Remarks regarding eigenvalues and fixed points in some algebras obtained by the Cayley-Dickson process

Cristina Flaut ${ }^{\text {a }}$, Ana Nechifor ${ }^{\text {b }}$
${ }^{a}$ Faculty of Mathematics and Computer Science, Ovidius University of Constanţa, Bd. Mamaia 124, 900527, România
${ }^{b}$ Ovidius University of Constanţa, România

Abstract

Some results regarding eigenvalues, companion matrices and fixed points in some algebras obtained by the Cayley-Dickson process are presented in this paper. The paper contains several examples which emphasize the obtained results.

1. Introduction

In this paper we present some results regarding eigenvalues and fixed points in some algebras obtained by the Cayley-Dickson process.

The paper is organized as follows:
-In Introduction we present some general definitions and properties regarding these algebras.
-In Section 2 we present some aspects regarding eigenvalues of some division algebras obtained by the Cayley-Dickson process.
-In Section 3 we present some properties of the companion matrices and fixed points for a polynomial with coefficients in a real division quaternion algebra.

In the following, we suppose that K is a commutative field with char $K \neq 2$ and \mathfrak{A} is an algebra over the field K. An algebra \mathfrak{H} is called alternative if $x^{2} y=x(x y)$ and $x y^{2}=(x y) y$, for all $x, y \in \mathfrak{A}$, flexible if $x(y x)=(x y) x=x y x$, for all $x, y \in \mathfrak{A}$ and power associative if the subalgebra $<x>$ of \mathfrak{A} generated by any element $x \in \mathfrak{A}$ is associative. Each alternative algebra is a flexible algebra and a power associative algebra. A unitary algebra $\mathfrak{A} \neq K$ such that we have $x^{2}+\gamma_{x} x+\delta_{x}=0$ for each $x \in \mathcal{A}$, with $\gamma_{x}, \delta_{x} \in K$, is called a quadratic algebra. A finite-dimensional algebra \mathfrak{A} is a division algebra if and only if \mathfrak{A} does not contain zero divisors.

The Cayley-Dickson process is an iterative process with which are obtained generalizations of octonion and quaternion algebras over an arbitrary field K.

For a finite dimensional unitary algebra \mathfrak{H} over the field K, we consider the following linear map, named scalar involution,

$$
-: \mathfrak{N} \rightarrow \mathfrak{A}, a \rightarrow \bar{a}
$$

with the properties

$$
\overline{a b}=\bar{b} \bar{a}, \overline{\bar{a}}=a,
$$

[^0]and
$$
a+\bar{a}, a \bar{a} \in K \cdot 1 \text { for all } a, b \in \mathfrak{A} .
$$

The element \bar{a} is called the conjugate of the element a. With this element, the linear form

$$
\mathbf{t}: A \rightarrow K, \mathbf{t}(a)=a+\bar{a}
$$

and the quadratic form

$$
\mathbf{n}: A \rightarrow K, \mathbf{n}(a)=a \bar{a}
$$

can be defined. These forms are called the trace and the norm of the element a, respectively. From here, it results that an algebra \mathfrak{A} with a scalar involution is quadratic, that means for each $x \in \mathfrak{H}$, we have $x^{2}+t(x) x+n(x)=0$.

For $\beta \in K$, a fixed non-zero element, we define the following algebra multiplication on the vector space $\mathfrak{U} \oplus \mathfrak{N}:$

$$
\begin{equation*}
\left(a_{1}, a_{2}\right)\left(b_{1}, b_{2}\right)=\left(a_{1} b_{1}+\beta \bar{b}_{2} a_{2}, a_{2} \overline{b_{1}}+b_{2} a_{1}\right) \tag{1.3.}
\end{equation*}
$$

We obtain an algebra structure over $\mathfrak{H} \oplus \mathfrak{H}$, denoted by (\mathfrak{H}, β). This algebra is called the algebra obtained from the algebra \mathfrak{H} by the Cayley-Dickson process. It is clear that $\operatorname{dim}(\mathfrak{H}, \beta)=2 \operatorname{dim} \mathfrak{A}$.

Let $x \in(\mathfrak{A}, \beta), x=\left(a_{1}, a_{2}\right)$. The map

$$
{ }^{-}:(\mathfrak{H}, \beta) \rightarrow(\mathfrak{H}, \beta), x \rightarrow \bar{x}=\left(\bar{a}_{1},-a_{2}\right)
$$

is a scalar involution of the algebra (\mathfrak{A}, β), extending the involution ${ }^{-}$of the algebra \mathfrak{A}. Let

$$
\mathbf{t}(x)=\mathbf{t}\left(a_{1}\right)
$$

and

$$
\mathbf{n}(x)=\mathbf{n}\left(a_{1}\right)-\beta \mathbf{n}\left(a_{2}\right)
$$

be the trace and the norm of the element $x \in(\mathfrak{H}, \beta)$, respectively.
If we start from $\mathfrak{A}=K$ and we apply this process t times, $t \geq 1$, we obtain an algebra over K,

$$
\begin{equation*}
\mathfrak{U}_{t}=\left(\frac{\beta_{1}, \ldots, \beta_{t}}{K}\right) \tag{1.4.}
\end{equation*}
$$

On this algebra, the set $\left\{1, f_{2}, \ldots, f_{n}\right\}, n=2^{t}$, generates a basis with the properties:

$$
\begin{equation*}
f_{i}^{2}=\beta_{i} 1, \beta_{i} \in K, \beta_{i} \neq 0, i=2, \ldots, n \tag{1.5.}
\end{equation*}
$$

and

$$
\begin{equation*}
f_{i} f_{j}=-f_{j} f_{i}=\gamma_{i j} f_{k}, \gamma_{i j} \in K, \gamma_{i j} \neq 0, i \neq j, i, j=2, \ldots n \tag{1.6.}
\end{equation*}
$$

$\gamma_{i j}$ and f_{k} being uniquely determined by f_{i} and f_{j}.
From the above, it results that $x \in \mathfrak{A}_{t}$ can be written under the form

$$
\begin{equation*}
x=x^{\prime}+x^{\prime \prime} f_{2^{t-1}} \tag{1.8.}
\end{equation*}
$$

where x^{\prime} and $x^{\prime \prime} \in \mathfrak{A}_{t-1}=\left(\frac{\beta_{1}, \ldots, \beta_{t-1}}{K}\right)$.

For other details, the reader is referred to [SCH; 66] and [SCH; 54].
We remark that, from the above described process, for $t=2$ we obtain the generalized quaternion algebras and for $t=3$ we obtain the generalized octonion algebras.

The generalized quaternion algebras

We consider two elements $\alpha, \beta \in K$ and we define a generalized quaternion algebra, denoted by $\mathbb{H}(\alpha, \beta)=\left(\frac{\alpha, \beta}{K}\right)$, with basis $\left\{1, f_{1}, f_{2}, f_{3}\right\}$ and multiplication given in the following table:

\cdot	1	f_{1}	f_{2}	f_{3}
1	1	f_{1}	f_{2}	f_{3}
f_{1}	f_{1}	α	f_{3}	αf_{2}
f_{2}	f_{2}	$-f_{3}$	β	$-\beta f_{1}$
f_{3}	f_{3}	$-\alpha f_{2}$	βf_{1}	$-\alpha \beta$

If $a \in \mathbb{H}(\alpha, \beta), a=a_{0}+a_{1} f_{1}+a_{2} f_{2}+a_{3} f_{3}$, then $\bar{a}=a_{0}-a_{1} f_{1}-a_{2} f_{2}-a_{3} f_{3}$ is called the conjugate of the element a. For $a \in \mathbb{H}(\alpha, \beta)$, the trace, respectively, the norm of the element $a \in \mathbb{H}(\alpha, \beta)$ are:

$$
\mathbf{t}(a)=a+\bar{a} \in K
$$

and

$$
\mathbf{n}(a)=a \bar{a}=a_{0}^{2}-\alpha a_{1}^{2}-\beta a_{2}^{2}+\alpha \beta a_{3}^{2} \in K .
$$

It results that $a^{2}-\mathbf{t}(a) a+\mathbf{n}(a)=0, \forall a \in \mathbb{H}(\alpha, \beta)$, therefore the generalized quaternion algebra is a quadratic algebra.

The algebra $\mathbb{H}(\alpha, \beta)$ is a division algebra if, for $x \in \mathbb{H}(\alpha, \beta)$, the relation $\mathbf{n}(x)=0$ implies $x=0$. A quaternion non-division algebra is called a split algebra.

With the above notations, we remark that $H(-1,-1)=\left(\frac{-1,-1}{\mathbb{R}}\right)$ is a division algebra. In whole the paper, we denote this algebra with \mathbb{H}.

The generalized octonion algebras

We consider three elements $\alpha, \beta, \gamma \in K$ and we define a generalized octonion algebra denoted $\mathbb{O}(\alpha, \beta, \gamma)$, with basis $\left\{1, f_{1}, \ldots, f_{7}\right\}$ and multiplication given in the following table:

\cdot	1	f_{1}	f_{2}	f_{3}	f_{4}	f_{5}	f_{6}	f_{7}
1	1	f_{1}	f_{2}	f_{3}	f_{4}	f_{5}	f_{6}	f_{7}
f_{1}	f_{1}	α	f_{3}	αf_{2}	f_{5}	αf_{4}	$-f_{7}$	$-\alpha f_{6}$
f_{2}	f_{2}	$-f_{3}$	β	$-\beta f_{1}$	f_{6}	f_{7}	βf_{4}	βf_{5}
f_{3}	f_{3}	$-\alpha f_{2}$	βf_{1}	$-\alpha \beta$	f_{7}	αf_{6}	$-\beta f_{5}$	$-\alpha \beta f_{4}$
f_{4}	f_{4}	$-f_{5}$	$-f_{6}$	$-f_{7}$	γ	$-\gamma f_{1}$	$-\gamma f_{2}$	$-\gamma f_{3}$
f_{5}	f_{5}	$-\alpha f_{4}$	$-f_{7}$	$-\alpha f_{6}$	γf_{1}	$-\alpha \gamma$	γf_{3}	$\alpha \gamma f_{2}$
f_{6}	f_{6}	f_{7}	$-\beta f_{4}$	βf_{5}	γf_{2}	$-\gamma f_{3}$	$-\beta \gamma$	$-\beta \gamma f_{1}$
f_{7}	f_{7}	αf_{6}	$-\beta f_{5}$	$\alpha \beta f_{4}$	γf_{3}	$-\alpha \gamma f_{2}$	$\beta \gamma f_{1}$	$\alpha \beta \gamma$

The algebra $\mathbb{O}(\alpha, \beta, \gamma)$ is a non-commutative and a non-associative algebra, but it is alternative, flexible and power-associative.

If $a \in \mathbb{O}(\alpha, \beta, \gamma), a=a_{0}+a_{1} f_{1}+a_{2} f_{2}+a_{3} f_{3}+a_{4} f_{4}+a_{5} f_{5}+a_{6} f_{6}+a_{7} f_{7}$, then $\bar{a}=a_{0}-a_{1} f_{1}-a_{2} f_{2}-a_{3} f_{3}-a_{4} f_{4}-$ $a_{5} f_{5}-a_{6} f_{6}-a_{7} f_{7}$ is called the conjugate of the element a. For $a \in \mathbb{O}(\alpha, \beta, \gamma)$, we define the trace, respectively, the norm of the element $a \in \mathbb{O}(\alpha, \beta, \gamma)$:

$$
\mathbf{t}(a)=a+\bar{a} \in K
$$

and

$$
\mathbf{n}(a)=a \bar{a}=a_{0}^{2}-\alpha a_{1}^{2}-\beta a_{2}^{2}+\alpha \beta a_{3}^{2}-\gamma a_{4}^{2}+\alpha \gamma a_{5}^{2}+\beta \gamma a_{6}^{2}-\alpha \beta \gamma a_{7}^{2} \in K
$$

It follows that $a^{2}-\mathbf{t}(a) a+\mathbf{n}(a)=0, \forall a \in a \in \mathbb{O}(\alpha, \beta, \gamma)$, therefore the generalized octonion algebra is a quadratic algebra.

If, for $x \in \mathbb{O}(\alpha, \beta, \gamma)$, the relation $\mathbf{n}(x)=0$ implies $x=0$, then the algebra $\mathbb{O}(\alpha, \beta, \gamma)$ is a division algebra. With the above notations, we remark that $\mathbb{O}(-1,-1,-1)=\left(\frac{-1,-1,-1}{\mathbb{R}}\right)$, denoted \mathbb{O}, is a division algebra (see [SCH; 66] and [SCH; 54]).

Remark 1.1. ([La; 04]) As we remarked above, quaternion and octonion algebras can be with division or split algebras.
i) A quaternion algebra over \mathbb{R} is isomorphic to \mathbb{H} (it is a division algebra) or with $\mathcal{M}_{2}(\mathbb{R}) \simeq \mathbb{H}_{\mathbb{R}}(1,-1)$, the ring of real quadratic matrices. An isomorphism between two quaternion algebras is a ring homomorphism which fixes the scalars. It is clear that $\mathbb{H}_{\mathbb{R}}(\alpha, \beta)$ is a division algebra if $\alpha<0, \beta<0$. If $\{1, \mathbf{i}, \mathbf{j}, \mathbf{k}\}$ is the canonical basis in \mathbb{H}, we can find the following basis $\{1, \sqrt{-a} \mathbf{i}, \sqrt{-b} \mathbf{j}, \sqrt{a b} \mathbf{i}\}$ in $\mathbb{H}_{\mathbb{R}}(\alpha, \beta)$, therefore we find the isomorphism between \mathbb{H} and $\mathbb{H}_{\mathbb{R}}(\alpha, \beta)$.
ii) Similar with the above, on \mathbb{R}, the octonion algebras can be with division, isomorphic to $\mathbb{O}(-1,-1,-1)$ or split, isomorphic to $\mathbb{O}(1,1,1)$.

2. Remarks regarding the left and the right spectrum

First of all, we remark that algebras \mathfrak{A}_{t} obtained by the Cayley-Dickson process, described above, in general, are not division algebras for all $t \geq 1$. But there are fields on which, if we apply the Cayley-Dickson process, the obtained algebras \mathfrak{A}_{t} are division algebras for all $t \geq 1$. (see [BR; 67] and [FL: 13])

With the above remark, let \mathfrak{H}_{t} be a division algebra obtained by the Cayley-Dickson process, and $A \in \mathcal{M}_{n}\left(\mathfrak{H}_{t}\right)$, be a matrix of order n. Since these algebras are not commutative, the notion of left and right eigenvalues are distinct.

Definition 2.1. i) An element $\lambda \in \mathfrak{A}_{t}$ is called a left eigenvalue for the matrix A if there is a nonzero matrix $X \in \mathcal{M}_{n \times 1}\left(\mathfrak{A l}_{t}\right)$ such that

$$
A X=\lambda X
$$

The set of distinct left eigenvalues is called the left spectrum of the matrix A and is denoted $\sigma_{L}(A)$.
ii) An element $\lambda \in \mathfrak{U}_{t}$ is called a right eigenvalue for the matrix A if there is a nonzero matrix $X \in \mathcal{M}_{n \times 1}\left(\mathfrak{U}_{t}\right)$ such that

$$
A X=X \lambda
$$

The set of distinct right eigenvalues is called the right spectrum of the matrix A and is denoted $\sigma_{R}(A)$.
We remark that if a right eigenvalue λ is in K, therefore λ is a left eigenvalue and viceversa.
The study of the solutions of quternionic equations are very important in the study of the spectrum(left and right) for the quaternionic matrices (see [HS;02], [MS; 08], [Mi; 11], [PS; 04], [Sz; 09], etc.). The results of the below proposition will be often used in this paper.

Proposition 2.2. ([HS;02], Theorem 2.3) Solutions to the quadratic equation

$$
x^{2}+b x+c=0, b, c \in \mathbb{H}
$$

are:
Case 1. If $b, c \in \mathbb{R}$ and $b^{2}<4 c$, then

$$
x=\frac{1}{2}\left(-b+r f_{1}+s f_{2}+t f_{3}\right)
$$

with $r^{2}+s^{2}+t^{2}=4 c-b^{2}$ where $r, s, t \in \mathbb{R}$.
Case 2. If $b, c \in \mathbb{R}$ and $b^{2} \geq 4 c$, then

$$
x=\frac{-b \pm \sqrt{b^{2}-4 c}}{2}
$$

Case 3. If $b \in \mathbb{R}, c \notin \mathbb{R}$, then

$$
x=\frac{-b}{2} \pm \frac{\theta}{2} \mp \frac{c_{1}}{\theta} f_{1} \mp \frac{c_{2}}{\theta} f_{2} \mp \frac{c_{3}}{\theta} f_{3}
$$

where $c=c_{0}+c_{1} f_{1}+c_{2} f_{2}+c_{3} f_{3}$ and

$$
\theta=\sqrt{\frac{b^{2}-4 c_{0}+\sqrt{\left(b^{2}-4 c_{0}\right)^{2}+16\left(c_{1}^{2}+c_{2}^{2}+c_{3}^{2}\right)}}{2}}
$$

Case 4. If $b \notin \mathbb{R}$, then

$$
x=\frac{(-\operatorname{Re}(b))}{2}-\left(b^{\prime}+T\right)^{-1}\left(c^{\prime}-N\right)
$$

with $b^{\prime}=b-\operatorname{Re}(b)=\operatorname{Im}(b), c^{\prime}=c-\frac{(\operatorname{Re}(b))}{2}\left(b-\frac{(\operatorname{Re}(b))}{2}\right)$, where (T, N) are chosen in the following way:
i) $T=0, N=\left(\Gamma \pm \sqrt{\Gamma^{2}-4 \Psi}\right) / 2$, if $\Delta=0, \Gamma^{2} \geq 4 \Psi$;
ii) $T= \pm \sqrt{2 \sqrt{\Psi}-\Gamma}, N=\sqrt{\Psi}$ if $\Delta=0, \Gamma^{2}<4 \Psi$;
iii) $T= \pm \sqrt{z}, N=\left(T^{3}+\Gamma T+\Delta\right) / 2 T$ if $\Delta \neq 0$ and z is the unique positive solution to the equation

$$
z^{3}+2 \Gamma z^{2}+\left(\Gamma^{2}-4 \Psi\right) z-\Delta^{2}=0
$$

where $\Gamma=\left|b^{\prime}\right|^{2}+2 \operatorname{Re}\left(c^{\prime}\right), \Psi=\left|c^{\prime}\right|^{2}$ and $\Delta=2 \operatorname{Re}\left(\overline{b^{\prime}} c^{\prime}\right)$.
For quaternionic matrices over real division quaternion algebra, it is known that the right spectrum are always nonempty. In [BR; 51], Theorem 1, the author proved that every matrix with coefficients in \mathbb{H} has at least a right eigenvalue. After more than 30 years, in [WO; 85], Wood has proved a similar result for the left eigenvalues. These results explain the huge number of papers devoted to the study of the left or right spectrum for quaternionic and octonionic matrices (See [HU; 01], [TI; 00], etc).

If we consider $\mathbb{H}_{\mathbb{Q}}(-1,-1)$, the quaternion division algebra over rational field \mathbb{Q}, the above mentioned results regarding the existence of left and right eigenvalues are not always true, as we can see in the following example.

Example 2.3. We consider the matrix

$$
A=\left(\begin{array}{ll}
0 & \mathbf{i} \\
\mathbf{k} & 0
\end{array}\right), A \in \mathcal{M}_{2}(\mathbb{H}) .
$$

We compute the left and the right spectrum. For the left spectrum, we have

$$
\left(\begin{array}{ll}
0 & \mathbf{i} \\
\mathbf{k} & 0
\end{array}\right)\binom{x_{1}}{x_{2}}=\lambda\binom{x_{1}}{x_{2}}
$$

It results the following equations: $\mathbf{i} x_{2}=\lambda x_{1}$ and $\mathbf{k} x_{1}=\lambda x_{2}$. We obtain that $x_{2}=-\mathbf{i} \lambda x_{1}$ and $\mathbf{k} x_{1}=-\lambda \mathbf{i} \lambda x_{1}$. Therefore, $\mathbf{k}=-\lambda \mathbf{i} \lambda$ and $\mathbf{i} \mathbf{k}=-(\mathbf{i} \lambda)^{2}$ and $\mathbf{j}=(\mathbf{i} \lambda)^{2}$. Denoting $y^{2}=j$, since $y^{2}-2 y_{0} y+\mathbf{n}(y)=0$, we get $y^{2}=2 y_{0} y-\left(y_{0}^{2}+y_{1}^{2}+y_{2}^{2}+y_{3}^{2}\right)=\mathbf{j}$, where $y=y_{0}+y_{1} \mathbf{i}+y_{2} \mathbf{j}+y_{3} \mathbf{k}$. It results $y_{0}^{2}-y_{1}^{2}-y_{2}^{2}-y_{3}^{2}=0, y_{1}=0,2 y_{0} y_{2}=1$ and $y_{3}=0$. We get the solutions $y \in\left\{\frac{\sqrt{2}}{2}(1+\mathbf{j}),-\frac{\sqrt{2}}{2}(1+\mathbf{j})\right\}$. Therefore, $\lambda \in\left\{-\frac{\sqrt{2}}{2}(\mathbf{i}+\mathbf{k}), \frac{\sqrt{2}}{2}(\mathbf{i}+\mathbf{k})\right\}$.

For the right spectrum, we have

$$
\left(\begin{array}{cc}
0 & \mathbf{i} \\
\mathbf{k} & 0
\end{array}\right)\binom{x_{1}}{x_{2}}=\binom{x_{1}}{x_{2}} \lambda
$$

It results the following equations: $\mathbf{i} x_{2}=x_{1} \lambda$ and $\mathbf{k} x_{1}=x_{2} \lambda$. We obtain that $x_{2}=-\mathbf{i} x_{1} \lambda$ and $\mathbf{k} x_{1}=-\mathbf{i} x_{1} \lambda^{2}$. Therefore, $-\mathbf{j} x_{1}=x_{1} \lambda^{2}$. We have $-x_{1}^{-1} \mathbf{j} x_{1}=\lambda^{2}$ and we obtain $\lambda^{4}=\left(-x_{1}^{-1} \mathbf{j} x_{1}\right)\left(-x_{1}^{-1} \mathbf{j} x_{1}\right)$, thus $\lambda^{4}+1=0$. Denoting $y=\lambda^{2}$, the solutions in \mathbb{H} of the equation

$$
y^{2}+1=0
$$

are of the form $y=\alpha \mathbf{i}+\beta \mathbf{j}+\gamma \mathbf{k}$, with $a, \beta, \gamma \in \mathbb{R}$, such that $\alpha^{2}+\beta^{2}+\gamma^{2}=1$.
From Proposition 2.2, the solution in \mathbb{H} of the equation

$$
z^{2}=\alpha \mathbf{i}+\beta \mathbf{j}+\gamma \mathbf{k}
$$

where $a, \beta, \gamma \in \mathbb{R}$, such that $\alpha^{2}+\beta^{2}+\gamma^{2}=1$ are of the form $\delta_{1} \frac{\sqrt{2}}{2}+\delta_{2} \frac{\sqrt{2}}{2} \alpha \mathbf{i}+\delta_{2} \frac{\sqrt{2}}{2} \beta \mathbf{j}+\delta_{2} \frac{\sqrt{2}}{2} \gamma \mathbf{k}$, or of the form $\delta_{2} \frac{\sqrt{2}}{2}+\delta_{2} \frac{\sqrt{2}}{2} \alpha \mathbf{i}+\delta_{2} \frac{\sqrt{2}}{2} \beta \mathbf{j}+\delta_{2} \frac{\sqrt{2}}{2} \gamma \mathbf{k}$, with $\delta_{1}, \delta_{2} \in\{-1,1\}$ and $\delta_{1} \delta_{2}=-1$, therefore an infinite number of solutions.

But, if we consider $A \in \mathcal{M}_{2}\left(\mathbb{H}_{Q}(-1,-1)\right)$ we have that $\sigma_{L}(A)=\sigma_{R}(A)=\emptyset$.
As we remarked above, the right spectrum of a quaternionic matrix was studied more than the left spectrum. Since the left spectrum is not always easy to found, the left eigenvalues were not so studied. It is clear that these two notions, left and right spectrum, are different and a left eigenvalue is not always a right eigenvalue and vice-versa, as we can see in the below examples.

Example 2.4. From Remark 1.1, the algebra $\mathfrak{A}_{2}=\left(\frac{-4,-9}{\mathbb{R}}\right)$ is a division quaternion algebra. We consider the matrix

$$
A=\left(\begin{array}{cc}
0 & \mathbf{j} \\
-\mathbf{j} & 0
\end{array}\right)
$$

and we compute the left and the right spectrum.
For the left spectrum, we obtain

$$
\left(\begin{array}{cc}
0 & \mathbf{j} \\
-\mathbf{j} & 0
\end{array}\right)\binom{x_{1}}{x_{2}}=\lambda\binom{x_{1}}{x_{2}}
$$

and the following equations $\mathbf{j} x_{2}=\lambda x_{1},-\mathbf{j} x_{1}=\lambda x_{2}, \lambda, x_{1}, x_{2} \in \mathfrak{A}_{2}$ are obtained. From here, we have that $x_{2}=-\frac{1}{9} \mathbf{j} \lambda x_{1}$ and $-\mathbf{j} x_{1}=-\frac{1}{9} \lambda \mathbf{j} \lambda x_{1}$, which implies $9 \mathbf{j}=\lambda \mathbf{j} \lambda$, therefore $(\mathbf{j} \lambda)^{2}=-81$. We denote $y=\mathbf{j} \lambda$ and we obtain equation $y^{2}+81=0$. The solutions in \mathfrak{A}_{2} of the equation

$$
y^{2}+81=0
$$

are of the form $y=\alpha \mathbf{i}+\beta \mathbf{j}+\gamma \mathbf{k}$, with $a, \beta, \gamma \in \mathbb{R}$, such that $4 \alpha^{2}+9 \beta^{2}+36 \gamma^{2}=81$. Since $\lambda=-\frac{1}{9} \mathbf{j} y$, it results that $\sigma_{L}(A)$ is infinite.

For the right spectrum, relation

$$
\left(\begin{array}{cc}
0 & \mathbf{j} \\
-\mathbf{j} & 0
\end{array}\right)\binom{x_{1}}{x_{2}}=\binom{x_{1}}{x_{2}} \lambda
$$

implies that $\mathbf{j} x_{2}=x_{1} \lambda$ and $-\mathbf{j} x_{1}=x_{2} \lambda, \lambda, x_{1}, x_{2} \in \mathfrak{H}_{2}$. We have $x_{2}=-\frac{1}{9} \mathbf{j} x_{1} \lambda$ and $-\mathbf{j} x_{1}=-\frac{1}{9} \mathbf{j} x_{1} \lambda \lambda$, therefore $\lambda^{2}=9$, with $\lambda \in \mathfrak{A}_{2}$. It results that $\lambda \in\{-3,3\}$. We obtain $\sigma_{R}(A)=\{-3,3\}$. It is clear that $\sigma_{R}(A) \subset \sigma_{L}(A)$.

For the quaternion real division algebra the following result was proved.
Proposition 2.5. (Theorem 4.5, [HU; 01]). If $A \in \mathcal{M}_{2}(\mathbb{H})$ and $\sigma_{L}(A)$ and $\sigma_{R}(A)$ are both finite, then $\sigma_{L}(A)=\sigma_{R}(A)$.

In the following, we will generalize this result. Let \mathfrak{A}_{t} be a division algebra obtained by the CayleyDickson process, and $A \in \mathcal{M}_{n}\left(\mathfrak{H}_{t}\right)$.

Proposition 2.6. Let $A \in \mathcal{M}_{n}(K)$ such that $\sigma_{R}(A) \neq \emptyset$ and $\sigma_{L}(A) \neq \emptyset$, therefore the sets $\sigma_{L}(A)$ and $\sigma_{R}(A)$ have the same cardinal.

Proof. Let $A \in \mathcal{M}_{n}(K)$ and $\lambda \in \sigma_{L}(A)$. It results that there is a nonzero matrix $X \in \mathcal{M}_{n \times 1}\left(\mathfrak{H}_{t}\right)$ such that $A X=\lambda X$. Taking the conjugate, we obtain

$$
A \bar{X}=\bar{X} \bar{\lambda}
$$

therefore $\bar{\lambda}$ is a right eigenvalue for the matrix A and conversely.
Definition 2.7. Let \mathfrak{H}_{t} be a division algebra obtained by the Cayley-Dickson process and $\mathcal{A} \subseteq \mathfrak{H}_{t}$ be an associative subalgebra of \mathfrak{A}_{t}. An element $\lambda \in \mathcal{A}$ is called a local \mathcal{A}-left eigenvalue for the matrix A if there is a nonzero matrix $X \in \mathcal{M}_{n \times 1}(\mathcal{A})$ such that

$$
A X=\lambda X
$$

The set of distinct local \mathcal{A}-left eigenvalues is called the local \mathcal{A}-left spectrum of the matrix A in \mathcal{A}, denoted $\sigma_{L}^{\mathcal{Y}}(A)$.

An element $\lambda \in \mathcal{A}$ is called a local \mathcal{A}-right eigenvalue for the matrix A if there is a nonzero matrix $X \in \mathcal{M}_{n \times 1}(\mathcal{A})$ such that

$$
A X=X \lambda
$$

The set of distinct right eigenvalues is called the local \mathcal{A} - right spectrum of the matrix A, denoted $\sigma_{R}^{\mathcal{P}}(A)$.
Example 2.8. We consider the real division octonion algebra $\mathscr{H}_{3}=\mathbb{O}=\left(\frac{-1,-1,-1}{\mathbb{R}}\right)$. In this algebra, the elements f_{3}, f_{5}, f_{6} associate and not commute, therefore generate an associative and noncommutative subalgebra of \mathfrak{H}_{3}, denoted by \mathcal{A}. Let $A=\left(\begin{array}{cc}0 & f_{3} \\ f_{5} & 0\end{array}\right) \mathcal{M}_{n}(\mathcal{A})$. We compute the local \mathcal{A}-left and right spectrum of the matrix A.

For the local \mathcal{A}-left spectrum, we have $\left(\begin{array}{cc}0 & f_{3} \\ f_{5} & 0\end{array}\right)\binom{x_{1}}{x_{2}}=\lambda\binom{x_{1}}{x_{2}}$. We obtain the system $\left\{\begin{array}{l}f_{3} x_{2}=\lambda x_{1} \\ f_{5} x_{1}=\lambda x_{2}\end{array}\right.$. We have $x_{2}=-f_{3} \lambda x_{1}$ and $f_{5} x_{1}=\lambda x_{2}$. It results $f_{5} x_{1}=-\lambda f_{3} \lambda x_{1}$, then $f_{5}=-\lambda f_{3} \lambda$, therefore $f_{3} f_{5}=-f_{3} \lambda f_{3} \lambda$. We denote $y=f_{3} \lambda$ and we get $y^{2}=f_{6}$. It results $2 y_{0} y-n(y)=f_{6}$, therefore $2 y_{0}^{2}-n(y)=0$ and $2 y_{0} y_{6}=1, y_{3}=0, y_{5}=0, y_{0}^{2}-y_{6}^{2}=0$. We get $y_{0}=y_{6}=\frac{\sqrt{2}}{2}$ or $y_{0}=y_{6}=-\frac{\sqrt{2}}{2}$. We obtain $f_{3} \lambda=\frac{\sqrt{2}}{2}+\frac{\sqrt{2}}{2} f_{6}$ or $f_{3} \lambda=-\frac{\sqrt{2}}{2}-\frac{\sqrt{2}}{2} f_{6}$, therefore $\lambda \in\left\{\frac{\sqrt{2}}{2} f_{3}+\frac{\sqrt{2}}{2} f_{5},-\frac{\sqrt{2}}{2} f_{3}-\frac{\sqrt{2}}{2} f_{5}\right\}$.

For the local \mathcal{A}-right spectrum, we obtain the system $\left\{\begin{array}{l}f_{3} x_{2}=x_{1} \lambda \\ f_{5} x_{1}=x_{2} \lambda\end{array}\right.$. It results, $x_{2}=-f_{3} x_{1} \lambda$ and $f_{5} x_{1}=$ $-f_{3} x_{1} \lambda^{2}$, therefore $f_{6} x_{1}=-x_{1} \lambda^{2}$. From [Ti; 99], we have $\lambda^{2}=2 \lambda_{0} \lambda-n(\lambda)$, therefore $2 \lambda_{0}^{2}-n(\lambda)=0$ and $4\left(\lambda_{0}^{2} \lambda_{3}^{2}+\lambda_{0}^{2} \lambda_{5}^{2}+\lambda_{0}^{2} \lambda_{6}^{2}\right)=1$.It results $\lambda_{0}^{2}=\lambda_{3}^{2}+\lambda_{5}^{2}+\lambda_{6}^{2}$ and $4 \lambda_{0}^{4}=1$. We obtain $\lambda_{0} \in\left\{-\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right\}$ and $\lambda_{3}^{2}+\lambda_{5}^{2}+\lambda_{6}^{2}=\frac{1}{4}$, with infinite many solutions.

With the above notations we can generalize Proposition 2.5.
Proposition 2.9. Let \mathfrak{A}_{t} be a division algebra obtained by the Cayley-Dickson process and $\mathcal{A} \subseteq \mathfrak{H}_{t}$ be an associative and noncommutative subalgebra of \mathfrak{H}_{t}. If $A \in \mathcal{M}_{n}(\mathcal{A})$ and $\sigma_{R}^{\mathcal{P}}(A)$ is finite, then $\sigma_{R}^{\mathcal{P}}(A) \subseteq \sigma_{L}^{\mathcal{A}}(A)$.

Proof. Supposing that $\lambda \in \sigma_{R}^{\mathcal{P}}(A)$, therefore there is a nonzero matrix $X \in \mathcal{M}_{n \times 1}(\mathcal{A})$ such that $A X=X \lambda$. For $y \in \mathcal{A}, y \neq 0$, we obtain that $A X y=X y y^{-1} \lambda y$. Since \mathcal{A} is associative, it results that $A(X y)=(X y)\left(y^{-1} \lambda y\right)$. From here, we get that $y^{-1} \lambda y \in \sigma_{R}^{\mathcal{P}}(A)$. Therefore, $<\lambda>\subseteq \sigma_{R}^{\mathcal{P}}(A)$, where $<\lambda>=\left\{q \in \mathcal{A} / q=w^{-1} \lambda w, w \in\right.$ $\mathcal{A}, w \neq 0\}$. If $\lambda \notin K$, then $\langle\lambda>\nsubseteq K$ and $<\lambda>$ contains infinitely many distinct elements. Therefore, $\langle\lambda\rangle$ is an infinite set. This is false, since $\sigma_{R}^{\mathcal{P}}(A)$ is supposed finite. Therefore $\lambda \in K,<\lambda>=\{\lambda\}, \sigma_{R}^{\mathcal{P}}(A) \subset K$ and, in this situation, a right eigenvalue is also a right eigenvalue. From here, we get that $\sigma_{R}^{\mathcal{A}}(A) \subseteq \sigma_{L}^{\mathcal{A}}(A)$.
3. Remarks regarding the companion matrix and fixed points for a polynomial with coefficients in division quaternion algebra $\mathbb{H}_{\mathbb{R}}(\alpha, \beta)$

Definition 3.1. [SP;01]. If $\mathbb{H}_{\mathbb{R}}(\alpha, \beta)$ is a division quaternion algebra and the polynomial $p \in \mathbb{H}_{\mathbb{R}}(\alpha, \beta)[x]$, $p(x)=x^{n}+a_{n-1} x^{n-1}+\ldots+a_{0}$, the following matrix

$$
C(p)=\left(\begin{array}{cccc}
0 & 1 & \ldots & 0 \\
\ldots & \ldots & \ldots & \ldots \\
0 & 0 & \ldots & 1 \\
-a_{0} & -a_{1} & \ldots & -a_{n-1}
\end{array}\right)
$$

is called the companion matrix associated to the polynomial $p(x)$.
Remark 3.2. ([SP; 01], Proposition 1 and Corollary 1) If λ is a left eigenvalue associated to the companion matrix $C(p)$, then:
i) λ is a root of the polynomial $p(x)$;
ii) $w=\left(1, \lambda, \lambda^{2}, \ldots, \lambda^{m-1}\right)^{t}$ is a left eigenvector;
iii) λ is also a right eigenvalue.

It is clear that, due to the Remark 1.1, these results are true for all generalized real division quaternion algebras.

Example 3.3. We consider the polynomial $p(x)=x^{2}+\mathbf{i} x+\mathbf{j}$, with $C(p)=\left(\begin{array}{cc}0 & 1 \\ -\mathbf{j} & -\mathbf{i}\end{array}\right)$. We compute the left eigenvalues of the matrix $C(p)$. We have
$\left(\begin{array}{cc}0 & \mathbf{1} \\ -\mathbf{j} & -\mathbf{i}\end{array}\right)\binom{x_{1}}{x_{2}}=\lambda\binom{x_{1}}{x_{2}}$. It results the following equations: $x_{2}=\lambda x_{1}$ and $-\mathbf{j} x_{1}-\mathbf{i} x_{2}=\lambda x_{2}$. We obtain that $b=\mathbf{i}$ and $c=\mathbf{j}$. From Proposition 2.1, since $T= \pm 1, N=1, \Delta=0, \Gamma^{2}<4 \Psi$, therefore, the solutions of this equation are $\lambda_{1}=-(\mathbf{i}+1)^{-1}(\mathbf{j}-1)$ and $\lambda_{2}=-(\mathbf{i}-1)^{-1}(\mathbf{j}-1)$. We have $\lambda_{1}=\frac{1}{2}(\mathbf{i}-1)(\mathbf{j}-1)=\frac{1}{2}(1-\mathbf{i}-\mathbf{i}+\mathbf{k})$ and $\lambda_{2}=\frac{1}{2}(\mathbf{i}+1)(\mathbf{j}-1)=\frac{1}{2}(-1-\mathbf{i}+\mathbf{j}+\mathbf{k})$. For $\lambda_{1}=\frac{1}{2}(1-\mathbf{i}-\mathbf{j}+\mathbf{k})$, the associated eigenvector is $w_{1}=$ $\left(1, \frac{1}{2}-\frac{\mathbf{i}}{2}-\frac{\mathbf{j}}{2}+\frac{\mathbf{k}}{2}\right)^{t}$ and for $\lambda_{2}=\frac{1}{2}(-1-\mathbf{i}+\mathbf{j}+\mathbf{k})$, the associated eigenvector is $w_{2}=\left(1,-\frac{1}{2}-\frac{\mathbf{i}}{2}+\frac{\mathbf{j}}{2}+\frac{\mathbf{k}}{2}\right)^{t}$.

Proposition 3.4. If $\mathbb{H}_{\mathbb{R}}(\alpha, \beta)$ is a division quaternion algebra, the matrices A of the form $\left(\begin{array}{ll}0 & 1 \\ b & c\end{array}\right)$, with $b, c \in \mathbb{H}_{\mathbb{R}}(\alpha, \beta)-\mathbb{R}$, have $\sigma_{L}(A) \subset \sigma_{R}(A)$. The set $\sigma_{L}(A)$ has two elements and $\sigma_{R}(A)$ is always infinite.

Proof. The matrix A is the companion matrix of the polynomial $p(x)=x^{2}-c x-b$.From Proposition 2.2, Case 4, $p(x)$ has two roots. For a companion matrix a left eigenvalue is also a right eigenvalue, therefore $\sigma_{L}(A) \subset \sigma_{R}(A)$ and $\sigma_{R}(A)$ is not included in the ground field. From here, we have that $\sigma_{R}(A)$ is infinite.

Definition 3.5. ([CV; 21], Corollary 4.8) If $\mathbb{H}_{\mathbb{R}}(\alpha, \beta)$ is a division quaternion algebra and a polynomial $p \in \mathbb{H}_{\mathbb{R}}(\alpha, \beta)[x]$. A fixed point for the polynomial p is an element $x_{0} \in \mathbb{H}_{\mathbb{R}}(\alpha, \beta)$ such that $p\left(x_{0}\right)=x_{0}$.

Proposition 3.6. If $\mathbb{H}_{\mathbb{R}}(\alpha, \beta)$ is a division quaternion algebra, we consider the polynomial $p \in \mathbb{H}_{\mathbb{R}}(\alpha, \beta)[x]$, $p(x)=x^{2}+b x+c, b, c \in \mathbb{H}_{\mathbb{R}}(\alpha, \beta)$.

1) If $b, c \in \mathbb{R}$ and $(b-1)^{2}<4 c$, then p has an infinity of fixed points;
2) If $b, c \in \mathbb{R}$ and $(b-1)^{2} \geq 4 c$, or $b \notin \mathbb{R}$, then p has maximum two distinct fixed points;
3) If $b \in \mathbb{R}, c \notin \mathbb{R}$ then p has maximum 16 distinct fixed points.

Proof. It is clear from Proposition 2.2.
If $\mathbb{H}_{\mathbb{R}}(\alpha, \beta)$ is a division quaternion algebra, we consider the equation

$$
\begin{equation*}
x^{2}+x b+c=0 \tag{3.1.}
\end{equation*}
$$

with $b, c \in \mathbb{H}_{\mathbb{R}}(\alpha, \beta)$, which are not in the cases described in Proposition 2.2, but can be reduced to those situations. Let $p(x)=x^{2}+x b+c$. We remark that $\overline{p(x)}=\overline{x^{2}+x b+c}=\bar{x}^{2}+\bar{b} \bar{x}+\bar{c}$. Therefore, if x_{0} is a solution to the equation (3.1), then its conjugate \bar{x}_{0} is a solution to the equation

$$
\begin{equation*}
\bar{x}^{2}+\bar{b} \bar{x}+\bar{c}=0, \tag{3.2.}
\end{equation*}
$$

called the conjugate of the equation (3.1). Conversely, if x_{0} is a solution to the equation (3.2), then \bar{x}_{0} is a solution to the equation (3.1). From here, we conclude that the polynomial $p(x)$ and $\overline{p(x)}$ has the same number of fixed points.

Under the above conditions, we consider the equation

$$
\begin{equation*}
x^{2}+A x+x B+C=0 \tag{3.3.}
\end{equation*}
$$

with $A, B, C \in \mathbb{H}_{\mathbb{R}}(\alpha, \beta)$, which also are not in the cases described in Proposition 2.2, but can be reduced to those situations. We consider the polynomial $q(x)=x^{2}+A x+x B+C$. We have that $x^{2}+A x+x B+C=$ $(x+B)^{2}+(A-B)(x+B)-A B+C$. Denoting $y=x+B, \mu=A-B$ and $\eta=-A B+C$, it results the following equation

$$
\begin{equation*}
y^{2}+\mu y+\eta=0 \tag{3.4}
\end{equation*}
$$

Therefore, if z is a solution to the equation (3.3), then $z+B$ is a solution to the equation (3.4) and if w is a solution to the equation (3.4), therefore $w-B$ is a solution to the equation (3.3). From here, we conclude that the polynomials $q(x)$ and $p(y)=y^{2}+\mu y+\eta$ have the same number of fixed points.

Example 3.7. In \mathbb{H} the polynomial $q(x)=x^{2}+\mathbf{i} x+x \mathbf{i}+1$ has the same number of fixed points as the polynomial $p(y)=y^{2}+2$. The fixed points for the polynomial p are the solution of the equation $y^{2}+2=y$. Therefore, we obtain the equation $y^{2}-y+2=0$. From Proposition 2.2, the solutions are

$$
y=\frac{1}{2}(-b+r \mathbf{i}+s \mathbf{j}+t \mathbf{k})
$$

with $r^{2}+s^{2}+t^{2}=7$ where $r, s, t \in \mathbb{R}$, that means an infinity number of fixed points. It results that the fixed points for the polynomial q are of the form $y-\mathbf{i}$,

$$
x=\frac{1}{2}(-b+(r-2) \mathbf{i}+s \mathbf{j}+t \mathbf{k}),
$$

with $r^{2}+s^{2}+t^{2}=7$ where $r, s, t \in \mathbb{R}$.
Acknowledgments. The authors thank the referees for their suggestions and remarks which helped us to improve this paper.

References

[BR; 51] Brenner J. L., Matrices of quaternions, Pac. J. Math. 1(1951), 329-335.
[BR; 67] Brown R. B., On generalized Cayley-Dickson algebras, Pacific J. of Math., 20(3)(1967), 415-422.
[CV; 21] Chapman A., Vishkautsan S., Fixed Points of Polynomials over Division Rings, Bulletin of the Australian Mathematical Society, 104(2)(2021), 256-262.
[FL; 13] Flaut C., Levels and sublevels of algebras obtained by the Cayley-Dickson process, Ann. Mat. Pura Appl., 192(6)(2013), 1099-1114.
[HU; 01] Huang L., So W., On left eigenvalues of a quaternionic matrix, Linear Algebra Appl., 323(2001), 105-116.
[HS; 02] Huang L., So W., Quadratic Formulas for Quaternions, Applied Mathematics Letters, 15(2002), 533-540.
[La; 04] T. Y. Lam, Introduction to Quadratic Forms over Fields, American Mathematical Society, 2004.
[Mi; 11] D. Mierzejewski, Linear manifolds in sets of solutions of quaternionic polynomial equations of several types, Adv. Appl. Clifford Algebras, 21(2011), 417-428.
[MS; 08] Mierzejewski D., Szpakowski, V., On solutions of some types of quaternionic quadratic equations, Bulletin de la Société des Sciences et des Lettres de Łod́ź, Série Recherches sur les Déformations, 55(2008), 49-58.
[PS; 04] Pogorui, A., Shapiro, M., On the structure of the set of the zeros of quaternionic polynomials, Complex Variables and Elliptic Equations, 49(6)(2004), 379-389.
[SP;01]Serôdio R., Pereira E., Computing the Zeros of Quaternion Polynomials, Computers and Mathematics with Applications, 42(2001), 1229-1237.
[SCH; 66] Schafer R. D., An Introduction to Nonassociative Algebras, Academic Press, New-York, 1966.
[SCH; 54] Schafer R. D., On the algebras formed by the Cayley-Dickson process, Amer. J. Math., 76(1954), 435-446.
[Sz; 09] Szpakowski, V., Solution of quadratic quaternionic equations, Bulletin de la Société des Sciences et des Lettres de Łod́ź, Série Recherches sur les Déformations, 58(2009), 45-58.
[TI; 00] Tian Y., Matrix reprezentations of octonions and their applications, Adv. in Appl. Clifford Algebras 10(1)(2000), 61-90.
[Ti; 99] Tian Y., Similarity and cosimilarity of elements in the real Cayley-Dickson algebras, Adv. Appl. Clifford Algebras, 9(1)(1999), 61-76.
[WO; 85] Wood R.M.W., Quaternionic eigenvalues, Bull. London Math. Soc. 17(1985), 137-138.

[^0]: 2020 Mathematics Subject Classification. 17A35, 17A45, 15A18.
 Keywords. Cayley-Dickson process; Left and right eigenvalues; Companion matrices, fixed points.
 Received: 29 May 2022; Accepted: 12 July 2022
 Communicated by Erdal Karapınar
 Email addresses: cflaut@univ-ovidius.ro; cristina_flaut@yahoo.com (Cristina Flaut), nechifor.ana96@gmail.com (Ana Nechifor)

