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Abstract. In this paper, first, we introduce the category Q-RRel consisting of quantale-valued reflexive
spaces and Q-monotone mappings, and prove that it is a normalized topological category over Set, the
category of sets and functions. Furthermore, we characterize explicitly each of local Ti, i = 0, 1, 2 and PreT2

Q-reflexive spaces and examine the relationships among them. Finally, we give the characterizations of
(strongly) closed subsets and zero-dimensional objects in this category.

1. Introduction

Order theory is an area of mathematics which deals with different types of binary relations. These
relations comprehend the instinctive concept of mathematical ordering and its related areas. Domain theory
as a subject of order theory has major applications in computer science. It was firstly studied in the 1960s by
Dana Scott and used to specify denotational semantics, especially for functional programming languages
(cf. [28]). Therefore, it can be considered as an interface between computer science and mathematics.

In 1991, Baran [2] extended the classical separation axioms of topology to an arbitrary set-based topo-
logical category in terms of initial, final structures and discreteness. He defined these axioms first locally
and then point free. For arbitrary set-based topological categories, the concepts of closedness and strong
closedness is also presented by Baran [2, 3] and he used these notions to generalize some fundamental topo-
logical concepts to topological categories. Moreover, it is shown that they form suitable closure operators
defined by Dikranjan and Giuli [15] in some considerable topological categories [6, 7, 9].

Zero-dimensionality for a topological space (X, τ) is defined as X has a basis comprising of clopen (both
closed and open) sets [18] and it has been used to construct many useful classes of topological spaces (cf.
[23]). Sierpinski [27] defined the zero-dimensional spaces, and this notion has been extended to an arbitrary
topological category by Stine [29].

With the progress of lattice theory, distinct mathematical frameworks have been studied with lattice
structures including lattice-valued topology [14], quantale-valued approach space [20, 21, 26], quantale-
valued metric space [22], lattice-valued convergence space [19] and lattice-valued preordered space [14].
This motivates us to study local separation axioms, (strong) closedness and zero-dimensionality in quantale-
valued reflexive spaces, which is a generalization of quantale-valued preordered spaces.

The purposes of this paper are stated below:
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(i) to introduce the category Q-RRel consisting of quantale-valued reflexive spaces and Q-monotone
maps, and to show that it is a normalized topological category over Set,

(ii) to give the characterizations of each of local T0, T′0, T1, PreT2, PreT′2, T2 and T′2 Q-reflexive spaces and
to investigate how these characterizations are related, and

(iii) to characterize a closed point, (strongly) closed subsets and zero-dimensional objects in Q-RRel.

2. Preliminaries

Let (L,≤) be a partially ordered set (poset). If all subsets of L have both infimum (
∧

) and supremum
(
∨

), then (L,≤) is named as a complete lattice. The bottom and top elements are represented by ⊥ and ⊤,
respectively, for any complete lattice [21].

In a complete lattice (L,≤), a well-below relation was defined by α ◁ β (α is well-below β) if for all A ⊆ L
such that β ≤

∨
A there is δ ∈ A such that α ≤ δ. Similarly, a well-above relation was defined by α ≺ β (β is

well-above α) if for all A ⊆ L such that
∧

A ≤ α there exists δ ∈ A such that δ ≤ β. Moreover, a complete
lattice (L,≤) is named as a completely distributive provided that we have α =

∨
{β : β ◁ α} for any α ∈ L.

The triple (L,≤, ∗) is named as a quantale if (L,≤) is a complete lattice, (L, ∗) is a semi group, and the
operation ∗ satisfies the following:

β ∗ (
∨
i∈I

αi) =
∨
i∈I

(β ∗ αi) and (
∨
i∈I

αi) ∗ β =
∨
i∈I

(αi ∗ β)

for all αi, β ∈ L, i.e., ∗ is distributive over arbitrary joins.
A quantale (L,≤, ∗) is named as integral if for all α ∈ L, α ∗ ⊤ = ⊤ ∗ α = α and it is called commutative if

(L, ∗) is a commutative semi group.
In this paper we consider only integral and commutative quantales, denoted by Q = (L,≤, ∗) with

completely distributive lattices L.
A quantale Q = (L,≤, ∗) is named as a value quantale if (L,≤) is completely distributive lattice such that

∀α, β ◁⊤, α ∨ β ◁⊤ [16]. Note that in a quantale Q = (L,≤, ∗), if e ∈ L and e , ⊤, then e is named as a prime
element provided that α ∧ β ≤ e implies α ≤ e or β ≤ e for all α, β ∈ L.

Definition 2.1. Let A , ∅ be a set and R : A × A −→ Q = (L,≤, ∗) be a quantale-valued map. The map R is
called an Q-reflexive relation on A if it satisfies the reflexivity, i.e., R(x, x) = ⊤ for all x ∈ A. The pair (A,R)
is called a Q-reflexive space.

Definition 2.2. A mapping f : (A,R)→ (B,R′) is called a Q-monotone mapping if R(x, y) ≤ R′( f (x), f (y)) for
all x, y ∈ A.

Definition 2.3. The category of quantale-valued reflexive spaces, Q-RRel has the pairs (A,R) as objects,
whereR is a quantale-valued reflexive relation on the set A, and hasQ-monotone mappings as morphisms.

Example 2.4. (i) For Q = ({0, 1},≤,∧), Q-RRel � RRel, where RRel is the category of reflexive relation
spaces and monotone maps.

(ii) For Q = ([0,∞],≥,+) (Lawvere’s quantale), Q-RRel � ∞pqsMet, where ∞pqsMet is the category of
extended pseudo-quasi-semi metric spaces and nonexpansive mappings [25].

(iii) ForQ = (△+,≤, ∗) (distance distribution functions quantale defined in [21]), then Q-RRel � ProbpqsMet,
where ProbpqsMet is the category of probabilistic pseudo-quasi-semi metric spaces and nonexpan-
sive mappings.

Note that for the quantale Q = (L,≤, ∗), a Q-reflexive space (A,R) is a Q-preordered space if R(x, y) ∗
R(y, z) ≤ R(x, z) for all x, y, z ∈ A (transitivity). In some literature, a Q-preordered space is often called an
L-continuity space if Q is a value quantale (cf. [16]), an L-metric space (cf. [22]) and an L-category (cf.
[17]).
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3. Topological construct of quantale-valued reflexive spaces

Definition 3.1. ([1]) A functorU : E → Set is said to be topological or E is a topological category over Set
provided that the following conditions hold:

1. U is amnestic and faithful, i.e., concrete.
2. U has small (i.e., set) fibers.
3. EachU-source has an initial lift or equivalently, everyU-sink has a final lift.

Theorem 3.2. The category Q-RRel is topological over Set.

Proof. LetU : Q-RRel→ Set be a forgetful functor. It is clear thatU is concrete and has small fibers. Now,
we prove that each U-source has an initial lift. Suppose A is a nonempty set, {(Ai,Ri)}i∈I is a collection
of Q-reflexive spaces and { fi : A → U((Ai,Ri)) = Ai}i∈I is any U-source in Set. We define the Q-reflexive
relation R on A by

R(x, y) =
∧
i∈I

Ri( fi(x), fi(y))

for all x, y ∈ A. Reflexivity holds trivially and it follows that (A,R) is a Q-reflexive space. Since R(x, y) ≤
Ri( fi(x), fi(y)), fi : (A,R)→ (Ai,Ri) is a Q-monotone mapping for each i ∈ I.

Suppose f : (B,RB)→ (A,R) is a mapping, then we prove that f is a Q-monotone mapping if and only
if fi ◦ f is a Q-monotone mapping. The necessity is obvious since compositions of Q-monotone mappings
are Q-monotone. Conversely, let x, y ∈ B. Then,

RB(x, y) ≤

∧
i∈I

Ri( fi ◦ f (x), fi ◦ f (y))

=
∧
i∈I

Ri( fi( f (x)), fi( f (y)))

= R( f (x), f (y)).

So f is a Q-monotone mapping. Hence, the source { fi : (A,R)→ (Ai,Ri)}i∈I is initial in Q-RRel.
Consequently, the functorU : Q-RRel→ Set is topological.

Definition 3.3. LetU : E → Set be a topological functor. If the subterminals, i.e., constant objects, have a
unique structure, thenU is said to be normalized.

Remark 3.4. The topological functor U : Q-RRel → Set is normalized since there is only one Q-reflexive
relation on a point and on the empty set.

Lemma 3.5. Let {(Ai,Ri)}i∈I be a collection of Q-reflexive spaces. A source { fi : (A,R) → (Ai,Ri)}i∈I is initial in
Q-RRel iff for all x, y ∈ A,

R(x, y) =
∧
i∈I

Ri( fi(x), fi(y)).

Proof. The proof is given in the proof of Theorem 3.2.

Lemma 3.6. Let (B,R) be a Q-reflexive space. An epimorphism f : (B,R) → (A,R′) is final in Q-RRel iff for all
x, y ∈ A,

R′(x, y) =
∨

z1,z2∈B
f (z1)=x
f (z2)=y

R(z1, z2).
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Proof. It is easy to show that R′ is reflexive. So (A,R′) is a Q-reflexive space. Also f : (B,R) → (A,R′) is a
Q-monotone mapping since for all t1, t2 ∈ B,

R′( f (t1), f (t2)) =
∨

z1,z2∈B
f (z1)= f (t1)
f (z2)= f (t2)

R(z1, z2) ≥ R(t1, t2).

Suppose 1 : (A,R′) → (C,RC) is a mapping, then we show 1 is a Q-monotone mapping if and only if
1 ◦ f is a Q-monotone mapping. Necessity is obvious since compositions of Q-monotone mappings are
Q-monotone. Conversely, let x, y ∈ A, Then,

R′(x, y) =
∨

z1,z2∈B
f (z1)=x
f (z2)=y

R(z1, z2)

≤

∨
z1,z2∈B

1( f (z1))=1(x)
1( f (z2))=1(y)

RC(1 ◦ f (z1), 1 ◦ f (z2))

= RC(1(x), 1(y)).

So 1 is a Q-monotone mapping. Hence, the epimorphism f : (B,R)→ (A,R′) is final in Q-RRel.

Definition 3.7. For a topological functor U : E → Set, an object A in E is discrete if and only if each
mappingU(A)→U(B) lifts to a mapping A→ B for each object B in E, and an object A in E is indiscrete if
and only if each mappingU(B)→U(A) lifts to a mapping B→ A for each object B in E.

Lemma 3.8. Let A , ∅ be a set and x, y ∈ A.

(i) The discrete Q-reflexive relation RD on A in Q-RRel is defined by

RD(x, y) =

⊤, x = y,
⊥, x , y.

(ii) The indiscrete Q-reflexive relation RI on A in Q-RRel is defined by

RI(x, y) = ⊤.

Lemma 3.9. (cf. [17, p. 181]) Let {(Ai,Ri)}i∈I be a collection of Q-reflexive spaces and A =
∐

i∈I Ai. Define

R((i, x), ( j, y)) =

Ri(x, y), i = j,
⊥, i , j.

for all (i, x), ( j, y) ∈ A. (A,R) is the coproduct of Q-reflexive spaces {(Ai,Ri)}i∈I. Particularly, {ci : (Ai,Ri) →
(A,R)}i∈I is final lift of {ci : Ai → A}i∈I for the canonical injection maps ci.

4. Local separation properties in Q-RRel

Let X be a set, p be a point in X and X ∨p X be the wedge product of X at p [2], i.e., two distinct copies of
X identified at p, or in other words, the pushout of p : 1 → X along itself, where 1 is the terminal object in
Set. More clearly, if i1 and i2 : X → X ∨p X specify the inclusion of X as the first and second component,
respectively, then i1p = i2p is the pushout diagram [7].

In the wedge X ∨p X, a point x is represented as xk if it lies in the k-th component for k = 1, 2.

Definition 4.1. ([2]) Let X ∨p X be the wedge product at p and X2 be the cartesian product of X.
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1. The principal p-axis mapping,Ap : X ∨p X→ X2 is stated byAp(x1) = (x, p) andAp(x2) = (p, x).
2. The skewed p-axis mapping, Sp : X ∨p X→ X2 is stated by Sp(x1) = (x, x) and Sp(x2) = (p, x).
3. The fold mapping at p, ∇p : X ∨p X→ X is stated by ∇p(x1) = x = ∇p(x2).

Definition 4.2. ([2]) LetU : E → Set be topological functor, X ∈ Ob(E) withU(X) = B and p ∈ B.

(i) X is T0 at p provided that the initial lift of theU-source {Ap : B ∨p B→U(X2) = B2 and ∇p : B ∨p B→
UD(B) = B} is discrete, whereD is the discrete functor that is a left adjoint toU.

(ii) X is T′0 at p provided that the initial lift of the U-source {id : B ∨p B → U(X ∨p X) = B ∨p B and
∇p : B ∨p B→UD(B) = B} is discrete, where X ∨p X is the wedge in E, i.e., the final lift of theU-sink
{i1, i2 :U(X) = B→ B ∨p B}where i1, i2 represent the canonical injections.

(iii) X is T1 at p provided that the initial lift of theU-source {Sp : B ∨p B→U(X2) = B2 and ∇p : B ∨p B→
UD(B) = B} is discrete.

(iv) X is PreT2 at p provided that the initial lift of theU-source Sp : B ∨p B → U(X2) = B2 and the initial
lift of theU-sourceAp : B ∨p B→U(X2) = B2 agree.

(v) X is PreT′2 at p provided that the initial lift of theU-source Sp : B∨p B→U(X2) = B2 and the final lift
of theU-sink {i1, i2 :U(X) = B→ B ∨p B} agree.

(vi) X is T2 at p provided that X is T0 at p and PreT2 at p.
(vii) X is T′2 at p provided that X is T′0 at p and PreT′2 at p.

Remark 4.3. (i) Separation axioms T0 at p and T1 at p are used to define the notions of (strong) closedness
in arbitrary set-based topological categories [2, 3].

(ii) If the topological functorU : E → Set is normalized, then each of T0 at p and T1 at p implies T′0 at p
([4] Corollary 2.11).

(iii) LetU : E → Set be normalized and X ∈ Ob(E) with p ∈ U(X). If X is PreT2 object at p, then X is T0 at
p if and only if T1 at p [4, 8, 12].

Theorem 4.4. A Q-reflexive space (A,R) is T0 at p iff for all x ∈ A with x , p, R(x, p) ∧R(p, x) = ⊥.

Proof. Firstly, suppose (A,R) is T0 at p and x ∈ A with x , p. Let RD be the discrete Q-reflexive relation on
A and ρi : A2

→ A (i = 1, 2) be the projection maps. For x1, x2 ∈ A ∨p A,

R(ρ1Apx1, ρ1Apx2) = R(ρ1(x, p), ρ1(p, x)) = R(x, p)
R(ρ2Apx1, ρ2Apx2) = R(ρ1(x, p), ρ1(p, x)) = R(p, x)
Rd(∇px1,∇px2) = Rd(x, x) = ⊤

Since (A,R) is T0 and x1 , x2, by Definition 4.2 and Lemmas 3.5, 3.8,

⊥ =
∧
{R(ρiApx1, ρiApx2)(i=1,2),Rd(∇px1,∇px2)}

=
∧
{R(x, p),R(p, x),⊤}

Hence, we get R(x, p) ∧R(p, x) = ⊥.
Conversely, let R∗ be the initial Q-reflexive relation on A∨p A induced byAp : A∨p A→U(A2,R2) = A2

and ∇p : A ∨p A→U(A,RD) = A, where R2 is the product structure on A2 induced by the projection maps
ρi for i = 1, 2.

Assume that the condition is true, i.e., R(x, p) ∧ R(p, x) = ⊥ for all x ∈ A with x , p. Let m and n be any
points in A ∨p A.

(i) If m = n, then R∗(m,n) = ⊤.
(ii) If m , n and ∇pm , ∇pn, then RD(∇pm,∇pn) = ⊥. By Lemma 3.5,

R∗(m,n) =
∧
{R(ρiApm, ρiApn)(i=1,2),RD(∇pm,∇pn)} = ⊥
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(iii) Suppose m , n and ∇pm = ∇pn. It follows that ∇pm = x = ∇pn for some points x ∈ A with x , p. We
must have m = x1 and n = x2 or m = x2 and n = x1 since m , n.

(a) If m = x1 and n = x2, then

R(ρ1Apm, ρ1Apn) = R(x, p)
R(ρ2Apm, ρ2Apn) = R(p, x)
RD(∇pm,∇pn) = RD(x, x) = ⊤

and it follows that

R∗(m,n) =
∧
{R(ρiApm, ρiApn)(i=1,2),RD(∇pm,∇pn)}

=
∧
{R(x, p),R(p, x),⊤}

= R(x, p) ∧R(p, x)

By the assumption, R(x, p) ∧R(p, x) = ⊥, we obtain R∗(m,n) = ⊥.
(b) Similarly, if m = x2 and n = x1, then R∗(m,n) = ⊥.
Consequently, for all m,n in the wedge A ∨p A, we have

R∗(m,n) =

⊤, m = n
⊥, m , n

By Lemma 3.8,R∗ is the discreteQ-reflexive relation on A∨p A. Hence, by Definition 4.2, (A,R) is T0 at p.

Theorem 4.5. All Q-reflexive spaces are T′0 at p.

Proof. Let (A,R) be a Q-reflexive space, R′ be the final Q-reflexive relation on A ∨p A induced by i1, i2 :
U(A,R) = A → A ∨p A, where i1 and i2 are the canonical injection maps and R be the initial structure on
A ∨p A induced by id : A ∨p A→U(A ∨p A,R′) = A ∨p A and ∇p : A ∨p A→U(A,RD) = A, where id is the
identity map and RD be the discrete Q-reflexive relation on A.

By Definition 4.2, we need to show that R is discrete. Let m and n be any points in A ∨p A.
(i) If m = n, then R(m,n) = ⊤.
(ii) If m , n and ∇pm , ∇pn, then RD(∇pm,∇pn) = ⊥, and by Lemma 3.5,

R(m,n) =
∧
{R′(m,n),RD(∇pm,∇pn)} = R′(m,n) ∧ ⊥ = ⊥

(iii) Suppose m , n and ∇pm = ∇pn. It follows that we must have m = x1 and n = x2 or m = x2 and n = x1
for some x ∈ A.

If m = x1 and n = x2, then by Lemma 3.5,

R(m,n) =
∧
{R′(m,n),RD(∇pm,∇pn)}

=
∧
{R′(m,n),⊤}

= R′(m,n)

=
∨
{R(x, x) | there exists k ∈ {1, 2} such that ik(x) = x1 = m and ik(x) = x2 = n}

This implies that m and n have to be in the same component of A ∨p A which means x = p, i.e., m = n. So,
the case m = x1 and n = x2 can not occur.

If m = x2 and n = x1, then similarly we have m = n. Thus, this case also can not occur.
Hence, by Lemma 3.8, R is discrete, and by Definition 4.2, (A,R) is T′0 at p.

Theorem 4.6. A Q-reflexive space (A,R) is T1 at p iff R(x, p) = ⊥ = R(p, x) for all x ∈ A with x , p.
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Proof. Suppose that (A,R) is T1 at p and x ∈ A with x , p. Let m = x1, n = x2 ∈ A ∨p A. Note that

R(ρ1Spm, ρ1Spn) = R(ρ1(x, x), ρ1(p, x)) = R(x, p)
R(ρ2Spm, ρ2Spn) = R(ρ2(x, x), ρ2(p, x)) = R(x, x) = ⊤
RD(∇pm,∇pn) = RD(x, x) = ⊤,

where RD is the discrete Q-reflexive relation on A and for each i = 1, 2, ρi : A2
→ A is the projection map.

Since m , n and (A,R) is T1 at p, by Definition 4.2 and Lemmas 3.5, 3.8,

⊥ =
∧
{R(ρiSpm, ρiSpn)(i=1,2),RD(∇pm,∇pn)}

=
∧
{R(x, p),⊤} = R(x, p)

Similarly, if m = x2, n = x1 ∈ A ∨p A, then

⊥ =
∧
{R(ρiSpm, ρiSpn)(i=1,2),RD(∇pm,∇pn)} = R(p, x)

Conversely, let R∗ be the initial Q-reflexive relation on A∨p A induced by Sp : A∨p A→U(A2,R2) = A2

and ∇p : A ∨p A→U(A,RD) = A, where R2 is the product structure on A2 induced by the projection maps
ρi for i = 1, 2.

Suppose for all x ∈ A with x , p, R(x, p) = ⊥ = R(p, x). Let m and n be any points in A ∨p A.
(i) If m = n, then R∗(m,n) = ⊤.
(ii) If m , n and ∇pm , ∇pn, then RD(∇pm,∇pn) = ⊥ since RD is the discrete structure on A. By Lemma

3.5,

R∗(m,n) =
∧
{R(ρiSpm, ρiSpn)(i=1,2),RD(∇pm,∇pn)} = ⊥

(iii) Suppose m , n and ∇pm = ∇pn. It follows that we must have m = x1 and n = x2 or m = x2 and n = x1.
If m = x1 and n = x2, then by Lemma 3.5,

R∗(m,n) =
∧
{R(ρiSpx1, ρiSpx2)(i=1,2),RD(∇px1,∇px2)}

=
∧
{R(x, p),⊤} = R(x, p)

By the assumption, R(x, p) = ⊥ = R(p, x), we obtain R∗(m,n) = ⊥.
Similarly, we get R∗(m,n) = ⊥ for m = x2 and n = x1.
Hence, for all m,n ∈ A ∨p A, we have

R∗(m,n) =

⊤, m = n
⊥, m , n

By Lemma 3.8, it follows that R∗ is the discrete Q-reflexive relation on A ∨p A. Consequently, by Definition
4.2, (A,R) is T1 at p.

Remark 4.7. (i) In Top (the category of topological spaces and continuous mappings), T0 at p and T′0 at
p (resp. T1 at p) reduce to if for each x , p, there exists a neighborhood of x doesn’t contain p or (resp.
and) there exists a neighborhood of p doesn’t contain x [2].

(ii) By Theorems 4.4, 4.5 and 4.6, if a Q-reflexive space (A,R) is T0 at p or T1 at p, then it is T′0 at p. But in
general, the converse is not true. This is also a result of Remark 4.3 (ii).

Theorem 4.8. A Q-reflexive space (A,R) is PreT2 at p iff the following conditions are satisfied.

(I) For all x ∈ A with x , p, R(x, p) ∧R(p, x) = R(x, p) = R(p, x).
(II) For any two distinct points x, y ∈ A with x , p , y,
R(x, p) ∧R(p, y) = R(x, p) ∧R(x, y) = R(p, y) ∧R(x, y) = R(y, p) ∧R(y, x) = R(p, x) ∧R(y, x).
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Proof. Suppose that (A,R) is PreT2 at p and x ∈ A with x , p. Let ρk : A2
→ A, k = 1, 2 be the projection

maps and m = x1,n = x2 ∈ A ∨p A. By Definition 4.2, we have∧
{R(ρkApm, ρkApn)(k=1,2)} =

∧
{R(ρkSpm, ρkSpn)(k=1,2)}∧

{R(x, p),R(p, x)} =
∧
{R(x, p),⊤}

R(x, p) ∧R(p, x) = R(x, p)

Similarly, if m = x2,n = x1, then we have R(x, p) ∧ R(p, x) = R(p, x). Hence, R(x, p) ∧ R(p, x) = R(x, p) =
R(p, x).

Suppose x, y are any two distinct points of A and x , p , y. Let m = xi, n = y j or m = x j, n = yi, and
i, j = 1, 2 with i , j. Since (A,R) is PreT2 at p and by Definition 4.2, we have∧

{R(ρkApm, ρkApn)(k=1,2)} =
∧
{R(ρkSpm, ρkSpn)(k=1,2)}∧

{R(x, p),R(p, y)} =
∧
{R(x, p),R(x, y)} (for m = x1,n = y2)∧

{R(p, y),R(x, p)} =
∧
{R(p, y),R(x, y)} (for m = x2,n = y1)∧

{R(y, p),R(p, x)} =
∧
{R(y, p),R(y, x)} (for m = y1,n = x2)∧

{R(p, x),R(y, p)} =
∧
{R(p, x),R(y, x)} (for m = y2,n = x1)

and by the condition (I) (R(x, p) = R(p, x),R(y, p) = R(p, y)), it follows thatR(x, p)∧R(p, y) = R(x, p)∧R(x, y) =
R(p, y) ∧R(x, y) = R(y, p) ∧R(y, x) = R(p, x) ∧R(y, x).

Conversely, assume that the conditions are true. We prove that (A,R) is PreT2 at p. Let RAp and RSp be
two initial structures on A∨p A induced byAp : A∨p A→U(A2,R2) = A2 andSp : A∨p A→U(A2,R2) = A2

respectively, and R2 be the product structure on A2 induced by the projection maps ρk : A2
→ A for k = 1, 2.

We need to show that RAp = RSp .
First, note that RAp and RSp are symmetric at p by the assumption (I).
Suppose m and n are any two points in A ∨p A.
If m = n, then RAp (m,n) = ⊤ = RSp (m,n).
If m , n and they are in the same component of the wedge A∨p A, i.e., m = xi and n = yi for i = 1, 2, then

RAp (m,n) =
∧
{R(ρkApm, ρkApn)(k=1,2)}

=
∧
{R(x, y),R(p, p) = ⊤}

=
∧
{R(ρkSpm, ρkSpn)(k=1,2)}

= RSp (m,n)

Suppose m , n and they are in the different factor of the wedge A∨p A. We have the following cases for
m and n:

Case I: m = x1 and n = x2 or m = x2 and n = x1 for all x ∈ A with x , p.
If m = x1 and n = x2, then for k = 1, 2,

RAp (m,n) =
∧
{R(ρkApx1, ρkApx2)} = R(x, p) ∧R(p, x),

RSp (m,n) =
∧
{R(ρkSpx1, ρkSpx2)} = R(x, p).

By the assumption (I), it follows that RAp (m,n) = RSp (m,n).
Similarly, if m = x2 and n = x1, then by the assumption (I), we get RAp (m,n) = RSp (m,n).
Case II: m = xi, n = y j or m = x j, n = yi, where x, y are any two distinct points of A with x , p , y, and

i, j = 1, 2 with i , j.
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If m = x1 and n = y2 (resp. m = x2 and n = y1), then for k = 1, 2,

RAp (m,n) =
∧
{R(ρkApx1, ρkApy2)} = R(x, p) ∧R(p, y) (resp. R(p, y) ∧R(x, p)),

RSp (m,n) =
∧
{R(ρkSpx1, ρkSpy2)} = R(x, p) ∧R(x, y) (resp. R(p, y) ∧R(x, y)).

By the assumption (II), it follows that RAp (m,n) = RSp (m,n).
Similarly, if m = y1 and n = x2 (resp. m = y2 and n = x1), then for k = 1, 2,

RAp (m,n) =
∧
{R(ρkApy1, ρkApx2)} = R(y, p) ∧R(p, x) (resp. R(p, x) ∧R(y, p)),

RSp (m,n) =
∧
{R(ρkSpy1, ρkSpx2)} = R(y, p) ∧R(y, x) (resp. R(p, x) ∧R(y, x)).

By the assumption (II), it follows that RAp (m,n) = RSp (m,n).
Hence, we obtain RAp (m,n) = RSp (m,n) for any points m,n ∈ A ∨p A, and by Lemma 3.5 and Definition

4.2, (A,R) is PreT2 at p.

Theorem 4.9. A Q-reflexive space (A,R) is PreT′2 at p iff for all x ∈ A with x , p, R(x, p) = ⊥ = R(p, x).

Proof. Assume that (A,R) is PreT′2 at p and x ∈ A with x , p. Let ρk : A2
→ A, k = 1, 2 be the projection maps

and R′ be the final Q-reflexive relation on A ∨p A induced by i1, i2 : U(A,R) = A→ A ∨p A, where i1 and i2
are the canonical injection maps. For m = x1, n = x2 ∈ A ∨p A, by Definition 4.2, note that

R′(m,n) =
∧
{R(ρ1Spm, ρ1Spn),R(ρ2Spm, ρ2Spn)}

=
∧
{R(x, p),R(x, x) = ⊤} = R(x, p)

and since m and n are in the different factor of the wedge A ∨p A, it follows from Lemmas 3.6 and 3.9 that
R′(m,n) = R(x, p) = ⊥.

Similarly, for m = x2, n = x1 ∈ A ∨p A, then

R′(m,n) =
∧
{R(ρkSpx2, ρkSpx1)(k=1,2)} = R(p, x)

and it follows that R′(m,n) = R(p, x) = ⊥ by Lemmas 3.6 and 3.9.
Conversely, letRSp be the initialQ-reflexive relation on A∨p A induced bySp : A∨p A→U(A2,R2) = A2,

where R2 is the product structure on A2 induced by the projection maps ρk for k = 1, 2.
Suppose that R(x, p) = ⊥ = R(p, x) for all x ∈ A with x , p. We prove that (A,R) is PreT′2 at p, i.e.,

R′ = RSp . Let m and n be any points in A ∨p A.
If m = n, then R′(m,n) = ⊤ = RSp (m,n).
Suppose that m , n and they are in the same component of the wedge A ∨p A. If m = xi and n = yi for

x, y ∈ A and i = 1, 2, then by Lemmas 3.5 and 3.6,

RSp (m,n) =
∧
{R(ρkSpm, ρkSpn)(k=1,2)}

=
∧
{R(x, y),R(p, p) = ⊤} = R(x, y)

R′(m,n) =
∨
{R(x, y) | ik(x) = xk, ik(y) = yk : k = 1, 2} = R(x, y)

Hence, we get R′(m,n) = R(x, y) = RSp (m,n).
Suppose m , n and they are in the different factor of the wedge A∨p A. We have the following cases for

m and n:
Case I: m = x1 and n = x2 or m = x2 and n = x1 for all x ∈ A with x , p.
If m = x1 and n = x2 (resp. m = x2 and n = x1), then by the assumption,

RSp (m,n) =
∧
{R(ρkSpx1, ρkSpx2)(k=1,2)} = R(x, p) (resp. R(p, x)) = ⊥
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and by Lemma 3.9, R′(m,n) = ⊥ since m and n are in the different factor of the wedge. It follows that
R′(m,n) = RSp (m,n).

Case II: m = xi, n = y j or m = x j, n = yi, where x, y are any two distinct points of A with x , p , y, and
i, j = 1, 2 with i , j.

If m = x1 and n = y2, then by the assumption,

RSp (m,n) =
∧
{R(ρkSpm, ρkSpn)(k=1,2)}

=
∧
{R(x, p) = ⊥,R(x, y)} = ⊥

and by Lemma 3.9, R′(m,n) = ⊥ since m and n are in the different factor of the wedge. Thus, R′(m,n) =
RSp (m,n).

Similarly, if m = y1 and n = x2 or m = x2 and n = y1 or m = y2 and n = x1, then by the assumption and
Lemma 3.9, we have R′(m,n) = RSp (m,n).

Hence, for any points m,n ∈ A∨pA we obtainR′(m,n) = RSp (m,n), and by Lemmas 3.5, 3.6 and Definition
4.2, (A,R) is PreT′2 at p.

Theorem 4.10. A Q-reflexive space (A,R) is T2 (resp. T′2 ) at p iff for all x ∈ A with x , p, R(x, p) = ⊥ = R(p, x).

Proof. It follows from Definition 4.2 and Theorems 4.4, 4.5, 4.8 and 4.9.

Theorem 4.11. Let (A,R) be a Q-reflexive space and p ∈ A. Then the following are equivalent.

(i) (A,R) is T2 at p for all p ∈ A.
(ii) (A,R) is T′2 at p for all p ∈ A.

(iii) R(x, p) = ⊥ = R(p, x) for all x, p ∈ A with x , p.
(iv) R is the discrete Q-reflexive relation, i.e., R = RD.

Proof. It follows from Lemma 3.8 and Theorem 4.10.

Remark 4.12. (i) In Top, PreT2 at p is equivalent to PreT′2 at p and they both reduce to for each point x
with x , p, there exist disjoint neighborhoods of x and p, if the set {x, p} is not indiscrete [2]. Moreover,
T2 at p is equivalent to T′2 at p and they both reduce to classical Hausdorff condition at p [2].

(ii) For an arbitrary topological category Ewith B an object in E, the constant map at p, p : X→ X is called
a retract map if there exists a map r : X→ X such that the composition rp = id, the identity map on X
[4]. If p : X→ X is a retract map, then by Theorem 2.6 of [4] and Theorem 3.1 of [5], PreT′2 at p implies
PreT2 at p but the reverse implication is not true, in general [11].

(iii) In Q-RRel, by Theorems 4.6, 4.9 and 4.10, we have T1 at p, PreT′2 at p, T2 at p and T′2 at p are equivalent.
(iv) Local separation axioms for the category∞pqsMet given in [11, 12] are the special forms of our results.

For example, if we take quantale ([0,∞],≥,+), then Theorems 4.4, 4.5 (resp. Theorem 4.10) reduce to
Theorem 4 (resp. Theorem 6) of [12] and Theorem 4.8 (resp. Theorem 4.9) reduces to Theorem 4 (resp.
Theorem 5) of [11].

Corollary 4.13. Let (A,R) be a PreT2 Q-reflexive space at a point p ∈ A. Then the following are equivalent.

(i) (A,R) is T0 at p.
(ii) (A,R) is T1 at p.

(iii) (A,R) is PreT′2 at p.

(iv) (A,R) is T2 at p.
(v) (A,R) is T′2 at p.
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5. Closedness and strong closedness

Let X be a set, p be a point in X and ∨∞p X be the infinite wedge product of X at p, that is formed by taking
countably separate copies of X and identifying them at p.

In the infinite wedge ∨∞p X, a point x is represented as xi if it lies in the i-th component.

Definition 5.1. ([3]) Let ∨∞p X be the infinite wedge product at p and X∞ = X × X × ... be the countable
cartesian product of X.

(i) The infinite principle axis map at p, A∞p : ∨∞p X −→ X∞ is stated by A∞p (xi) = (p, p, ...., p, x, p, ...).
(ii) The infinite fold map at p, ∇∞p : ∨∞p X −→ X∞ is stated by ∇∞p (xi) = x for all i ∈ I.

Note that the map A∞p is the unique map arising from the multiple pushout of p : 1 → X for which
A
∞
p i j = (p, p, ..., p, id, p, ...) : X→ X∞, where the identity map, id, is in the j-th place [7].

Definition 5.2. ([2, 3]) LetU : E → Set be a topological functor, X ∈ Ob(E) withU(X) = B and p ∈ B. Let F
be a subset of B. We denote the final lift of the epiU-sink q : U(X) = B→ B/F = (B\F) ∪ {∗} by X/F, where
q is the epi map that is the identity on B\F and identifying F with a point {∗}.

(i) {p} is closed provided that the initial lift of theU-source {A∞p : ∨∞p B → U(X∞) = B∞ and ∇∞p : ∨∞p B →
UD(B∞) = B∞} is discrete, whereD is the discrete functor.

(ii) F ⊂ X is closed provided that {∗}, the image of F, is closed in X/F or F = ∅.
(iii) F ⊂ X is strongly closed provided that X/F is T1 at {∗} or F = ∅.

Remark 5.3. In Top, the notion of closedness coincides with the usual one [2] and F is strongly closed
provided that F is closed and for each x < F there exists a neighbourhood of F missing x. For T1 topological
spaces, the notions of closedness and strong closedness coincide [2].

Theorem 5.4. Let (A,R) be a Q-reflexive relation space and p ∈ A. p is closed in A iff for all x ∈ A with x , p,
R(x, p) ∧R(p, x) = ⊥.

Proof. Let (A,R) is a Q-reflexive space, p ∈ A and R be the initial Q-reflexive relation on ∨∞p A induced by
A
∞
p : ∨∞p A→U(A∞,R∗) = A∞ and ∇∞p : ∨∞p A→U(A,Rd) = A where Rd is the discrete Q-reflexive relation

on A, and R∗ be the product Q-reflexive relation on A∞ induced by ρi : A∞ → A (i ∈ I) projection maps.
Suppose that {p} is closed in A. We prove that for all x ∈ X with x , p, R(x, y) ∧ R(y, x) = ⊥. Note that

for i, j, k ∈ I with i , j and i , k , j,

R(ρiA
∞

p (xi), ρiA
∞

p (x j)) = R(x, p)
R(ρ jA

∞

p (xi), ρ jA
∞

p (x j)) = R(p, x)
R(ρkA

∞

p (xi), ρkA
∞

p (x j)) = R(p, p) = ⊤
Rd(∇∞p (xi),∇∞p (x j)) = Rd(x, x) = ⊤

Since p is closed in A and xi , x j (i , j), by Definition 5.2 and Lemma 3.5, we have

⊥ = R(xi, x j) =
∧
{R(ρhA

∞

p (xi), ρhA
∞

p (x j))(h=i, j,k),Rd(∇∞p (xi),∇∞p (x j))}

=
∧
{R(x, p),R(p, x),⊤}

= R(x, p) ∧R(p, x)

and hence, R(x, p) ∧R(p, x) = ⊥.
Conversely, assume that the condition is true, i.e., R(x, p)∧R(p, x) = ⊥ for all x ∈ A with x , p. We prove

that p is closed. Let m,n ∈ ∨∞p A be any points.

(i) If m = n, then R(m,n) = ⊤.
(ii) If m , n and ∇∞p m , ∇∞p n, then Rd(∇∞p m,∇∞p n) = ⊥ since Rd is the discrete structure. By Lemma 3.5,

we have R(m,n) = ⊥.
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(iii) Suppose m , n and ∇∞p m = x = ∇∞p n for some x ∈ X with x , p. It follows that m = xi and n = x j for
i, j ∈ I with i , j. Let m = xi, n = x j and i, j, k ∈ I with i , j and i , k , j. Then,

R(ρhA
∞

p m, ρhA
∞

p n)(h=i, j,k) = {R(x, p),R(p, x),R(p, p) = ⊤}
Rd(∇∞p m,∇∞p n) = Rd(x, x) = ⊤

and it follows that

R(m,n) =
∧
{R(ρhA

∞

p m, ρhA
∞

p n)(h=i, j,k),Rd(∇∞p m,∇∞p n))}

=
∧
{R(x, p),R(p, x),⊤}

= R(x, p) ∧R(p, x)

By the assumption, R(x, p) ∧R(p, x) = ⊥ and we obtain R(m,n) = ⊥.
Consequently, for all m,n ∈ ∨∞p X, we get

R(m,n) =

⊤, m = n
⊥, m , n

and by Lemma 3.8, R is the discrete Q-reflexive relation on ∨∞p A. Hence, by Definition 5.2, {p} is closed in
A.

Theorem 5.5. Let (A,R) be a Q-reflexive space that Q has a prime bottom element and p ∈ A. {p} is closed in A iff
R(x, p) = ⊥ or R(p, x) = ⊥ for all x ∈ A with x , p.

Proof. It follows from the definition of the prime bottom element and Theorem 5.4.

Theorem 5.6. Let (A,R) be a Q-reflexive space that Q has a prime bottom element and F be a nonempty subset of A.
F is closed iff for all y ∈ F and x ∈ A with x < F, R(x, y) = ⊥ or R(y, x) = ⊥.

Proof. Let (A,R) be aQ-reflexive space, ∅ , F ⊂ A andR′ be the quotientQ-reflexive relation on A/F induced
from the epi map q : A→ A/F. Suppose F is closed and x ∈ A with x < F. Since q(x) = x , ∗ = q(F) and F is
closed, by Definition 5.2, ∗ is closed in A/F. By Theorem 5.5, R′(x, ∗) = ⊥ or R′(∗, x) = ⊥. If R′(x, ∗) = ⊥, then
by Lemma 3.6,

⊥ = R′(x, ∗) =
∨
{R(x, y) | there exists y ∈ A such that q(y) = ∗},

and it follows that R(x, y) = ⊥ for all y ∈ F. Similarly, if R′(∗, x) = ⊥, then R(y, x) = ⊥ for all y ∈ F. Hence,
for all y ∈ F and x ∈ A with x < F, we have R(x, y) = ⊥ or R(y, x) = ⊥.

Conversely, assume that the condition is true. We prove that F is closed. Let a , ∗ be a point in A/F
and R′ is the quotient structure on A/F. By assumption and Lemma 3.6, if R(a, y) = ⊥ for all y ∈ F, then
R′(a, ∗) = ⊥, or if R(y, a) = ⊥ for all y ∈ F, then R′(∗, a) = ⊥. Consequently, by Theorem 5.5 and Definition
5.2, ∗ is closed in A/F and F is closed.

Theorem 5.7. Let (A,R) be a Q-reflexive space and F be a nonempty subset of A. F is strongly closed iff for all y ∈ F
and x ∈ A with x < F, R(x, y) = ⊥ = R(y, x).

Proof. Let (A,R) be aQ-reflexive space and ∅ , F ⊂ A. Suppose F is strongly closed and x ∈ A with x < F. By
Definition 5.2, (A/F,R′) is T1 at ∗ since F is strongly closed and q(x) = x , ∗ = q(F), where R′ is the quotient
structure on A/F induced from the epi map q : A→ A/F. By Theorem 4.6,R′(x, ∗) = ⊥ = R′(∗, x). By Lemma
3.6,

⊥ = R′(x, ∗) =
∨
{R(x, y) | there exists y ∈ A such that q(y) = ∗},
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and this means R(x, y) = ⊥ for all y ∈ F. Similarly,

⊥ = R′(∗, x) =
∨
{R(y, x) | there exists y ∈ A such that q(y) = ∗}

and it follows that for all y ∈ F, R(y, x) = ⊥. Consequently, we get for all y ∈ F and x ∈ A with x < F,
R(x, y) = ⊥ = R(y, x).

Conversely, assume that the condition is true. We prove that F is strongly closed. Let a , ∗ be a point in
A/F and R′ is the quotient structure on A/F. Note that, by Lemma 3.6,

R′(a, ∗) =
∨
{R(a, y) | there exists y ∈ A such that q(y) = ∗},

R′(∗, a) =
∨
{R(y, a) | there exists y ∈ A such that q(y) = ∗}

and by assumption, we have R′(a, ∗) = ⊥ = R′(∗, a). Hence, by Theorem 4.6 and Definition 5.2, (A/F,R′) is
T1 at ∗ and F is strongly closed.

Remark 5.8. (i) Let (A,R) be aQ-reflexive space thatQ has a prime bottom element and F be a nonempty
subset of A. By Theorems 5.6 and 5.7, if F is strongly closed, then F is closed, i.e., in Q-RRel, strong
closedness implies closedness. But in general, the notions of closedness and strong closedness are
independent of each other for an arbitrary topological category (cf. [24] Remark 4.4).

(ii) The closed subsets for the categories ∞pqsMet and RRel given in [10, 13] are the special forms of
our results. For example, if we take quantale ([0,∞],≥,+) (resp. ({0, 1},≤,∧) ), then Theorems 5.4-5.7
reduce to Theorems 3.2, 3.4 of [13] (resp. Theorem 3.8 of [10]) for the category∞pqsMet (resp. RRel).

6. Zero-dimensional quantale-valued reflexive spaces

Recall that zero-dimensionality for a topological space (X, τ) is defined as X has a basis comprising of
clopen sets. In [29], Stine showed that a topological space (X, τ) is zero-dimensional iff for i ∈ I, there exists
a family of functions fi : (X, τ)→ (Xi, τid ) such that τ is the topology induced by (Xi, τid ) via fi, where (Xi, τid )
is the family of discrete topological spaces. In view of the categorical counterparts, we have the following
definition given by Stine.

Definition 6.1. ([29]) LetU : C → E be a topological andD : E → C be the discrete functor. An object X in
C is called a zero-dimensional object if and only if there exists Ai ∈ Ob(E) and morphisms fi : U(X) → Ai

for i ∈ I such that { f i : X→D(Ai)}i∈I is the initial lift of { fi :U(X)→U(D(Ai)) = Ai}i∈I.

Remark 6.2. For the forgetful functor U : Top → Set, Definition 6.1 reduces to usual definition of zero-
dimensional topological space.

Theorem 6.3. Let (A,R) be a Q-reflexive space and (Ai,RiD ) be the discrete Q-reflexive spaces for i ∈ I. (A,R) is
zero-dimensional provided that there exists fi : (A,R)→ (Ai,RiD ) such that ∀x, y ∈ X,

R(x, y) =

⊤, fi(x) = fi(y), ∀i ∈ I
⊥, fi(x) , fi(y), ∃i ∈ I

Proof. Assume that (A,R) is zero-dimensional. Let (Ai,RiD ) be the discrete Q-reflexive spaces for i ∈ I and
fi : A → Ai be a family of functions. By Definition 6.1, fi : (A,R) → (Ai,RiD ) is the initial lift of fi : A → Ai.
Note that, for x, y ∈ A and by Lemma 3.8,

R(x, y) =
∧
i∈I

{RiD ( fi(x), fi(y))} =
∧
i∈I

⊤, fi(x) = fi(y)
⊥, fi(x) , fi(y)

(i) If fi(x) = fi(y) for all i ∈ I, then R(x, y) = ⊤.
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(ii) Similarly, if for at least one i ∈ I, fi(x) , fi(y), then R(x, y) = ⊥ by definition of the initial structure.
Conversely, let A be a nonempty set, (Ai,RiD ) be the discrete Q-reflexive spaces for i ∈ I and fi : A→ Ai

be a family of functions. Assume that the condition is true, i.e., there exists fi : (A,R)→ (Ai,RiD ) such that
∀x, y ∈ X,

R(x, y) =

⊤, fi(x) = fi(y), ∀i ∈ I
⊥, fi(x) , fi(y), ∃i ∈ I

We prove that (A,R) is zero-dimensional, i.e., by Definition 6.1, fi : (A,R) → (Ai,RiD ) is the initial lift of
fi : A→ Ai. It is obvious that for each i ∈ I, fi is a Q-monotone mapping.

Let 1 : (B,RB)→ (A,R) is a mapping. We prove that 1 isQ-monotone if and only if fi◦1 isQ-monotone for
all i ∈ I. The necessity is obvious since compositions of Q-monotone mappings are Q-monotone. Suppose
for each i ∈ I, fi ◦ 1 : (B,RB)→ (Ai,RiD ) is a Q-monotone mapping. It follows that, for x, y ∈ B

RB(x, y) ≤

∧
i∈I

{RiD ( fi(1(x)), fi(1(y)))}

and by assumption we have

R(1(x), 1(y)) =

⊤, fi(1(x)) = fi(1(y)), ∀i ∈ I
⊥, fi(1(x)) , fi(1(y)), ∃i ∈ I

If for all i ∈ I, fi(1(x)) = fi(1(y)), then RB(x, y) ≤ R(1(x), 1(y)) = ⊤.
Let fi(1(x)) , fi(1(y)) for at least one i ∈ I. It follows that R(1(x), 1(y)) = ⊥, and RB(x, y) = ⊥ since fi ◦ 1 is

Q-monotone for all i ∈ I, i.e., RB(x, y) ≤
∧

i∈I {RiD ( fi(1(x)), fi(1(y)))} = ⊥. Hence, RB(x, y) ≤ R(1(x), 1(y)).
Consequently, 1 : (B,RB)→ (A,R) is Q-monotone and therefore, (A,R) is zero-dimensional.

Example 6.4. Suppose Q = ([0, 1],≤, ∗) is a triangular norm with a binary operation ∗ stated by α ∗ β =
(α − 1 + β) ∨ 0 for all α, β ∈ [0, 1] (Lukasiewicz t-norm), where the bottom and top elements are ⊥ = 0 and
⊤ = 1. Let A = {a, b, c, d}, Bi = {xi, yi} for i = 1, 2, 3, RiD be the discrete Q-reflexive relation on Bi for i = 1, 2, 3
with the Lukasiewicz t-norm Q = ([0, 1],≤, ∗), and the map fi : (A,R)→ (Bi,RiD ), i = 1, 2, 3, be defined as

fi(t) =

xi, t = a, c
yi, t = b, d.

Define a Q-reflexive relation R : A × A→ Q by

R(m,n) = R(n,m) =

1, m = n or (m,n) = (a, c), (b, d)
0, (m,n) ∈ {a, c} × {b, d}.

Then (A,R) is zero-dimensional.

Corollary 6.5. (i) All indiscrete Q-reflexive spaces are zero-dimensional.
(ii) If |A| = 1 (cardinality), then every Q-reflexive space (A,R) is zero-dimensional.

(iii) Let (A,R) be a Q-reflexive space with |A| = 2 and (Ai,RiD ) be the discrete Q-reflexive space for i ∈ I. (A,R) is
zero-dimensional provided that there exists fi : (A,R)→ (Ai,RiD ) such that

R =

RI, fi is constant, ∀i ∈ I
RD, otherwise.
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