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Abstract. Many different definitions of fractional calculus have been proposed in the literature, especially
in recent years, and these can be classified into groups with similar properties. Many recent papers have
studied inequalities for fractional integrals of particular types of functions, such as Hermite–Hadamard
inequalities and related results. Here we provide theorems valid for a whole general class of fractional
operators (anything defined using an integral with an analytic kernel function), so that it is no longer
necessary to prove such results for each model one by one. We consider several types of fractional
integral inequalities, which apply to functions of convex and synchronous type, and extend them to the full
generality of fractional calculus with analytic kernels.

1. Introduction

Fractional calculus was theorised and developed as a generalisation of the classical calculus, in which
integrals and derivatives can be taken not only to integer orders but to any real or complex number order.
The main fundamental definitions for fractional integrals and fractional derivatives were formulated in the
19th century [32], but in the 21st century many other definitions have been proposed, some more useful
than others. Nowadays, research in fractional calculus falls into two main categories: pure, establishing the
mathematical theory of fractional operators, and applied, using these operators to model various real-world
systems [37].

Following the theme of generalisation, which is always at the core of pure mathematics, it is clear that
pure mathematical results should always be proved in the most general possible framework. Applications
require specific formulae which can be fitted to specific real data, but there is no reason to apply the same
mathematical proof many times to different results if they are all special cases of one general result.

For this reason, recently [8] it was proposed to consider the operators of fractional calculus as falling
within various broad classes. Within each class, many results can be proven in a general setting, instead
of wasting time repeating the same proofs in many specific settings. One of these classes, which we shall
focus on in the current work, is the class of fractional integral operators with analytic kernel functions,
introduced in [14].

One topic of recent interest within mathematical analysis and specifically fractional calculus is the study
of integral inequalities. These have been used in fields such as ordinary and partial differential equations and
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integral equations [23, 39] and special functions [29]. In particular, fractional integral inequalities have been
vital in providing bounds to solve some boundary value problems in fractional calculus, and in establishing
the existence and uniqueness of solutions for certain fractional differential equations [5, 13, 33, 40]. But
integral inequalities have also been studied for their own sake: many papers have been published on this
topic, especially the Hermite–Hadamard inequality for convex functions and its variants [9, 24, 25, 28, 34–
36, 38].

We seek to stem the flow of very similar papers by proving the corresponding results in general classes
of fractional operators, obviating the need for proving them in each specific case. Some papers [4, 28] have
already proceeded in this direction, by proving integral inequalities in the class of fractional operators with
respect to functions. We continue that work by proving the Hermite–Hadamard and other inequalities in
the class of fractional operators with general analytic kernels.

The structure of our paper is as follows. Section 2 is for preliminary definitions, results, and discussion.
Section 3 is for proving the main results concerning the Hermite–Hadamard inequality for fractional
integrals with general analytic kernels. Section 4 is for further fractional integral inequalities that apply to
synchronous functions. Section 5 is for the conclusions.

2. Preliminaries

2.1. Fractional calculus
We start by defining the Riemann–Liouville fractional integral, the most fundamental starting point of

fractional calculus.

Definition 2.1 ([27, 30, 32]). For f ∈ L1[a, b] and Re(α) > 0, the left Riemann–Liouville fractional integral to order
α of f (x) is defined as

RL
aIαx f (x) :=

1
Γ(α)

∫ x

a
(x − ξ)α−1 f (ξ) dξ, x ∈ [a, b], (1)

where Γ denotes the standard and well-known gamma function, Γ(α) =
∫
∞

0 tα−1e−t dt. For f ∈ Cn[a, b] and
n − 1 ≤ Re(α) < n, the left Riemann–Liouville fractional derivative to order α of f (x) is defined as

RL
aDα

x f (x) :=
dn

dxn
RL

aIn−α
x f (x), x ∈ [a, b]. (2)

When we interpret RLD−αa+ f (x) = RLIαa+ f (x), we find that the formula (2) is the analytic continuation in α of the
formula (1); thus, it makes sense to consider both differentiation and integration as cases of a single operator which
we call differintegration.

Definition 2.2 ([32]). For f ∈ L1[a, b] and Re(α) > 0, the right Riemann–Liouville fractional integral to order α of
f (x) is defined as

RL
xIαb f (x) :=

1
Γ(α)

∫ b

x
(ξ − x)α−1 f (ξ) dξ, x ∈ [a, b]. (3)

For f ∈ Cn[a, b] and n−1 ≤ Re(α) < n, the right Riemann–Liouville fractional derivative to order α of f (x) is defined
as

RL
xDα

b f (x) := (−1)n dn

dxn
RL

xIn−α
b f (x), x ∈ [a, b]. (4)

Other well-established definitions of fractional derivatives involve the Caputo derivative [12] and the
Hilfer derivative [19, Chapter II] which interpolates between Riemann–Liouville and Caputo. Many of the
alternative definitions of fractional integrals and derivatives arising in recent years involve replacing the
power function kernel of (1) and (3) with other kernel functions. We mention in particular the Atangana–
Baleanu [6, 7] and Prabhakar [22, 31] definitions, which involve Mittag-Leffler kernel functions, although
one can obtain a viable model of fractional calculus by many other possible kernel functions. These can be
considered as special cases of a general class of fractional operators which we define as follows.
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Definition 2.3 ([14]). Let [a, b] be an interval and x ∈ [a, b]. For f ∈ L1[a, b] and α, β > 0, the left fractional integral
with analytic kernel function A and parameters α, β of f (x) is defined as

A
aIα,βx f (x) :=

∫ x

a
(x − ξ)α−1A

(
(x − ξ)β

)
f (ξ) dξ, (5)

where A : D(0,R)→ C is a complex analytic function with power series

A(x) =
∞∑

n=0

anxn (6)

and the coefficients an = an(α, β) are permitted to depend on the parameters α and β if desired, and R > (b − a)β.
(Note that in general the parameters α and β may be complex, as originally written in [14]. However, for the

purposes of this paper we restrict them to be real, since we cannot do inequalities in the complex plane.)
Alternatively, the generalised integral operator (5) can be written as an infinite series of Riemann–Liouville

fractional integrals, thus confirming its status as part of fractional calculus:

A
aIα,βx f (x) =

∞∑
n=0

anΓ(α + n β) RL
aIα+n β

x f (x) (7)

= AΓ
(

RL
aIβx

)
RL

aIαx f (x), (8)

the series (7) being locally uniformly convergent according to [14], where the transformed function AΓ is defined by

AΓ(x) :=
∞∑

n=0

anΓ(α + n β)xn. (9)

Similarly, the right fractional integral with analytic kernel function A and parameters α, β of f (x) is defined as

A
xIα,βb f (x) :=

∫ b

x
(ξ − x)α−1A

(
(ξ − x)β

)
f (ξ) dξ (10)

=

∞∑
n=0

anΓ(α + n β) RL
xIα+n β

b f (x) (11)

= AΓ
(

RL
xIβb

)
RL

xIαb f (x), (12)

where A and AΓ are defined by (6) and (9) as above.

Remark 2.4. The Riemann–Liouville fractional integral, as well as the Prabhakar fractional integral and Atangana–
Baleanu fractional derivatives, all mentioned above, are special cases of Definition 2.3 given by the following choices
of A, α, and β:

(i) When A(x) = 1
Γ(α) is constant, we have

RL
aIαx f (x) = A

aIα,0x f (x),
RL

xIαb f (x) = A
xIα,0b f (x).

(ii) When A(x) = Eγβ,α(ω x) is the 3-parameter Mittag-Leffler function, we have

P
aIα,β,γ,ωx f (x) = A

aIα,βx f (x). (13)

(iii) When A(x) = B(α)
1−αEα

(
−α

1−α

)
is the 1-parameter Mittag-Leffler function with constant factor, we have

ABR
aDα

x f (x) =
d
dx

A
aI1,α

x f (x), (14)

ABC
aDα

x f (x) = A
aI1,α

x f ′(x). (15)

For more details about the Mittag-Leffler functions and their connections with fractional calculus, we refer the
reader to the classical texts [17, 18, 26].
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2.2. Hermite–Hadamard inequalities

The classical Hermite–Hadamard inequality, from which a great deal of further literature has been
extended, is stated as follows.

Proposition 2.5. If f : [a, b]→ R is an L1 convex function, then

f
(

a + b
2

)
≤

1
b − a

∫ b

a
f (x) dx ≤

f (a) + f (b)
2

. (16)

Two fractional versions of this classical result were proved in 2013 [35] and 2017 [36]. The Hermite–
Hadamard inequality for Riemann–Liouville fractional integrals can be stated in either of the two following
ways.

Proposition 2.6 ([35]). If f : [a, b]→ R is convex and L1, and α > 0, then

f
(

a + b
2

)
≤
Γ(α + 1)
2(b − a)α

[
RL

aIαx f (b) + RL
xIαb f (a)

]
≤

f (a) + f (b)
2

, (17)

Proposition 2.7 ([36]). If f : [a, b]→ R is convex and L1, and α > 0, then

f
(

a + b
2

)
≤

2α−1Γ(α + 1)
(b − a)α

[
RL
a+b

2
Iαx f (b) + RL

xIαa+b
2

f (a)
]
≤

f (a) + f (b)
2

, (18)

The difference between the inequalities (17) and (18) is that, in the interval [a, b], the former uses
integration forwards from the beginning and backwards from the end, while the latter uses integration
both ways from the centre.

A version of the Hermite–Hadamard inequality for h-convex functions has also been proved in 2008
[34], and this too has been extended to fractional integrals of such functions [38]. This generalisation of the
notion of convexity also includes other proposed types of convexity, such as exp-convexity [21]; therefore,
Hermite–Hadamard inequalities for fractional integrals of exp-convex functions are also known, as special
cases of existing results in the literature.

Many other extensions of the Hermite–Hadamard theorem have been proposed, with proofs at varying
levels of difficulty compared with the original result, and the results investigated at varying levels of detail.
These include results in various types of fractional calculus, e.g. for fractional integrals of a function with
respect to another function [25, 28], those of Hilfer type [9] and for other models of fractional calculus
involving Mittag-Leffler kernels [15]. We do not state all the results in detail here, but they are usually
similar in form and function, although not identical, to the original Hermite–Hadamard result (16) and its
fractional version (17).

3. Hermite–Hadamard inequalities for general integral operators

In this section, we shall prove analogues of the fractional Hermite–Hadamard inequalities (17)–(18) for
fractional integrals with general analytic kernels. The main results here are Theorem 3.1 (a generalisation
of Proposition 2.6) and Theorem 3.5 (a generalisation of Proposition 2.7).

Theorem 3.1. Let f : [a, b]→ R be a convex L1 function, and α, β,A be as in Definition 2.3 for fractional integrals
with general analytic kernels.

If all coefficients an of the analytic function A are real positive, then the Hermite–Hadamard inequality is as
follows:

f
(

a + b
2

)
≤

1
2(b − a)αB ((b − a)β)

[
A
aIα,βx f (b) + A

xIα,βb f (a)
]
≤

f (a) + f (b)
2

, (19)
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where

B(x) :=
∞∑

n=0

anxn

α + n β
. (20)

In general, if the coefficients an are real but may be either positive or negative, then the Hermite–Hadamard
inequality is as follows:

f
(

a + b
2

)
B+

(
(b − a)β

)
−

f (a) + f (b)
2

B−
(
(b − a)β

)
≤

1
2(b − a)α

[
A
aIα,βx f (b) + A

xIα,βb f (a)
]
≤

f (a) + f (b)
2

B+
(
(b − a)β

)
− f

(
a + b

2

)
B−

(
(b − a)β

)
, (21)

where

B+(x) :=
∑

n : an>0

|an|xn

α + n β
, B−(x) :=

∑
n : an<0

|an|xn

α + n β
, (22)

noting that both B+(x) and B−(x) are positive for x > 0 and that B+(x) − B−(x) = B(x).

Proof. From the series definition (7), we have:

A
aIα,βx f (b) + AB

xIα,βb f (a) =
∞∑

n=0

anΓ(α + n β)
(

RL
aIα+n β

x f (b) + RL
xIα+n β

b f (a)
)
.

Now we wish to use the inequality (17), but we must think carefully about sign. Since the gamma function
is positive on R+, and 2(b − a)α+n β is also positive, we can deduce:

2(b − a)α+n β

α + n β
f
(

a + b
2

)
≤ Γ(α + n β)

(
RL

aIα+n β
x f (b) + RL

xIα+n β
b f (a)

)
≤

2(b − a)α+n β

α + n β
·

f (a) + f (b)
2

.

The only possible sign problem comes from the coefficients an. If we assume all an to be real positive, then
multiplying by an and summing over all n gives

f
(

a + b
2

) ∞∑
n=0

an
2(b − a)α+n β

α + n β
≤

A
aIα,βx f (b) + A

xIα,βb f (a) ≤
f (a) + f (b)

2

∞∑
n=0

an
2(b − a)α+n β

α + n β
.

The series on the left and right hand sides of this inequality are clearly positive, so we can divide by them
to get the desired result (19).

In general, if some an are positive and others are negative (any that are zero can be ignored in the sum),
then we get instead

f
(

a + b
2

) ∑
n : an>0

an
2(b − a)α+n β

α + n β
+

f (a) + f (b)
2

∑
n : an<0

an
2(b − a)α+n β

α + n β

≤
A
aIα,βx f (b) + A

xIα,βb f (a) ≤
f (a) + f (b)

2

∑
n : an>0

an
2(b − a)α+n β

α + n β
+ f

(
a + b

2

) ∑
n : an<0

an
2(b − a)α+n β

α + n β
,

or more simply

f
(

a + b
2

)
B+

(
(b − a)β

)
−

f (a) + f (b)
2

B−
(
(b − a)β

)
≤

1
2(b − a)α

[
A
aIα,βx f (b) + A

xIα,βb f (a)
]
≤

f (a) + f (b)
2

B+
(
(b − a)β

)
− f

(
a + b

2

)
B−

(
(b − a)β

)
,

and again the desired result follows.
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Corollary 3.2. Using Theorem 3.1 with β = 0 and A(x) = 1
Γ(α) , we can deduce the Hermite–Hadamard inequality

(17) for Riemann–Liouville fractional integrals. In this case B(x) = 1
Γ(α+1) and we may use the version (19) with all

an positive.

Corollary 3.3. Using Theorem 3.1 with A(x) = Eγβ,α(ω x), we can deduce the following Hermite–Hadamard inequality
for Prabhakar fractional integrals:

f
(

a + b
2

)
≤

P
aIβ,α,γ,ωx f (b) + P

xIβ,α,γ,ωb f (a)

2(b − a)αEγβ,α+1 (ω(b − a)β)
≤

f (a) + f (b)
2

. (23)

This was already established, and illustrated graphically, in [15].

Remark 3.4. Fractional derivative operators with general analytic kernels were also defined in [14]. The definition,
like that of the classical Riemann–Liouville derivative seen in Definition 2.1, was given by combining the general
fractional integral operator (5) with a standard repeated differentiation operator.

Because of this use of standard differentiation operators, we cannot extend the integral inequalities of Theorem 3.1
to results for fractional derivatives with general analytic kernels. This makes sense in terms of what we know about
classical calculus: it is usually much easier to bound a function’s integral than its derivative.

Why, then, was it possible in [15, Theorem 2.1] to find Hermite–Hadamard type inequalities for Atangana–Baleanu
fractional derivatives? The answer lies in the series formula for the AB fractional derivative [7], expressing it as
an infinite series of Riemann–Liouville integrals. The AB derivative can be defined purely in terms of fractional
integration, without using any differentiation at all, but this is not true in general for the derivative operators with
analytic kernels.

Note that the result of [15, Theorem 2.1] is essentially a special case of our Theorem 3.1, even though it is about AB
derivatives rather than fractional integrals. If an operator can be written as an infinite series of Riemann–Liouville
fractional integrals, then our argument above can be applied. The functions K1 and K2 appearing in [15, Theorem
2.1] correspond to the functions B+ and B− which we have used above.

Theorem 3.5. Let f : [a, b]→ R be a convex L1 function, and α, β,A be as in Definition 2.3 for fractional integrals
with general analytic kernels.

If all coefficients an of the analytic function A are real positive, then the Hermite–Hadamard inequality is as
follows:

f
(

a + b
2

)
≤

2α−1

(b − a)αB
((

b−a
2

)β) [ A
a+b

2
Iα,βx f (b) + A

xIα,βa+b
2

f (a)
]
≤

f (a) + f (b)
2

, (24)

where the function B is defined by (20) as before.
In general, if the coefficients an are real but may be either positive or negative, then the Hermite–Hadamard

inequality is as follows:

f
(

a + b
2

)
B+

(b − a
2

)β − f (a) + f (b)
2

B−

(b − a
2

)β
≤

2α−1

(b − a)α
[

A
a+b

2
Iα,βx f (b) + A

xIα,βa+b
2

f (a)
]
≤

f (a) + f (b)
2

B+

(b − a
2

)β − f
(

a + b
2

)
B−

(b − a
2

)β , (25)

where the functions B+ and B− are defined by (22) as before.

Proof. From the series definition (7), we have:

A
a+b

2
Iα,βx f (b) + A

xIα,βa+b
2

f (a) =
∞∑

n=0

anΓ(α + n β)
(

RL
a+b

2
Iα+n β

x f (b) + RL
xIα+n β

a+b
2

f (a)
)
.
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Now we wish to use the inequality (18), but again we must think carefully about sign. Since α, β, and b − a
are positive, we can deduce:

(b − a)α+n β

(α + n β)2α+n β−1 f
(

a + b
2

)
≤ Γ(α + n β)

[
RL
a+b

2
Iα+n β

x f (b) + RL
xIα+n β

a+b
2

f (a)
]
≤

(b − a)α+n β

(α + n β)2α+n β−1 ·
f (a) + f (b)

2
. (26)

Just like in the proof of Theorem 3.1, since Γ(α + nβ) and (b − a)α+nβ are positive, the only possible sign
problem comes from the coefficients an. If we assume all an to be real positive, then multiplying the above
inequality by an and summing over all n gives

f
(

a + b
2

) ∞∑
n=0

an
(b − a)α+n β

(α + n β)2α+n β−1 ≤
A

a+b
2

Iα,βx f (b) + A
xIα,βa+b

2

f (a) ≤
f (a) + f (b)

2

∞∑
n=0

an
2(b − a)α+n β

(α + n β)2α+n β−1 .

Using the definition (20) of the function B, this can be rewritten as

(b − a)α

2α−1 B

(b − a
2

)β f
(

a + b
2

)
≤

A
a+b

2
Iα,βx f (b) + A

xIα,βa+b
2

f (a) ≤
(b − a)α

2α−1 B

(b − a
2

)β f (a) + f (b)
2

.

Then, since α, β, b − a are positive and so are the coefficients in the series for B, we can deduce:

f
(

a + b
2

)
≤

2α−1

(b − a)αB
((

b−a
2

)β) [ A
a+b

2
Iα,βx f (b) + A

xIα,βa+b
2

f (a)
]
≤

f (a) + f (b)
2

,

which is the desired result (24).
In general, if some an are positive and others are negative (again we can ignore any zero terms in the

sum), then from (26) we get instead

f
(

a + b
2

) ∑
n : an>0

an
(b − a)α+n β

(α + n β)2α+n β−1 +
f (a) + f (b)

2

∑
n : an<0

an
(b − a)α+n β

(α + n β)2α+n β−1

≤
A

a+b
2

Iα,βx f (b) + A
xIα,βa+b

2

f (a)

≤
f (a) + f (b)

2

∑
n : an>0

an
(b − a)α+n β

(α + n β)2α+n β−1 + f
(

a + b
2

) ∑
n : an<0

an
(b − a)α+n β

(α + n β)2α+n β−1 .

Using the definitions (22) of the functions B+ and B−, this can be rewritten as

f
(

a + b
2

)
(b − a)α

2α−1 B+

(b − a
2

)β − f (a) + f (b)
2

·
(b − a)α

2α−1 B−

(b − a
2

)β
≤

A
a+b

2
Iα,βx f (b) + A

xIα,βa+b
2

f (a) ≤
f (a) + f (b)

2
·

(b − a)α

2α−1 B+

(b − a
2

)β − f
(

a + b
2

)
(b − a)α

2α−1 B−

(b − a
2

)β ,
and this gives the desired result (25) since α and b − a are positive.

Corollary 3.6. Using Theorem 3.5 with β = 0 and A(x) = 1
Γ(α) , we can deduce the Hermite–Hadamard inequality

(18) for Riemann–Liouville fractional integrals. In this case B(x) = 1
Γ(α+1) and we may use the version (24) with all

an positive.
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Corollary 3.7. Using Theorem 3.5 with A(x) = Eγβ,α(ω x), we can deduce the following Hermite–Hadamard inequality
for Prabhakar fractional integrals:

f
(

a + b
2

)
≤

P
a+b

2
Iβ,α,γ,ωx f (b) + P

xIβ,α,γ,ωa+b
2

f (a)

2
(

b−a
2

)α
Eγβ,α+1

(
ω

(
b−a

2

)β) ≤ f (a) + f (b)
2

. (27)

This was already established, and illustrated graphically, in [15].

Remark 3.8. Once again, the result of Theorem 3.5 cannot be extended easily to any result for fractional derivatives
with general analytic kernels. The existence of a standard differentiation operator in the definition of these generalised
fractional derivatives means that integral inequalities can no longer be used.

The result of [15, Theorem 2.3] gives a Hermite–Hadamard type inequality for Atangana–Baleanu fractional
derivatives. Again, this is possible because AB fractional derivatives can be written according to [7] as infinite series
of Riemann–Liouville integrals. The result of [15, Theorem 2.3] is essentially a special case of our Theorem 3.5, with
again the functionsK1 andK2 from [15, Theorem 2.3] corresponding to the functions B+ and B− which we have used
above.

4. Further inequalities for synchronous functions

The above inequalities of Hermite–Hadamard type concern convex functions. Of course the theory
of integral inequalities is much broader than just these, and in the current section we shall study some
inequalities involving synchronous functions, which are defined as follows.

Definition 4.1. Let f , 1 : [a, b]→ R. We say these two functions are synchronous if(
f (x) − f (y)

) (
1(x) − 1(y)

)
≥ 0 (28)

for all x, y ∈ [a, b]. In other words, if the increasing and decreasing intervals are synchronised: both functions increase
or decrease together.

In some previous work [10, 16], inequalities concerning fractional integrals of synchronous functions
were proved in some specific types of fractional calculus. Using similar methods, it is possible to prove
analogous results for general classes of fractional operators.

Theorem 4.2. Let f , 1 ∈ L1[0,∞) be synchronous, and let α, β ∈ R+ be positive real parameters. If the analytic
function A is such that A(x) > 0 for all x > 0, then we have the following integral inequality:

xαB(xβ) A
aIα,βx [ f (x)1(x)] ≥ A

aIα,βx [ f (x)] A
aIα,βx [1(x)], x ∈ [0,∞), (29)

where the function B is as defined in (20).

Proof. The definition of synchronous functions implies immediately that

f (ξ)1(ξ) + f (η)1(η) ≥ f (ξ)1(η) + 1(ξ) f (η), ξ, η ∈ [0,∞).

Assuming x ≥ ξ, this inequality can be multiplied on both sides by the positive factor (x− ξ)α−1A
(
(x − ξ)β

)
,

and then integrated over the interval ξ ∈ (0, x) to obtain, using the definition (5),

A
aIα,βx

[
f (x)1(x)

]
+ f (η)1(η) A

aIα,βx

[
1
]
≥ 1(η) A

aIα,βx

[
f (x)

]
+ f (η) A

aIα,βx

[
1(x)

]
, (30)

for x, η ∈ [0,∞). Now the same process can be repeated: multiplying the new inequality (30) on both sides
by the positive factor (x − η)α−1A

(
(x − η)β

)
and then integrating over the interval η ∈ (0, x) to obtain:

A
aIα,βx [ f (x)1(x)] A

aIα,βx

[
1
]
+ A

aIα,βx [1] A
aIα,βx

[
f (x)1(x)

]
≥

A
aIα,βx [ f (x)] A

aIα,βx

[
1(x)

]
+ T

0I(α,β)
t [1(x)] A

aIα,βx

[
f (x)

]
,
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or after dividing by 2,

A
aIα,βx [ f (x)1(x)] A

aIα,βx [1] ≥ A
aIα,βx [ f (x)] A

aIα,βx [1(x)].

It remains only to show that

A
aIα,βx [1] = xαB(xβ), (31)

and this can be shown using the series formula (7):

A
aIα,βx [1] =

∞∑
n=0

anΓ(α + n β) RL
aIα+n β

x [1]

=

∞∑
n=0

anxα+n β

α + n β
= xαB(xβ),

using the definition (20) of the function B.

Theorem 4.3. Let f , 1 ∈ L1[0,∞) be synchronous, and let α1, β1, α2, β2 ∈ R+ be positive real parameters. If the
analytic function A is such that A(x) > 0 for all x > 0, then we have the following integral inequality:

xα2 B(xβ2 ) A
aIα1,β1

x [ f (x)1(x)] + xα1 B(xβ1 ) A
aIα2,β2

x [ f (x)1(x)]

≥
A
aIα1,β1

x [ f (x)] A
aIα2,β2

x [1(x)] + A
aIα1,β1

x [1(x)] A
aIα2,β2

x [ f (x)], (32)

where the function B is as defined in (20).

Proof. During the proof of Theorem 4.2 we found the following inequality (30), valid for all t, v ∈ [0,∞):

A
aIα1,β1

x

[
f (x)1(x)

]
+ f (η)1(η) A

aIα1,β1
x

[
1
]
≥ 1(η) A

aIα1,β1
x

[
f (x)

]
+ f (η) A

aIα1,β1
x

[
1(x)

]
,

for x, η ∈ [0,∞). Now, instead of using the same multiplier (x − η)α1−1A
(
(x − η)β1

)
as before, we instead

multiply this inequality on both sides by (x−η)α2−1A
(
(x − η)β2

)
and then integrate over the interval η ∈ (0, x)

to obtain:

A
aIα1,β1

x [ f (x)1(x)] A
aIα2,β2

x

[
1
]
+ A

aIα1,β1
x [1] A

aIα2,β2
x

[
f (x)1(x)

]
≥

A
aIα1,β1

x [ f (x)] A
aIα2,β2

x

[
1(x)

]
+ A

aIα1,β1
x [1(x)] A

aIα2,β2
x

[
f (t)

]
.

Then, making use of the formula (31) for the fractional integral of the unit function 1, this gives the desired
result.

Remark 4.4. Putting α1 = α2 and β1 = β2 in Theorem 4.3 gives precisely the result of Theorem 4.2. However, the
special case Theorem 4.2 is still useful in its own right, and we shall now use it to prove the following Theorem 4.5.

Theorem 4.5. Let f1, f2, . . . , fn ∈ L1[0,∞) be positive increasing functions (n ∈ N) and α, β ∈ R+ be positive real
parameters. If the analytic function A is such that A(x) > 0 for all x > 0, then we have the following integral
inequality:

[
xαB(xβ)

]n−1 A
aIα,βx

(
f1(x) f2(x) . . . fn(x)

)
≥

n∏
i=1

(
A
aIα,βx fi(x)

)
. (33)
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Proof. We proceed by induction on n. In the case n = 1, the inequality is trivially true and indeed it is an
equality. The case n = 2 was already done in Theorem 4.2.

Let us start from the case for a product of n functions as an assumption, and try to deduce from there
the case for a product of n + 1 functions. Therefore, we have

[
xαB(xβ)

]n−1 A
aIα,βx

(
f1(x) f2(x) . . . fn(x)

)
≥

n∏
i=1

(
A
aIα,βx fi(x)

)
, (34)

and we can also apply the result of Theorem 4.2 with f (x) = fn+1(x) and 1(x) = f1(t) f2(t) . . . fn(t), namely

xαB(xβ) A
aIα,βx

[
f1(x) f2(x) . . . fn(x) fn+1(x)

]
≥

A
aIα,βx

[
fn+1(t)

]
A
aIα,βx

[
f1(x) f2(x) . . . fn(x)

]
.

Combining this inequality with the induction hypothesis (34), we get:

=
[
xαB(xβ)

]n A
aIα,βx

[
f1(x) f2(x) . . . fn(x)

]
≥

A
aIα,βx

[
fn+1(t)

] ([
xαB(xβ)

]n−1 A
aIα,βx

[
f1(x) f2(x) . . . fn(x)

])
≥

A
aIα,βx

[
fn+1(t)

] n∏
i=1

(
A
aIα,βx fi(x)

)
=

n+1∏
i=1

(
A
aIα,βx fi(x)

)
,

which is precisely (33) with n replaced by n + 1.

Remark 4.6. In the special case where A is an exponential function and β = 1, we recover the results obtained
previously in [16] for tempered fractional calculus (also known as generalised proportional fractional calculus [20] or
substantial fractional calculus [11]). In the special case where A is constant and β = 0, we recover the results obtained
previously [10] for Riemann–Liouville fractional calculus.

As well as these, of course, many other types of fractional calculus are covered by the general results proved here:
Atangana–Baleanu, Prabhakar, etc. The point of considering general classes of fractional operators is so that we can
prove things in a general setting instead of repeating the same proofs many times in different settings.

5. Conclusions

In this paper, we have examined some fractional integral inequalities in as broad and general a context as
possible. These include both inequalities of Hermite–Hadamard type for convex functions, and inequalities
of products of integrals for synchronous functions. The setting is that of fractional integrals with general
analytic kernels.

The work of Section 3 may be seen as an extension of our previous work in [15], using infinite series
of Riemann–Liouville integrals to prove Hermite–Hadamard type inequalities for fractional integrals with
more general kernels. But in reality it is more than that: by investigating general classes of operators, rather
than writing papers on each operator one by one, we are not only proving more mathematically valuable
results, but also encouraging this type of research for the future. For applications, specific models may
be considered according to their usefulness; but in mathematics, theorems should be proved in the most
general setting possible.
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