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A note on fractional Simpson-like type inequalities for functions
whose third derivatives are convex

Fatih Hezencia, Hüseyin Budaka
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Abstract. In this paper, equality is established for Riemann–Liouville fractional integral. With the aid of this
equality, it is proved some fractional Simpson-like type inequalities for functions whose third derivatives
in absolute value are convex. By using special cases of the main results, previously obtained Simpson
type inequalities are found for the Riemann–Liouville fractional integral. Furthermore, the mathematical
example is presented to verify the newly established inequality.

1. Introduction

The inequality theory is a considerable topic and remains an interesting research area with numerous
number of applications in many mathematical fields. In addition, convex functions have also a significant
place in the theory of inequality. Many inequalities have been investigated for convex functions but the
most prominent is the Simpson type inequality, because of its rich geometrical importance and applications.
The following inequality is one of the well-known outcome in the literature as the classical Simpson type
inequality for four times continuously differentiable functions.

Theorem 1.1. Let F :
[
η, µ

]
→ R denote a four times continuously differentiable function on

(
η, µ

)
, and let∥∥∥F(4)

∥∥∥
∞
= sup

x∈(η,µ)

∣∣∣F(4)(x)
∣∣∣ < ∞. Then, one has the inequality

∣∣∣∣∣∣16 [
F(η) + 4F

(η + µ
2

)
+ F(µ)

]
−

1
µ − η

∫ µ

η
F(x)dx

∣∣∣∣∣∣ ≤ 1
2880

∥∥∥F(4)
∥∥∥
∞

(
µ − η

)4 .

The convex theory is an impressive method to solve a large number of problems from varied branches of
mathematics. Hence, many papers are established the Simpson type inequalities for convex function. For
instance, Sarikaya et al. proved the new variants of Simpson type inequalities with the aid of differentiable
convex function in the papers [33]. For results with respect to these types of inequalities one can see Refs.
[12, 25] and the references therein. In addition to these, Simpson type inequalities for various convex classes
have been studied extensively by many authors (see, [17, 23, 27, 32] and the references therein).

Twice differentiable convex functions have been established by many authors to get significant inequal-
ities. For example, some Simpson type inequalities were presented for functions whose absolute values of
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Email addresses: fatihezenci@gmail.com (Fatih Hezenci), hsyn.budak@gmail.com (Hüseyin Budak)
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derivatives are convex in [31]. Moreover, J. Park proved new estimates on the generalization of Hadamard,
Ostrowski and Simpson type inequalities for the case of functions whose second derivatives in absolute
value at certain powers are convex and quasi–convex functions in [28]. Furthermore, it was proved some
fractional Simpson type inequalities for functions whose second derivatives in absolute value are convex
in [8]. It can be referred to [3, 9, 15, 35] for further information about twice differentiable functions.

Some inequalities of Simpson type for functions whose three derivatives in absolute value are the class
of (α,m)-geometric-arithmetically-convex functions established in the paper [20]. In addition to this, some
applications to special means of positive real numbers were given in this paper. In [1], some inequalities
of Simpson type for quasi-convex functions in terms of third derivatives are presented and applications
to Simpson numerical quadrature rule is also established. Furthermore, Ozdemir et. al. presented some
inequalities by s-convex and s-concave functions in [26]. In the paper [11], the authors proved new
inequalities of Simpson type for functions whose third derivatives are extended s-convex functions, and
apply these inequalities to provide some inequalities of special means. In the paper [29], J. Park established
some new integral inequalities of Hermite-Hadamard type for functions whose third derivatives are convex
and s−convex in the second sense. For further information related to these subjects, we refer to reader to
[10, 36] and the references therein.

Mathematical preliminaries of fractional calculus theory, which will be used throughout this paper, will
be presented as follows:

The well-known Gamma function and Beta function are defined by

Γ (x) :=

∞∫
0

ξx−1e−ξdξ

and

β
(
x, y

)
:=

1∫
0

ξx−1 (1 − ξ)y−1 dξ =
Γ (x)Γ

(
y
)

Γ
(
x + y

) ,
respectively for 0 < x, y < ∞ and x, y ∈ R.

Let us consider F ∈ L1[η, µ]. The Riemann–Liouville integrals Jαη+F and Jαµ−F of order α > 0 with η ≥ 0 are
defined by

Jαη+F(x) =
1
Γ(α)

∫ x

η
(x − ξ)α−1

F(ξ)dξ, x > η

and

Jαµ−F(x) =
1
Γ(α)

∫ µ

x
(ξ − x)α−1

F(ξ)dξ, x < µ,

respectively. Let us note that J0
η+F(x) = J0

µ−F(x) = F(x). Let us also note that α = 1 in above. Then, the
fractional integral becomes to the classical integral.

The fractional integral inequalities and applications have been established with the aid of the Riemann–
Liouville fractional integral. For instance, Sarikaya et al. established some Simpson type inequalities for
the case of functions whose second derivatives are convex [34]. Moreover, Iqbal et. al. generalized the
Simpson type inequalities based on differentiable functions to Riemann-Liouville fractional integrals in the
paper [16]. Some Simpson type inequalities using s-(α,m)−convex function by Riemann–Liouville frac-
tional integrals were given in [21]. The reader is referred to [5–7, 13, 14, 24, 37] and the references therein for
more information and unexplained subjects about several properties of Riemann–Liouville fractional inte-
grals and various fractional integral operators. Whereas Simpson type inequalities for Riemann–Liouville
fractional integrals have been considered by the authors, some mathematicians have also established the
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Simpson type inequalities for other types of fractional integrals such as k-fractional integral Conformable
fractional integrals, Katugampola fractional integrals, etc. Concerning some papers related to these subjects
see [2, 18, 19, 22, 30], and references therein.

The aim of this paper is to establish Simpson-like type inequalities involving Riemann-Liouville frac-
tional integrals for a function whose 3rd derivatives are convex. The whole design of the present paper takes
the form of three sections including introduction. In Sect. 2, an identity is investigated for function whose
3rd derivatives are convex. By utilizing this equality, it is established several Simpson-like type inequalities
to the case of function whose 3rd derivatives in absolute value are convex. Moreover, some remarks and
corollaries are presented in this section. Furthermore, we give mathematical example to support the main
results. In Sect. 3, some conclusions and further directions of research are discussed.

2. Main results

Lemma 2.1. Let us note that F : [η, µ]→ R is a three times differentiable function (η, µ) such that F′′′ ∈ L1
([
η, µ

])
.

Then, the following equality holds:

1
(α + 1) (α + 2)

[
F

(
η
)
+

(
α2 + 3α

)
F

(η + µ
2

)
+ F

(
µ
)]
−

2α−1Γ (α + 1)(
µ − η

)α [
Jαη+µ

2 −
F

(
η
)
+ Jαη+µ

2 +
F

(
µ
)]

(1)

=

(
µ − η

)3

16 (α + 1) (α + 2)

1∫
0

(
ξα+2

− ξ2
) [
F′′′

(
ξ
2
µ +

(2 − ξ
2

)
η
)
− F′′′

(
ξ
2
η +

(2 − ξ
2

)
µ
)]

dξ.

Proof. With the aid of the integration by parts, we obtain

(2)

I =

1∫
0

(
ξα+2

− ξ2
) [
F′′′

(
ξ
2
µ +

(2 − ξ
2

)
η
)
− F′′′

(
ξ
2
η +

(2 − ξ
2

)
µ
)]

dξ

=
2
µ − η

(
ξα+2

− ξ2
) [
F′′

(
ξ
2
µ +

(2 − ξ
2

)
η
)
+ F′′

(
ξ
2
η +

(2 − ξ
2

)
µ
)]∣∣∣∣∣1

0

−
2
µ − η

1∫
0

(
(α + 2) ξα+1

− 2ξ
) [
F′′

(
ξ
2
µ +

(2 − ξ
2

)
η
)
+ F′′

(
ξ
2
η +

(2 − ξ
2

)
µ
)]

dξ

= −
2
µ − η

[
2
µ − η

(
(α + 2) ξα+1

− 2ξ
) [
F′

(
ξ
2
µ +

(2 − ξ
2

)
η
)
− F′

(
ξ
2
η +

(2 − ξ
2

)
µ
)]∣∣∣∣∣1

0

−
2
µ − η

1∫
0

((α + 1) (α + 2) ξα − 2)
[
F′

(
ξ
2
µ +

(2 − ξ
2

)
η
)
− F′

(
ξ
2
η +

(2 − ξ
2

)
µ
)]

dξ


=

4(
µ − η

)2

[
2
µ − η

((α + 1) (α + 2) ξα − 2)
[
F

(
ξ
2
µ +

(2 − ξ
2

)
η
)
+ F

(
ξ
2
η +

(2 − ξ
2

)
µ
)]∣∣∣∣∣1

0
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−
2α (α + 1) (α + 2)

µ − η

1∫
0

ξα−1
[
F

(
ξ
2
µ +

(2 − ξ
2

)
η
)
+ F

(
ξ
2
η +

(2 − ξ
2

)
µ
)]

dξ


=

16(
µ − η

)3

[
F

(
η
)
+

(
α2 + 3α

)
F

(η + µ
2

)
+ F

(
µ
)]

−
8α (α + 1) (α + 2)(

µ − η
)3

1∫
0

ξα−1
[
F

(
ξ
2
µ +

(2 − ξ
2

)
η
)
+ F

(
ξ
2
η +

(2 − ξ
2

)
µ
)]

dξ.

With the change of the variable x = ξ
2µ +

(
2−ξ

2

)
η and x = ξ

2η +
(

2−ξ
2

)
η for ξ ∈ [0, 1], equality (2) can be

rewritten as follows

I =
16(
µ − η

)3

[
F

(
η
)
+

(
α2 + 3α

)
F

(η + µ
2

)
+ F

(
µ
)]

(3)

−
2α+3 (α + 1) (α + 2)Γ (α + 1)(

µ − η
)α+3

[
Jαη+µ

2 −
F

(
η
)
+ Jαη+µ

2 +
F

(
µ
)]
.

If we multiply the both sides of (3) by (µ−η)3

16(α+1)(α+2) , then (1) will be obtained.

Theorem 2.2. Assume that the assumptions of Lemma 2.1 are valid. Assume also that the function |F′′′| is convex
on

[
η, µ

]
. Then, the following inequality holds:∣∣∣∣∣∣ 1

(α + 1) (α + 2)

[
F

(
η
)
+

(
α2 + 3α

)
F

(η + µ
2

)
+ F

(
µ
)]
−

2α−1Γ (α + 1)(
µ − η

)α [
Jαη+µ

2 −
F

(
η
)
+ Jαη+µ

2 +
F

(
µ
)]∣∣∣∣∣∣ (4)

≤

(
µ − η

)3 α

48 (α + 1) (α + 2) (α + 3)

[∣∣∣F′′′ (η)∣∣∣ + ∣∣∣F′′′ (µ)∣∣∣] .
Proof. By taking modulus in Lemma 2.1, we have∣∣∣∣∣∣ 1

(α + 1) (α + 2)

[
F

(
η
)
+

(
α2 + 3α

)
F

(η + µ
2

)
+ F

(
µ
)]
−

2α−1Γ (α + 1)(
µ − η

)α [
Jαη+µ

2 −
F

(
η
)
+ Jαη+µ

2 +
F

(
µ
)]∣∣∣∣∣∣ (5)

≤

(
µ − η

)3

16 (α + 1) (α + 2)

1∫
0

∣∣∣ξα+2
− ξ2

∣∣∣ ∣∣∣∣∣F′′′ (ξ2µ + (2 − ξ
2

)
η
)
− F′′′

(
ξ
2
η +

(2 − ξ
2

)
µ
)∣∣∣∣∣ dξ.

From the fact that |F′′′| is convex, it follows∣∣∣∣∣∣ 1
(α + 1) (α + 2)

[
F

(
η
)
+

(
α2 + 3α

)
F

(η + µ
2

)
+ F

(
µ
)]
−

2α−1Γ (α + 1)(
µ − η

)α [
Jαη+µ

2 −
F

(
η
)
+ Jαη+µ

2 +
F

(
µ
)]∣∣∣∣∣∣
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≤

(
µ − η

)3

16 (α + 1) (α + 2)

1∫
0

∣∣∣ξα+2
− ξ2

∣∣∣ [ξ
2

∣∣∣F′′′ (µ)∣∣∣ + 2 − ξ
2

∣∣∣F′′′ (η)∣∣∣ + ξ
2

∣∣∣F′′′ (η)∣∣∣ + 2 − ξ
2

∣∣∣F′′′ (µ)∣∣∣] dξ

=

(
µ − η

)3

16 (α + 1) (α + 2)

1∫
0

∣∣∣ξα+2
− ξ2

∣∣∣ dξ [∣∣∣F′′′ (η)∣∣∣ + ∣∣∣F′′′ (µ)∣∣∣] = (
µ − η

)3 α
[∣∣∣F′′′ (η)∣∣∣ + ∣∣∣F′′′ (µ)∣∣∣]

48 (α + 1) (α + 2) (α + 3)
.

The proof of Theorem 2.2 is completed.

Example 2.3. Consider a function F : [η, µ] = [0, 1]→ R by F(x) = x5. Then, the left hand side of (4) becomes to∣∣∣∣∣ 1
(α + 1) (α + 2)

[
F (0) +

(
α2 + 3α

)
F

(1
2

)
+ F (1)

]
− 2α−1Γ (α + 1)

[
Jα1

2−
F (0) + Jα1

2+
F (1)

]∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣
1

(α + 1) (α + 2)

[
α2 + 3α

32
+ 1

]
−

2α−1Γ (α + 1)
Γ (α)


1
2∫

0

ξα−1ξ5dξ +

1∫
1
2

(1 − ξ)α−1 ξ5dξ


∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣ 1
(α + 1) (α + 2)

[
α2 + 3α

32
+ 1

]
−

1
64 (α + 5)

α + (α + 6)
(
α4 + 14α3 + 91α2 + 334α + 640

)
(α + 1) (α + 2) (α + 3) (α + 4)


∣∣∣∣∣∣∣ .

The right hand side of the inequality (4) reduces to 5α
4(α+1)(α+2)(α+3) . Hence, we have the following inequality

1
32

∣∣∣∣∣∣∣ α2 + 3α + 32
(α + 1) (α + 2)

−
1

2 (α + 5)

α + (α + 6)
(
α4 + 14α3 + 91α2 + 334α + 640

)
(α + 1) (α + 2) (α + 3) (α + 4)


∣∣∣∣∣∣∣ ≤ 5α

4 (α + 1) (α + 2) (α + 3)
.

(6)

As one can see in Figure 1, the result of our appropriate choices in Example 2.3 is provided in the inequality (4).

0 2 4 6 8 10 12 14 16 18 20
0

0.01

0.02

0.03

0.04

0.05

0.06

The left hand side of the inequality (6)

The right hand side of the inequality (6)

Figure 1: Curves for the result of Example 2.3 calculated and drawn with MATLAB.



F. Hezenci, H. Budak / Filomat 37:12 (2023), 3715–3724 3720

Remark 2.4. Let us consider α = 1 in Theorem 2.2. Then, the following Simpson type inequality holds:∣∣∣∣∣∣∣∣∣
1
6

[
F

(
η
)
+ 4F

(η + µ
2

)
+ F

(
µ
)]
−

1
µ − η

µ∫
η

F (ξ) dξ

∣∣∣∣∣∣∣∣∣ ≤
(
µ − η

)3

1152

[∣∣∣F′′′ (η)∣∣∣ + ∣∣∣F′′′ (µ)∣∣∣] ,
which is given by [20, (3) of Remark 3.1].

Theorem 2.5. Suppose that the assumptions of Lemma 2.1 hold. Suppose also that the function |F′′′|q, q > 1 is
convex on [η, µ]. Then, the following inequalities hold:∣∣∣∣∣∣ 1

(α + 1) (α + 2)

[
F

(
η
)
+

(
α2 + 3α

)
F

(η + µ
2

)
+ F

(
µ
)]
−

2α−1Γ (α + 1)(
µ − η

)α [
Jαη+µ

2 −
F

(
η
)
+ Jαη+µ

2 +
F

(
µ
)]∣∣∣∣∣∣

≤

(
µ − η

)3

16 (α + 1) (α + 2)
φ

(
α, p

) 
3

∣∣∣F′′′ (η)∣∣∣q + ∣∣∣F′′′ (µ)∣∣∣q
4


1
q

+


∣∣∣F′′′ (η)∣∣∣q + 3

∣∣∣F′′′ (µ)∣∣∣q
4


1
q


≤

(
µ − η

)3

22+ 2
q (α + 1) (α + 2)

φ
(
α, p

) [∣∣∣F′′′ (η)∣∣∣ + ∣∣∣F′′′ (µ)∣∣∣]
Here, 1

p +
1
q = 1 and

φ
(
α, p

)
=

1∫
0

(∣∣∣ξα+2
− ξ2

∣∣∣p dξ
) 1

p .

Proof. By applying Hölder inequality in the inequality (5), it follows∣∣∣∣∣∣ 1
(α + 1) (α + 2)

[
F

(
η
)
+

(
α2 + 3α

)
F

(η + µ
2

)
+ F

(
µ
)]
−

2α−1Γ (α + 1)(
µ − η

)α [
Jαη+µ

2 −
F

(
η
)
+ Jαη+µ

2 +
F

(
µ
)]∣∣∣∣∣∣

≤

(
µ − η

)3

16 (α + 1) (α + 2)


1∫

0

(∣∣∣ξα+2
− ξ2

∣∣∣p dξ
) 1

p


1∫

0

∣∣∣∣∣F′′′ (ξ2µ + (2 − ξ
2

)
η
)∣∣∣∣∣q dξ


1
q

+

1∫
0

(∣∣∣ξα+2
− ξ2

∣∣∣p dξ
) 1

p


1∫

0

∣∣∣∣∣F′′′ (ξ2η + (2 − ξ
2

)
µ
)∣∣∣∣∣q dξ


1
q
 .

By using convexity of |F′′′|q, we obtain∣∣∣∣∣∣ 1
(α + 1) (α + 2)

[
F

(
η
)
+

(
α2 + 3α

)
F

(η + µ
2

)
+ F

(
µ
)]
−

2α−1Γ (α + 1)(
µ − η

)α [
Jαη+µ

2 −
F

(
η
)
+ Jαη+µ

2 +
F

(
µ
)]∣∣∣∣∣∣

≤

(
µ − η

)3

16 (α + 1) (α + 2)

1∫
0

(∣∣∣ξα+2
− ξ2

∣∣∣p dξ
) 1

p
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×




1∫
0

[
ξ
2

∣∣∣F′′′ (µ)∣∣∣q + 2 − ξ
2

∣∣∣F′′′ (η)∣∣∣q] dξ


1
q

+


1∫

0

[
ξ
2

∣∣∣F′′′ (η)∣∣∣q + 2 − ξ
2

∣∣∣F′′′ (µ)∣∣∣q] dξ


1
q


=

(
µ − η

)3

16 (α + 1) (α + 2)

1∫
0

(∣∣∣ξα+2
− ξ2

∣∣∣p dξ
) 1

p


3

∣∣∣F′′′ (η)∣∣∣q + ∣∣∣F′′′ (µ)∣∣∣q
4


1
q

+


∣∣∣F′′′ (η)∣∣∣q + 3

∣∣∣F′′′ (µ)∣∣∣q
4


1
q
 .

Let us consider η1 = 3
∣∣∣F′′′ (η)∣∣∣q , µ1 =

∣∣∣F′′′ (µ)∣∣∣q , η2 =
∣∣∣F′′′ (η)∣∣∣q and µ2 = 3

∣∣∣F′′′ (µ)∣∣∣q . Using the facts that,

n∑
k=1

(
ηk + µk

)s
≤

n∑
k=1

ηs
k +

n∑
k=1

µs
k, 0 ≤ s < 1

and 1 + 3
1
q ≤ 4. The desired result can be obtained straightforwardly. This finalizes the proof of Theo-

rem 2.5.

Corollary 2.6. Consider α = 1 in Theorem 2.5. Then, we can obtain∣∣∣∣∣∣∣∣∣
1
6

[
F

(
η
)
+ 4F

(η + µ
2

)
+ F

(
µ
)]
−

1
µ − η

µ∫
η

F (ξ) dξ

∣∣∣∣∣∣∣∣∣
≤

(
µ − η

)3

96
β
(
2p + 1, p + 1

) 
3

∣∣∣F′′′ (η)∣∣∣q + ∣∣∣F′′′ (µ)∣∣∣q
4


1
q

+


∣∣∣F′′′ (η)∣∣∣q + 3

∣∣∣F′′′ (µ)∣∣∣q
4


1
q


≤

(
µ − η

)3

3 · 23+ 2
q

β
(
2p + 1, p + 1

) [∣∣∣F′′′ (η)∣∣∣ + ∣∣∣F′′′ (µ)∣∣∣] .
Theorem 2.7. Suppose that the assumptions of Lemma 2.1 hold. Suppose also that the function |F′′′|q, q ≥ 1 is
convex on [η, µ]. Then, the following inequality∣∣∣∣∣∣ 1

(α + 1) (α + 2)

[
F

(
η
)
+

(
α2 + 3α

)
F

(η + µ
2

)
+ F

(
µ
)]
−

2α−1Γ (α + 1)(
µ − η

)α [
Jαη+µ

2 −
F

(
η
)
+ Jαη+µ

2 +
F

(
µ
)]∣∣∣∣∣∣

≤

(
µ − η

)3 α

48 (α + 1) (α + 2) (α + 3)


3 (α + 3)

∣∣∣F′′′ (µ)∣∣∣q + (5α + 23)
∣∣∣F′′′ (η)∣∣∣q

8 (α + 4)


1
q

+

3 (α + 3)
∣∣∣F′′′ (η)∣∣∣q + (5α + 23)

∣∣∣F′′′ (µ)∣∣∣q
8 (α + 4)


1
q


is valid.
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Proof. With the aid of the power-mean inequality in (5), we get∣∣∣∣∣∣ 1
(α + 1) (α + 2)

[
F

(
η
)
+

(
α2 + 3α

)
F

(η + µ
2

)
+ F

(
µ
)]
−

2α−1Γ (α + 1)(
µ − η

)α [
Jαη+µ

2 −
F

(
η
)
+ Jαη+µ

2 +
F

(
µ
)]∣∣∣∣∣∣

≤

(
µ − η

)3

16 (α + 1) (α + 2)




1∫
0

∣∣∣ξα+2
− ξ2

∣∣∣ dξ


1− 1
q


1∫
0

∣∣∣ξα+2
− ξ2

∣∣∣ ∣∣∣∣∣F′′′ (ξ2µ + (2 − ξ
2

)
η
)∣∣∣∣∣q dξ


1
q

+


1∫

0

∣∣∣ξα+2
− ξ2

∣∣∣ dξ


1− 1
q


1∫
0

∣∣∣ξα+2
− ξ2

∣∣∣ ∣∣∣∣∣F′′′ (ξ2η + (2 − ξ
2

)
µ
)∣∣∣∣∣q dξ


1
q
 .

From the fact that |F′′′|q is convex, it follows∣∣∣∣∣∣ 1
(α + 1) (α + 2)

[
F

(
η
)
+

(
α2 + 3α

)
F

(η + µ
2

)
+ F

(
µ
)]
−

2α−1Γ (α + 1)(
µ − η

)α [
Jαη+µ

2 −
F

(
η
)
+ Jαη+µ

2 +
F

(
µ
)]∣∣∣∣∣∣

≤

(
µ − η

)3

16 (α + 1) (α + 2)


1∫

0

∣∣∣ξα+2
− ξ2

∣∣∣ dξ


1− 1
q



1∫
0

∣∣∣ξα+2
− ξ2

∣∣∣ [ξ
2

∣∣∣F′′′ (µ)∣∣∣q + 2 − ξ
2

∣∣∣F′′′ (η)∣∣∣q] dξ


1
q

+


1∫

0

∣∣∣ξα+2
− ξ2

∣∣∣ [ξ
2

∣∣∣F′′′ (η)∣∣∣q + 2 − ξ
2

∣∣∣F′′′ (µ)∣∣∣q] dξ


1
q


=

(
µ − η

)3

16 (α + 1) (α + 2)

(
α

3 (α + 3)

)1− 1
q
( α

8 (α + 4)

∣∣∣F′′′ (µ)∣∣∣q + α (5α + 23)
24 (α + 3) (α + 4)

∣∣∣F′′′ (η)∣∣∣q) 1
q

+

(
α

8 (α + 4)

∣∣∣F′′′ (η)∣∣∣q + α (5α + 23)
24 (α + 3) (α + 4)

∣∣∣F′′′ (µ)∣∣∣q) 1
q
 ,

which completes the proof of Theorem 2.7.

Remark 2.8. If we choose α = 1 in Theorem 2.7, then the following Simpson type inequality holds:∣∣∣∣∣∣∣∣∣
1
6

[
F

(
η
)
+ 4F

(η + µ
2

)
+ F

(
µ
)]
−

1
µ − η

µ∫
η

F (ξ) dξ

∣∣∣∣∣∣∣∣∣
≤

(
µ − η

)3

1152


3

∣∣∣F′′′ (µ)∣∣∣q + 7
∣∣∣F′′′ (η)∣∣∣q

10


1
q

+

3
∣∣∣F′′′ (η)∣∣∣q + 7

∣∣∣F′′′ (µ)∣∣∣q
10


1
q
 ,

which is given by [20, (2) of Remark 3.1].
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3. Conclusion

An identity is investigated Riemann–Liouville fractional integral. By using this equality, it is established
fractional Simpson-like type inequalities for three times differentiable function. With the help of special
choices in our results, previously obtained Simpson type inequalities are found. Moreover, we present
mathematical example to provide the main results. In future studies of the mathematicians, improvement
or generalization of our results can be researched by using different kind of convex function classes or other
types fractional integral operators.
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