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dDepartamento de Matemáticas, Facultad de Ciencias, Universidad de Chile, Santiago de Chile, Chile

Abstract. In this paper, we analyze several various classes of Stepanov multi-dimensional almost periodic
functions in Lebesgue spaces with variable exponents. The introduced classes seem to be new and not
considered elsewhere even in the case that the exponent p(·) has a constant value. We provide certain
applications to the abstract (degenerate) Volterra integro-differential equations in Banach spaces.

1. Introduction and preliminaries

The class of almost periodic functions was introduced by the Danish mathematician H. Bohr around
1924-1926 and later reconsidered by many other authors. Suppose that I is either R or [0,∞) as well as that
f : I→ X is a given continuous function, where X is a complex Banach space equipped with the norm ∥ · ∥.
Given ε > 0,we say that a positive real number τ > 0 is a ε-period for f (·) if and only if ∥ f (t+ τ)− f (t)∥ ≤ ε,
t ∈ I. The set consisting of all ε-periods for f (·) is denoted by ϑ( f , ε). The function f (·) is said to be almost
periodic if and only if for each ε > 0 the set ϑ( f , ε) is relatively dense in [0,∞),which means that there exists
l > 0 such that any subinterval of [0,∞) of length l intersects ϑ( f , ε).

The most important generalizations of the concept almost periodicity are those of Stepanov, Weyl and
Besicovitch; in this paper, we consider Stepanov generalizations of almost periodic functions. Let 1 ≤ p < ∞
and let f ∈ Lp

loc(I : X). Let us recall that the function f (·) is called Stepanov p-bounded (Stepanov bounded,
if p = 1) if and only if

∥ f ∥Sp := sup
t∈I

(∫ t+1

t
∥ f (s)∥p ds

)1/p

< ∞.

A function f ∈ Lp
S(I : X) is said to be Stepanov p-almost periodic if and only if its Bochner transform

f̂ : I → Lp([0, 1] : X), defined by f̂ (t)(s) := f (t + s), t ∈ I, s ∈ [0, 1], is almost periodic. If f (·) is an almost
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periodic function, then f (·) is also Stepanov p-almost periodic for 1 ≤ p < ∞; the converse statement
is false, however. For further information about almost periodic functions, various generalizations and
applications, we refer the reader to the research monographs [4], [5], [12], [13], [16], [17], [23] and [28].

The notion of almost periodicity can be straightforwardly extended to the functions defined on Rn. In
our recent research study [3], we have investigated various notions of almost periodicity for continuous
functions F : I × X → Y, where Y is a complex Banach space equipped with the norm ∥ · ∥Y and ∅ , I ⊆ Rn

(the notion of almost periodicity on (semi-)topological groups was analyzed by numerous authors; in [3],
∅ , I ⊆ Rn generally does not satisfy the semigroup property I + I ⊆ I or contain the zero vector).

In the existing literature concerning generalized almost periodic functions, we have not found any
relevant reference which concerns multi-dimensional Stepanov almost periodic functions or (equi-)Weyl
multi-dimensional almost periodic functions defined on some proper subsets of Rn, even in the case that
the exponent p(u) has a constant value. With the exception of a recent paper [26] by T. Spindeler, in
which the author has analyzed the Stepanov and equi-Weyl almost periodic functions in locally compact
Abelian groups, the almost nothing has been said before about the Stepanov almost periodic functions
defined onRn,where n ≥ 2. Concerning the equi-Weyl almost periodic functions onRn and general locally
compact Abelian groups, we may refer the reader to the recent paper [14] by D. Lenz, T. Spindeler and
N. Strungaru; the analysis of (equi-)Weyl multi-dimensional almost periodic functions defined on some
proper subsets of Rn which does not satisfy the semigroup property or contain the zero vector has recently
been conducted by V. E. Fedorov and M. Kostić. For the basic source of information about Besicovitch
almost periodic functions on Rn and general topological groups, the reader may consult the important
research monograph [25] by A. A. Pankov; the boundedness and almost periodicity in time for certain
classes of evolution variational inequalities, positive boundary value problems for symmetric hyperbolic
systems and nonlinear Schrödinger equations have been investigated in the third and fourth chapter of
[25], while spatially Besicovitch almost periodic solutions for certain classes of nonlinear second-order
elliptic equations, first-order hyperbolic systems, single higher-order hyperbolic equations and nonlinear
Schrödinger equations have been investigated in the fifth chapter of this monograph. The main purpose
of this paper is to continue our recent research study [3] by investigating various classes of Stepanov
multi-dimensional almost periodic type functions F : Λ × X → Y, where Y is a complex Banach space
and ∅ , Λ ⊆ Rn. In [22], we have recently analyzed the Stepanov multi-dimensional almost automorphic
functions in Lebesgue spaces with variable exponents (see also the recent research articles [20]-[21] by M.
Kostić and W.-S. Du).

The organization and main ideas of this paper can be briefly described as follows. In Subsection 1.1,
we collect the basic definitions and results from the theory of Lebesgue spaces with variable exponents;
Subsection 1.2 provides a brief description of the necessary definitions and results about multi-dimensional
almost periodic functions. Let Ω be a fixed compact subset of Rn with positive Lebesgue measure, ∅ ,
Λ ⊆ Rn satisfy Λ + Ω ⊆ Λ and let p : Ω → [1,∞] belong to the space P(Ω), introduced in Subsection 1.1.
We assume henceforth that (X, ∥ · ∥), (Y, ∥ · ∥Y) and (Z, ∥ · ∥Z) are complex Banach spaces, R is a non-empty
collection of sequences in Rn and RX is a non-empty collection of sequences in Rn

× X. By B we denote a
certain collection of non-empty subsets of X.

At the beginning of Section 2, we introduce the notions of multi-dimensional Bochner transform F̂Ω :
Λ × X → YΩ. After that, in Subsection 2.1, we analyze the notions of Stepanov (Ω, p(u))-boundedness,
Stepanov distance Dp(·)

S
Ω

(F,G) and Stepanov norm ∥F∥Sp(u)
Ω

for functions F : Λ × X → Y and G : Λ → Y.
We open Subsection 2.2 by introducing the notion of Stepanov (Ω, p(u))-(R,B)-multi-almost periodicity
and the notion of Stepanov (Ω, p(u))-(RX,B)-multi-almost periodicity (see Definition 2.4 and Definition 2.5,
respectively). Our first structural result concerning the introduced notion is Proposition 2.6, in which we
analyze the Stepanov (Ω, p(u))-(RX,B)-multi-almost periodicity for a given tuple (F1, · · ·,Fk)(·; ·) of Stepanov
(Ω, p(u))-(RX,B)-multi-almost periodic functions. After that, in Definition 2.7, we introduce the notions of
Stepanov (Ω, p(u))-(B,Λ′)-almost periodicity and Stepanov (Ω, p(u))-(B,Λ′)-uniform recurrence in a Bohr
like manner. Remark 2.8 clarifies some sufficient conditions under which the multi-dimensional Bochner
transform is continuous. It is well known that, for every almost periodic function F : R → R which can
be analytically extended to the strip around the real axis, its composition with the signum function is
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always Stepanov p-almost periodic for any finite number p ≥ 1; in Example 2.9, we transfer and extend this
statement to multi-dimensional almost periodic functions (see also Proposition 2.10-Proposition 2.12 and
Theorem 2.13).

Our first essential contributions are Theorem 2.14 and Theorem 2.15, in which we prove the unique-
ness theorem for Stepanov (Ω, p(u))-almost periodic functions and an extension type theorem for Stepanov
(Ω, p(u))-almost periodic functions. In Remark 2.16, we recondider the obtained results for convex polyhe-
drals in Rn. The main aim of Proposition 2.17 is to reconsider the problematic analyzed in Proposition 2.6
for Stepanov (Ω, p(u))-B-almost periodic functions.

The poinwise products of Stepanov multi-dimensional almost periodic functions with Stepanov multi-
dimensional scalar-valued almost periodic functions are investigated in Propositon 2.18 and Proposition
2.19. Some other results concerning Stepanov multi-almost periodic type functions are given in Theorem
2.21, Proposition 2.22, Proposition 2.23 and Proposition 2.24.

Asymptotically Stepanov multi-dimensional almost periodic type functions are investigated in Section
3, composition theorems for Stepanov multi-dimensional almost periodic type functions in Lebesgue spaces
with variable exponents are investigated in Section 4 and the invariance of Stepanov multi-dimensional
almost periodicity under the actions of convolution products are investigated in Section 5. The final
section of the paper is reserved for giving some applications of our abstract theoretical results to the
abstract Volterra integro-differential equations in Banach spaces. Albeit we work with Lebesgue spaces
with variable exponents, it is worthwhile to mention again that the introduced classes of Stepanov multi-
dimensional almost periodic functions seem to be not analyzed elsewhere even in the case that the exponent
p(·) has a constant value.

We use the standard notation throughout the paper. By L(X,Y) we denote the Banach algebra of all
bounded linear operators from X into Y with L(X,X) being denoted L(X). Assuming the function F : Λ→ X
is given, where ∅ , Λ ⊆ Rn, we define the function F̌ : −Λ→ X by F̌(t) := F(−t), t ∈ −Λ. The Euler Gamma
function is denoted by Γ(·). We also set 1ζ(t) := tζ−1/Γ(ζ), ζ > 0. The convolution operator ∗ is defined by
f ∗ 1(t) :=

∫ t

0 f (t − s)1(s) ds. The Weyl-Liouville fractional derivative Dγt,+u(t) of order γ ∈ (0, 1) is defined

for those continuous functions u : R → X such that t 7→
∫ t

−∞
11−γ(t − s)u(s) ds, t ∈ R is a well-defined

continuously differentiable mapping, by

Dγt,+u(t) :=
d
dt

∫ t

−∞

11−γ(t − s)u(s) ds, t ∈ R.

If X, Y , ∅ and n ∈N, then we set YX := { f | f : X→ Y},Nn := {1, · · ·,n} and ∆n := {(t, t, · · ·, t) ∈ Rn : t ∈ R}.
The symbol C(I : X),where I = R or I = [0,∞), stands for the space of all X-valued continuous functions

on the interval I. By Cb(I : X) (respectively, BUC(I : X)) we denote the subspaces of C(I : X) consisting
of all bounded (respectively, all bounded uniformly continuous functions). Both Cb(I : X) and BUC(I : X)
are Banach spaces with the sup-norm. This also holds for the space C0(I : X) consisting of all continuous
functions f : I→ X such that lim|t|→+∞ f (t) = 0.

1.1. Lebesgue spaces with variable exponents Lp(x)

Let ∅ , Ω ⊆ Rn be a nonempty Lebesgue measurable subset and let M(Ω : X) denote the collection of
all measurable functions f : Ω → X; M(Ω) := M(Ω : R). Furthermore, P(Ω) denotes the collection of all
Lebesgue measurable functions p : Ω→ [1,∞]. For any p ∈ P(Ω) and f ∈M(Ω : X),we define

φp(x)(t) :=


tp(x), t ≥ 0, 1 ≤ p(x) < ∞,

0, 0 ≤ t ≤ 1, p(x) = ∞,

∞, t > 1, p(x) = ∞

and

ρ( f ) :=
∫
Ω

φp(x)(∥ f (x)∥) dx.
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We define the Lebesgue space Lp(x)(Ω : X) with variable exponent as follows,

Lp(x)(Ω : X) :=
{

f ∈M(Ω : X) : lim
λ→0+

ρ(λ f ) = 0
}
.

Equivalently

Lp(x)(Ω : X) =
{

f ∈M(Ω : X) : there exists λ > 0 such that ρ(λ f ) < ∞
}
;

see, e.g., [9, p. 73]. For every u ∈ Lp(x)(Ω : X),we introduce the Luxemburg norm of u(·) by

∥u∥p(x) := ∥u∥Lp(x)(Ω:X) := inf
{
λ > 0 : ρ(u/λ) ≤ 1

}
.

Equipped with the above norm, the space Lp(x)(Ω : X) becomes a Banach space (see e.g. [9, Theorem 3.2.7]
for the scalar-valued case), coinciding with the usual Lebesgue space Lp(Ω : X) in the case that p(x) = p ≥ 1
is a constant function. Further on, for any p ∈ P(Ω),we define

p− := essinfx∈Ωp(x) and p+ := esssupx∈Ωp(x).

Set
C+(Ω) :=

{
p ∈ P(Ω) : 1 < p− ≤ p(x) ≤ p+ < ∞ for a.e. x ∈ Ω

}
and

D+(Ω) :=
{
p ∈ P(Ω) : 1 ≤ p− ≤ p(x) ≤ p+ < ∞ for a.e. x ∈ Ω

}
.

For p ∈ D+([0, 1]), the space Lp(x)(Ω : X) behaves nicely, with almost all fundamental properties of the
Lesbesgue space with constant exponent Lp(Ω : X) being retained; in this case, we know that

Lp(x)(Ω : X) =
{

f ∈M(Ω : X) ; for all λ > 0 we have ρ(λ f ) < ∞
}
.

Set
Ep(x)(Ω : X) :=

{
f ∈ Lp(x)(Ω : X) ; for all λ > 0 we have ρ(λ f ) < ∞

}
;

Ep(x)(Ω) ≡ Ep(x)(Ω : C).
We will use the following lemma (cf. [9] for the scalar-valued case):

Lemma 1.1. (i) (The Hölder inequality) Let p, q, r ∈ P(Ω) such that

1
q(x)

=
1

p(x)
+

1
r(x)
, x ∈ Ω.

Then, for every u ∈ Lp(x)(Ω : X) and v ∈ Lr(x)(Ω), we have uv ∈ Lq(x)(Ω : X) and

∥uv∥q(x) ≤ 2∥u∥p(x)∥v∥r(x).

(ii) Let Ω be of a finite Lebesgue’s measure and let p, q ∈ P(Ω) such q ≤ p a.e. on Ω. Then Lp(x)(Ω : X) is
continuously embedded in Lq(x)(Ω : X), and the constant of embedding is less than or equal to 2(1 +m(Ω)).

(iii) Let f ∈ Lp(x)(Ω : X), 1 ∈M(Ω : X) and 0 ≤ ∥1∥ ≤ ∥ f ∥ a.e. on Ω. Then 1 ∈ Lp(x)(Ω : X) and ∥1∥p(x) ≤ ∥ f ∥p(x).

(iv) (The dominated convergence theorem) Let p ∈ P(Ω), and let fk, f ∈M(Ω : X) for all k ∈N. If limk→∞ fk(x) =
f (x) for a.e. x ∈ Ω and there exists a real-valued function 1 ∈ Ep(x)(Ω) such that ∥ fk(x)∥ ≤ 1(x) for a.e. x ∈ Ω,
then limk→∞ ∥ fk − f ∥Lp(x)(Ω:X) = 0.

We will use the following simple lemma, whose proof can be omitted:

Lemma 1.2. Suppose that f ∈ Lp(x)(Ω : X) and A ∈ L(X,Y). Then A f ∈ Lp(x)(Ω : Y) and ∥A f ∥Lp(x)(Ω:Y) ≤

∥A∥ · ∥ f ∥Lp(x)(Ω:X).

For further information concerning the Lebesgue spaces with variable exponents Lp(x), we refer the
reader to [9], [10] and [24].
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1.2. (RX,B)-Multi-almost periodic type functions and Bohr B-almost periodic type functions
Throughout this subsection, we assume that n ∈N, ∅ , I ⊆ Rn,B is a non-empty collection of subsets of

X, R is a non-empty collection of sequences in Rn and RX is a non-empty collection of sequences in Rn
×X;

usually, B denotes the collection of all bounded subsets of X or all compact subsets of X. Henceforth we
will always assume that for each x ∈ X there exists B ∈ B such that x ∈ B.

In this subsection, we recall the basic facts about (RX,B)-multi-almost periodic type functions and Bohr
B-almost periodic type functions; see [2] for more details.

Definition 1.3. Suppose that ∅ , I ⊆ Rn, F : I×X→ Y is a continuous function, and the following condition holds:

If t ∈ I, b ∈ R and l ∈N, then we have t + b(l) ∈ I. (1)

Then we say that the function F(·; ·) is (R,B)-multi-almost periodic if and only if for every B ∈ B and for every sequence
(bk = (b1

k , b
2
k , · · ·, b

n
k )) ∈ R there exist a subsequence (bkl = (b1

kl
, b2

kl
, · · ·, bn

kl
)) of (bk) and a function F∗ : I × X → Y

such that

lim
l→+∞

F
(
t + (b1

kl
, · · ·, bn

kl
); x

)
= F∗(t; x)

uniformly for all x ∈ B and t ∈ I. By AP(R,B)(I × X : Y) we denote the space consisting of all (R,B)-multi-almost
periodic functions.

The notion introduced in Definition 1.3 is a special case of the notion introduced in the following
definition:

Definition 1.4. Suppose that ∅ , I ⊆ Rn, F : I×X→ Y is a continuous function, and the following condition holds:

If t ∈ I, (b; x) ∈ RX and l ∈N, then we have t + b(l) ∈ I. (2)

Then we say that the function F(·; ·) is (RX,B)-multi-almost periodic if and only if for every B ∈ B and for every
sequence ((b; x)k = ((b1

k , b
2
k , · · ·, b

n
k ); xk)) ∈ RX there exist a subsequence ((b; x)kl = ((b1

kl
, b2

kl
, · · ·, bn

kl
); xkl )) of ((b; x)k)

and a function F∗ : I × X→ Y such that

lim
l→+∞

F
(
t + (b1

kl
, · · ·, bn

kl
); x + xkl

)
= F∗(t; x)

uniformly for all x ∈ B and t ∈ I. By AP(RX,B)(I × X : Y) we denote the space consisting of all (RX,B)-multi-almost
periodic functions.

The domain I from the above two definitions is rather general. For example, if n = 1, I = [0,∞), X = {0},
B = {X} and R is the collection of all sequences in [0,∞), then the notion of (R,B)-multi-almost periodicity
is equivalent with the usual notion of asymptotical almost periodicity.

The following notion is introduced in a Bohr like manner:

Definition 1.5. Suppose that ∅ , I′ ⊆ I ⊆ Rn, F : I × X → Y is a continuous function and I + I′ ⊆ I. Then we say
that:

(i) F(·; ·) is Bohr (B, I′)-almost periodic (Bohr B-almost periodic, if I = I′) if and only if for every B ∈ B and ϵ > 0
there exists l > 0 such that for each t0 ∈ I′ there exists τ ∈ B(t0, l) ∩ I′ such that∥∥∥F(t + τ; x) − F(t; x)

∥∥∥
Y ≤ ϵ, t ∈ I, x ∈ B.

(ii) F(·; ·) is (B, I′)-uniformly recurrent (B-uniformly recurrent, if I = I′) if and only if for every B ∈ B there exists
a sequence (τn) in I′ such that limn→+∞ |τn| = +∞ and

lim
n→+∞

sup
t∈I;x∈B

∥∥∥F(t + τn; x) − F(t; x)
∥∥∥

Y = 0.
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If X ∈ B, then it is also said that F(·; ·) is Bohr I′-almost periodic (I′-uniformly recurrent) [Bohr almost periodic
(uniformly recurrent), if I = I′].

It is clear that, if F(·; ·) is B-uniformly recurrent and x ∈ X, then we have the following supremum
formula

sup
t∈I

∥∥∥F(t; x)
∥∥∥

Y = sup
t∈I,|t|≥a

∥∥∥F(t; x)
∥∥∥

Y,

which in particular shows that for each x ∈ X the function F(·; x) is identically equal to zero provided that
the function F(·; ·) is B-uniformly recurrent and limt∈I,|t|→+∞ F(t; x) = 0. The statement of [4, Theorem 7, p. 3]
can be reformulated in this framework, as well.

We need the following lemma:

Lemma 1.6. (i) Suppose that ∅ , I ⊆ Rn, I + I ⊆ I, I is closed, F : I ×X→ Y is Bohr B-almost periodic and B is
any family of compact subsets of X. If

(∀l > 0) (∃t0 ∈ I) (∃k > 0)(∀t ∈ I)(∃t′0 ∈ I)
(∀t′′0 ∈ B(t′0, l) ∩ I) t − t′′0 ∈ B(t0, kl) ∩ I,

then for each B ∈ B we have that the set {F(t; x) : t ∈ I, x ∈ B} is relatively compact in Y; in particular,
supt∈I;x∈B ∥F(t; x)∥Y < ∞.

(ii) Suppose that ∅ , I ⊆ Rn, I+ I ⊆ I, I is closed and F : I×X→ Y is BohrB-almost periodic, whereB is a family
consisting of some compact subsets of X. If the following condition holds

(∃t0 ∈ I) (∀ϵ > 0)(∀l > 0) (∃l′ > 0) (∀t′, t′′ ∈ I)
B(t0, l) ∩ I ⊆ B(t0 − t′, l′) ∩ B(t0 − t′′, l′),

then for each B ∈ B the function F(·; ·) is uniformly continuous on I × B.

Lemma 1.7. Suppose that F : Rn
× X → Y is continuous, B is any family of compact subsets of X and R is the

collection of all sequences in Rn. Then F(·; ·) is Bohr B-almost periodic if and only if F(·; ·) is (R,B)-multi-almost
periodic.

We will also use the following lemmas:

Lemma 1.8. Suppose that h ∈ L1(Rn), the function F(·; ·) is (RX,B)-multi-almost periodic and for each bounded
subset D of X there exists a constant cD > 0 such that ∥F(t; x)∥Y ≤ cD for all t ∈ Rn, x ∈ D. Suppose, further, that for
each sequence ((b; x)k = ((b1

k , b
2
k , · · ·, b

n
k ); xk)k) ∈ RX and for each set B ∈ B we have that B+ {xk : k ∈N} is a bounded

set in X. Then the function

(h ∗ F)(t; x) :=
∫
Rn

h(σ)F(t − σ; x) dσ, t ∈ Rn, x ∈ X

is (RX,B)-multi-almost periodic and satisfies that for each bounded subset D of X there exists a constant c′D > 0 such
that ∥(h ∗ F)(t; x)∥Y ≤ c′D for all t ∈ Rn, x ∈ D.

Lemma 1.9. Suppose that I′ ⊆ I ⊆ Rn, I+ I′ ⊆ I, the set I′ is unbounded, F : I→ Y is a uniformly continuous, Bohr
I′-almost periodic function, resp. a uniformly continuous, I′-uniformly recurrent function, S ⊆ Rn is bounded and, for
every t′ ∈ Rn, there exists a finite real number M > 0 such that t′+I′M ⊆ I.DefineΩS := [(I′∪(−I′))+(I′∪(−I′))]∪S.
Then there exists a uniformly continuous, Bohr ΩS-almost periodic, resp. a uniformly continuous, Ω-uniformly
recurrent, function F̃ : Rn

→ Y such that F̃(t) = F(t) for all t ∈ I; furthermore, in almost periodic case, the uniqueness
of such a function F̃(·) holds provided that Rn

\ΩS is a bounded set.
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Lemma 1.10. Suppose that I ⊆ Rn, I + I ⊆ I, Rn
\ [(I ∪ (−I)) + (I ∪ (−I))] is a bounded set, and the following

condition holds:

(AP-E) For every t′ ∈ Rn, there exists a finite real number M > 0 such that t′ + I′M ⊆ I.

If F : Rn
→ Y and G : Rn

→ Y are two Bohr almost periodic functions and F(t) = G(t) for all t ∈ I, then F(t) = G(t)
for all t ∈ Rn.

The following definitions from [2] will be important in our further work:

Definition 1.11. Suppose that ∅ , I ⊆ Rn and I + I ⊆ I. Then we say that I is admissible with respect to the almost
periodic extensions if and only if for any complex Banach space Y and for any uniformly continuous, Bohr almost
periodic function F : I→ Y there exists a unique Bohr almost periodic function F̃ : Rn

→ Y such that F̃(t) = F(t) for
all t ∈ I.

Definition 1.12. Suppose that D ⊆ Ω ⊆ Rn and the set D is unbounded. By C0,D,B(Ω × X : Y) we denote
the vector space consisting of all continuous functions Q : Ω × X → Y such that, for every B ∈ B, we have
limt∈D,|t|→+∞Q(t; x) = 0, uniformly for x ∈ B.

Definition 1.13. Suppose that the set D ⊆ Rn is unbounded, and F : I × X → Y is a continuous function. Then
we say that F(·; ·) is (strongly) D-asymptotically (R,B)-multi-almost periodic, resp. (strongly) D-asymptotically
(RX,B)-multi-almost periodic, if and only if there exist an (R,B)-multi-almost periodic function (G : Rn

× X → Y)
G : I × X → Y, resp. an (RX,B)-multi-almost periodic function (G : Rn

× X → Y) G : I × X → Y, and a function
Q ∈ C0,D,B(I × X : Y) such that F(t; x) = G(t; x) +Q(t; x) for all t ∈ I and x ∈ X.

Let I = Rn. Then it is said that F(·; ·) is (strongly) asymptotically (R,B)-multi-almost periodic, resp. (strongly)
asymptotically (RX,B)-multi-almost periodic, if and only if F(·; ·) is (strongly)Rn-asymptotically (R,B)-multi-almost
periodic, resp. (strongly) Rn-asymptotically (RX,B)-multi-almost periodic.

We similarly introduce the notions of ((strong) D-)asymptotical Bohr B-almost periodicity and ((strong)
D-)asymptotical uniform recurrence.

2. Stepanov multi-dimensional almost periodic functions in Lebesgue spaces with variable exponents

This section investigates the generalized (R,B)-multi-almost periodic type functions in Lebesgue spaces
with variable exponents. In our analysis of Stepanov p(u)-(R,B)-multi-almost periodic functions, we assume
thatΩ is a fixed compact subset ofRn with positive Lebesgue measure and p ∈ P(Ω). Further on,Λ denotes
a general non-empty subset of Rn satisfying Λ +Ω ⊆ Λ (in [2] and the previous subsection, this region has
been denoted by I).

We introduce the multi-dimensional Bochner transform F̂Ω : Λ × X→ YΩ by[
F̂Ω(t; x)

]
(u) := F(t + u; x), t ∈ Λ, u ∈ Ω, x ∈ X.

2.1. Stepanov (Ω, p(u))-boundedness, Stepanov distance Dp(·)
S
Ω

(F,G) and Stepanov norm ∥F∥Sp(u)
Ω

The notion of Stepanov (Ω, p(u))-boundedness on B is introduced as follows:

Definition 2.1. Suppose that ∅ , Λ ⊆ Rn satisfies Λ +Ω ⊆ Λ and F : Λ × X→ Y satisfies that for each t ∈ Λ and
x ∈ X, the function F(t+u; x) belongs to the space Lp(u)(Ω : Y). Then we say that F(·; ·) is Stepanov (Ω, p(u))-bounded
on B if and only if for each B ∈ B we have

sup
t∈Λ;x∈B

∥∥∥∥[F̂Ω(t; x)
]
(u)

∥∥∥∥
Lp(u)(Ω:Y)

= sup
t∈Λ;x∈B

∥∥∥∥F(t + u; x)
∥∥∥∥

Lp(u)(Ω:Y)
< ∞.

Denote by LΩ,p(u)
S,B (Λ × X : Y) the set consisting of all Stepanov (Ω, p(u))-bounded functions on B.
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If n = 1, X = {0}, Ω = [0, 1] and Λ = [0,∞) or Λ = R, then the notion introduced above reduces to
the notion introduced recently in [6, Definition 4.1]. If X = {0}, then we abbreviate LΩ,p(u)

S,B (Λ × X : Y)

to LΩ,p(u)
S (Λ : Y); in this case, we say that the function F(·) is Stepanov (Ω, p(u))-bounded and define

∥F∥SΩ,p(u) := supt∈Λ ∥F(t + u)∥Lp(u)(Ω:Y).

Remark 2.2. (i) The condition Λ+Ω ⊆ Λ used henceforth is clearly equivalent with the condition Λ+Ω = Λ if
0 ∈ Ω.

(ii) Suppose that Ω1 is also a compact subset of Rn with positive Lebesgue measure, Λ + Λ ⊆ Λ, Λ +Ω1 ⊆ Λ and
1 ≤ p < ∞. It is clear that the existence of a finite subset {t1, · · ·, tk} of Λ such that Ω ⊆

⋃k
i=1(ti + Ω1) implies

that for each t ∈ Λwe have t+Ω ⊆
⋃k

i=1(t+ ti+Ω1), so that the Stepanov (Ω1, p(u))-boundedness onB implies
the Stepanov (Ω, p(u))-boundedness on B, for any function F : Λ × X→ Y.

(iii) Let 1 ≤ p < ∞. In the one-dimensional case, the usual Stepanov p-boundedness of function F : Λ → Y, where
Λ = [0,∞) or Λ = R, is equivalent with the Stepanov (Ω, p)-boundedness of function F(·), where Ω = [a, b] is
any non-trivial segment in Λ.

In general case, it is very simple to show that:

1. αF + βG ∈ LΩ,p(u)
S,B (Λ × X : Y), provided α, β ∈ C and F, G ∈ LΩ,p(u)

S,B (Λ × X : Y).

2. Suppose that τ + Λ ⊆ Λ, x0 ∈ X and for each B ∈ B there exists B′ ∈ B such that x0 + B ⊆ B′. Then we
have F(· + τ; · + x0) ∈ LΩ,p(u)

S,B (Λ × X : Y), provided that F(·; ·) ∈ LΩ,p(u)
S,B (Λ × X : Y).

3. If 1 ≤ p1(u) ≤ p(u) for a.e. u ∈ Ω and f ∈ LΩ,p(u)
S,B (Λ × X : Y), then we have f ∈ LΩ,p1(u)

S,B (Λ × X : Y).

4. (LΩ,p(u)
S (Λ : Y), ∥ · ∥SΩ,p(u) ) is a complex Banach space.

The translation invariance stated in the point [2.] does not generally hold if we follow the approach
proposed by T. Diagana and M. Zitane in [8], as already mentioned in our previous investigations.

Let ∅ , Λ ⊆ Rn satisfy Λ + Ω ⊆ Λ. Suppose first that p(u) ≡ p ∈ [1,∞) and F : Λ → Y and G : Λ → Y
are two functions for which ∥F(t + u) − G(t + u)∥Y ∈ Lp(Ω) for all t ∈ Λ. We define the Stepanov distance
Dp

S
Ω

(F,G) of the functions F(·) and G(·) by

Dp
SΩ

(F,G) := sup
t∈Λ

[( 1
m(Ω)

)1/p
∥F(t + u) − G(t + u)

∥∥∥
Lp(Ω:Y)

]
.

Suppose now that p, q ∈ P(Ω), 1/p(u) + 1/q(u) = 1 for a.e. u ∈ Ω and q(u) < +∞ for a.e. u ∈ Ω. In this case
(the definition is consistent with the above given provided that p(u) ≡ p ∈ (1,∞)) , we define the Stepanov
distance Dp(·)

S
Ω

(F,G) of the functions F(·) and G(·) by

Dp(·)
SΩ

(F,G) := sup
t∈Λ

[
m(Ω)−1

∥1∥Lq(u)(Ω)∥F(t + u) − G(t + u)
∥∥∥

Lp(u)(Ω:Y)

]
.

The use of Hölder inequality (see Lemma 1.1(i)) enables one to see that the following proposition holds
true:

Proposition 2.3. Suppose that 1 ≤ p1(u) ≤ p2(u) for a.e. u ∈ Ω, and ∥F(t + u) − G(t + u)∥Y ∈ Lp2(u)(Ω) for all
t ∈ Λ. Then

Dp1(·)
SΩ

(F,G) ≤ 4Dp2(·)
SΩ

(F,G).



A. Chávez et al. / Filomat 37:12 (2023), 3681–3713 3689

Proof. It is clear that ∥F(t + u) − G(t + u)∥Y ∈ Lp1(u)(Ω) for all t ∈ Λ. If p1(u) = 1 for a.e. u ∈ Ω, then we can
apply the Hölder inequality once to conclude that D1

SΩ
(F,G) ≤ 2Dp2(·)

SΩ
(F,G).Otherwise, if 1/pi(u)+1/qi(u) = 1

for a.e. u ∈ Ω (i = 1, 2), then q2(u) ≤ q1(u) < +∞ for a.e. u ∈ Ω. Applying the Hölder inequality twice, we
get that for each t ∈ Λwe have

∥1∥Lq1(u)(Ω)∥F(t + u) − G(t + u)
∥∥∥

Lp1(u)(Ω:Y)

≤ 2∥1∥Lq1(u)(Ω)∥1∥L(q1(u)−q2(u))−1 (Ω)∥F(t + u) − G(t + u)
∥∥∥

Lp2(u)(Ω:Y)

≤ 4∥1∥Lq2(u)(Ω)∥F(t + u) − G(t + u)
∥∥∥

Lp2(u)(Ω:Y)
.

This simply completes the proof.

Clearly, if 1 ≤ p1(u) ≡ p1 ≤ p2 ≡ p2(u) for a.e. u ∈ Ω, then we have Dp1

SΩ
(F,G) ≤ Dp2

SΩ
(F,G). If Ω ≡ [0, l]n for

some l > 0, then we also write Dp
Sl

(F,G) ≡ Dp
SΩ

(F,G) and Dp(·)
Sl

(F,G) ≡ Dp(·)
SΩ

(F,G).
Suppose now that p(u) ≡ p ∈ [1,∞) and l2 > l1 > 0. Since, for every t ∈ Λ,we have( 1

m([0, l1]n)

)1/p
∥F(t + u) − G(t + u)

∥∥∥
Lp(l1Ω:Y)

≤

(m([0, l2]n)
m([0, l1]n)

)1/p( 1
m([0, l2]n)

)1/p
∥F(t + u) − G(t + u)

∥∥∥
Lp(l2Ω:Y)

,

it follows that
Dp

Sl1
(F,G) ≤

[ l2
l1

]n/p
· Dp

Sl2
(F,G).

Suppose now that l2 = kl1 + θl1 for some k ∈N and θ ∈ [0, 1). Since, for every t ∈ Λ,we have( 1
m([0, l2]n)

)1/p∥∥∥F(t + u) − G(t + u)
∥∥∥

Lp([0,l2]n:Y)

≤

( 1
m([0, kl1]n)

)1/p∥∥∥F(t + u) − G(t + u)
∥∥∥

Lp([0,(k+1)l1]n:Y)

≤

( (k + 1)nm
(
[0, l1]n

)
m
(
[0, kl1]n

) )1/p
sup
t∈Λ

( 1

m
(
[0, l1]n

) )1/p
∥F(t + u) − G(t + u)

∥∥∥
Lp([0,l1]n:Y)

≤

(k + 1
k

)n/p
·Dp

Sl1
(F,G), (3)

it follows that

Dp
Sl2

(F,G) ≤
(k + 1

k

)n/p
·Dp

Sl1
(F,G).

Therefore, if p(t) ≡ p ∈ [1,∞), the metrics Dp
Sl1

(·, ·) and Dp
Sl2

(·, ·) are topologically equivalent. Furthermore,
the use of (3) enables one to see that in case p(t) ≡ p ∈ [1,∞) we have that

lim sup
l→∞

Dp
Sl

(F,G) ≤ Dp
Sl1

p(F,G), l1 > 0.

Performing the limit inferior as l1 →∞, we get that

lim sup
l→∞

Dp
Sl

(F,G) ≤ lim inf
l→∞

Dp
Sl

(F,G),

so that the limit
Dp

W(F,G) := lim
l→∞

Dp
Sl

(F,G)
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exists. Therefore, we can define the Weyl distance Dp
W(F,G) of functions F(·) and G(·). This distance will

play an important role in [11].
By Sp

Ω
(Λ : Y) we denote the vector space of all functions F : Λ→ Y for which ∥F(t + u)∥Y ∈ Lp(Ω) for all

t ∈ Λ and the Stepanov norm

∥F∥Sp
Ω

:= sup
t∈Λ

[( 1
m(Ω)

)1/p
∥F(t + u)

∥∥∥
Lp(Ω:Y)

]
is finite; if Ω ≡ [0, l]n, then we also write Sp

l (Λ : Y) ≡ Sp
Ω

(Λ : Y) and ∥ · ∥Sp
l
≡ ∥ · ∥Sp

Ω
. If p, q ∈ P(Ω),

1/p(u) + 1/q(u) = 1 for a.e. u ∈ Ω and q(u) < +∞ for a.e. u ∈ Ω, then (the definition is consistent with the
above given provided that p(u) ≡ p ∈ (1,∞)), we define the Stepanov norm ∥F∥Sp(u)

Ω

by

∥F∥Sp(u)
Ω

:= sup
t∈Λ

[
m(Ω)−1

∥1∥Lq(u)(Ω)∥F(t + u)
∥∥∥

Lp(u)(Ω:Y)

]
;

again, Sp(u)
Ω

(Λ : Y) denotes the vector space consisting of all functions F : Λ→ Y satisfying that ∥F(t+u)∥Y ∈
Lp(u)(Ω) for all t ∈ Λ and ∥F∥Sp(u)

Ω

< ∞. Since Fatou’s lemma holds in our framework (see e.g., [9, p. 75]), using
the arguments contained in the proof of [23, Theorem 5.2.1, p. 199] and Lemma 1.1(ii) we may conclude
that Sp(u)

Ω
(Λ : Y) is a Banach space equipped with the norm ∥ · ∥Sp(u)

Ω

.

2.2. Stepanov (Ω, p(u))-(RX,B)-multi-almost periodic type functions and Stepanov (Ω, p(u))-B-almost periodic type
functions

The notion of a Stepanov (Ω, p(u))-(R,B)-multi-almost periodic function is introduced as follows:

Definition 2.4. Suppose that ∅ , Λ ⊆ Rn satisfiesΛ+Ω ⊆ Λ, F : Λ×X→ Y, (1) holds with the set I replaced by the
setΛ therein and the function F̂ : Λ×X→ Lp(u)(Ω : Y) is well defined and continuous. Then we say that the function
F(·; ·) is Stepanov (Ω, p(u))-(R,B)-multi-almost periodic if and only if the function F̂Ω : Λ × X → Lp(u)(Ω : Y)
is (R,B)-multi-almost periodic, i.e., for every B ∈ B and (bk = (b1

k , b
2
k , · · ·, b

n
k )) ∈ R there exist a subsequence

(bkl = (b1
kl
, b2

kl
, · · ·, bn

kl
)) of (bk) and a function F∗ : Λ × X→ Lp(u)(Ω : Y) such that

lim
l→+∞

∥∥∥∥F
(
t + u + (b1

kl
, · · ·, bn

kl
); x

)
−

[
F∗(t; x)

]
(u)

∥∥∥∥
Lp(u)(Ω:Y)

= 0,

uniformly for all x ∈ B and t ∈ Λ. By APSΩ,p(u)
(R,B) (Λ × X : Y) we denote the collection consisting of all Stepanov

(Ω, p(u))-(R,B)-multi-almost periodic functions F : Λ × X → Y. If X = {0} and B = {X}, then we also say that the
function F(·) is Stepanov (Ω, p(u))-R-multi-almost periodic and abbreviate APSΩ,p(u)

(R,B) (Λ×X : Y) to APSΩ,p(u)
R (Λ : Y).

In the following definition, we introduce the notion of a Stepanov (Ω, p(u))-(RX,B)-multi-almost periodic
function:

Definition 2.5. Suppose that ∅ , Λ ⊆ Rn, Λ + Ω ⊆ Λ and F : Λ × X → Y, (2) holds with the set I replaced by Λ
therein and the function F̂ : Λ × X → Lp(u)(Ω : Y) is well defined and continuous. Then we say that the function
F(·; ·) is Stepanov (Ω, p(u))-(RX,B)-multi-almost periodic if and only if the function F̂Ω : Λ × X → Lp(u)(Ω : Y) is
(RX,B)-multi-almost periodic, i.e., for every B ∈ B and for every sequence ((b; x)k = ((b1

k , b
2
k , · · ·, b

n
k ); xk)) ∈ RX there

exist a subsequence ((b; x)kl = ((b1
kl
, b2

kl
, · · ·, bn

kl
); xkl )) of ((b; x)k) and a function F∗ : Λ × X→ Lp(u)(Ω : Y) such that

lim
l→+∞

∥∥∥∥F
(
t + u + (b1

kl
, · · ·, bn

kl
); x + xkl

)
−

[
F∗(t; x)

]
(u)

∥∥∥∥
Lp(u)(Ω:Y)

= 0,

uniformly for all x ∈ B and t ∈ Λ. By APSΩ,p(u)
(RX,B)(Λ × X : Y) we denote the space consisting of all Stepanov

(Ω, p(u))-(RX,B)-multi-almost periodic functions.
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The following special cases should be emphasized (see also [3]):

L1. R = {b : N → Rn ; for all j ∈ Nwe have b j ∈ {(a, a, a, · · ·, a) ∈ Rn : a ∈ R}}. If n = 2 and B denotes
the collection of all bounded subsets of X, then we also say that the function F(·; ·) is Stepanov
(Ω, p(u))-bi-almost periodic. The notion of Stepanov (Ω, p(u))-bi-almost periodicity seems to be new
and not considered elsewhere even in the one-dimensional caseΩ = [0, 1] with the constant exponent
p(u) ≡ p ∈ [1,∞).

L2. R is a collection of all sequences b(·) in Rn. This is the limit case in our analysis because, in this case,
any Stepanov (Ω, p(u))-(R,B)-multi-almost periodic, resp. Stepanov (Ω, p(u))-(RX,B)-multi-almost
periodic function, is automatically Stepanov (Ω, p(u))-(R1,B)-multi-almost periodic, resp.
Stepanov (Ω, p(u))-(R1X,B)-multi-almost periodic, for any other collection R1 of sequences b(·) in Rn,
resp. any other collection R1X of sequences in Rn

× X.

Let k ∈N and Fi : Λ×X→ Yi (1 ≤ i ≤ k). Then we define the function (F1, · · ·,Fk) : Λ×X→ Y1 × · · · ×Yk
by

(F1, · · ·,Fk)(t; x) := (F1(t; x), · · ·,Fk(t; x)), t ∈ Λ, x ∈ X.

Almost immediately from definitions, we can clarify the following analogue of [2, Proposition 2.3]:

Proposition 2.6. (i) Suppose that k ∈ N, ∅ , Λ ⊆ Rn, (1) holds with I replaced by Λ therein, and for any
sequence which belongs to R we have that any its subsequence also belongs to R. If the function Fi(·; ·) is
Stepanov (Ω, p(u))-(R,B)-multi-almost periodic for 1 ≤ i ≤ k, then the function (F1, · · ·,Fk)(·; ·) is also
Stepanov (Ω, p(u))-(R,B)-multi-almost periodic.

(ii) Suppose that k ∈ N, ∅ , Λ ⊆ Rn, (1) holds with I replaced by Λ therein, and for any sequence which belongs
to RX we have that any its subsequence also belongs to RX. If the function Fi(·; ·) is Stepanov (Ω, p(u))-(RX,B)-
multi-almost periodic for 1 ≤ i ≤ k, then the function (F1, · · ·,Fk)(·; ·) is also Stepanov (Ω, p(u))-(RX,B)-multi-
almost periodic.

The supremum formula for Stepanov (Ω, p(u))-(RX,B)-multi-almost periodic functions, the conditions
under which the range {F̂Ω(t; x) : t ∈ Λ; x ∈ B}, for a given set B ∈ B, is relatively compact in Lp(u)(Ω : Y) and
the question when for a given Stepanov (Ω, p(u))-(RX,B)-multi-almost periodic function F : Λ×X→ Y and
a function ϕ : Y → Z we have that ϕ ◦ F : Λ × X → Z is Stepanov (Ω, p(u))-(RX,B)-multi-almost periodic
can be deduced by appealing to [2, Proposition 2.5, Proposition 2.6, Proposition 2.9].

Now we will introduce the following notion in a Bohr like manner:

Definition 2.7. Suppose that ∅ , Λ′ ⊆ Λ ⊆ Rn, Λ + Λ′ ⊆ Λ, Λ + Ω ⊆ Λ, F : Λ × X → Y and the function
F̂Ω : Λ × X→ Lp(u)(Ω : Y) is well defined and continuous.

(i) Then we say that F(·; ·) is Stepanov (Ω, p(u))-(B,Λ′)-almost periodic
(Stepanov (Ω, p(u))-B-almost periodic, if Λ′ = Λ) if and only if for every B ∈ B and ϵ > 0 there exists l > 0
such that for each t0 ∈ Λ

′ there exists τ ∈ B(t0, l) ∩Λ′ such that∥∥∥F(t + τ + u; x) − F(t + u; x)
∥∥∥

Lp(u)(Ω:Y)
≤ ϵ, t ∈ Λ, x ∈ B.

By APSΩ,p(u)
B,Λ′

(Λ × X : Y) and APSΩ,p(u)
B

(Λ × X : Y) we denote the spaces consisting of all Stepanov (Ω, p(u))-
(B,Λ′)-almost periodic functions and Stepanov (Ω, p(u))-B-almost periodic functions, respectively.

(ii) Then we say that F(·; ·) is Stepanov (Ω, p(u))-(B,Λ′)-uniformly recurrent (Stepanov (Ω, p(u))-B-uniformly
recurrent, ifΛ′ = Λ) if and only if for every B ∈ B there exists a sequence (τn) inΛ′ such that limn→+∞ |τn| = +∞
and

lim
n→+∞

sup
t∈I;x∈B

∥∥∥F(t + τn + u; x) − F(t + u; x)
∥∥∥

Lp(u)(Ω:Y)
= 0.

By URSΩ,p(u)
B,Λ′

(Λ × X : Y) and URSΩ,p(u)
B

(Λ × X : Y) we denote the spaces consisting of all Stepanov (Ω, p(u))-
(B,Λ′)-uniformly recurrent functions and Stepanov (Ω, p(u))-B-uniformly recurrent functions, respectively.
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If X ∈ B, then it is also said that F(·; ·) is Stepanov (Ω, p(u))-Λ′-almost periodic (Stepanov (Ω, p(u))-Λ′-uniformly
recurrent) [Stepanov (Ω, p(u))-almost periodic (Stepanov (Ω, p(u))-uniformly recurrent), if Λ = Λ′].

Remark 2.8. (i) Suppose that p ∈ D+(Ω) and there exists a finite constant L ≥ 1 such that

∥F(t; x) − F(t; y)∥Y ≤ L∥x − y∥, t ∈ Λ, x, y ∈ X (4)

and the mapping F̂Ω : Λ × X → Lp(u)(Ω : Y) is well defined. Then it is continuous. Towards this end, let
(tn; xn)→ (t; x) as n→ +∞. Then (4) implies that

∥F(tn + u; xn) − F(t + u; x)∥Lp(u)(Ω:Y)

≤ ∥F(tn + u; xn) − F(tn + u; x)∥Lp(u)(Ω:Y) + ∥F(tn + u; x) − F(t + u; x)∥Lp(u)(Ω:Y)

≤ 2(1 +m(Ω)) ·
[
L
∥∥∥xn − x

∥∥∥]
Lp+ (Ω)

+ ∥F(tn + u; x) − F(t + u; x)∥Lp(u)(Ω:Y).

The first addend clearly goes to zero since ∥xn − x∥ → 0 as n→ +∞. For the second addend, we can apply the
arguments used for proving the continuity of the translation mapping from the proof of [7, Proposition 5.1].

(ii) Suppose that F : Λ × X → Y is continuous and p ∈ D+(Ω). Then the continuity of mapping F̂Ω : Λ × X →
Lp(u)(Ω : Y) follows directly by applying the dominated convergence theorem (see Lemma 1.1(iv)).

Example 2.9. Let F : Rn
→ R be a Bohr Λ′-almost periodic function (Λ′-uniformly recurrent function). Define

sign(0) := 0 and H : Rn
→ R by H(t) := sign(F(t)), t ∈ Rn. Then, for every p ∈ D+(Ω), the function H(·) is Stepanov

(Ω, p(u))-Λ′-almost periodic (Stepanov (Ω, p(u))-Λ′-uniformly recurrent), provided that

(∃L ≥ 1) (∀ϵ > 0)
(
∀y ∈ Rn

)
m
(
{x ∈ y +Ω : |F(x)| ≤ ϵ}

)
≤ Lϵ. (5)

Let ϵ > 0 be fixed. Then the required conclusion follows from the calculation∥∥∥H(t + τ + u; x) −H(t + u; x)
∥∥∥

Lp(u)(Ω:R)

≤ 2(1 +m(Ω)) ·
∥∥∥H(t + τ + u; x) −H(t + u; x)

∥∥∥
Lp+ (Ω:R)

≤ 2(1 +m(Ω)) · ∥1∥
Lp+

(
(t+Ω)∩Ec

ϵ:R
),

where Eϵ denotes the set consisting of all tuples y ∈ Rn such that |F(y)| ≥ ϵ and τ is a (Λ′, ϵ)-period od F(·) (the
inequality stated in the last line of computation follows from the fact that for any y ∈ Eϵ and for any such a number
τ we have H(y + τ) = H(y)); see also [23, Theorem 5.3.1] for the first result in this direction. Suppose now that the
function F(·) is Bohr almost periodic and there exist real numbers a and b such that a < 0 < b and the function F(·)
can be analytically extended to the region {(z1, · · ·, zn) ∈ Cn : ℜzi ∈ (a, b) for all i ∈ Nn} (in particular, this holds
for any trigonometric polynomial). Then we can repeat verbatim the argumentation contained in the proof of the last
mentioned theorem (see also https://math.stackexchange.com/questions/3216833/holomorphic-function-on-mathbbcn-
vanishing-on-a-positive-lebesgue-measure?rq=1) in order to see that limϵ→0+m(Ec

ϵ ∩ (t + Ω)) = 0, uniformly for
t ∈ Rn,which combined with the above calculation shows that the function H(·) is Stepanov (Ω, p(u))-almost periodic.

In connection with the above example, it should be noted that the function H(·) need not be Stepanov (Ω, p(u))-
Λ′-almost periodic (Stepanov (Ω, p(u))-Λ′-uniformly recurrent) for all p ∈ P(Ω), even in the one-dimensional case.
Strictly speaking, if Ω := [0, 1], Λ′ := R and p(u) := 1 − ln u, u ∈ (0, 1], then we have proved, in [6, Example 4.11],
that the function x 7→ sign(sin x + sin(

√
2x)), x ∈ R is Stepanov (Ω, p(u))-bounded but not Stepanov (Ω, p(u))-

almost periodic. Suppose now that Ω = [0, 1]n and p(u) := 1 − ln(u1 · u2 · · · un), u = (u1,u2, · · ·,un) ∈ Ω and
F(x1, x2, · · ·, xn) := sin(x1 + x2 + · · · + xn) + sin(

√
2(x1 + x2 + · · · + xn)), (x1, x2, · · ·, xn) ∈ Rn. Then H(·), defined as

above, is essentially bounded and therefore Stepanov (Ω, p(u))-bounded. On the other hand, using the argumentation
from the above-mentioned example, the Fubini theorem and the equality ln(u1 · u2 · · · un) = ln u1 + ln u2 + · · ·+ ln un
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for all (u1,u2, · · ·,un) ∈ Ω, we get that, for every λ ∈ (0, 2/e) and l > 0, we can find a ball B(t0, l) ⊆ Rn such that, for
every τ ∈ B(t0, l), there exists t ∈ Rn such that∫

Ω

( 1
λ

)1−ln(u1·u2···un)∣∣∣∣sign
[
sin(u + t + τ) + sin(

√

2(u + t + τ))
]

− sign
[
sin(u + t) + sin(

√

2(u + t))
]∣∣∣∣1−ln(u1·u2···un)

du = ∞.

This simply implies that the function H(·) is not Stepanov (Ω, p(u))-almost periodic.

Concerning the convolution invariance of Stepanov (Ω, p(u))-(RX,B)-multi-almost periodic functions,
we will clarify the following result:

Proposition 2.10. Suppose that h ∈ L1(Rn), p ∈ D+(Ω), the function F(·; ·) is Stepanov (Ω, p(u))-(RX,B)-multi-
almost periodic and for each bounded subset D of X there exists a constant cD > 0 such that ∥F(t; x)∥Y ≤ cD for a.e.
t ∈ Rn and all x ∈ D. Suppose, further, that for each sequence ((b; x)k = ((b1

k , b
2
k , · · ·, b

n
k ); xk)) ∈ RX and for each set

B ∈ B we have that B + {xk : k ∈N} is a bounded set in X. Then the function

(h ∗ F)(t; x) :=
∫
Rn

h(σ)F(t − σ; x) dσ, t ∈ Rn, x ∈ X

is Stepanov (Ω, p(u))-(RX,B)-multi-almost periodic and satisfies that for each bounded subset D of X there exists a
constant c′D > 0 such that ∥(h ∗ F)(t; x)∥Y ≤ c′D for all t ∈ Rn and x ∈ D.

Proof. The prescribed assumptions imply that for each bounded subset D of X there exists a constant c′D > 0
such that ∥F̂Ω(t; x)∥Lp(u)(Ω:Y) ≤ cD for all t ∈ Rn and x ∈ D, as well as that ∥(h ∗ F)(t; x)∥Y ≤ c′D for all t ∈ Rn

and x ∈ D. Applying Lemma 1.8, we get that the function [h ∗ F̂Ω](·; ·) is (RX,B)-multi-almost periodic. The
result now simply follows from the equality

h ∗ F̂Ω = ˆh ∗ FΩ (6)

and a corresponding definition of Stepanov (Ω, p(u))-(RX,B)-multi-almost periodicity.

Using [2, Proposition 2.8] and the corresponding definition, we can immediately deduce the following
result which can be also formulated for the (asymptotical) Stepanov (Ω, p(u))-(RX,B)-multi-almost period-
icity and (asymptotical) Stepanov (Ω, p(u))-(B,Λ′)-almost periodicity (see [2] for more details):

Proposition 2.11. Suppose that for each integer j ∈N the function F j(·; ·) is Stepanov (Ω, p(u))-(R,B)-multi-almost
periodic. If for each B ∈ B there exists ϵB > 0 such that

lim
j→+∞

sup
t∈Λ;x∈B′

∥∥∥∥F j(t + u; x) − F(t + u; x)
∥∥∥∥

Lp(u)(Ω:Y)
= 0,

where B′ ≡ B◦ ∪
⋃

x∈∂B B(x, ϵB), then the function F(·; ·) is Stepanov (Ω, p(u))-(R,B)-multi-almost periodic.

The subsequent result is trivial and follows almost immediately from the above definitions:

Proposition 2.12. Suppose that ∅ , Λ′ ⊆ Λ ⊆ Rn, Λ + Λ′ ⊆ Λ, Λ + Ω ⊆ Λ, F : Λ × X → Y and the function
F̂Ω : Λ × X → Lp(u)(Ω : Y) is well defined and continuous. Then the function F(·; ·) is Stepanov (Ω, p(u))-(B,Λ′)-
almost periodic (Stepanov (Ω, p(u))-(B,Λ′)-uniformly recurrent) if and only if the function F̂Ω : Λ×X→ Lp(u)(Ω : Y)
is Bohr (B,Λ′)-almost periodic ((B,Λ′)-uniformly recurrent).

Since every Bohr almost periodic function F : Rn
→ Y is immediately Bohr ∆n-almost periodic ([2]), we

may deduce from the previous proposition that a Stepanov (Ω, p(u))-almost periodic function F : Rn
→ Y is

immediately Stepanov (Ω, p(u))-∆n-almost periodic. Using Lemma 1.7 we can simply deduce the following:
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Theorem 2.13. Suppose that F̂Ω : Rn
×X→ Lp(u)(Ω : Y) is well defined and continuous,B is any family of compact

subsets of X and R is the collection of all sequences in Rn. Then F(·; ·) is Stepanov (Ω, p(u))-B-almost periodic if and
only if F(·; ·) is Stepanov (Ω, p(u))-(R,B)-multi-almost periodic.

The notion of strong B-almost periodicity was also introduced and analyzed in [2]. Keeping in mind
Proposition 2.12, the notion of a strong Stepanov (Ω, p(u))-B-almost periodicity can be introduced in the
following way: a function F : Λ × X→ Y is said to be strongly Stepanov (Ω, p(u))-B-almost periodic if and
only if the function F̂Ω : Λ × X → Lp(u)(Ω : Y) is strongly almost periodic. We will skip all related details
concerning this theme for brevity.

Using Lemma 1.10 and Proposition 2.12, we can deduce the following result:

Theorem 2.14. (The uniqueness theorem for Stepanov (Ω, p(u))-almost periodic functions) Suppose that Λ ⊆ Rn,
Λ + Λ ⊆ Λ, condition (AP-E) holds with the sets I and I′ replaced therein with the sets Λ and Λ′, as well as
Rn
\ [(Λ∪ (−Λ))+ (Λ∪ (−Λ))] is a bounded set. If F : Rn

→ Y and G : Rn
→ Y are two Stepanov (Ω, p(u))-almost

periodic functions and F(t) = G(t) for a.e. t ∈ Λ, then F(t) = G(t) for a.e. t ∈ Rn.

Proof. By Proposition 2.12, F̂ : Rn
→ Lp(u)(Ω : Y) and Ĝ : Rn

→ Lp(u)(Ω : Y) are Bohr almost periodic
functions. Let t ∈ Λ be fixed. Then our assumption implies F(t + u) = G(t + u) for a.e. u ∈ Ω so that
F̂(t) = Ĝ(t).Applying Lemma 1.10, we get F̂(t) = Ĝ(t) for all t ∈ Rn,which simply implies that F(t) = G(t) for
a.e. t ∈ Rn.

Now we will state and prove the following important result about extensions of Stepanov (Ω, p(u))-
almost periodic functions:

Theorem 2.15. Suppose that Λ′ ⊆ Λ ⊆ Rn, Λ+Λ′ ⊆ Λ, Λ+Ω ⊆ Λ, the set Λ′ is unbounded, m(∂Λ) = 0,Ω◦ , ∅,
F : Λ → Y satisfies that F̂Ω : Λ → Lp(u)(Ω : Y) is a uniformly continuous, Bohr Λ′-almost periodic function, resp.
a uniformly continuous, Λ′-uniformly recurrent function, S ⊆ Rn is bounded and, for every t′ ∈ Rn, there exists a
finite real number M > 0 such that t′ + Λ′M ⊆ Λ. Define ΛS := [(Λ′ ∪ (−Λ′)) + (Λ′ ∪ (−Λ′))] ∪ S. Then there exists
a Stepanov (Ω, p(u))-ΛS-almost periodic, resp. a Stepanov (Ω, p(u))-ΛS-uniformly recurrent, function F̃ : Rn

→ Y
such that F̃(t) = F(t) for a.e. t ∈ Λ; furthermore, in Stepanov almost periodic case, ifRn

\ΛS is a bounded set and the
function G̃(·) satisfies the same requirements as the function F̃(·), then there exists a set N ⊆ Rn such that m(N) = 0
and F̃(t) = G̃(t) for all t ∈ Rn

\N.

Proof. We will consider only Stepanov almost periodicity. By Proposition 2.12, we have that the function
F̂Ω : Λ → Lp(u)(Ω : Y) is Bohr Λ′-almost periodic. Due to the prescribed assumptions, we can apply
Lemma 1.9 in order to see that there exists a uniformly continuous Bohr ΛS-almost periodic function
H : Rn

→ Lp(u)(Ω : Y) such that F̂Ω(t) = H(t) for all t ∈ Λ. Furthermore, by the corresponding proof of
Lemma 1.9, given in [2], there exists a sequence (τk) in Λ′ such that H(t) = limk→+∞ F̂Ω(t + τk), where the
limit is uniform in t ∈ Rn, and limk→+∞ |τk| = +∞. Now we will prove the following:

(⋄) Let t1, t2 ∈ Rn be fixed. Then there exists a set N ⊆ Ω such that m(N) = 0 and, for every u1, u2 ∈ Ω \N,
the assumption t1 + u1 = t2 + u2 implies [H(t1)](u1) = [H(t2)](u2).

In actual fact, we have that there exists a set Ni ⊆ Ω such that m(Ni) = 0 and [H(ti)](ui) = limk→+∞ F(ti+τk+ui)
for i = 1, 2, so that (⋄) follows immediately by plugging N ≡ N1 ∪ N2. Define now F̃ : Rn

→ Y by
F̃(t) := [H(xt)](t − xt), if xt ∈ Qn and t ∈ xt + Ω

◦. Using (⋄) and our assumption Ω◦ , ∅, it is very simple
to prove that the function F̃(·) is well defined as well as that the Bochner transform of F̃(·) is H(·), i.e., that
for each t ∈ Rn there exists a set Nt ⊆ Ω such that F̃(t + u) = [H(t)](u) for all u ∈ Ω \ Nt. Applying again
Proposition 2.12, we get that the function F̃(·) is Stepanov (Ω, p(u))-ΛS-almost periodic. Now we will prove
that F̃(t) = F(t) for a.e. t ∈ Λ. By the foregoing, for every t ∈ Λ, there exists a set Nt ⊆ Ω such that m(Nt) = 0
and

F(t + u) = [H(t)](u) = F̃(t + u), u ∈ Ω \Nt. (7)
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Let x ∈ Qn be fixed. DenoteΛk := {t ∈ (x+Ω)∩Λ : dist(t, ∂Ω) ≥ 1/k} (k ∈N). Then [(x+Ω)∩Λ]\∂Λ =
⋃

k∈NΛk
so that the required statement easily follows from our assumption m(∂Λ) = 0 and the fact that for each k ∈N
and t ∈ Λk we have t ∈ Λ◦ and thereforeΛk ⊆

⋃
t∈(x+Ω)∩Λ(t+Ω◦); by the Heine-Borel theorem, for every k ∈N,

this implies the existence of a finite sequence of numbers t1, · · ·, tak ∈ Ω
◦ such that Λk ⊆

⋃ak
k=1(t+Ω◦) and we

can apply (7) to achieve our aims. Finally, ifRn
\ΛS is a bounded set and the function G̃(·) satisfies the same

requirements as the function F̃(·), then the foregoing arguments simply imply that ˆ̃F(t) = ˆ̃G(t) for all t ∈ Λ.
Moreover, the both functions ˆ̃F(·) and ˆ̃G(·) must be Bohr almost periodic on Rn and therefore compactly
almost automorphic so that the arguments used in [2] yield that these functions are equal identically onRn,
which completes the proof in a routine manner.

Remark 2.16. (i) It is clear that Theorem 2.15 is applicable provided that (v1, · · ·,vn) is a basis of Rn,

Λ′ = Λ =
{
α1v1 + · · · + αnvn : αi ≥ 0 for all i ∈Nn

}
is a convex polyhedral in Rn and Ω is any compact subset of Λ with non-empty interior; in this case, we have
that there exists a unique Stepanov (Ω, p(u))-almost periodic extension of the function F : Λ→ Y to the whole
Euclidean space. This enables to see that Proposition 2.17 and the statement (ii) preceding directly the third
section of paper continue to hold with the set Rn replaced therein with any convex polyhedral in Rn. It is also
worth noting that Theorem 2.15 is applicable in the following special case: Λ = [r1,∞)× [r2,∞)× · · · × [rn,∞)
for some real numbers ri ∈ R (1 ≤ i ≤ n), Λ′ = [r′1,∞) × [r′2,∞) × · · · × [r′n,∞) for some non-negative real
numbers ri, r′i ≥ 0 (1 ≤ i ≤ n) and Ω is any compact subset of [0,∞)n with non-empty interior, when the
function F̃(·) is Stepanov (Ω, p(u))-almost periodic.

(ii) It is well known that a compact set with positive Lebesgue measure inRn, like the famous Smith–Volterra–Cantor
set in the one-dimesional case, can have the empty interior.

Keeping in mind Proposition 2.12, we may conclude that the notion introduced in Definition 2.7 gener-
alizes the notion introduced in [6, Definition 4.2(i), Definition 5.2(i)]. Furthermore, combining Proposition
2.6 and Lemma 1.7, we immediately get:

Proposition 2.17. Suppose that k ∈N andB is any family of compact subsets of X. If the function Fi : Rn
×X→ Yi

is Stepanov (Ω, p(u))-B-almost periodic for 1 ≤ i ≤ k, then the function (F1, · · ·,Fk)(·; ·) is also Stepanov (Ω, p(u))-
B-almost periodic.

It is clear that Lemma 1.6(i) can be particularly used to profile when, for a given Stepanov (Ω, p(u))-B-
almost periodic function F : Λ×X→ Y,we have that for each B ∈ Bwe have supt∈Λ;x∈B ∥F(t+u; x)∥Lp(u)(Ω:Y) < ∞;
if for each x ∈ X we define the function Fx : Λ → Y by Fx(t) := F(t; x), t ∈ Λ, then the above means that
supx∈B ∥Fx∥Sp(·)

Ω

< ∞ for each fixed set B ∈ B. Furthermore, Lemma 1.6(ii) can be used to profile when, for a
given Stepanov (Ω, p(u))-B-almost periodic function F : Λ×X→ Y,we have that for each B ∈ B the function
F̂Ω(·; ·) is uniformly continuous on Λ × B.

Now we will prove the following extension of [23, Theorem 5.2.5] concerning pointwise products of
multi-dimensional Stepanov p(u)-almost periodic type functions with scalar-valued Stepanov r(u)-almost
periodic functions (for simplicity, we consider here caseΛ = Rn, only, albeit we can formulate a correspond-
ing result in case that Λ is admissible with respect to the almost periodic extensions):

Proposition 2.18. Suppose that p, q, r ∈ P(Ω), 1/p(u) + 1/r(u) = 1/q(u), f : Rn
→ C is a Stepanov-(Ω, r(u))-

almost periodic function and F : Rn
× X → Y is a Stepanov (Ω, p(u))-B-almost periodic function, where B denotes

any family of compact subsets of X. Define F1(t; x) := f (t)F(t; x), t ∈ Rn, x ∈ X. Then the function F1(·; ·) is
Stepanov-(Ω, q(u))-B-almost periodic.

Proof. Let ϵ > 0 and B ∈ B be given. We have

F̂1Ω(t′; x′) − F̂1Ω(t; x)

= f̂Ω(t′) ·
[
F̂Ω(t′; x′) − F̂Ω(t; x)

]
+

[
f̂Ω(t′) − f̂Ω(t)

]
· F̂Ω(t; x)
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for every t, t′ ∈ Rn and x, x′ ∈ X. Since the mapping f̂Ω(·) is uniformly continuous and bounded on Rn as
well as the mapping F̂Ω(·; ·) is continuous, we can apply the above equality and the Hölder inequality (see
Lemma 1.1(i)) in order to see that the mapping F̂1Ω(·; ·) is continuous, as well. Due to Proposition 2.17, there
exists l > 0 such that for every t0 ∈ Rn there exists τ ∈ B(t0, l) such that ∥F(t+τ+u; x)−F(t+u; x)∥Lp(u)(Ω:Y) ≤ ϵ,
t ∈ Rn, x ∈ B and ∥ f (t + τ + u) − f (t + u)∥Lr(u)(Ω:Y) ≤ ϵ, t ∈ Rn. Since

F1(t + τ + u; x) − F1(t + τ; x)

= f̂Ω(t + τ + u) ·
[
F(t + τ + u; x) − F(t + τ; x)

]
+

[
f (t + τ + u) − f (t + τ)

]
· F(t + u; x)

for every t ∈ Rn, u ∈ Ω and x ∈ B, we can apply the Hölder inequality again, along with the estimates
supt∈Rn ∥ f̂Ω(t)∥Lr(u)(Ω) < ∞ and

sup
t∈Rn;x∈B

∥F̂Ω(t; x)∥Lp(u)(Ω) < ∞,

to complete the whole proof.

We can similarly prove the following:

Proposition 2.19. Suppose that ∅ , Λ ⊆ Rn, f : Λ→ C is Stepanov-(Ω, r(u))-bounded and Stepanov (Ω, r(u))-R-
multi-almost periodic and F : Λ × X→ Y is a (Ω, p(u))-(R,B)-multi-almost periodic function satisfying that
supt∈Λ;x∈B ∥F̂Ω(t; x)∥Lp(u)(Ω:Y) < ∞. Define F1(t; x) := f (t)F(t; x), t ∈ Λ, x ∈ X. Then F1(·; ·) is Stepanov-(Ω, q(u))-
(R,B)-multi-almost periodic, provided that for each sequence (bk) in R we have that any its subsequence also belongs
to R.

Now we would like to present the following illustrative example:

Example 2.20. Suppose that α, β ∈ R \ {0} and αβ−1 is an irrational number. As is well known, the functions

fα,β(t) = sin
(

1
2 + cosαt + cos βt

)
, t ∈ R

and

1α,β(t) = cos
(

1
2 + cosαt + cos βt

)
, t ∈ R

are Stepanov p-almost periodic but not almost periodic (1 ≤ p < ∞). Suppose now that

F
(
t1, t2, · · ·, tn

)
= f1(t1) f2(t2) · · · fn(tn), t =

(
t1, t2, · · ·, tn

)
∈ Rn

and for each i ∈ Nn there exist real numbers αi, βi ∈ R \ {0} such that αiβ−1
i is an irrational number and fi = fαi,βi

or fi = 1αi,βi . Applying Proposition 2.18, we inductively may conclude that the function t 7→ F(t), t ∈ Rn is
Stepanov-(Ω, p(u))-almost periodic with Ω = [0, 1]n and p ∈ D+(Ω).

Using Lemma 1.6(ii) and Theorem 1.7, we can repeat verbatim the argumentation used in the one-
dimensional case in order to see that the following result holds:

Theorem 2.21. Suppose thatB is any family of compact subsets of X and p ∈ D+(Ω). If F : Rn
×X→ Y is uniformly

continuous and Stepanov (Ω, p(u))-B-almost periodic, then F(·; ·) is Bohr B-multi-almost periodic.

A sufficient condition for a function F : Λ × X → Y to be Stepanov (Ω, p(u))-B-multi-almost periodic is
given as follows:

Proposition 2.22. Let Λ + Λ ⊆ Λ, Λ +Ω ⊆ Λ, B is any family of compact subsets of X and F : Λ × X→ Y satisfy
the following conditions:
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(i) For each x ∈ X, F(·; x) ∈ APSΩ,p(u)(Λ : Y).

(ii) F(·; ·) is Sp(u)-uniformly continuous with respect to the second argument on each compact subset B in B in the
following sense: for all ε > 0 there exists δB,ε > 0 such that for all x1, x2 ∈ B one has

∥x1 − x2∥ ≤ δB,ε =⇒
∥∥∥∥F(t + ·; x1) − F(t + ·; x2)

∥∥∥∥
Lp(u)(Ω:Y)

≤ ε for all t ∈ Λ. (8)

Then F(·; ·) is Stepanov (Ω, p(u))-B-multi-almost periodic.

Proof. We may assume that p(u) ≡ p ∈ [1,∞) since the proof in general case can be deduced along the same
lines. Let ε > 0 and B ⊆ X be a compact set. It follows that there exists a finite subset {x1, ..., xn} ⊆ B (n ∈N)
such that B ⊆

⋃n
i=1 B(xi, δB,ε). Therefore, for every x ∈ B, there exists i ∈ Nn satisfying ∥x − xi∥ ≤ δB,ε. Let

τ ∈ Λ. Then we have(∫
Ω

∥F(t + s + τ; x) − F(t + s; x)∥pY ds
) 1

p

≤

(∫
Ω

∥F(t + s + τ; x) − F(t + s + τ; xi)∥
p
Y ds

) 1
p

+

(∫
Ω

∥F(t + s + τ; xi) − F(t + s; xi)∥
p
Y ds

) 1
p

+

(∫
Ω

∥F(t + s; xi) − F(t + s; x)∥pY ds
) 1

p

, t ∈ Λ. (9)

Using (i), we have that for each i = 1, . . . ,n there exists lB,ε > 0 such that for all t0 ∈ Λ there exists τ ∈ B(t0, lB,ε)
satisfying(∫

Ω

∥F(t + s + τ; xi) − F(t + s; xi)∥
p
Y ds

) 1
p

≤
ε
3

for all t ∈ Λ. (10)

Since ∥x − xi∥ ≤ δK,δ, by (ii) we claim that(∫
Ω

∥F(t + s + τ; x) − F(t + s + τ; xi)∥
p
Y ds

) 1
p

≤
ε
3

for all t ∈ Λ, (11)

and (∫
Ω

∥F(t + s; x) − F(t + s; xi)∥
p
Y ds

) 1
p

≤
ε
3

for all t ∈ Λ. (12)

Inserting (10), (11) and (12) in (9), we obtain

sup
x∈B

(∫
Ω

∥F(t + s + τ; x) − F(t + s; x)∥pY ds
) 1

p

≤ ε for all t ∈ Λ.

Hence, F(·; ·) is Stepanov (Ω, p(u))-B-multi-almost periodic.

Almost directly from Definition 2.4, we may conclude the following; the similar statements can be
formulated for the notion introduced in Definition 2.5-Definition 2.7 (cf. Lemma 1.1):

Proposition 2.23. Suppose that ∅ , Λ ⊆ Rn satisfies Λ +Ω ⊆ Λ, F : Λ × X → Y and the function F̂Ω : Λ × X→
Lp(u)(Ω : Y) is well defined and continuous.
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(i) For every p ∈ P(Ω), we have that APSΩ,p(u)
(R,B) (Λ × X : Y) is a subset of APSΩ,1(R,B)(Λ × X : Y).

(ii) For every p, q ∈ P(Ω),we have that the assumption q(u) ≤ p(u) for a.e. u ∈ Ω implies that APSΩ,p(u)
(R,B) (Λ×X : Y)

is a subset of APSΩ,q(u)
(R,B) (Λ × X : Y).

(iii) If p ∈ D+(Ω) and 1 ≤ p− ≤ p(u) ≤ p+ < +∞ for a.e. u ∈ Ω, then

APSΩ,p
+

(R,B)(Λ × X : Y) ⊆ APSΩ,p(u)
(R,B) (Λ × X : Y) ⊆ APSΩ,p

−

(R,B)(Λ × X : Y).

Keeping in mind Remark 2.8(ii) and the proof of [6, Proposition 4.5], we may deduce the following:

Proposition 2.24. Suppose that p ∈ D+(Ω) and the function F : Rn
× X → Y is (R,B)-multi-almost periodic

[Bohr B-almost periodic/B-uniformly recurrent]. Then the function F(·; ·) is Stepanov (Ω, p(u))-(R,B)-multi-almost
periodic [Stepanov (Ω, p(u))-B-almost periodic/Stepanov p(u)-B-uniformly recurrent].

Furthermore, we have the following simple result which can be shown with the help of Lemma 1.2:

Proposition 2.25. Suppose that F(·; ·) is Stepanov (Ω, p(u))-(R,B)-multi-almost periodic [Stepanov (Ω, p(u))-B-
almost periodic/Stepanov (Ω, p(u))-B-uniformly recurrent] and A ∈ L(X,Z). Then AF(·; ·) is Stepanov (Ω, p(u))-
(R,B)-multi-almost periodic [Stepanov (Ω, p(u))-B-almost periodic/Stepanov (Ω, p(u))-B-uniformly recurrent].

The main structural properties of (R,B)-multi-almost periodic type functions clarified in [2, Proposition
2.16] can be simply reformulated for the corresponding Stepanov classes. For example, we have the
following:

(i) Suppose that c ∈ C and F(·; ·) is Stepanov (Ω, p(u))-(R,B)-multi-almost periodic [Stepanov (Ω, p(u))-
(RX,B)-multi-almost periodic/Stepanov (Ω, p(u))-B-almost periodic/Stepanov (Ω, p(u))-B-uniformly
recurrent]. Then cF(·; ·) is Stepanov (Ω, p(u))-(R,B)-multi-almost periodic [Stepanov
(Ω, p(u))-(RX,B)-multi-almost periodic/Stepanov (Ω, p(u))-B-almost periodic/Stepanov (Ω, p(u))-B-
uniformly recurrent].

(ii) Suppose that α, β ∈ C and, for every sequence which belongs to R (RX), we have that any its
subsequence belongs to R (RX). If F(·; ·) and G(·; ·) are Stepanov (Ω, p(u))-(R,B)-multi-almost pe-
riodic [Stepanov (Ω, p(u))-(RX,B)-multi-almost periodic/Stepanov (Ω, p(u))-B-almost periodic/Stepa-
nov (Ω, p(u))-B-uniformly recurrent]. Then (αF + βG)(·; ·) is Stepanov (Ω, p(u))-(R,B)-multi-almost
periodic [Stepanov (Ω, p(u))-(RX,B)-multi-almost periodic/Stepanov (Ω, p(u))-B-almost periodic/
Stepanov (Ω, p(u))-B-uniformly recurrent].

3. Asymptotically Stepanov multi-dimensional almost periodic functions in Lebesgue spaces with vari-
able exponents

In this section, we will generalize the notion introduced in Definition 1.12 by investigating several
various classes of multi-dimensional ergodic components in the Lebesgue spaces with variable exponent;
the introduced notion is new even for the multi-dimensional ergodic components with constant coefficients.

We start by introducing the following notion:

Definition 3.1. Suppose that D ⊆ Λ ⊆ Rn, Λ + Ω ⊆ Λ and the set D is unbounded. By SΩ,p(u)
0,D,B (Λ × X : Y) we

denote the vector space consisting of all functions Q : Λ × X → Y such that, for every t ∈ Λ and x ∈ X, we have
[Q̂Ω(t; x)](u) ∈ Lp(u)(Ω : Y) as well as that, for every B ∈ B, we have limt∈D,|t|→+∞[Q̂Ω(t; x)](u) = 0 in Lp(u)(Ω : Y),
uniformly for x ∈ B. In the case that X = {0} and B = {X}, then we abbreviate SΩ,p(u)

0,D,B (Λ × X : Y) to SΩ,p(u)
0,D (Λ : Y).



A. Chávez et al. / Filomat 37:12 (2023), 3681–3713 3699

Using the dominated convergence theorem, it immediately follows that C0,D,B(Λ×X : Y) ⊆ SΩ,p(u)
0,D,B (Λ×X :

Y).
We continue by providing two illustrative examples:

Example 3.2. (i) Let 1 ≤ p < ∞. Consider the function f : [0,∞)→ R defined by

f (s) :=
{

k, if k ≤ s ≤ k + k−p for some k ∈N,
0, otherwise.

Then the function f (·) is neither continuous nor bounded but for each t ∈ R we have∫
[t,t+1]

| f (s)|p ds ≤

∫
[⌊t⌋,⌊t⌋+2]

| f (s)|p ds

=

⌊t⌋+1∑
k=⌊t⌋

∫
[k,k+k−p]∩[k,k+1]

| f (s)|p ds

=

⌊t⌋+1∑
k=⌊t⌋

∫
[k,k+k−p]

kp ds = 2.

Hence, f (·) is Stepanov p-bounded in the ususal sense. Fix now a number t ≥ 0. Then there exists a unique
integer k ∈N0 such that k ≤ t < k + 1. There exists two possibilities: k ≤ t < k + k−p or k + k−p

≤ t < k + 1. In
the first case, we have∫ t+1

t
| f (s)|p ds =

∫ k+k−p

t
kp ds +

∫ t+1

k+1
(k + 1)p ds

= (t − k)
[
(k + 1)p

− kp
]
+ 1 ≥ 1.

In the second case, we have∫ t+1

t
| f (s)|p ds =

∫ t+1

k+1
(k + 1)p ds = (t − k)(k + 1)p

≥ k−p(k + 1)p
≥ 1.

Summa summarum, inft≥0

∫ t+1

t | f (s)|p ds ≥ 1 so that there does not exist an unbounded set D ⊆ [0,∞) such

that limt→+∞,t∈D
∫ t+1

t | f (s)|p ds = 0.

(ii) Let (Ωn) be a sequence of pairwise disjoint Lebesgue measurable subsets ofRn, letΩ = [0, 1]n and let fn : Ωn → Y
(n ∈N) satisfy

sup
n∈N

∥∥∥ fn(·)
∥∥∥

L∞(Ωn:Y)
< ∞. (13)

Define the function f : Rn
→ Y by f (t) := 0 if t < ∪n∈NΩn and f (t) := fn(t) if t ∈ Ωn for some n ∈ N. Then

it can be easily seen that the function f (·) is Stepanov (Ω, p(u))-bounded for any p ∈ P(Ω), provided that there
exists an integer l ∈ N such that for each t ∈ Rn there exist at most l distinct positive integers s such that
(t +Ω) ∩Ωs , 0. In actual fact, we have∥∥∥∥F(t + u)

∥∥∥∥
Lp(u)(Ω:X)

≤ 4
∥∥∥∥F(t + u)

∥∥∥∥
L∞(Ω:X)

≤ 4l sup
n∈N

∥∥∥ fn(·)
∥∥∥

L∞(Ωn:X)
, t ∈ Rn

and we can apply (13). Furthermore, ifD is any unbounded subset ofRn such that dist(D,∪n∈NΩn) ≥ diam(Ω),
we have f ∈ SΩ,p(u)

0,D (Rn : Y) for any p ∈ P(Ω).
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Using the idea proposed in [17, Example 2.5.39], we can extend the notion of space SΩ,p(u)
0,D,B (Λ × X : Y) in

the following three ways: Let G : Rn
→ (0,∞) and ϕ : [0,∞)→ [0,∞). Then we say that:

(i) a function Q : Λ × X → Y belongs to the space SΩ,p(u),ϕ,G
0,D,B (Λ × X : Y) if and only if for every t ∈ Λ and

x ∈ X,we have ϕ(∥Q(t + u; x)∥Y) ∈ Lp(u)(Ω) as well as that, for every B ∈ B,we have

lim
t∈D,|t|→+∞

G(t)
[
ϕ
(
∥Q(t + u; x)∥Y

)]
Lp(u)(Ω)

= 0,

uniformly for x ∈ B;

(ii) a function Q : Λ × X→ Y belongs to the space SΩ,p(u),ϕ,G,1
0,D,B (Λ × X : Y) if and only if for every t ∈ Λ and

x ∈ X,we have [Q̂Ω(t; x)](u) ∈ Lp(u)(Ω : Y) as well as that, for every B ∈ B,we have

lim
t∈D,|t|→+∞

G(t)ϕ
(∥∥∥Q(t + u; x)

∥∥∥
Lp(u)(Ω:Y)

)
= 0,

uniformly for x ∈ B;

(iii) a function Q : Λ × X→ Y belongs to the space SΩ,p(u),ϕ,G,2
0,D,B (Λ × X : Y) if and only if for every t ∈ Λ and

x ∈ X,we have [Q̂Ω(t; x)](u) ∈ Lp(u)(Ω : Y) as well as that, for every B ∈ B,we have

lim
t∈D,|t|→+∞

ϕ
(
G(t)

∥∥∥Q(t + u; x)
∥∥∥

Lp(u)(Ω:Y)

)
= 0,

uniformly for x ∈ B.

Now we are ready to introduce the following notion:

Definition 3.3. (i) Suppose that ∅ , Λ ⊆ Rn satisfies Λ + Ω ⊆ Λ, D ⊆ Λ ⊆ Rn, the set D is unbounded,
F : Λ × X → Y and (1), resp. (2), holds with the set I replaced by the set Λ therein. Then we say
that the function F(·; ·) is (strongly) D-asymptotically Stepanov (Ω, p(u))-(R,B)-multi-almost periodic, resp.
(strongly) D-asymptotically Stepanov (Ω, p(u))-(RX,B)-multi-almost periodic, if and only if there exist a
Stepanov (Ω, p(u))-(R,B)-multi-almost periodic function (H : Rn

× X → Y) H : Λ × X → Y, resp. a
Stepanov (Ω, p(u))-(RX,B)-multi-almost periodic function (H : Rn

×X→ Y) H : Λ ×X→ Y, and a function
Q ∈ SΩ,p(u)

0,D,B (Λ×X : Y) such that F(t; x) = H(t; x)+Q(t; x) for a.e. t ∈ Λ and all x ∈ X. If X = {0} andB = {X},
then we also say that the function F(·) is (strongly) D-asymptotically Stepanov (Ω, p(u))-R-multi-almost
periodic.

(ii) Suppose that ∅ , Λ ⊆ Rn satisfies Λ + Λ ⊆ Λ, Λ +Ω ⊆ Λ,D ⊆ Λ ⊆ Rn and the setD is unbounded.

(ii.1) Then we say that F(·; ·) is (strongly)D-asymptotically Stepanov
(Ω, p(u))-B-almost periodic if and only if there exist a Stepanov
(Ω, p(u))-B-almost periodic function (H : Rn

× X→ Y)
H : Λ × X→ Y and a function Q ∈ SΩ,p(u)

0,D,B (Λ × X : Y) such that F(t; x) = H(t; x) +Q(t; x) for a.e. t ∈ Λ
and all x ∈ X.

(ii.2) Then we say that F(·; ·) is (strongly)D-asymptotically Stepanov
(Ω, p(u))-B-uniformly recurrent if and only if there exist a
Stepanov (Ω, p(u))-B-uniformly recurrent function (H : Rn

× X → Y) H : Λ × X → Y and a function
Q ∈ SΩ,p(u)

0,D,B (Λ × X : Y) such that F(t; x) = H(t; x) +Q(t; x) for a.e. t ∈ Λ and all x ∈ X.

If X ∈ B, then we also say that the function F(·; ·) is (strongly)D-asymptotically Stepanov (Ω, p(u))-almost periodic
((strongly)D-asymptotically Stepanov (Ω, p(u))-uniformly recurrent). IfD = Λ, then we omit the “prefixD-” and
say that the function F(·; ·) is (strongly) asymptotically Stepanov (Ω, p(u))-(R,B)-multi-almost periodic, for example.
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We can use [2, Proposition 2.27] to simply deduce when the decompositions in Definition 3.3 are unique;
[2, Proposition 2.25(ii), Proposition 2.29] can be reformulated in our context, as well.

Suppose that ∅ , Λ′ ⊆ Λ ⊆ Rn, Λ + Λ′ ⊆ Λ and Λ + Ω ⊆ Λ. The notion of D-asymptotically Stepanov
(Ω, p(u))-(B,Λ′)-almost periodicity and the notion ofD-asymptotically Stepanov (Ω, p(u))-(B,Λ′)-uniform
recurrence can be also introduced and analyzed. We will skip all related details for brevity. For applications,
we need the following definition:

Definition 3.4. Suppose thatD ⊆ Λ ⊆ Rn and the setD is unbounded, as well as ∅ , Λ′ ⊆ Λ ⊆ Rn, F : Λ×X→ Y
is a continuous function and Λ + Λ′ ⊆ Λ. Then we say that:

(i) F(·; ·) is Stepanov (Ω, p(u))-(B,Λ′)-almost periodic of type 1 if and only if for every B ∈ B and ϵ > 0 there exist
l > 0 and M > 0 such that for each t0 ∈ Λ

′ there exists τ ∈ B(t0, l) ∩Λ′ such that∥∥∥F(t + τ + u; x) − F(t + u; x)
∥∥∥

Lp(u)(Ω:Y)
≤ ϵ, provided t, t + τ ∈ DM, x ∈ B. (14)

(ii) F(·; ·) isD-asymptotically Stepanov (Ω, p(u))-(B,Λ′)-uniformly recurrent of type 1 if and only if for every B ∈ B
there exist a sequence (τn) in Λ′ and a sequence (Mn) in (0,∞) such that limn→+∞ |τn| = limn→+∞Mn = +∞
and

lim
n→+∞

sup
t,t+τn∈DMn ;x∈B

∥∥∥F(t + τn + u; x) − F(t + u; x)
∥∥∥

Lp(u)(Ω:Y)
= 0.

If Λ′ = Λ, then we also say that F(·; ·) is D-asymptotically Stepanov (Ω, p(u))-B-almost periodic of type 1 (D-
asymptotically Stepanov (Ω, p(u))-B-uniformly recurrent of type 1); furthermore, if X ∈ B, then it is also said that
F(·; ·) isD-asymptotically Stepanov (Ω, p(u))-Λ′-almost periodic of type 1 (D-asymptotically StepanovΛ′-uniformly
recurrent of type 1). If Λ′ = Λ and X ∈ B, then we also say that F(·; ·) isD-asymptotically Stepanov almost periodic
of type 1 (D-asymptotically Stepanov uniformly recurrent of type 1). As before, we remove the prefix “D-” in the
case thatD = Λ and remove the prefix “(B, )” in the case that X ∈ B.

4. Composition theorems for Stepanov multi-dimensional almost periodic functions in Lebesgue spaces
with variable exponents

In this section, we will analyze the (R,B)-multi-almost periodic properties of the following multi-
dimensional Nemytskii operator W : Λ × X→ Z, given by

W(t; x) := G
(
t; F(t; x)

)
, t ∈ Λ, x ∈ X.

First of all, we will state and prove the following composition result for Stepanov (Ω, p(u))-B-multi-
almost periodic functions:

Theorem 4.1. Suppose that Λ is admissible with respect to the almost periodic extensions, x : Λ→ X is a uniformly
continuous, Bohr almost periodic function, B is any family consisting of compact subsets of X containing R(x(·)),
and F : Λ × X → Y satisfies the item (ii) of Proposition 2.22 as well as that, for every z ∈ R(x(·)), the function
F̂Ω(·; z) : Λ → Lp(u)(Ω : Y) is uniformly continuous, Bohr almost periodic. Then the function F(·; x(·)) is Stepanov
(Ω, p(u))-B-multi-almost periodic.

Proof. Without loss of generality, we may assume that p(u) ≡ p ∈ [1,∞) and Λ = Rn (the assumptions
prescribed imply that the function x(·) can be extended to a Bohr almost periodic function defined onRn as
well as that, for every z ∈ R(x(·)), the function F̂Ω(·; z) : Λ → Lp(u)(Ω : Y) can be extended to a Bohr almost
periodic function defined on Rn so that the functions x(·) and the finite collection of functions of the form
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F̂Ω(·; z) : Λ → Lp(u)(Ω : Y) can share the same ϵ-periods for each positive real number ϵ > 0; we only need
this fact and the relative compactness of range of range of function x(·) below). Let t, τ ∈ Rn. Then we have(∫

Ω

∥F(t + s + τ; x(t + s + τ)) − F(t + s; x(t + s))∥p ds
) 1

p

≤

(∫
Ω

∥F(t + s + τ; x(t + s + τ)) − F(t + s + τ; x(t + s))∥pds
) 1

p

+

(∫
Ω

∥F(t + s + τ; x(t + s)) − F(t + s; x(t + s))∥pds
) 1

p

.

Let ε > 0 be fixed. Due to our assumption, K := {x(t) : t ∈ Rn} is a compact subset of X. We know that there
exists δε,K > 0 such that (8) holds. Moreover, there exists lε > 0 such that every ball of center lε contains
an element τ such that ∥x(s + τ) − x(s)∥ ≤ δε,K for all s ∈ Rn. Moreover, for each s ∈ Rn, we have x(s) ∈ K.
Hence,(∫

Ω

∥F(t + s + τ; x(t + s + τ)) − F(t + s + τ; x(t + s))∥p ds
) 1

p

≤
ε
4
. (15)

Since K is compact, it follows that there exists a finite subset {x1, ..., xn} ⊆ K (n ∈ N) such that K ⊆⋃n
i=1 B(xi, δK,ε). Then, for all t ∈ Rn there exists i(t) ∈Nn such that ∥x(t) − xi(t)∥ ≤ δK,ε. Thus,(∫
Ω

∥F(t + s + τ; x(t + s)) − F(t + s + τ; xi(t))∥p ds
) 1

p

≤
ε
4
, (16)

and (∫
Ω

∥F(t + s; x(t + s)) − F(t + s; xi(t))∥p ds
) 1

p

≤
ε
4
. (17)

By Proposition 2.22, we have(∫
Ω

∥F(t + s + τ; xi(t)) − F(t + s; xi(t))∥p ds
) 1

p

≤
ε
4
. (18)

Consequently, by (15), (16), (17) and (18), we obtain that(∫
Ω

∥F(t + s + τ; x(t + s + τ)) − F(t + s; x(t + s))∥p ds
) 1

p

≤
ε
4
+
ε
4
+
ε
4
+
ε
4
= ε,

for any t ∈ Rn. This proves the result.

Now we will state the following simple consequence of Theorem 4.1 in which F(·; ·) is Lipschitzian with
respect to the second argument; more precisely, we assume that there exists a non-negative scalar-valued
function LF(·) such that supt∈Λ ∥LF(t + u)∥Lp(u)(Ω) < +∞ and

∥F(t; x) − F(t; y)∥ ≤ LF(t)∥x − y∥, x, y ∈ X, t ∈ Λ. (19)

Corollary 4.2. Suppose thatΛ is admissible with respect to the almost periodic extensions, x : Λ→ X is a uniformly
continuous, Bohr almost periodic function,B is any family consisting of compact subsets of X containing R(x(·)), and
F : Λ × X→ Y satisfies that, for every z ∈ R(x(·)), the function F̂Ω(·; z) : Λ→ Lp(u)(Ω : Y) is uniformly continuous,
Bohr almost periodic. Then the function F(·; x(·)) is Stepanov (Ω, p(u))-B-multi-almost periodic, provided that there
exists a non-negative scalar-valued function LF(·) such that supt∈Λ ∥LF(t + u)∥Lp(u)(Ω) < +∞ and (19) holds.
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The following composition principle generalizes [6, Theorem 5.4] and can be proved by using the
argumentation contained in the proofs of [15, Lemma 2.1, Theorem 2.2] (the assumptions prescribed imply
that we can pass to the case in which Λ = Rn, as in the proof of Theorem 4.1):

Theorem 4.3. Suppose that Λ is admissible with respect to the almost periodic extensions, x̂ : Λ→ Lp(u)(Ω : Y) is a
uniformly continuous, Bohr almost periodic function, B is any family consisting of compact subsets of X containing
R(x(·)), p ∈ P(Ω), and F : Λ ×X→ Y satisfies that, for every z ∈ R(x(·)), the function F̂Ω(·; z) : Λ→ Lp(u)(Ω : Y) is
uniformly continuous, Bohr almost periodic. Let the following conditions hold:

(i) There exist a function r ∈ P(Ω) such that r(·) ≥ max(p(·), p(·)/p(·) − 1) and a function LF ∈ LΩ,r(u)
S (Λ) such

that:

∥F(t; x) − F(t; y)∥ ≤ LF(t)∥x − y∥Y, t ∈ Λ, x, y ∈ Y; (20)

(ii) There exists a set E ⊆ I with m(E) = 0 such that K := {x(t) : t ∈ Λ \ E} is relatively compact in X.

Define q ∈ P(Ω) by q(u) := p(u)r(u)/[p(u) + r(u)], if u ∈ Ω and r(u) < ∞, q(u) := p(u), if u ∈ Ω and r(u) = ∞.
Then q(u) ∈ [1, p(u)) for u ∈ Ω, r(u) < ∞ and F(·, x(·)) ∈ APSΩ,q(u)

B
(Λ : Y).

The following composition principle generalizes [18, Theorem 2.1] and it is not comparable with Theorem
4.3 in general (see [18] for more details):

Theorem 4.4. Suppose that Λ is admissible with respect to the almost periodic extensions, x̂ : Λ→ Lq(u)(Ω : Y) is a
uniformly continuous, Bohr almost periodic function, B is any family consisting of compact subsets of X containing
R(x(·)), p ∈ P(Ω), and F : Λ ×X→ Y satisfies that, for every z ∈ R(x(·)), the function F̂Ω(·; z) : Λ→ Lp(u)(Ω : Y) is
uniformly continuous, Bohr almost periodic. Suppose, further, that p, q, r ∈ P(Ω), 1/p = 1/q+1/r and the following
conditions hold:

(i) There exists a function LF ∈ LΩ,r(u)
S (Λ) such that (20) holds.

(ii) There exists a set E ⊆ I with m(E) = 0 such that K := {x(t) : t ∈ Λ \ E} is relatively compact in X.

Then F(·, x(·)) ∈ APSΩ,p(u)
B

(Λ : Y).

Keeping in mind the above two results, we can simply extend the statements of [6, Proposition 5.5] and
[18, Proposition 2.2] for D-asymptotically Stepanov (Ω, p(u))-B-almost periodic functions; the proofs are
completely similar to the proofs of these statements given in the one-dimensional case. For simplicity, in
the formulations of the following two theorems, we will assume that Λ = Rn, albeit we can also assume
that Λ is admissible with respect to the almost periodic extensions:

Theorem 4.5. Let B be any family consisting of compact subsets of X, p ∈ P(Ω) and the following conditions hold:

(i) G ∈ APSΩ,p(u)
B

(Rn
× X : Y) and there exist a function r ∈ P(Ω) such that r(·) ≥ max(p(·), p(·)/p(·) − 1) and a

function LG ∈ LΩ,r(u)
S (Rn) such that (20) holds with the function F(·; ·) replaced therein with the function G(·; ·);

(ii) u ∈ APSΩ,p(u)(Rn : X), and there exists a set E ⊆ I with m(E) = 0 such that K := {u(t) : t ∈ Rn
\E} is relatively

compact in X;

(iii) F(t; x) = G(t; x) +Q(t; x) for all t ∈ Rn and x ∈ X, where Q ∈ SΩ,q(u)
0,D,B (Rn

× X : Y) and q(·) being defined as in
the formulation of Theorem 4.3;

(iv) x(t) = u(t) + ω(t) for all t ∈ Rn, where ω ∈ SΩ,p(u)
0,D (Rn : X);

(v) There exists a set E′ ⊆ I with m(E′) = 0 such that K′ = {x(t) : t ∈ Rn
\ E′} is relatively compact in X.
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Then F(·, x(·)) ∈ AAPSΩ,q(u)
B

(Rn : Y).

Theorem 4.6. LetB be any family consisting of compact subsets of X. Suppose that p, q, r ∈ P(Ω), 1/p = 1/q+ 1/r
and the following conditions hold:

(i) G ∈ APSΩ,p(u)
B

(Rn
× X : Y) and there exists a function LG ∈ LΩ,r(u)

S (Rn) such that (20) holds with the function
F(·; ·) replaced therein with the function G(·; ·);

(ii) u ∈ APSΩ,q(u)(Rn : X), and there exists a set E ⊆ I with m(E) = 0 such that K := {u(t) : t ∈ Rn
\E} is relatively

compact in X;

(iii) F(t; x) = G(t; x) +Q(t; x) for all t ∈ Rn and x ∈ X, where Q ∈ SΩ,p(u)
0,D,B (Rn

× X : Y);

(iv) x(t) = u(t) + ω(t) for all t ∈ Rn, where ω ∈ SΩ,q(u)
0,D (Rn : X);

(v) There exists a set E′ ⊆ I with m(E′) = 0 such that K′ = {x(t) : t ∈ Rn
\ E′} is relatively compact in X.

Then F(·, x(·)) ∈ APSΩ,p(u)
B

(Rn : Y).

The interested reader may try to formulate composition principles for Stepanov (Ω, p(u))-B-uniformly
recurrent functions following the approach obeyed in [19].

5. Invariance of Stepanov multi-dimensional almost periodicity under the actions of convolution prod-
ucts

Let Ωk := Ω + k, k ∈ Nn
0 . If any component of t = (t1, t2, · · ·, tn) is strictly positive, then we simply write

t > 0.
The following result is very similar to [16, Proposition 2.6.11] (see also [6, Proposition 6.1]):

Theorem 5.1. Let Ω = [0, 1]n, p ∈ D+(Ω), q ∈ P(Ω), 1/p(x) + 1/q(x) = 1 for all x ∈ Ω, and (R(t))t>0 ⊆ L(X,Y) is
a strongly continuous operator family satisfying that M :=

∑
k∈Nn

0
∥R(· + k)∥Lq(u)(Ω) < ∞. If f̌ : Rn

→ X is Stepanov
(Ω, p(u))-almost periodic, then the function F : Rn

→ Y, given by

F(t) :=
∫ t1

−∞

∫ t2

−∞

· · ·

∫ tn

−∞

R(t − s) f (s) ds, t ∈ Rn, (21)

is well defined and almost periodic.

Proof. The proof of theorem can be deduced by using the argumentation given in the proof of the above-
mentioned propositions and we will only present the main details. Since

F(t) :=
∫ +∞

0

∫ +∞

0
· · ·

∫ +∞

0
R(s) f (t − s) ds, t ∈ Rn, (22)

the Hölder inequality holds in our framework (see Lemma 1.1(ii)) and the function f (·) is Stepanov (Ω, p(u))-
bounded, the above integral converges absolutely. The proof of fact that for each ϵ > 0 the set of all ϵ-periods
of F(·) is relatively dense in Rn can be repeated verbatim. Since any element of Lp(u)(Ω : X) is absolutely

continuous with respect to the norm ∥ · ∥Lp(u) (see [10, Definition 1.12, Theorem 1.13]) and the function ˆ̌f (·)
is uniformly continuous, the proof of continuity of function F(·) can be deduced along the same lines as in
the one-dimensional case.

Using the argumentation contained in the proof of [7, Proposition 5.1] with regards to the continuity of
mapping F(·),we can similarly deduce the following result:
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Theorem 5.2. Let Ω = [0, 1]n, p ∈ D+(Ω), q ∈ P(Ω), 1/p(x) + 1/q(x) = 1 for all x ∈ Ω, and (R(t))t>0 ⊆ L(X,Y) is
a strongly continuous operator family satisfying that M :=

∑
k∈Nn

0
∥R(· + k)∥Lq(u)(Ω) < ∞. If f̌ : Rn

→ X is Stepanov
(Ω, p(u))-bounded and Stepanov (Ω, p(u))-R-multi-almost periodic, then the function F : Rn

→ Y, given by (21), is
well defined and R-multi-almost periodic.

Set, for brevity, It := (−∞, t1]× (−∞, t2]×· · ·× (−∞, tn] andDt := It∩D for any t = (t1, t2, · · ·, tn) ∈ Rn.Now
we are able to state and prove the following analogue of [2, Proposition 2.44] for strong D-asymptotical
Stepanov (Ω, p(u))-almost periodicity (see also [16, Proposition 2.6.13, Remark 2.6.14]):

Proposition 5.3. Suppose that Ω = [0, 1]n, p ∈ D+(Ω), q ∈ P(Ω), 1/p(x) + 1/q(x) = 1 for all x ∈ Ω, and
(R(t))t>0 ⊆ L(X,Y) is a strongly continuous operator family satisfying that M :=

∑
k∈Nn

0
∥R(· + k)∥Lq(u)(Ω) < ∞.

Suppose, further, that ∅ , Λ ⊆ Rn satisfiesΛ+Ω ⊆ Λ,D ⊆ Λ ⊆ Rn and the setD is unbounded. Let 1̌ : Rn
→ X be

Stepanov (Ω, p(u))-almost periodic (Stepanov (Ω, p(u))-bounded and Stepanov (Ω, p(u))-R-multi-almost periodic),
let q : Λ→ X, and let f (t) := 1(t) + q(t) for all t ∈ Λ. Then the function F : Λ→ Y, defined by

F(t) :=
∫
Dt

R(t − s) f (s) ds, t ∈ Λ, (23)

is strongly D-asymptotically Stepanov (Ω, p(u))-almost periodic (strongly D-asymptotically Stepanov (Ω, p(u))-R-
multi-almost periodic), provided that

lim
|t|→∞,t∈D

∑
k∈Nn

0

∥∥∥R(s + k)
∥∥∥

Lq(s)((t−k−[It∩Dc])∩Ω)
= 0, (24)

and for each ϵ > 0 there exists r > 0 such that for each t ∈ D with |t| ≥ r there exists a finite real number rt > 0 such
that ∑

k∈Nn
0

{∥∥∥R(s + k)
∥∥∥

Lq(s)((t−k−[It∩B(0,rt)])∩Ω)

×

∥∥∥q̌(s + k − t)
∥∥∥

Lq(s)((t−k−[Dt∩B(0,rt)])∩Ω)

}
< ϵ/2 (25)

and ∑
k∈Nn

0

{∥∥∥R(s + k)
∥∥∥

Lq(s)((t−k−[Dt∩B(0,rt)c])∩Ω)

×

∥∥∥q̌(s + k − t)
∥∥∥

Lp(s)((t−k−[Dt∩B(0,rt)c])∩Ω)

}
< ϵ/2. (26)

Proof. We will consider only strongD-asymptotical Stepanov (Ω, p(u))-almost periodicity. Clearly, we have
the decomposition

F(t) =
∫

It

R(t − s)1(s) ds +
[∫
Dt

R(t − s)q(s) ds −
∫

It∩Dc
R(t − s)1(s) ds

]
, t ∈ Λ.

Keeping in mind Theorem 5.1, it suffices to show that the function

t 7→
∫
Dt

R(t − s)q(s) ds −
∫

It∩Dc
R(t − s)1(s) ds, t ∈ Λ
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belongs to the class SΩ,p(u)
0,D (Λ : X). For the second addend, this immediately follows from the following

calculus and condition (24):∫
It∩Dc

R(t − s)1(s) ds =
∫

t−[It∩Dc]
R(s)1̌(s − t) ds

=
∑
k∈Nn

0

∫
(t−k−[It∩Dc])∩Ω

R(s + k)1̌(s + k − t) ds

≤ 2
∑
k∈Nn

0

∥∥∥R(s + k)
∥∥∥

Lq(s)((t−k−[It∩Dc])∩Ω)
· sup

t∈Rn

∥∥∥ ˆ̌1(t)
∥∥∥

Lp(u)(Ω)
.

Let ϵ > 0 be given. Then there exists r > 0 such that for each t ∈ D with |t| ≥ r there exists a finite real
number rt > 0 such that (25)-(26) hold. If t ∈ D and |t| ≥ r, then we have∫

Dt

R(t − s)q(s) ds =
∫
Dt∩B(0,rt)

R(t − s)q(s) ds +
∫
Dt∩B(0,rt)c

R(t − s)q(s) ds.

For the first addend in the above sum, we can use the following calculation and condition (25):∫
Dt∩B(0,rt)

R(t − s)q(s) ds =
∫

t−[Dt∩B(0,rt)]
R(s)q̌(s − t) ds

=
∑
k∈Nn

0

∫
(t−k−[Dt∩B(0,rt)])∩Ω

R(s + k)q̌(s + k − t) ds

≤ 2
∑
k∈Nn

0

∥∥∥R(s + k)
∥∥∥

Lq(s)((t−k−[Dt∩B(0,rt)])∩Ω)

·

∥∥∥q̌(s + k − t)
∥∥∥

Lq(s)((t−k−[Dt∩B(0,rt)])∩Ω)
.

For the second addend in the above sum, we can use the following calculation and condition (26):∫
Dt∩B(0,rt)c

R(t − s)q(s) ds =
∫

t−[Dt∩B(0,rt)c]
R(s)q̌(s − t) ds

=
∑
k∈Nn

0

∫
(t−k−[Dt∩B(0,rt)c])∩Ω

R(s + k)q̌(s + k − t) ds

≤ 2
∑
k∈Nn

0

∥∥∥R(s + k)
∥∥∥

Lq(s)((t−k−[Dt∩B(0,rt)c])∩Ω)

·

∥∥∥q̌(s + k − t)
∥∥∥

Lp(s)((t−k−[Dt∩B(0,rt)c])∩Ω)
.

The proof of the proposition is thereby completed.

Before we move ourselves to the final section of paper, it should be recalled that any Stepanov p-almost
periodic function F : R→ Y is equi-Weyl-p-almost periodic (1 ≤ p < ∞), so that the Bohr-Fourier coefficients
Pr(F) of F(·), defined by

Pr(F) := lim
t→+∞

1
t

∫ α+t

α
e−irsF(s) ds, r ∈ R,

exist and do not depend on the choice of a real number α; see e.g. [23, Chapter 5]. On the other hand, it is
well known that, for every Bohr almost periodic function F : Rn

→ Y, the Bohr-Fourier coefficients Pλ(F) of
F(·), defined by

Pλ(F) := lim
T→+∞

1
(2T)n

∫
s+[−T,T]n

e−i⟨λ,t⟩F(t) dt, λ ∈ Rn,
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exist and do not depend on the choice of a tuple s ∈ Rn. Similar statements hold for multi-dimensional
Stepanov p-almost periodic functions and multi-dimensional equi-Weyl-p-almost periodic functions, which
will be considered in our forthcoming paper [11] in more detail.

6. Examples and applications to the abstract Volterra integro-differential equations

In this section, we apply our results established so far in the analysis of existence and uniqueness of the
Stepanov multi-almost periodic type solutions for various classes of abstract Volterra integro-differential
equations.

We start with two examples concerning Stepanov almost periodic type solutions (with respect to the
space variable) of the multi-dimensional heat equations:

1. Let Y be one of the spaces Lp(Rn), C0(Rn) or BUC(Rn), where 1 ≤ p < ∞. It is well known that the
Gaussian semigroup

(G(t)F)(x) :=
(
4πt

)−(n/2)
∫
Rn

F(x − y)e−
|y|2

4t dy, t > 0, f ∈ Y, x ∈ Rn,

can be extended to a bounded analytic C0-semigroup of angle π/2, generated by the Laplacian ∆Y acting
with its maximal distributional domain in Y; see [1, Example 3.7.6] for more details (recall that the semigroup
(G(t))t>0 is not strongly continuous at zero on L∞(Rn) and Cb(Rn)). Suppose now that ∅ , Λ′ ⊆ Λ = Rn

and F(·) is bounded Stepanov (Ω, p(u))-(RX,B)-multi-almost periodic function, where p ∈ D+(Ω). Then an
application of Proposition 2.10 shows that for each t0 > 0 the function Rn

∋ x 7→ u(x, t0) ≡ (G(t0)F)(x) is
likewise bounded and Stepanov (Ω, p(u))-(RX,B)-multi-almost periodic; further on, if ∅ , Λ′ ⊆ Rn, then
we can use Proposition 2.12, Lemma 1.8 and the equation (6) in order to conclude that for each t0 > 0
the function x 7→ u(x, t0), x ∈ Rn is bounded and Stepanov (Ω, p(u))-Λ′-almost periodic provided that the
function F(·) has the same properties. Similar statements hold in the case of consideration of the Poisson
semigroup (see e.g., [1, Example 3.7.9]).

2. Suppose that 0 < T < ∞. Set Λ := {(x, t) : x > 0, t > 0},

E1(x, t) :=
(
πt

)−1/2
∫ x

0
e−y2/4t dy, x ∈ R, t > 0

and suppose thatD is any unbounded subset of Λ satisfying that

lim
|(x,t)|→+∞,(x,t)∈D

min
(

x2

4(t + T)
, t
)
= +∞.

Following the formula proposed by F. Trèves [27, p. 433]:

u(x, t) =
1
2

∫ x

−x

∂E1

∂y
(y, t)u0(x − y) dy −

∫ t

0

∂E1

∂t
(x, t − s)1(s) ds, x > 0, t > 0, (27)

for the solution of the following mixed initial value problem

ut(x, t) = uxx(x, t), x > 0, t > 0;
u(x, 0) = u0(x), x > 0, u(0, t) = 1(t), t > 0,

(28)

in the final section of [2] we have recently analyzed D-asymptotically I′-almost periodic solutions of type
1 to (28) (D-asymptotically I′-uniformly recurrent solutions of type 1 to (28)). We have assumed there that
the function u0 : [0,∞)→ C is bounded Bohr I0-almost periodic, resp. bounded I0-uniformly recurrent, for
a certain non-empty subset I0 of [0,∞).

Suppose now that 1(t) ≡ 0 as well as that the function u0 : [0,∞) → C is both Stepanov bounded
and Stepanov ([0, 1], 1)-Λ0-almost periodic, resp. Stepanov bounded and Stepanov ([0, 1], 1)-Λ0-uniformly
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recurrent, for a certain non-empty subset Λ0 of [0,∞). Set Λ′ := Λ0 × (0,T).We will prove that the solution
u(x, t) of (28) isD-asymptotically Stepanov ([0, 1]2, 1)-Λ′-almost periodic of type 1, resp. D-asymptotically
Stepanov ([0, 1]2, 1)-Λ′-uniformly recurrent of type 1 (see Definition 3.4). In our concrete situation, the
formula (27) takes the following form:

u(x, t) =
1
2

∫ x

−x

(
πt

)−1/2
e−y2/4tu0(x − y) dy, x > 0, t > 0.

For any (x, t) ∈ Λ and (τ1, τ2) ∈ Λ,we have:

∫ 1

0

∫ 1

0

∣∣∣u(x + τ1 + u1, t + τ2 + u2

)
− u

(
x + u1, t + u2

)∣∣∣ du1 du2

≤
1
2

∫ 1

0

∫ 1

0

∫ x+τ1+u1

x+u1

(
π
(
t + τ2 + u2

))−1/2
e−y2/4(t+τ2+u2)

×

∣∣∣u0(x + τ1 + u1 − y)
∣∣∣ dy du1 du2

+
1
2

∫ 1

0

∫ 1

0

∫
−(x+u1)

−(x+τ1+u1)

(
π
(
t + τ2 + u2

))−1/2
e−y2/4(t+τ2+u2)

×

∣∣∣u0(x + τ1 + u1 − y)
∣∣∣ dy du1 du2

+
1
2

∫ 1

0

∫ 1

0

∫ x+u1

−(x+u1)

∣∣∣∣∣∣(π(t + τ2 + u2

))−1/2
e−y2/4(t+τ2+u2)u0

(
x + τ1 + u1 − y

)
−

(
π
(
t + u2

))−1/2
e−y2/4(t+u2)u0

(
x + u1 − y

)∣∣∣∣∣∣ dy du1 du2.

(29)

Let ϵ > 0 be given. Then we know that there exists l > 0 such that for each x0 ∈ Λ0 there exists τ1 ∈

(x0 − l, x0 + l) ∩Λ0 such that

∫ x+1

x

∣∣∣u0(t + τ1) − u0(t)
∣∣∣ dt ≤ ϵ, x ≥ 0. (30)

Furthermore, there exists a finite real number M0 > 0 such that
∫ +∞

v e−x2 dx < ϵ for all v ≥ M0. Let M > 0 be
such that

min
(

x2

4(t + T)
, t
)
>M2

0 +
1
ϵ
, provided (x, t) ∈ D and |(x, t)| >M. (31)

So, let (x, t) ∈ D and |(x, t)| > M. For the first addend in (29), we use the Fubini theorem and the following
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estimates (see (31)):

1
2

∫ 1

0

∫ 1

0

∫ x+τ1+u1

x+u1

(
π
(
t + τ2 + u2

))−1/2
e−y2/4(t+τ2+u2)

×

∣∣∣u0(x + τ1 + u1 − y)
∣∣∣ dy du1 du2

≤
1
2

∫ 1

0

∫ x+τ1

x+1

∫ 1

0

(
π
(
t + τ2 + u2

))−1/2
e−y2/4(t+τ2+u2)

×

∣∣∣u0(x + τ1 + u1 − y)
∣∣∣ du1 dy du2

+
1
2

∫ 1

0

∫ x+1

x

∫ 1

0

(
π
(
t + τ2 + u2

))−1/2
e−y2/4(t+τ2+u2)

×

∣∣∣u0(x + τ1 + u1 − y)
∣∣∣ du1 dy du2

+
1
2

∫ 1

0

∫ x+τ1+1

x+τ1

∫ 1

0

(
π
(
t + τ2 + u2

))−1/2
e−y2/4(t+τ2+u2)

×

∣∣∣u0(x + τ1 + u1 − y)
∣∣∣ du1 dy du2

≤
∥u0∥S1

2

∫ 1

0

∫ x+τ1+1

x

(
π
(
t + τ2 + u2

))−1/2
e−y2/4(t+τ2+u2) dy du2

≤
∥u0∥S1

2

∫ 1

0

∫
∞

x

(
π
(
t + τ2 + u2

))−1/2
e−y2/4(t+τ2+u2) dy du2

≤ π−1/2
∥u0∥S1

∫ +∞

x/2
√

t+T
e−v2

dv ≤ π−1/2
∥u0∥S1ϵ.

(32)

The second addend in (29) can be estimated in the same manner. For the third addend in (29), we use the
following decomposition:

1
2

∫ 1

0

∫ 1

0

∫ x+u1

−(x+u1)

∣∣∣∣∣∣(π(t + τ2 + u2

))−1/2
e−y2/4(t+τ2+u2)u0

(
x + τ1 + u1 − y

)
−

(
π
(
t + u2

))−1/2
e−y2/4(t+u2)u0

(
x + u1 − y

)∣∣∣∣∣∣ dy du1 du2

≤
1
2

∫ 1

0

∫ 1

0

∫ x+u1

−(x+u1)

(
π
(
t + τ2 + u2

))−1/2
e−y2/4(t+τ2+u2)

×

∣∣∣∣u0

(
x + τ1 + u1 − y

)
− u0

(
x + u1 − y

)∣∣∣∣ dy du1 du2

+
1
2

∫ 1

0

∫ 1

0

∫ x+u1

−(x+u1)

∣∣∣∣∣∣(π(t + τ2 + u2

))−1/2
e−y2/4(t+τ2+u2)u0

(
x + u1 − y

)
−

(
π
(
t + u2

))−1/2
e−y2/4(t+u2)u0

(
x + u1 − y

)∣∣∣∣∣∣ dy du1 du2.

(33)

The second addend in (33) can be estimated similarly as the first addend in (29) and the corresponding term
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from the computation given in [2]. We get:

1
2

∫ 1

0

∫ 1

0

∫ x+u1

−(x+u1)

∣∣∣∣∣∣(π(t + τ2 + u2

))−1/2
e−y2/4(t+τ2+u2)u0

(
x + u1 − y

)
−

(
π
(
t + u2

))−1/2
e−y2/4(t+u2)u0

(
x + u1 − y

)∣∣∣∣∣∣ dy du1 du2

≤
∥u0∥S1

2

∫ 1

0

∫ x+1

−(x+1)

∣∣∣∣∣∣(π(t + τ2 + u2

))−1/2
e−y2/4(t+τ2+u2)

−

(
π
(
t + u2

))−1/2
e−y2/4(t+τ2+u2)

∣∣∣∣∣∣ dy du2

≤
∥u0∥S1

2

∫ 1

0
2π−1/2

∫ +∞

−∞

∣∣∣∣∣∣
√

t + u2

t + τ2 + u2
e−v2

·
t+u2

t+τ2+u2 − e−v2

∣∣∣∣∣∣ dv du2

≤ ∥u0∥S1π−1/2
∫ 1

0

∣∣∣∣∣∣
√

t + u2

t + τ2 + u2
− 1

∣∣∣∣∣∣ du2 ×

∫ +∞

−∞

e
−

M2
0

M2
0+T

v2(
1 + 2v2

)
dv

∥u0∥S1π−1/2
∫ 1

0

τ2

t + u2 +
√

(t + u2)2 + (t + u2)τ2

du2 ×

∫ +∞

−∞

e
−

M2
0

M2
0+T

v2(
1 + 2v2

)
dv

≤ ∥u0∥S1π−1/2 T
t
×

∫ +∞

−∞

e
−

M2
0

M2
0+T

v2(
1 + 2v2

)
dv.

(34)

The first addend in (33) can be estimated similarly; we have:

1
2

∫ 1

0

∫ 1

0

∫ x+u1

−(x+u1)

(
π
(
t + τ2 + u2

))−1/2
e−y2/4(t+τ2+u2)

×

∣∣∣∣u0

(
x + τ1 + u1 − y

)
− u0

(
x + u1 − y

)∣∣∣∣ dy du1 du2

≤
1
2

∫ 1

0

∫ x+1

−(x+1)

(
π
(
t + τ2 + u2

))−1/2
e−y2/4(t+τ2+u2)

×

[
sup
ξ≥0

∫ 1

0

∣∣∣∣u0

(
ξ + τ1

)
− u0

(
ξ
)∣∣∣∣ du1

]
dy du2

≤
ϵ
2

∫ 1

0

∫ +∞

−∞

(
π
(
t + τ2 + u2

))−1/2
e−y2/4(t+τ2+u2) dy du2 ≤ ϵπ

−1/2
∫ +∞

−∞

e−v2
dv.

(35)

This finally implies the required conclusion.
3. As explained in [2], Theorem 5.1 and Theorem 5.2 are applicable in the analysis of existence of almost

periodic solutions for a wide class of the abstract partial differential equations, which can be constructed
in a little bit artificial way. For example, let A be the infinitesimal generator of an exponentially decaying,
strongly continuous semigroup (T(t))t≥0 on X (i = 1, 2), let γ ∈ (0, 1) and let (Tγ(t))≥0 be the subordinated
γ-times resolvent family generated by A (see [16] for more details). Suppose that 1 < p < ∞, F : R2

→ X
is a Stepanov ([0, 1]2, p)-almost periodic function satisfying that the improper integral in (36) is absolutely
convergent. Define

u
(
t1, t2

)
:=

∫
[0,∞)2

[
−Tγ

(
s1

)
+ T

(
s2

)]
F
(
t1 − s1, t2 − s2

)
ds1 ds2, t1, t2 ∈ R. (36)

Due to Theorem 5.1 (see also the equation (22)), we have that u : R2
→ X is almost periodic; furthermore,
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under certain conditions, we have (see also [16]):

ut2

(
t1, t2

)
= −

∫
[0,∞)

Tγ
(
s1

)(∫ ∞

0

∂
∂t2

F
(
t1 − s1, t2 − s2

)
ds2

)
ds1

+

∫
∞

0

(
∂
∂t2

∫
∞

0
T
(
s2

)
F
(
t1 − s1, t2 − s2

)
ds2

)
ds1

=

∫
[0,∞)

Tγ
(
s1

)
Ft2

(
t1 − s1, t2 − s2

)
ds2 ds1

+

∫
∞

0

(
A

∫
∞

0
T
(
s2

)
F
(
t1 − s1, t2 − s2

)
ds2 + F

(
t1 − s1, t2

))
ds1,

for any t1, t2 ∈ R. Since the unique solution of the abstract fractional differential equation

Dγt,+u(t) = (−A)u(t) + f (t), t ∈ R

is given by t 7→
∫
∞

0 Tγ(s) f (t − s) ds, t ∈ R,we similarly obtain

−Dγt1,+
u
(
t1, t2

)
= −

∫
∞

0
T
(
s2

)(∫ ∞

0
Dγt1,+

F
(
t1 − s1, t2 − s2

)
ds1

)
ds2

+

∫
∞

0

(
(−A)

∫
∞

0
Tγ

(
s1

)
F
(
t1 − s1, t2 − s2

)
ds1 + F

(
t1, t2 − s2

))
ds2,

so that

ut2

(
t1, t2

)
−Dγt1,+

u
(
t1, t2

)
= Au

(
t1, t2

)
+

∫
∞

0
F
(
t1 − s1, t2

)
ds1

+

∫
∞

0
F
(
t1, t2 − s2

)
ds2 +

∫
[0,∞)

Tγ
(
s1

)
Ft2

(
t1 − s1, t2 − s2

)
ds2 ds1

−

∫
∞

0
T
(
s2

)(∫ ∞

0
Dγt1,+

F
(
t1 − s1, t2 − s2

)
ds1

)
ds2, t1, t2 ∈ R.

Unfortunately, it is very difficult to find some applications or interpretations of these types of abstract
fractional PDEs in the world of real phenomena.

4. The existence and uniqueness of almost periodic solutions for a wide class of abstract semilinear
integral equations of the form

u(t) = f (t) +
∫ t

−∞

R(t − s)F(s,u(s)) ds, t ∈ Rn

can be shown by using the Banach contraction principle and our results about the convolution invariance
of almost periodicity under the actions of infinite convolution products and established composition prin-
ciples; here, we assume that f (·) is almost periodic, (R(t))t>0 has a similar growth rate as in Theorem 5.1 and
F(·; ·) is Stepanov (Ω, p(u))-almost periodic for a certain function p ∈ D+(Ω);Ω ≡ [0, 1]n. The consideration is
quite similar to the corresponding considerations given in the proofs of [16, Theorem 2.7.6, Theorem 2.7.7]
and therefore omitted. Observe, however, that we can similarly analyze the existence and uniqueness of
asymptotically almost periodic solutions for a wide class of abstract semilinear integral equations of the
form

u(t) = f (t) +
∫ t

0
R(t − s)F(s,u(s)) ds, t ∈ [0,∞)n
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by using a similar argumentation containing our results about the convolution invariance of asymptotical
almost periodicity under the actions of finite convolution products and established composition principles
(see e.g., [16, Theorem 2.9.10, Theorem 2.9.11], which must be slightly reformulated for our new purposes).

5. Let A generate a strongly continuous semigroup (T(t))t≥0 on a Banach space X whose elements are
certain complex-valued functions defined on Rn. Under some assumptions, we have that the function

u(t, x) =
(
T(t)u0

)
(x) +

∫ t

0
[T(t − s) f (s)](x) ds, t ≥ 0, x ∈ Rn

is a unique classical solution of the abstract Cauchy problem

ut(t, x) = Au(t, x) + F(t, x), t ≥ 0, x ∈ Rn; u(0, x) = u0(x),

where F(t, x) := [ f (t)](x), t ≥ 0, x ∈ Rn. In many concrete situations (for example, this holds for the Gaussian
semigroup onRn), there exists a kernel (t, y) 7→ E(t, y), t > 0, y ∈ Rn which is integrable on any set [0,T]×Rn

(T > 0) and satisfies that

[T(t) f (s)](x) =
∫
Rn

F(s, x − y)E(t, y) dy, t > 0, s ≥ 0, x ∈ Rn.

Suppose that this is the case and fix a positive real number t0 > 0. In [2, Example 0.1], we have observed
that the almost periodic behaviour of function x 7→ ut0 (x) ≡

∫ t0

0 [T(t0 − s) f (s)](x) ds, x ∈ Rn depends on the
almost periodic behaviour of function F(t, x) in the space variable x. Suppose, for example, that the function
F(t, x) is Stepanov (Ω, 1)-almost periodic with respect to the variable x ∈ Rn, uniformly in the variable t on
compact subsets of [0,∞). Then we have (x, τ ∈ Rn; u ∈ Ω):∣∣∣∣ut0 (x + τ + u) − ut0 (x + u)

∣∣∣∣
≤

∫ t0

0

∫
Rn
|F(s, x + τ − y + u) − F(s, x − y + u)| ·

∣∣∣E(
t0, y

)∣∣∣ dy ds.

Integrating this estimate over Ω and using the Fubini theorem, we get that (x, τ ∈ Rn):∫
Ω

∣∣∣∣ut0 (x + τ + u) − ut0 (x + u)
∣∣∣∣ du

≤

∫ t0

0

∫
Rn

[∫
Ω

|F(s, x + τ − y + u) − F(s, x − y + u)| du
]
·

∣∣∣E(
t0, y

)∣∣∣ dy ds

≤ ϵ

∫ t0

0

∫
Rn

∣∣∣E(
t0, y

)∣∣∣ dy ds;

see the corresponding definitions. It follows that the function ut0 (·) is Stepanov (Ω, 1)-almost periodic, as
well.

Finally, we would like to mention that the research article [2] has been divided into two separate parts
as well as that the first part, entitled ”Almost periodic type functions of several variables and applications”,
has recently been published in Journal of Mathematical Analysis and Applications.
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Basel AG, Basel, 2001.
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A. Chávez et al. / Filomat 37:12 (2023), 3681–3713 3713

[4] A. S. Besicovitch, Almost Periodic Functions, Dover Publ, New York, 1954.
[5] T. Diagana, Almost Automorphic Type and Almost Periodic Type Functions in Abstract Spaces, Springer-Verlag, New York, 2013.
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