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Abstract. The purpose of this paper is to extend a class of enriched non-expansive mappings from linear
spaces to nonlinear spaces, namely, geodesic metric spaces of non-positive curvature. We prove that an
enriched non-expansive mapping in complete CAT(0) space has fixed points. Moreover, we also propose
simplified Mann iteration process to approximate fixed points of enriched non-expansive mappings by △
and strong convergence in CAT(0) spaces.

1. Introduction and Preliminaries

Throughout this paper, Z+ denotes the set of all nonnegative integers. The study of fixed points in the
setup of CAT(0) spaces was initiated by Kirk [1, 2]. He showed that every non-expansive mapping defined
on a nonempty closed, convex and bounded subset of a complete CAT(0) space always has a fixed point.
The notion of△-convergence in general metric spaces was introduced by Lim [3] in 1976. Kirk and Panyanak
[4] specialized this concept to CAT(0) spaces and showed that many Banach space results involving weak
convergence have precise analogs in this setting. Dhompongsa and Panyanak [5] continued to work in this
direction. Their results involved Mann and Ishikawa iteration processes involving one mapping.

A metric space (X, d) is a CAT(0) space (the term is due to M. Gromov, see [6]) if it is geodesically
connected, and if every geodesic triangle in X is at least as ‘thin’ as its comparison triangle in the Euclidean
plane. The precise definition is given below. For a thorough discussion of these spaces and of the funda-
mental role they play in various branches of mathematics, one can see Bridson and Haefliger [6]. We note
in particular that the complex Hilbert ball with a hyperbolic metric (see [7], also inequality (4.2) of [8] and
subsequent comments) is a CAT(0) space.

Let (X, d) be a metric space. A 1eodesic path joining x ∈ X to y ∈ X (or, more briefly, a 1eodesic from x to y)
is a map γ from a closed interval [a, b] ⊂ R to X such that γ(a) = x, γ(b) = y, and d(γ(t), γ(t′ )) = |t − t′ | for all
t, t′ ∈ [a, b]. The graph of γ is called a 1eodesic (or metric) segment joining x and y. We say that the geodesic
γ joins x and y or that the geodesic segment γ([a, b]) joins x and y; x and y are also called the endpoints of
γ. When it is unique this geodesic segment is denoted by [x, y]. The space (X, d) is said to be 1eodesic space

2020 Mathematics Subject Classification. Primary 47H09; Secondary 47H10; 54H25.
Keywords. CAT(0) space; Enriched non-expansive mapping; △-convergence; Strong convergence; Simplified Mann iteration; Fixed

points.
Received: 06 June 2022; Accepted: 13 October 2022
Communicated by Vladimir Rakočević
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if every two points of X are joined by a geodesic, and X is said to be uniquely 1eodesic if there is exactly one
geodesic joining x and y for each x, y ∈ X. If γ([a, b]) is a geodesic segment joining x and y and λ ∈ [0, 1],
then z := γ(λa + (1 − λ)b) is the unique point in γ([a, b]) satisfying

d(z, x) = λd(x, y) and d(z, y) = (1 − λ)d(x, y). (1)

In the sequel, we shall use the notation [x, y] for the geodesic segment γ([a, b]) and we shall denote this z by
(1− λ)x⊕ λy, provided that there is no possible ambiguity. A subset Y ⊆ X is said to be convex if Y includes
every geodesic segment joining any two of its points, that is, [x, y] ⊂ Y for all x, y ∈ Y.

A 1eodesic trian1le △(x1, x2, x3) in a geodesic metric space (X, d) consists of three points x1, x2, x3 in X (the
vertices of △) and a geodesic segment between each pair of vertices (the edges of △). A comparison trian1le
for the geodesic triangle △(x1, x2, x3) in (X, d) is a triangle △(x1, x2, x3) := △(x1, x2, x3) in the Euclidean plane
E2 such that dE2 (xi, x j)=d(xi, x j) for i, j ∈ {1, 2, 3}.

A geodesic space is said to be a CAT(0) space if all geodesic triangles of appropriate size satisfy the
following comparison axiom.

CAT(0): Let △ be a geodesic triangle in X and let △ be a comparison triangle for △. Then △ is said to
satisfy the CAT(0) inequality if for all x, y ∈ △ and all comparison points x, y ∈ △,

d(x, y) ≤ dE2 (x, y).

If x, y1, y2 are points in a CAT(0) space and y0 is the midpoint of the segment [y1, y2], then the CAT(0)
inequality implies

d(x, y0)2
≤

1
2

d(x, y1)2 +
1
2

d(x, y2)2
−

1
4

d(y1, y2)2.

This is the (CN) inequality of Bruhat and Tits [9]. In fact (cf. [6], p. 163), a geodesic space is a CAT(0) space
if and only if it satisfies the (CN) inequality.

We now collect some basic facts about CAT(0) spaces.

Lemma 1.1. [5] Let X be a CAT(0) space. Then

d((1 − t)x ⊕ ty, z) ≤ (1 − t)d(x, z) + td(y, z) (2)

for all x, y, z ∈ X and t ∈ [0, 1].

Lemma 1.2. [5] Let (X, d) be a CAT(0) space. Then

d((1 − t)x ⊕ ty, z)2
≤ (1 − t)d(x, z)2 + td(y, z)2

− t(1 − t)d(x, y)2 (3)

for all x, y, z ∈ X and t ∈ [0, 1].

Let {τn} be a bounded sequence in a complete CAT(0) space X. For x ∈ X, we set

r(x, {τn}) = lim
n→∞

sup d(x, τn).

The asymptotic radius of r({τn}) of {τn} is given by

r({τn}) = inf{r(x, {τn}) : x ∈ X}.

The asymptotic center A({τn}) of {τn} is the set

A({τn}) = {x ∈ X : r(x, {τn}) = r({τn})}.

It is well known that in a CAT(0) space, A({τn}) consists of exactly one point [10].
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Definition 1.3. [3] A sequence {τn} in a CAT(0) space X is called△-convergence to x ∈ X, denoted by△− lim
n→∞
{τn} = x

if x is the unique asymptotic center of {un}, for every subsequence {un} of {τn}.

Notice that for a given {τn} ⊂ X which△-converges to x and for any y ∈ X with y , x (owing to uniquenes
of asymptotic center), we have

lim
n→∞

sup d(τn, x) < lim
n→∞

sup d(τn, y).

Thus, every CAT(0) space satisfies the Opial’s property.

Lemma 1.4. (i) Every bounded sequence in X has a △-convergent subsequence (cf. [4], p. 3690).
(ii) IfM is a closed convex subset of X and if {τn} is a bounded sequence inM, then the asymptotic center of {τn} is
inM (cf. [11], Proposition 2.1).
(iii) If M is a closed convex subset of X and G : M → X is a non-expansive mapping, then the conditions, {τn}

△-converges to x and d(τn,Gτn)→ 0, imply x ∈ M and G(x) = x (cf. [4], Proposition 3.7).

Lemma 1.5. [5] If {τn} is a bounded sequence in X with A({τn}) = {x} and {un} is a subsequence of {τn} with
A({un}) = {u} and the sequence {d(τn,u)} converges, then x = u.

Definition 1.6. [12] A mapping G :M→M is said to satisfy property (I), if there exists a nondecreasing function
ψ : [0,∞)→ [0,∞) with ψ(0) = 0 and ψ(z) > 0, ∀z > 0 such that d(x,Gx) ≥ ψ(d(x,F(G))), ∀ x ∈ M.

Recall that a mapping G : M → M, where M a nonempty subset of a CAT(0) space X is said to be
non-expansive if for all x, y ∈ M

d(Gx,Gy) ≤ d(x, y), (4)

and if G has at least one fixed point then G is called quasi non-expansive mapping.

There are several generalizations of non-expansive mappings available in the literature, e.g. generalized
non-expansive mappings due to Suzuki (2008) and due to Hardy and Rogers (1973). Most recently, Berinde
[13] introduced enriched non-expansive mapping in normed space which is also a generalization of non-
expansive mapping and is defined as follows:

Definition 1.7. [13] Let X be a normed linear space. A mapping G : X→ X is said to be an enriched non-expansive
mapping if there exists b ∈ [0,∞) such that

∥b(x − y) +Gx − Gy∥ ≤ (b + 1)∥x − y∥, ∀ x, y ∈ X. (5)

Berinde proved existence and convergence results for such mappings. He also showed that every
non-expansive mapping is enriched non-expansive, but the reverse is not true in general. Moreover, if G
has at least one fixed point, then G need not be quasi non-expansive mapping. While generalized non-
expansive mappings due to Suzuki (2008) and Hardy and Rogers (1973) are quasi non-expansive. In recent
years authors also enriched other class of mappings, for example enriched contraction, enriched Kannan,
enriched Chattarjea, enriched strictly pseudocontractive [cf. [14]].

In this paper, we define enriched non-expansive mapping in CAT(0) space and prove existence of fixed
points for such mapping. We also define simplified Mann iterative process to approximate fixed points of
enriched non-expansive mapping. Moreover, we discuss some relevant results for enriched non-expansive
mappings.

2. Enriched non-expansive mapping in CAT(0) space and properties

Now, we define enriched non-expansive mapping in CAT(0) space and prove some basic properties and
results for such mapping.
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From now on, X is a complete CAT(0) space,M is a nonempty convex subset of X and G :M→M is a
mapping. The mapping G is called enriched non-expansive if for each x, y ∈ M and b ∈ [0,∞),

d
( b
(b + 1)

x ⊕
1

(b + 1)
Gx,

b
(b + 1)

y ⊕
1

(b + 1)
Gy
)
≤ d(x, y). (6)

A point x ∈ M is called a fixed point of G if x = Gx. We shall denote with F(G) the set of fixed points of G.

Definition 2.1. [15] For a self map G on a convex subsetM of a complete CAT(0) space X and for any α ∈ (0, 1],
the averaged (or α-Krasnoselskii) mapping Gα given by

Gα(x) = (1 − α)x ⊕ αGx, ∀x ∈ M. (7)

Remark 2.2. For a self mapping G on a convex subsetM of a CAT(0) space X and for any α ∈ (0, 1], we have

F(Gα) = F(G).

Now, we state and prove first result of this section as follows.

Theorem 2.3. Let X be a complete CAT(0) space and G : X → X be enriched non-expansive mapping. Then,
α-Krasnoselskii map Gα : X→ X is non-expansive mapping.

Proof. Since G is an enriched non-expansive mapping, we have for all x, y ∈ X,

d
( b
(b + 1)

x ⊕
1

(b + 1)
Gx,

b
(b + 1)

y ⊕
1

(b + 1)
Gy
)
≤ d(x, y).

Set α = 1
b+1 , we have

d
(
α(

1
α
− 1)x ⊕ αGx, α(

1
α
− 1)y ⊕ αGy

)
≤ d(x, y)

d
(
(1 − α)x ⊕ αGx, (1 − α)y ⊕ αGy

)
≤ d(x, y).

This gives
d
(
Gαx,Gαy

)
≤ d(x, y).

Hence Gα is a non-expansive mapping.

Lemma 2.4. LetM be a nonempty closed convex subset of a complete CAT(0) space X satisfying Opial’s condition.
Let G :M→M be an enriched non-expansive map. Then, Gx = x.

Proof. From Theorem 2.3, we know that Gα is a non-expansive map for α = 1
b+1 . Now, let {τn} be a sequence

that △-converges to x ∈ M and lim
n→∞

d(τn,Gτn) = 0. However

d(τn,Gατn) ≤ αd(τn,Gτn),

so that

lim
n→∞

d(τn,Gατn) ≤ α lim
n→∞

d(τn,Gτn) = 0.

By Lemma 1.4(iii), we have
Gα(x) = x.

It can be easily seen from Remark 2.2, F(Gα)=F(G). Hence, G(x) = x.

To estimate fixed points of enriched non-expansive mapping, we define simplified Mann iterative process
as follows. LetM be a convex subset of a CAT(0) space X, x0 be an arbitrary point inM and b ∈ [0,∞), the
modified/simplified Mann iteration process is defined as follows:

τn+1 =
[ b
b + 1

τn ⊕
1

b + 1
Gτn

]
, n ∈ Z+, (8)

{τn+1} is a point on the geodesic segment [τn,Gτn].
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3. Existence and approximation results

Theorem 3.1. LetM be a nonempty bounded closed convex subset of a complete CAT(0) space X and G :M→M
be enriched non-expansive mapping. Then the set F(G) is nonempty.

Proof. Since G is enriched non-expansive mapping, by definition, it follows that there exists a constant
b ∈ [0,∞) such that

d
( b
(b + 1)

x ⊕
1

(b + 1)
Gx,

b
(b + 1)

y ⊕
1

(b + 1)
Gy
)
≤ d(x, y), ∀x, y ∈ M.

By putting b = 1
α − 1 for b > 0, it follows that α ∈ (0, 1) and previous inequality is equivalent to

d
(
(1 − α)x ⊕ αGx, (1 − α)y ⊕ αGy

)
≤ d(x, y). (9)

Denote Gα(x) = (1 − α)x ⊕ αGx. Then inequality (9) expresses the fact that

d(Gαx,Gαy) ≤ d(x, y) ∀x, y ∈ M

i.e. the averaged operatorGα is non-expansive. So, by Kirk [1], it follows thatGα has at least one fixed point.
Next in view of Remark 2.2, F(G)=F(Gα),∅.

Now, we prove the following useful lemmas which are used to prove the next results of this section.

Lemma 3.2. Let {τn} be a sequence developed by the iteration process (8), then lim
n→∞

d(τn, t) exists for all t ∈ F(G).

Proof. Let t ∈ F(G). From Theorem 2.3, we know that for α = 1
b+1 , Gα is a non-expansive map. Therefore,

we have

d(τn+1, t) = d
(
[

b
b + 1

τn ⊕
1

b + 1
Gτn], t

)
≤ d(τn, t). (10)

Thus the sequence {d(τn, t)} is bounded below and decreasing for all t ∈ F(G). Hence lim
n→∞

d(τn, t) exists.

Lemma 3.3. Let {τn} be a sequence developed by the iteration process (8) and F(G) , ∅. Then lim
n→∞

d(τn,Gτn) = 0.

Proof. ConsiderGα :M→M, for α = 1
b+1 . Then from Theorem 2.3, we know thatGα is non-expansive. Also

from Remark 2.2, we know that F(G) = F(Gα) , ∅.Moreover, for the same initial guess τ0 ∈ M, the sequence
generated by Mann type iteration process (8) using G is the same as that generated by the Mann iteration
process using Gα. Hence by Lemma 2.12 in [5], we have lim

n→∞
d(τn,Gα(τn)) = 0. By using the definition of

Gα, we get
α lim

n→∞
d(τn,G(τn)) = 0.

Since α , 0, then lim
n→∞

d(τn,G(τn)) = 0.

Now, we prove the following△-convergence theorem for enriched non-expansive mapping via the iteration
process (8).

Theorem 3.4. Presume that X satisfies Opial’s property, then the sequence {τn} developed by modified Mann iteration
process (8) △-converges to a fixed point of the mapping G.
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Proof. By Lemmas 3.2 and 3.3, we observe that {τn} is a bounded sequence with

lim
n→∞

d(τn,Gτn) = 0.

Let Ww({τn}) := ∪A({un}), where union is taken over all subsequence {un} over {τn}. In order to prove that
△-convergence of {τn} to a fixed point of G, firstly we will prove Ww({τn}) ⊂ F(G) and thereafter argue that
Ww({τn}) is singleton set. To show Ww({τn}) ⊂ F(G), let y ∈ Ww({τn}). Then, there exists a subsequence {yn}

of {τn} such that A({yn}) = {y}. By Lemma 1.4(i) and (ii) there exists a subsequence {zn} of {yn} such that
△- lim

n→∞
zn = z ∈ M. By Lemma 1.4(iii), z ∈ F(G). By Lemma 1.5, z = y. With a view to prove that Ww({τn})

is singleton, let {yn} be a subsequence of {τn}. In view of Lemma 1.4(i) and (ii), there exists a subsequence
{zn} of {yn} such that △- lim

n→∞
zn = z. Let A({yn}) = {y} and A({τn}) = {x}. Earlier, we have shown that y = z,

therefore it is enough to show z = x. If z , x, then by Lemma 3.2 {d(τn, z)} is convergent. By uniqueness of
asymptotic centers

lim
n→∞

sup d(zn, z) = lim
n→∞

sup d(zn, x) ≤ lim
n→∞

sup d(τn, x) < lim
n→∞

sup d(τn, z)

= lim
n→∞

sup d(zn, z),

which is a contradiction. So that the conclusion follows.

Now, we prove two strong convergence results.

Theorem 3.5. The sequence {τn} developed by the iteration process (8) converges strongly to a fixed point of G if and
only if lim

n→∞
inf d(τn,F(G)) = 0.

Proof. First part is trivial. Now, we prove the converse part. Presume that lim
n→∞

inf d(τn,F(G)) = 0. From

Lemma 3.2, lim
n→∞

d(τn, t) exists, for all t ∈ F(G) and by hypothesis lim
n→∞

d(τn,F(G)) = 0.

Now our assertion is that {τn} a Cauchy sequence in M. As lim
n→∞

d(τn,F(G)) = 0, for a given λ > 0, there
exists N ∈N such that for all n ≥ N,

d(τn,F(G)) <
λ
2

=⇒ inf{d(τn, t) : t ∈ F(G)} <
λ
2
.

Specifically, inf{d(τN, t) : t ∈ F(G)} < λ
2 . So, there exists t ∈ F(G) such that

d(τN, t) <
λ
2
.

Now, for m,n ≥ N,

d(τn+m, τn) ≤ d(τn+m, t) + d(τn, t)
≤ d(τN, t) + d(τN, t)
= 2d(τN, t) < λ.

Thus, {τn} is a Cauchy sequence in M, so there exists an element ℓ ∈ M such that lim
n→∞

τn = ℓ. Now,

lim
n→∞

d(τn,F(G)) = 0 implies d(ℓ,F(G)) = 0, hence we get ℓ ∈ F(G).

By applying condition (I), we prove another strong convergence result.

Theorem 3.6. Presume that the mapping G satisfies condition (I). Then the sequence {τn} developed by the iteration
process (8) converges strongly to a fixed point of G.
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Proof. We already proved in Lemma 3.3 that

lim
n→∞

d(τn,G(τn)) = 0. (11)

Applying condition (I) and equation (11), we obtain

0 ≤ lim
n→∞

ψ(d(τn,F(G))) ≤ lim
n→∞

d(τn,G(τn)) = 0

=⇒ lim
n→∞

ψ(d(τn,F(G))) = 0.

And hence,
lim
n→∞

d(τn,F(G)) = 0.

Now, in view of Theorem 3.5, we are through.

4. Conclusions

In this paper, we extend enriched non-expansive mappings from linear spaces to nonlinear spaces and
prove existence result for such mappings. Further, we introduce simplified Mann iteration process to
approximate the fixed points of enriched non-expansive mappings in CAT(0) spaces.
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[14] A. Marchiş, Common fixed point theorems for enriched Jungck contractions in Banach spaces, Journal of Fixed Point Theory

Applications (2021) 23:76.
[15] J. B. Baillon, R. E. Bruck, S. Reich, On the asymptotic behaviour of nonexpansive mappings and semigroups in Banach spaces,

Houston Journal of Mathematics 4(1) (1978) 1–9.


