}(A)$, $\lambda^{\ell}(B)$, $\lambda^{\ell}(C)$, respectively. We start with an arbitrary ball W_1 in $\lambda^{\ell}(C)$. Using the continuity of R we find a ball V_1 in $\lambda^{\ell}(B)$ such that $R(V_1) \subset W_1$, and by the continuity of S we find a ball U_1 in $\lambda^{\ell}(A)$ such that $S(U_1) \subset V_1$. Since R is unbounded, $R(V_1)$ is not absorbed by, say, the ball W_2 contained in W_1 and so $T(U_1)$ is not absorbed by W_2 . For this W_2 , we use the continuity of R to find a ball $V_2 \subset V_1$ in $\lambda^{\ell}(B)$ and the continuity of S to find a ball $U_2 \subset U_1$ in $\lambda^{\ell}(A)$ such that $R(V_2) \subset W_2$ and $S(U_2) \subset V_2$. Since $R(V_2)$ is not a bounded set, we can find a ball, say, W_3 in $\lambda^{\ell}(C)$ such that $R(V_2) \notin \lambda W_3$ for all $\lambda > 0$. Hence, using the continuities of R and S and unboundedness of R alternately, we find decreasing sequences of balls $(U_k)_k, (V_k)_k, (W_k)_k$ in $\lambda^{\ell}(A), \lambda^{\ell}(B), \lambda^{\ell}(C)$, respectively, such that $R(V_k) \subset W_k, S(U_k) \subset V_k$ and $T(U_k) \notin \lambda W_{k+1}$ for all $k \in \mathbb{N}$.

Keeping the observation above in our minds, without loss of generality, we may assume that (i) $||Tx||_k \leq \frac{1}{2^k} ||x||_k$ for all $x \in \lambda^{\ell}(A)$, k = 1, 2, 3, ...

(ii)
$$\sup_{n} \frac{||Te_{n}^{-}||_{k+1}}{||e_{n}||_{k}} = \infty, k = 1, 2, 3, ...$$

(iii) $\sup_{\ell} \frac{||R\tilde{e_{\ell}}||_{k+1}}{||\tilde{e_{\ell}}||_{k}} = \infty, k = 1, 2, 3, ...$

where $(e_n)_n$, $(\tilde{e_\ell})_\ell$ and $(\tilde{e_v})_v$ denote the canonical bases in $\lambda^\ell(A)$, $\lambda^\ell(B)$ and $\lambda^\ell(C)$, respectively.

Indeed, one may obtain these by using appropriate multipliers and passing to a subsequence of seminorms, if necessary.

Let $(k_j)_j$ be a sequence of integers such that each k appears in it infinitely many times and in view of (ii) choose inductively an increasing subsequence $(n_j)_j$ such that

$$\begin{split} &(\mathrm{iv}) \frac{\|I^{e_{n,j}\|k_{j}+1}}{\|k_{n,j}\|k_{j}} \geq 2^{j} \text{ for all } j. \\ &\mathrm{Let } S(e_{n}) = \sum_{\ell} \widetilde{\theta}_{n\ell} \widetilde{e}_{\ell} \text{ and } R(\widetilde{e}_{\ell}) = \sum_{v} \theta_{\ell v} \widetilde{\widetilde{e}_{v}}. \\ &\mathrm{Then } T(e_{n}) = \sum_{\ell} \widetilde{\theta}_{n\ell} R(\widetilde{e}_{\ell}) = \sum_{\ell} \widetilde{\theta}_{n\ell} (\theta_{\ell 1}, \theta_{\ell 2}, \theta_{\ell 3}, \ldots) \\ &\mathrm{So}, T(e_{n}) = (\widetilde{\theta}_{n1} \theta_{11}, \widetilde{\theta}_{n1} \theta_{12}, \widetilde{\theta}_{n1} \theta_{13}, \ldots) + (\widetilde{\theta}_{n2} \theta_{21}, \widetilde{\theta}_{n2} \theta_{22}, \widetilde{\theta}_{n2} \theta_{23}, \ldots) + \ldots = \left(\sum_{\ell} \widetilde{\theta}_{n\ell} \theta_{\ell 1}, \sum_{\ell} \widetilde{\theta}_{n\ell} \theta_{\ell 2}, \sum_{\ell} \widetilde{\theta}_{n\ell} \theta_{\ell 3}, \ldots\right) \\ &\mathrm{ie. } T(e_{n}) = \sum_{v} \left(\sum_{\ell} \widetilde{\theta}_{n\ell} \theta_{\ell v}\right) \widetilde{e}_{v}. \\ &\mathrm{Consider} \\ &\sup_{|k_{n}|\leq 1} \left|\sum_{v} \left(\sum_{\ell} \widetilde{\theta}_{n\ell} \theta_{\ell v}\right) \alpha_{v} \left(\sup_{k} \frac{c_{v}^{k}}{b_{\ell}^{k}}\right) \left|\left(\sup_{k} \frac{b_{\ell}^{k}}{a_{n}^{k}}\right) \widetilde{e}_{v}\right| \leq \sup_{|k_{v}|\leq 1} \left|\sum_{v} \left(\sum_{\ell} \widetilde{\theta}_{n\ell} \theta_{\ell v}\right) \alpha_{v} \sum_{k} \frac{c_{v}^{k}}{a_{n}^{k}} \widetilde{e}_{v}\right| \\ &\leq \sum_{k} \frac{1}{a_{n}^{k}} \sup_{|k_{v}|\leq 1} \left|\sum_{v} \left(\sum_{\ell} \widetilde{\theta}_{n\ell} \theta_{\ell v}\right) \alpha_{v} c_{v} c_{v}^{k} \widetilde{e}_{v}^{k}\right| \leq \sum_{k} \frac{||Te_{n}||_{k}}{||e_{n}||_{k}} \leq \sum_{k} \frac{1}{2^{k}} \leq 1. \\ &\mathrm{Thus, for each } j = 1, 2, \ldots, we obtain in view of (iv) \\ &(\mathrm{v}) \sup_{|k_{v}|\leq 1} \left|\sum_{v} \left(\sum_{\ell} \widetilde{\theta}_{n_{\ell}} \theta_{v}\right) \alpha_{v} \left(\sup_{k} \frac{c_{v}^{k}}{b_{\ell}^{k}}\right) \left(\sup_{k} \frac{b_{\ell}^{k}}{a_{n}^{k}}\right) \widetilde{e}_{v}^{k}\right| \leq 1 \leq 2^{-j} \sup_{|a_{v}|\leq 1} \left|\sum_{v} \left(\sum_{\ell} \widetilde{\theta}_{n_{\ell}} \theta_{\ell v}\right) \alpha_{v} \frac{c_{v}^{k+1} \widetilde{e}_{v}}{a_{n}^{k}} \widetilde{e}_{v}^{k}\right|. \\ &\mathrm{Hence, there is } v_{j} \text{ such that} \\ &(\mathrm{vi}) \left(\sup_{k} \frac{c_{v}^{k}}{b_{\ell}^{k}}\right) \left(\sup_{k} \frac{b_{\ell}^{k}}{a_{n}^{k}}\right) \leq \frac{1}{2^{j}} \frac{c_{v_{j}}^{k+1}}{a_{n}^{k}}} \right)$$

Otherwise, we obtain a contradiction to (v) by monotonicity of $\|.\|$. Notice that (vi) holds for any ℓ . Because of (iii) we would choose inductively an increasing subsequence (ℓ_j) such that $\frac{\|R\widetilde{e}_{\ell_j}\|_{k_j+1}}{\|\widetilde{e}_{\ell_j}\|_{k_j}} \ge 2^j$ for all i = 1, 2.

Let
$$\lambda_j = \sup_k \frac{c_{v_j}^k}{b_{\ell_j}^k}, \mu_j = \sup_k \frac{b_{\ell_j}^k}{a_{n_j}^k}$$
 so that
(vii) $\lambda_j \mu_j \leq \frac{1}{2^j} \frac{c_{v_j}^{k_j+1}}{a_{n_j}^k}.$

Consider the quasidiagonal operator $D_1 : \lambda^{\ell}(A) \to \lambda^{\ell}(B)$ defined by $D_1 e_{n_j} = \mu_j^{-1} \widetilde{e}_{\ell_j}, j = 1, 2, ...; D_1 e_n = 0$ if $n \neq n_j$, and the quasidiagonal operator $D_2 : \lambda^{\ell}(B) \to \lambda^{\ell}(C)$ defined by $D_2 \widetilde{e}_{\ell_j} = \lambda_j^{-1} \widetilde{e}_{v_j}, j = 1, 2, ...; D_2 \widetilde{e}_{\ell} = 0$ if $\ell \neq \ell_j$. Hence, the quasidiagonal operator $D : \lambda^{\ell}(A) \to \lambda^{\ell}(C)$ is defined by

$$De_{n_j} = D_2 D_1 e_{n_j} = (\lambda_j \mu_j)^{-1} \widetilde{\widetilde{e}}_{v_j} = \left(\sup_k \frac{c_{v_j}^k}{a_{n_j}^k} \right)^{-1} \widetilde{\widetilde{e}}_{v_j} =: t_j^{-1} \widetilde{\widetilde{e}}_{v_j}, j = 1, 2, \dots; De_n = 0 \text{ if } n \neq n_j.$$

If $x = \sum_j x_{n_j} e_{n_j} \in \lambda^{\ell}(A)$, then $D_1 x = \sum_j x_{n_j} (\mu_j)^{-1} \widetilde{e}_{\ell_j}.$

Since $|x_{n_j}(\mu_j)^{-1}b_{\ell_j}^k| \leq |x_{n_j}a_{n_j}^k|$ for all j, by monotonicity of ||.||, we obtain that $||(x_{n_j}(\mu_j)^{-1}b_{\ell_j}^k)|| \leq ||(x_{n_j}a_{n_j}^k)||$, i.e. $||D_1x||_k \leq ||x||_k$ for all k. Hence, D_1 is continuous. If $x = \sum_i x_{\ell_j} \widetilde{e}_{\ell_j} \in \lambda^{\ell}(B)$, then $D_2x = \sum_i x_{\ell_j} (\lambda_j)^{-1} \widetilde{e}_{\nu_j}$.

Since $|x_{\ell_j}(\lambda_j)^{-1}c_{v_j}^k| \le |x_{\ell_j}b_{\ell_j}^k|$ for all j, by monotonicity of ||.||, we obtain that $||(x_{\ell_j}(\lambda_j)^{-1}c_{v_j}^k)|| \le ||(x_{\ell_j}b_{\ell_j}^k)||$, i.e. $||D_2x||_k \le ||x||_k$ for all k. Hence, D_2 is continuous. So, D is continuous (or it can be shown similarly). In addition, D is unbounded, because if k is fixed, then for some subsequence (j_s) we have $k_{j_s} = k$, $s = 1, 2, 3, \ldots$ and by (vii), $\frac{||De_{n_{j_s}}||_{k+1}}{||e_{n_{j_s}}||_k} \ge 2^{j_s} \to \infty$ as $s \to \infty$.

The next theorem gives a necessary and sufficient condition for

 $(\lambda^{\ell}(A), \lambda^{\ell}(B), \lambda^{\ell}(C)) \in \mathcal{BF}$. Formally in ℓ_1 -Köthe case this condition coincides with the one given by Terzioğlu, Zahariuta (see [10], Theorem 3.5), but its sufficiency in our case cannot be obtained directly for a general map, since continuity at any e_n does not imply continuity at $x \in \lambda^{\ell}(A)$. Proposition 3.1 gets rid of this difficulty.

Theorem 3.2. We have $(\lambda^{\ell}(A), \lambda^{\ell}(B), \lambda^{\ell}(C)) \in \mathcal{BF}$ if and only if for each non-decreasing map $\pi : \mathbb{N} \to \mathbb{N}$ there exists $r \in \mathbb{N}$ such that for all $q \in \mathbb{N}$ there exist $s \in \mathbb{N}$ and C > 0 so that the inequality

$$(viii) \frac{c_i^q}{a_j^r} \le C \max_{k=1,\dots,s} \left(\frac{c_i^k}{b_v^{\pi(k)}} \right) \max_{k=1,\dots,s} \left(\frac{b_v^k}{a_j^{\pi(k)}} \right) \text{ holds for all } i, j, v \in \mathbb{N}.$$

Notice that Theorem 3.2 above is the factorized analogue of Theorem 2.2 in [11]. In its proof we will use the following result from [10].

Proposition 3.3. For Fréchet spaces E, F, G we have $(E, G, F) \in \mathcal{BF}$ if and only if for each non-decreasing map $\pi : \mathbb{N} \to \mathbb{N}$ there exists $r \in \mathbb{N}$ such that for all $q \in \mathbb{N}$ there exist $s = s(q) \in \mathbb{N}$ and C = C(q) > 0 so that the following inequality

 $||T||_{q,r} \leq C \max_{k=1,\dots,s} (||R||_{k,\pi(k)}) \max_{k=1,\dots,s} (||S||_{k,\pi(k)})$

3634

is satisfied for every $R \in L(G, F), S \in L(E, G)$ where T = RS.

Now we are ready to prove Theorem 3.2.

Proof. Suppose $(\lambda^{\ell}(A), \lambda^{\ell}(B), \lambda^{\ell}(C)) \in \mathcal{BF}$. Let $R = e'_v \otimes e_i, S = e'_i \otimes e_v$ so that $T = RS = e'_i \otimes e_i$ is an operator of rank one. Note that

$$||R||_{k,\pi(k)} = \frac{c_i^k}{b_v^{\pi(k)}}, ||S||_{k,\pi(k)} = \frac{b_v^k}{a_i^{\pi(k)}}, \text{ and } ||T||_{q,r} = \frac{c_i^q}{a_i^r}$$

Then results follows from Proposition 3.3 above.

In view of Proposition 3.1 it is enough to prove the converse for quasidiagonal operators.

Let $S(e_j) = s_j \tilde{e}_{v(j)}$, $R(\tilde{e}_v) = t_v \tilde{\tilde{e}}_{i(v)}$, and $T(e_j) = RS(e_j) = s_j t_{v(j)} \tilde{\tilde{e}}_{i(v(j))}$, $j \in \mathbb{N}$ define a continuous quasidiagonal operator on $\lambda^{\ell}(A)$ to $\lambda^{\ell}(C)$ which factors through $\lambda^{\ell}(B)$.

We determine $\pi : \mathbb{N} \to \mathbb{N}$ such that $||S||_{k,\pi(k)} < \infty$ and $||R||_{k,\pi(k)} < \infty$ for each $k \in \mathbb{N}$ (Remember our observation at the beginning of the proof of our Proposition 3.1) and find $r \in \mathbb{N}$ such that for every q there exists C > 0 and $s \in \mathbb{N}$ so that the relation (viii) holds. We observe that

$$\begin{split} \|T\|_{q,r} &= \sup_{j} \frac{|s_{j}||t_{v(j)}|C_{i(v(j))}^{i}}{a_{j}^{r}}, \\ \|S\|_{k,\pi(k)} &= \sup_{j} \frac{|s_{j}||b_{v(j)}^{k}}{a_{j}^{\pi(k)}} \text{ and } \|R\|_{k,\pi(k)} = \sup_{j} \frac{|t_{v(j)}|c_{i(v(j))}^{k}}{b_{v(j)}^{\pi(k)}}. \\ \text{Then, using (viii) we get} \\ \|T\|_{q,r} &= \sup_{j} \frac{|s_{j}||t_{v(j)}|c_{i(v(j))}^{q}}{a_{j}^{r}} \leq C \sup_{j} \left(|s_{j}||t_{v(j)}| \max_{k=1,\dots,s} \left(\frac{c_{i(v(j))}^{k}}{b_{v(j)}^{\pi(k)}} \right) \max_{k=1,\dots,s} \left(\frac{b_{v(j)}^{k}}{a_{j}^{\pi(k)}} \right) \right) \\ &\leq C \max_{k=1,\dots,s} \left(\sup_{j} \frac{|t_{v(j)}|c_{i(v(j))}^{k}}{b_{v(j)}^{\pi(k)}} \right) \max_{k=1,\dots,s} \left(\sup_{j} \frac{|s_{j}|b_{v(j)}^{k}}{a_{j}^{\pi(k)}} \right) \\ &= C \max_{k=1,\dots,s} \|R\|_{k,\pi(k)} \max_{k=1,\dots,s} \|S\|_{k,\pi(k)} < \infty. \end{split}$$

Hence, T is bounded.

Vogt characterized the pairs $(\lambda(A), \lambda^{\infty}(B)) \in \mathcal{B}$ ([12]: Satz 1.5). The relation $(\lambda(A), \lambda(B)) \in \mathcal{B}$ was investigated by a different approach in [1] and the relation $(\lambda^{\ell}(A), \lambda^{\ell}(B)) \in \mathcal{B}$ was obtained in [11] similarly. A complete characterization of this case is an immediate by-product of our previous theorem.

Corollary 3.4. We have $(\lambda^{\ell}(A), \lambda^{\ell}(B)) \in \mathcal{B}$ if and only if for each non-decreasing $\pi : \mathbb{N} \to \mathbb{N}$ there exists $r \in \mathbb{N}$ such that for each $q \in \mathbb{N}$ we can find C > 0 and $s \in \mathbb{N}$ so that the inequality

$$\frac{b_i^q}{a_j^r} \le C \max_{k=1,\dots,s} \left(\frac{b_i^k}{a_j^{\pi(k)}} \right) \text{ holds for all } i, j \in \mathbb{N}.$$

4. Common Subspaces

Following [9], we say that a pair (*F*, *E*) of Fréchet spaces satisfies the condition S if there is a mapping $\tau : \mathbb{N} \to \mathbb{N}$ such that for each pair $p, r \in \mathbb{N}$ there exists a constant C = C(p, r) such that the estimate (ix) $||T||_{r,\tau(p)} \le C \max(||T||_{\tau(p),p}, ||T||_{\tau(r),r})$

holds for every one-dimensional operator $T = e' \otimes f$, where $e' \in E'$, $f \in F$. A pair of ℓ -Köthe spaces $E = \lambda^{\ell}(A)$

3635

and $F = \lambda^{\ell}(B)$ satisfies the condition S if the condition (ix) holds for the operators $T = e'_i \otimes e_j, i, j \in \mathbb{N}$ ([5]). If the estimate (ix) is true for arbitrary bounded operators $T \in L(E, F)$ then we write $(F, E) \in \overline{S}$.

Again following [9], a triple of Fréchet spaces (*F*, *G*, *E*) satisfies the condition SF (we then write (*F*, *G*, *E*) $\in SF$) if for any one-dimensional operator T = RS, with both $S \in L(E, G)$ and $R \in L(G, F)$ also one-dimensional, the inequality

 $(\mathbf{x}) ||T||_{r,\tau(p)} \le C \max(||R||_{\tau(p),p}, ||R||_{\tau(r),r}) \max(||S||_{\tau(p),p}, ||S||_{\tau(r),r})$

holds with the same requisites as in (ix).

If the condition (x) holds for an arbitrary bounded operator T = RS, with $S \in L(E, G)$ and $R \in L(G, F)$ we will write $(F, G, E) \in \overline{SF}$.

We note that if E = G or G = F the condition $(F, G, E) \in SF$ reduces simply to $(F, E) \in S$ as well as $(F, G, E) \in \overline{SF}$ does so to $(F, E) \in \overline{S}$.

The following example shows that SF is strictly weaker than S. Here we use the notation $\Lambda_{\alpha}(a) = \lambda(exp(\alpha_p a_i))$ with $\alpha_p \nearrow \alpha \le \infty$, $a = (a_i)$.

Notice that the finite type power series space $\Lambda_1(a)$ has d_2 -matrix and infinite type power series space $\Lambda_{\infty}(a)$ has d_1 -matrix.

Example 4.1. Let $a = (a_i)$ be a positive sequence increasing to ∞ . Since $(\Lambda_1(a), \Lambda_{\infty}(a)) \in \mathcal{B}([13])$, we have $(\Lambda_1(a), \Lambda_{\infty}(a), \Lambda_1(a)) \in \mathcal{SF}$ (hence $(\Lambda_1(a), \Lambda_{\infty}(a), \Lambda_1(a)) \in \mathcal{SF}$) by Proposition 7 in [9]. However, $(\Lambda_1(a), \Lambda_{\infty}(a)) \notin \mathcal{S}$.

In what follows we shall denote by $\lambda^{\ell}(A)_L$ the basic subspace of an ℓ -Köthe space $\lambda^{\ell}(A)$ which is the closed linear envelope of $\{e_n : n \in L\}, L \subset \mathbb{N}$.

Suppose now $(\lambda^{\ell}(A), \lambda^{\ell}(B), \lambda^{\ell}(C)) \notin \mathcal{BF}$ and $(\lambda^{\ell}(C), \lambda^{\ell}(A)) \in S$. By Proposition 3.1, we know that there are $S : \lambda^{\ell}(A) \to \lambda^{\ell}(B)$; $S(e_i) = t_i \widetilde{e}_{\sigma(i)}, i \in \mathbb{N}$, and $R : \lambda^{\ell}(B) \to \lambda^{\ell}(C)$; $R\widetilde{e}_v = s_v \widetilde{\widetilde{e}}_{\rho(v)}, v \in \mathbb{N}$, with some bijective maps σ and ρ on \mathbb{N} such that T = RS is an unbounded quasidiagonal operator. By Corollary 2.3 in [11] (see also Proposition 3 in [1]) there exists infinite subsets J and I of \mathbb{N} such that T maps $\lambda^{\ell}(A)_J$ isomorphically onto $\lambda^{\ell}(C)_I$. Then one can easily check that for $N = \sigma(J) = \rho^{-1}(I)$ both $S : \lambda^{\ell}(A)_J \to \lambda^{\ell}(B)_N$ and $R : \lambda^{\ell}(B)_N \to \lambda^{\ell}(C)_I$ are also isomorphisms. We have therefore proved that:

Proposition 4.2. Suppose that $(\lambda^{\ell}(A), \lambda^{\ell}(B), \lambda^{\ell}(C)) \notin \mathcal{BF}$ and $(\lambda^{\ell}(C), \lambda^{\ell}(A)) \in \mathcal{S}$. Then there is a common basic subspace for all three spaces.

Now proceeding exactly as in [9], we consider a generalization of Djakov-Ramanujan's result ([1], Proposition 3) in the context of factorization.

Theorem 4.3. Suppose that $(\lambda^{\ell}(A), \lambda^{\ell}(B), \lambda^{\ell}(C)) \notin \mathcal{BF}$ and $(\lambda^{\ell}(C), \lambda^{\ell}(B), \lambda^{\ell}(A)) \in \mathcal{SF}$. Then one of the pairs $(\lambda^{\ell}(A), \lambda^{\ell}(B))$ or $(\lambda^{\ell}(B), \lambda^{\ell}(C))$ has a common basic subspace.

Proof. By Proposition 3.1, there exists quasidiagonal operators $S : \lambda^{\ell}(A) \to \lambda^{\ell}(B)$ and $R : \lambda^{\ell}(B) \to \lambda^{\ell}(C)$ with bijective σ and ρ (as above) such that T = RS is unbounded. Without loss of generality we assume in what follows that all three operators are identity embeddings, since otherwise we can get this property by considering a new triple of ℓ -Köthe spaces obtained from the original one by some permutations and normalizations of their canonical bases (note that the property $S\mathcal{F}$ is preserved under such reconstruction). When applied to the above embeddings, the condition $S\mathcal{F}$ gives the following:

there is a map $\tau : \mathbb{N} \to \mathbb{N}$ such that

(xi)
$$\frac{c_i^r}{a_i^{\tau(p)}} \le C \max\left(\frac{b_i^{\tau(p)}}{a_i^p}, \frac{b_i^{\tau(r)}}{a_i^r}\right) \max\left(\frac{c_i^{\tau(p)}}{b_i^p}, \frac{c_i^{\tau(r)}}{b_i^r}\right)$$
 for all $p, r, i \in \mathbb{N}$ with some constant $C = C(p, r)$.

It now suffices to prove that there is an infinite set $I \subset \mathbb{N}$ such that $\lambda^{\ell}(A)_I = \lambda^{\ell}(B)_I$ or $\lambda^{\ell}(B)_I = \lambda^{\ell}(C)_I$. Suppose that this assertion is false. Then for each infinite set $I \subset \mathbb{N}$ and $m \in \mathbb{N}$ there is $r \ge m$ such that

(xii)
$$\liminf_{i \in \mathbb{I}} \frac{b_i^{(r)}}{a_i^r} = \liminf_{i \in \mathbb{I}} \frac{c_i^{(r)}}{b_i^r} = 0$$

We define inductively the sets $N_0 \supset N_1 \supset \dots$ by

(xiii)
$$N_0 := \mathbb{N}, N_p := \left\{ i \in N_{p-1} : \max\left(\frac{b_i^{(\varphi)}}{a_i^p}, \frac{c_i^{(\varphi)}}{b_i^p}\right) \ge 1 \right\}, p \in \mathbb{N}$$

with τ from (xi)

with τ from (xi).

We claim that for each $p \in \mathbb{N}$ the embedding *T* is bounded on the basic subspace X_p of $\lambda^{\ell}(A)$ spanned by $\{e_i : i \in N_{p-1} \setminus N_p\}$. If that is not so, then for each $q \in \mathbb{N}$ there is an infinite subset $I_q \subset N_{p-1} \setminus N_p$ and $m(q) \in \mathbb{N}$ with

(xiv)
$$\lim_{i\in I_q} \frac{c_i^{(n,q)}}{a_i^q} = \infty.$$

For $I = I_q$ we find $r \ge m(q)$ such that (xii) holds. Then there is an infinite set $J_q \subset I_q$ with

(xv) max
$$\left(\frac{C_i^{\tau(r)}}{b_i^r}, \frac{B_i^{\tau(r)}}{a_i^r}\right) < 1, i \in J_q.$$

On the other hand, by (xiii) we have

(xvi) max
$$\left(\frac{c_i^{\tau(p)}}{b_i^p}, \frac{b_i^{\tau(p)}}{a_i^p}\right) < 1, i \in I_q.$$

Applying now (xi) with $q = \tau(p)$ and *r* chosen above and taking into account the estimates (xv) and (xvi), we obtain $\frac{c_i^r}{a_i^q} \le C$ for all $i \in J_q$, which contradicts (xiv).

This proves our claim that the embedding *T* is bounded on each X_p . Hence, for every $p \in \mathbb{N}$, the operator *T* must be unbounded on the basic subspace Y_p generated by $\{e_i : i \in N_p\}$, which, particularly, implies that N_p is an infinite set.

Now we construct a sequence $I = \{i_p\}$ so that $i_p \in N_p, i_{p+1} \neq i_p, p \in \mathbb{N}$.

Then due to (xiii), there is an infinite set $J \subset I$ such that at least one of the inequalities $a_i^p \leq b_i^{\tau(p)}$ or $b_i^p \leq c_i^{\tau(p)}$ holds for all $p \in \mathbb{N}$ and $i \in J$ such that $i \geq p$, which contradicts the assumption (xii). This completes the proof. \Box

References

- [1] P. B. Djakov, M. S. Ramanujan, Bounded and unbounded operators between Köthe spaces, Studia Math., 152 (2002), 11–31.
- [2] P. Djakov, T. Terzioğlu, M. Yurdakul, V. Zahariuta, Bounded operators and isomorphisms of Cartesian products of Fréchet spaces, Mich. Math. J., 45 (3) (1998), 599–610.
- [3] M.M. Dragilev, Riesz classes and multiple regular-bases, Func. Anal. and Func. Theory, Kharkov, 15 (1972), 65–77 (in Russian).
- [4] M.M. Dragilev, *Bases in Köthe spaces*, Rostov, Russia: Rostov University Press, (1983).
- [5] J. Krone, D. Vogt, The splitting relation for Köthe spaces, Math. Z. 190 (1985), 387-400.
- [6] Z. Nurlu, On pairs of Köthe spaces between which all operators are compact, Math. Nachr. 122 (1985), 277–287.
- [7] Z. Nurlu, T. Terzioğlu, Consequences of the existence of a non-compact operator between nuclear Köthe spaces, Manuscripta Math. 47 (1984), 1–12.
- [8] T. Terzioğlu, M. Yurdakul, Restrictions of unbounded continuous linear operators on Fréchet spaces, Arch. Math. 46 (1986), 547–550.
- [9] T. Terzioğlu, M. Yurdakul, V. Zahariuta, Factorization of unbounded operators on Köthe spaces, Studia Math. 161(I) (2004), 61–70.
- [10] T. Terzioğlu, V. Zahariuta, Bounded factorization property for Fréchet spaces, Math. Nachr., 253 (2003), 1–11.
- [11] E. Uyanık, M. Yurdakul, A remark on a paper of P.B. Djakov and M.S. Ramanujan, Turk J Math. 43 (2019), 2494–2498.
- [12] D. Vogt, Frécheträume, zwischen denen jede stetige lineare Abbildung beschränkt ist, J.Reine. Angew. Math., 345 (1983), 182–200.
- [13] V. Zahariuta, On the isomorphism of Cartesian products of locally convex spaces, Studia Math. 46 (1973), 201–221.