Published by Faculty of Sciences and Mathematics, University of Niš, Serbia

Injective edge coloring of product graphs and some complexity results

Bhanupriya C K ${ }^{\text {a,b }}$, Charles Dominic ${ }^{\text {c,d,* }}$, Sunitha M S ${ }^{\text {a }}$
${ }^{a}$ Department of Mathematics, NIT Calicut, Kozhikode-673 601, Kerala, India
${ }^{b}$ Department of Mathematics, Mar Thoma College Chungathara, Malappuram-679334, Kerala, India
${ }^{c}$ Department of Mathematics, CHRIST(Deemed to be University), Bengaluru- 560029, Karnataka, India
${ }^{d}$ Department of Mathematical Sciences, University of Essex, Colchester, Essex CO4 3SQ, U.K

Abstract

Three edges e_{1}, e_{2} and e_{3} in a graph G are consecutive if they form a cycle of length 3 or a path in this order. A k-injective edge coloring of a graph G is an edge coloring of G, (not necessarily proper), such that if edges e_{1}, e_{2}, e_{3} are consecutive, then e_{1} and e_{3} receive distinct colors. The minimum k for which G has a k-injective edge coloring is called the injective edge chromatic index, denoted by $\chi_{i}^{\prime}(G)$ [4]. In this article, the injective edge chromatic index of the resultant graphs by the operations union, join, Cartesian product and corona product of G and H are determined, where G and H are different classes of graphs. Also for any two arbitrary graphs G and H, bounds for $\chi_{i}^{\prime}(G+H)$ and $\chi_{i}^{\prime}(G \odot H)$ are obtained. Moreover the injective edge coloring problem restricted to (2,3,r)-triregular graph, ($2,4, r$)-triregular graph and ($2, r$)-biregular graph, $r \geq 3$ are also been demonstrated to be NP-complete.

1. Introduction

All graphs considered in this article are simple, finite and undirected. The sets V and E represent the vertex set and edge set of a graph G and the symbols $\Delta(G), \omega(G)$ and $N(u)$ denote the maximum degree, clique number of a graph and neighborhood set of a vertex $u \in V(G)$ respectively. For further graph-theoretic notations and terminologies refer [12] and [15].

An injective coloring of G is a coloring of the vertices of G such that for every vertex $v \in V(G)$, all the neighbors of v are assigned distinct colors, i.e., if x and y are two distinct neighbors of v, then $c(x) \neq c(y)$. The smallest integer k such that G has an injective k-coloring is the injective chromatic number of G, denoted by $\chi_{i}(G)$. Injective coloring of graphs was introduced by Hahn et al. in [11] and was originated from complexity theory on random access machines, and can be applied in the theory of error correcting codes [11]. In the same paper, they proved that, for $k \geq 3$, it is NP-complete to decide whether the injective chromatic number of a graph is at most k. Since then, many researchers studied on this coloring number and found many beautiful results.

[^0]Similar to the injective coloring, an edge version of the injective coloring was introduced by Cardoso et al. in [3]. An Injective edge coloring (i-edge coloring) of a graph G is a coloring, $c: E(G) \rightarrow C$, such that if e_{1}, e_{2} and e_{3} are consecutive edges in G, then $c\left(e_{1}\right) \neq c\left(e_{3}\right)$. The injective edge coloring number or the injective edge chromatic index of a graph $G, \chi_{i}^{\prime}(G)$, is the minimum number of colors permitted in an i-edge coloring. In the same paper, they gave the exact values of the injective edge coloring number for several classes of graphs, such as path, complete bipartite graph, complete graph and so on. And further, they also gave some bounds on injective edge coloring number of some graph and proved that checking whether $\chi_{i}^{\prime}(G)=k$ is NP-complete.

A graph G is called an ω^{\prime} edge injective colorable (or perfect EIC-) graph if $\chi_{i}^{\prime}(G)=\omega^{\prime}$, see [16]. In [16], Yue et al. constructed some perfect EIC-graphs, and gave a sharp bound of the injective coloring number of a 2-connected graph with some forbidden conditions. Also, they characterize some perfect EIC-graph classes. Moreover, Bu and Qi [1] and Ferdjallah [6] studied the injective edge coloring of sparse graphs in terms of the maximum average degree. Also, the injective edge coloring of subcubic graphs is well studied by Ferdjallah in [7] the authors also obtained the upper bounds for injective edge chromatic index and presented the relationships of the injective edge-coloring with other colorings of graphs.

In [13] Kostochka et al. provided, how large can be the injective edge chromatic index of G in terms of the maximum degree of G when there is a restriction on girth and/or chromatic number of G. They also compare the bounds with analogous bounds on the strong chromatic index. In the same year, Y Li and L Chen [14] gave the injective edge coloring numbers of generalized Petersen graphs $P(n, 1)$ and $P(n, 2)$. They determined the exact values of injective edge coloring numbers for $P(n, 1)$ with $n \geq 3$, and for $P(n, 2)$ with $4 \leq n \leq 7$. For $n \geq 8$, they gave that $4 \leq \chi_{i}^{\prime}(P(n, 2)) \leq 5$. In [8], Foucaud et al. proved that injective 3-Edge-Coloring is NP-complete, even for triangle-free cubic graphs, planar subcubic graphs of arbitrarily large girth, and planar bipartite subcubic graphs of girth 6. Injective 4-Edge-Coloring remains NP-complete for cubic graphs. Also provided is that for any $k \geq 45$, injective k-Edge-Coloring remains NP-complete even for graphs of maximum degree at most $5 \sqrt{3 k}$. Further given that injective k-Edge-Coloring is linear-time solvable on graphs of bounded tree width. Moreover, they proved that all planar bipartite subcubic graphs of girth at least 16 are injectively 3-edge-colorable and any graph of maximum degree at most $\frac{k}{2}$ is injectively k-edge-colorable.
Some results which are useful in this article are given as follows.
Proposition 1.1 ([3]). Let $P_{n}\left(C_{n}\right)$ be a path (cycle) of order $n, K_{m, n}$ be a complete bipartite graph, and W_{n} be a wheel graph on n vertices. Then
i. $\chi_{i}^{\prime}\left(P_{n}\right)=2$, for $n \geq 4$,
ii. $\chi_{i}^{\prime}\left(C_{n}\right)=\left\{\begin{array}{l}2 \text { if } n \equiv 0 \bmod 4, \\ 3 \text { otherwise }\end{array}\right.$
iii. $\chi_{i}^{\prime}\left(K_{m, n}\right)=\min \{m, n\}$ and
iv. For $n \geq 4, \chi_{i}^{\prime}\left(W_{n}\right)=\left\{\begin{array}{l}6 \text { if } n \text { is even, } \\ 4 \text { if } n \text { is odd and } n-1 \equiv 0 \bmod 4, \\ 5 \text { if } n \text { is odd and } n-1 \not \equiv 0 \bmod 4 .\end{array}\right.$

Proposition 1.2 ([3]). If H is a subgraph of a connected graph G, then $\chi_{i}^{\prime}(H) \leq \chi_{i}^{\prime}(G)$.

2. Results on injective edge coloring

The definition of the bi-star graph $B_{m, n}$ is the graph obtained from K_{2} by joining m pendant edges to one end and n pendant edges to the other end of K_{2}. The union $G=G_{1} \cup G_{2}$ of two graphs with disjoint vertex sets V_{1} and V_{2} and edge sets E_{1} and E_{2} is the graph with vertex set $V=V_{1} \cup V_{2}$ and edge set $E=E_{1} \cup E_{2}$.

Corollary 2.1. For any bi-star graph $G \cong B(m, n), \chi_{i}^{\prime}(G)=2$.

Corollary 2.2. Let $G=\cup_{j=1}^{m}\left(G_{j}\right)$. Then $\chi_{i}^{\prime}(G)=\max \left\{\chi_{i}^{\prime}\left(G_{j}\right): j=1,2,3, \cdots, m\right\}$.
In this section, the exact values of the injective edge chromatic index of the join of various kinds of graphs and a lower bound for the injective edge chromatic index of the join of two arbitrary graphs are discussed. In general, natural numbers are used as colors of edges. From [12] the join of G_{1} and G_{2}, denoted by $G_{1}+G_{2}$, has vertex set $V=V_{1} \cup V_{2}$ and edge set $E=E_{1} \cup E_{2} \cup\left\{x y: x \in V_{1}, y \in V_{2}\right\}$. Also we have $\overline{G_{1}+G_{2}}=G_{1} \cup G_{2}$ [5]. Now moving to some results on $G+H$, let $u_{1}, u_{2}, \cdots, u_{n}$ be the vertices of G and $v_{1}, v_{2}, \cdots, v_{n}$ be the vertices of H. In Figure 2.1, $u_{i} u_{j}, u_{j} v_{k}, v_{k} v_{l}$ form consecutive edges. Where $u_{i} u_{j}$, is an edge in G and $v_{k} v_{l}$ is an edge in H. Thus we can say that no color of the edges in G can be the color of edges in H. Therefore the lower bound of injective edge chromatic index of $G+H$.

Proposition 2.3. $\chi_{i}^{\prime}(G+H) \geq \chi_{i}^{\prime}(G)+\chi_{i}^{\prime}(H)$.
Proposition 2.4. $\chi_{i}^{\prime}\left(\overline{G_{1}+G_{2}}\right)=\max \left\{\chi_{i}^{\prime}\left(G_{1}\right), \chi_{i}^{\prime}\left(G_{2}\right)\right\}$.

Figure 2.1

Figure 2.2

Figure 2.3

In particular we have, $K_{n}+K_{m}=K_{m+n}$ and $\overline{K_{n}}+\overline{K_{m}}=K_{m, n}$ [12]. In general a complete k-partite graph $K_{t_{1}, t_{2}, \cdots, t_{k}}=\overline{K_{t_{1}}}+\overline{K_{t_{2}}}+\cdots+\overline{K_{t_{k}}}[10]$.

Proposition 2.5. $\chi_{i}^{\prime}\left(K_{n}+K_{m}\right)=\frac{(m+n)(m+n-1)}{2}$ where $m, n \geq 1$.
Proposition 2.6. $\chi_{i}^{\prime}\left(\overline{K_{n}}+\overline{K_{m}}\right)=\min \{m, n\}$ where $m, n \geq 1$.
Proposition 2.7. $\chi_{i}^{\prime}\left(\overline{K_{t_{1}}}+\overline{K_{t_{2}}}+\cdots+\overline{K_{t_{k}}}\right)=\min \left\{t_{1}, t_{2}, \cdots, t_{k}\right\}$ where $t_{i} \geq 1,1 \leq i \leq k$.
A fan graph $F_{m, n}$ is defined as the graph join $\overline{K_{m}}+P_{n}$, where $\overline{K_{m}}$ is the empty graph on m nodes and P_{n} is the path graph on n nodes (see [10]). Next results are on the join of $K_{n}, \overline{K_{n}}, P_{n}$ and C_{n}.

Theorem 2.8. $\chi_{i}^{\prime}\left(K_{n}+\overline{K_{m}}\right)=n+\frac{n(n-1)}{2}$ where $m, n \geq 1$.
Proof. Let $u_{1}, u_{2}, \cdots, u_{n}$ be the vertices of K_{n} and $v_{1}, v_{2}, \cdots, v_{m}$ be the vertices of $\overline{K_{m}}$. As the vertices $u_{1}, u_{2}, \cdots, u_{n}$ form an induced complete subgraph of $K_{n}+\overline{K_{m}}$, the edges $u_{i} u_{j}, i \neq j, i, j=1,2, \cdots, n$ are colored with distinct $\frac{n(n-1)}{2}$ colors. Now the edges $u_{i} u_{j}, u_{j} v_{k}, v_{k} u_{i}$ in Figure 2.2 and $u_{i} u_{j}, u_{j} v_{k}, v_{k} u_{l}$ in Figure 2.3 form consecutive edges and so no color of $u_{i} u_{j}$ can be the color of $u_{k} v_{l}, i, j, l=1,2, \cdots, n$ and $k=1,2, \cdots, m$. Next we can see that $v_{1} u_{i}, u_{i} u_{j}, u_{j} v_{1}, i, j=1,2, \cdots, n$ form consecutive edges. Thus the edges $v_{1} u_{i}, i=1,2, \cdots, n$ are colored with a new set of n colors. The same set of colors are used to color the edges $v_{k} u_{i}, k=2,3, \cdots, m$ and $i=1,2, \cdots, n$. That is for a fixed $k, 1 \leq k \leq m$, the edges $v_{k} u_{i}$ is colored with color $\frac{n(n-1)}{2}+i, 1 \leq i \leq n$. This gives the injective edge chromatic index of $K_{n}+\overline{K_{m}}$.

Theorem 2.9. $\chi_{i}^{\prime}\left(K_{n}+P_{m}\right)=\frac{n^{2}+3 n+4}{2}$ where $n \geq 1, m \geq 3$.
Proof. Let $u_{1}, u_{2}, \cdots, u_{n}$ be the vertices of K_{n} and $v_{1}, v_{2}, \cdots, v_{m}$ be the vertices of P_{m}. From Proposition 2.3, it is clear that $\chi_{i}^{\prime}\left(K_{n}+P_{m}\right) \geq \chi_{i}^{\prime}\left(K_{n}\right)+\chi_{i}^{\prime}\left(P_{m}\right)=\frac{n(n-1)}{2}+2$. First color the edges $u_{i} u_{j}$ and $v_{k} v_{l}, i, j=1,2, \cdots, n$ and $k, l=1,2, \cdots, m$ with distinct $\frac{n(n-1)}{2}+2$ colors. Now from Figure 2.2 and Figure 2.3 we can see that, no color the edges $u_{i} u_{j}$ and $v_{k} v_{l}$ can be the color of $u_{r} v_{s}, i, j, r=1,2, \cdots, n$ and $k, l, s=1,2, \cdots, m$. Also for a fixed k, the vertices v_{k}, u_{i} and u_{j} form an induced K_{3} for any $i \neq j$, thus the edges $v_{k} u_{i}$ and $v_{k} u_{j}$ are colored with distinct colors. Further, the edges $u_{i} v_{k}, v_{k} v_{k+1}$ and $v_{k+1} u_{j}$ form consecutive edges, thus no color of $v_{k} u_{i}$ can be the color of $v_{k+1} u_{j}$. Now color the edges $u_{i} v_{j}, i=1,2, \cdots, n, j=1,2, \cdots, m$ as follows.

- For an odd k, the edge $v_{k} u_{i}$ is colored with color $\frac{n^{2}-n+4}{2}+i$.
- For an even k, the edge $v_{k} u_{i}$ is colored with color $\frac{n^{2}+n+4}{2}+i$.

Thus distinct $2 n$ colors are needed to color the edges $u_{i} v_{k}$. Hence $\chi_{i}^{\prime}\left(K_{n}+P_{m}\right)=\frac{n(n-1)}{2}+2+2 n=\frac{n^{2}+3 n+4}{2}$.
Theorem 2.10. For a fan graph $F_{m, n}$, the injective edge chromatic index is, $\chi_{i}^{\prime}\left(F_{m, n}\right)=\left\{\begin{array}{l}\chi_{i}^{\prime}\left(P_{n}\right)+2 m \text { if } 2 m \leq n, \\ \chi_{i}^{\prime}\left(P_{n}\right)+n \text { if } n<2 m .\end{array}\right.$
Proof. We have $F_{m, n}=\overline{K_{m}}+P_{n}$. Let $u_{1}, u_{2}, \cdots, u_{m}$ be the vertices of $\overline{K_{m}}$ and $v_{1}, v_{2}, \cdots, v_{n}$ be the vertices of P_{n}. Since the edges $u_{i} v_{j}, v_{j} v_{j+1}$ and $v_{j+1} u_{i}$ form consecutive edges, no color of $u_{i} v_{j}$ can be the color of $u_{i} v_{j+1}$. Similarly, $u_{i} v_{j}, v_{j} u_{k}$, and $u_{k} v_{l}$ form consecutive edges, no color of $u_{i} v_{j}$ can be the color of $u_{k} v_{l}$. Also, no color of the edges $v_{j} v_{j+1}$ (the edges of P_{n}) can be the color of $u_{i} v_{k}$. Since the vertices u_{i}, v_{j} and v_{j+1} form an induced K_{3}. With these arguments color the edges in each case.
Case 1. Assume that $2 m \leq n$.

- For a fixed i color the edges $u_{i} v_{j}$ with color $2 i-1$ for odd j and color $2 i$ for even j. Thus $2 m$ distinct colors are used to color the edges $u_{i} v_{j}$
- Now color the edges $v_{j} v_{j+1}$ (the edges of $\left.P_{n}\right)$ with new set of $\chi_{i}^{\prime}\left(P_{n}\right)$ colors.

Case 2. Assume that $n<2 m$.

- For a fixed j color the edges $v_{j} u_{i}$ with the color j. Thus n distinct colors are used to color the edges $u_{i} v_{j}$.
- Now color the edges $v_{j} v_{j+1}$ (the edges of P_{n}) with a new set of $\chi_{i}^{\prime}\left(P_{n}\right)$ colors.

The above coloring procedure produces the injective edge chromatic index of the graph $F_{m, n}$.
Illustration 2.11. Injective edge coloring of $F_{2,5}$ and $F_{3,2}$.

Color 1 ■Color 2 - Color 3 Color 4 ■Color 5 Color 6
Figure 2.4: Injective Edge Coloring of $F_{2,5}$

Figure 2.5: Injective Edge Coloring of $F_{3,2}$

Theorem 2.12. For $n \geq 1$ and $m \geq 3, \chi_{i}^{\prime}\left(K_{n}+C_{m}\right)=\left\{\begin{array}{l}\frac{n(n-1)}{2}+\chi_{i}^{\prime}\left(C_{m}\right)+2 n \text { if m even, } \\ \frac{n(n-1)}{2}+\chi_{i}^{\prime}\left(C_{m}\right)+3 n \text { if } m \text { odd. }\end{array}\right.$
Proof. Let $u_{1}, u_{2}, \cdots, u_{n}$ be the vertices of K_{n} and $v_{1}, v_{2}, \cdots, v_{m}$ be the vertices of C_{m}. First color the edges $u_{i} u_{j}, i, j=1,2, \cdots, n$ of K_{n} with distinct $\frac{n(n-1)}{2}$ colors and color the edges $v_{k} v_{l}, k, l=1,2, \cdots, m$ of C_{m} with $\chi_{i}^{\prime}\left(C_{m}\right)$ new colors. From Figure 2.2 and Figure 2.3 we can see that no color of the edges $u_{i} u_{j}$ (edges of K_{n}) and $v_{k} v_{l}$ (edges of C_{m}) can be the color of the edges $u_{i} v_{k}$ (the edges joining vertices of K_{n} and C_{m}). Now for a fixed i, the vertices v_{i}, u_{j} and u_{k} form an induced K_{3}, thus the edges $v_{i} u_{j}, j=1,2, \cdots, n$, colored with distinct n colors. Also for an edge $v_{i} v_{j}$ of C_{m}, the edges $v_{i} u_{k}$ and $v_{j} u_{l}$ are colored with distinct colors, since $u_{k} v_{i}-v_{i} v_{j}-v_{j} u_{l}$ form consecutive edges. Now color the edges $u_{i} v_{k}$ as follows.
Case 1. Assume that m is odd.

- For $i=2 k+1, i<m$, the edges $v_{i} u_{j}$ are colored with color j.
- For $i=2 k, i<m$, the edges $v_{i} u_{j}$ are colored with color $n+j$.
- Color the edges $v_{m} u_{j}$ with the colors $2 n+j$

Case 2. Assume that m is even.

- For $i=2 k+1, i<m$, the edges $v_{i} u_{j}$ are colored with color j.
- For $i=2 k, i \leq m$, the edges $v_{i} u_{j}$ are colored with color $n+j$.

The coloring described above produces the injective edge chromatic index of $K_{n}+C_{m}$.
Theorem 2.13. $\chi_{i}^{\prime}\left(P_{n}+P_{m}\right)=2 \min \{m, n\}+\chi_{i}^{\prime}\left(P_{n}\right)+\chi_{i}^{\prime}\left(P_{m}\right)$ where $m, n \geq 2$.
Proof. Let $u_{1}, u_{2}, \cdots, u_{n}$ be the vertices of P_{n} and $v_{1}, v_{2}, \cdots, v_{m}$ be the vertices of P_{m}. First color the edges $u_{i} u_{j}, i, j=1,2, \cdots, n$ with $\chi_{i}^{\prime}\left(P_{n}\right)$ colors and the edges $v_{k} v_{l}, k, l=1,2, \cdots, m$ with $\chi_{i}^{\prime}\left(P_{m}\right)$ colors.
Now let $m \leq n$. We start with the coloring of $v_{1} u_{j}, j=1,2, \cdots, n$. The vertices v_{1}, u_{i} and u_{i+1} form an induced K_{3}, thus the edges $v_{1} u_{i}$ and $v_{1} u_{i+1}$ are colored with two distinct colors. Similarly for a fixed k, the edges $v_{k} u_{i}, i=1,2, \cdots, n$ are colored with two distinct colors. Now $v_{r} u_{i}, u_{i} v_{l}$ and $v_{l} u_{j}$ form consecutive edges. Therefore no $v_{r} u_{i}$ and $v_{l} u_{j}, r \neq l, r, l=1,2, \cdots, m$ and $i, j=1,2, \cdots, n$ have the same colors. Hence the edges $u_{i} v_{j}$ are colored as follows.

- Color the edges $v_{1} u_{i}$ with color 1 and 2 alternatively, for $i=1,2, \cdots, n$
- Color the edges $v_{2} u_{i}$ with color 3 and 4 alternatively, for $i=1,2, \cdots, n$
- Color the edges $v_{m} u_{i}$ with color $2 m-1$ and $2 m$ alternatively, for $i=1,2, \cdots, n$

The coloring described above produces the injective edge chromatic index of $P_{n}+P_{m}$.
Illustration 2.14. Consider the graph $P_{n}+P_{m}$ with $m \leq n$.

-Color 1 - Color 2 Color 3 -Color 4 Color 5 -Color 6■ Color $7 ■$ Color 8
Color 9 - Color 10 Color 11-Color 12
Figure 2.6: Injective edge coloring of $P_{n}+P_{m}$

Theorem 2.15. For any $m, n \geq 3, \chi_{i}^{\prime}\left(C_{n}+C_{m}\right)=\left\{\begin{array}{l}\chi_{i}^{\prime}\left(C_{n}\right)+\chi_{i}^{\prime}\left(C_{m}\right)+2 \min \{m, n\} \text { if } m \text { and } n \text { are even, } \\ \chi_{i}^{\prime}\left(C_{n}\right)+\chi_{i}^{\prime}\left(C_{m}\right)+3 \min \{m, n\} \text { if } m \text { and } n \text { are odd, } \\ \chi_{i}^{\prime}\left(C_{n}\right)+\chi_{i}^{\prime}\left(C_{m}\right)+2 n \text { if } m \text { even, } n \text { odd and } 2 n \leq 3 m, \\ \chi_{i}^{\prime}\left(C_{n}\right)+\chi_{i}^{\prime}\left(C_{m}\right)+3 m \text { if } m \text { even, } n \text { odd and } 3 m<2 n .\end{array}\right.$
Proof. Let $u_{1}, u_{2}, \cdots, u_{n}$ be the vertices of C_{n} and $v_{1}, v_{2}, \cdots, v_{m}$ be the vertices of C_{m}. The edges $u_{i} u_{j}$, $i, j=1,2, \cdots, n$ are colored with $\chi_{i}^{\prime}\left(C_{n}\right)$ colors and the edges $v_{k} v_{l}, k, l=1,2, \cdots, m$ are colored with $\chi_{i}^{\prime}\left(C_{m}\right)$ colors. From Figure 2.2 and Figure 2.3, we can see that no color of the edges $u_{i} u_{j}$ (edges of C_{n}) and $v_{k} v_{l}$ (edges of C_{m}) can be the color of the edges $u_{i} v_{k}$ (the edges joining vertices of C_{n} and C_{m}). For a fixed i, the vertices u_{i}, v_{j} and v_{j+1} form an induced K_{3}. So the edges $u_{i} v_{j}, 1 \leq j \leq m$, are colored with at least two colors. Also the edges $v_{j} u_{i}, u_{i} u_{i+1}$ and $u_{i+1} v_{k}$ form consecutive edges. Thus no color of the edges $u_{i} v_{j}$ is the color of the edges $u_{i+1} v_{k}$. With these arguments, the following cases describe the coloring of the edges $u_{i} v_{j}$.
Case 1. Assume that m and n are even and $m \leq n$.

- For odd $i, 1 \leq i \leq n$, color the edges $u_{i} v_{j}$ with color $j, j=1,2, \cdots, m$.
- For even $i, 1 \leq i \leq n$, color the edges $u_{i} v_{j}$ with color $m+j, j=1,2, \cdots, m$.

Case 2. Assume that m and n are odd and $m \leq n$.

- For odd $i, 1 \leq i<n$, color the edges $u_{i} v_{j}$ with color $j, j=1,2, \cdots, m$.
- For even $i, 1 \leq i<n$, color the edges $u_{i} v_{j}$ with color $m+j, j=1,2, \cdots, m$.
- For $i=n$, color the edges $u_{i} v_{j}$ with color $2 m+j, j=1,2, \cdots, m$.

Case 3. Assume that m even, n odd and $2 n \leq 3 m$.

- For odd $j, 1 \leq j \leq m$, color the edges $v_{j} u_{i}$ with color $i, i=1,2, \cdots, n$.
- For even $j, 1 \leq j \leq m$, color the edges $v_{j} u_{i}$ with color $n+i, i=1,2, \cdots, m$.

Case 4. Assume that m even, n odd and $3 m<2 n$.

- For odd $i, 1 \leq i<n$, color the edges $u_{i} v_{j}$ with color $j, j=1,2, \cdots, m$.
- For even $i, 1 \leq i<n$, color the edges $u_{i} v_{j}$ with color $m+j, j=1,2, \cdots, m$.
- For $i=n$, color the edges $u_{i} v_{j}$ with color $2 m+j, j=1,2, \cdots, m$.

The coloring described above produces the injective edge chromatic index of $C_{n}+C_{m}$.
Recall the definition of an n-Ladder graph [10] as $L_{n}=P_{2} \square P_{n}$, where P_{n} is a path of length n. Now the vertices of L_{n} be $u_{1}, u_{2}, \cdots, u_{n}$ for the first copy of P_{n} and $u_{n+1}, u_{n+2}, \cdots, u_{2 n}$ for the second copy of P_{n}. The next theorem gives the injective edge chromatic index of join of any two ladder graphs L_{n} and L_{m}.

Proposition 2.16 ([4]). $\chi_{i}^{\prime}\left(L_{1}\right)=1, \chi_{i}^{\prime}\left(L_{2}\right)=2$ and $\chi_{i}^{\prime}\left(L_{n}\right)=3$ for all $n \geq 3$.
Theorem 2.17. $\chi_{i}^{\prime}\left(L_{n}+L_{m}\right)=\chi_{i}^{\prime}\left(L_{n}\right)+\chi_{i}^{\prime}\left(L_{m}\right)+4$ for all m, n.
Proof. Without loss of generality assume that $m \leq n$. Let $u_{1}, u_{2}, \cdots, u_{n}, u_{n+1}, u_{n+2}, \cdots, u_{2 n}$ be the vertices of L_{n} and let $v_{1}, v_{2}, \cdots, v_{m}, v_{m+1}, v_{m+2}, \cdots, v_{2 m}$ be the vertices of L_{m}. By Proposition 2.3, $\chi_{i}^{\prime}\left(L_{n}+L_{m}\right) \geq \chi_{i}^{\prime}\left(L_{n}\right)+\chi_{i}^{\prime}\left(L_{m}\right)$. Now color the edges of L_{n} and L_{m} with $\chi_{i}^{\prime}\left(L_{n}\right)+\chi_{i}^{\prime}\left(L_{m}\right)$ colors.

Claim 1: No color of the edges $u_{i} u_{j}$ (edges of L_{n}) is the color of the edges $u_{k} v_{l}$ for $i, j, k=1,2, \cdots, 2 n$ and $l=1,2, \cdots, 2 m$.
For, let $u_{r} u_{s}$ be an edge of L_{n} with color c_{1} (say). Now the vertices u_{r}, u_{s} and v_{l} form an induced K_{3}, thus the color c_{1} cannot be assigned as the color of $u_{r} v_{l}$ or $u_{s} v_{l}$, for $l=1,2, \cdots, 2 m$. Also, the edges $u_{r} u_{s}, u_{s} v_{l}$ and $v_{l} u_{i}$ form consecutive edges, thus the color c_{1} cannot be assigned as the color of $v_{l} u_{i}$ for $1 \leq i \leq 2 n, i \neq r, s$ and $1 \leq l \leq 2 m$.

Claim 2: For a fixed i, at least two colors are needed to color the edges $u_{i} v_{l}, 1 \leq l \leq 2 m$.

Let $v_{l} v_{k}$ be an edge of L_{m}. Then the vertices u_{i}, v_{l} and v_{k} form an induced K_{3} in the graph $L_{n}+L_{m}$. Thus the edges $u_{i} v_{l}$ and $u_{i} v_{k}$ must receive distinct colors.
Also note that if there is an edge $u_{i} u_{j}$, then no color of the edges $u_{i} v_{l}$ can be the color of the edges $u_{j} v_{t}$ for $1 \leq l, t \leq 2 m$, for, the edges $v_{l} u_{i}, u_{i} u_{j}$ and $u_{j} v_{t}$ form consecutive edges.
From the above statement, together with Claim 1 and 2, it can be concluded that at least four colors are needed to color the edges $u_{k} v_{l}$. Now providing an injective edge coloring using $\chi_{i}^{\prime}\left(L_{n}\right)+\chi_{i}^{\prime}\left(L_{m}\right)+4$ colors shows that $\chi_{i}^{\prime}\left(L_{n}+L_{m}\right)=\chi_{i}^{\prime}\left(L_{n}\right)+\chi_{i}^{\prime}\left(L_{m}\right)+4$. The coloring is as follows.

- For $i=1,3,5, \cdots, i \leq n$ and $i=n+2, n+4, n+6, \cdots, i \leq 2 n$.
- Color the edges $u_{i} v_{k}$ with color 1 for $k=1,3,5, \cdots, k \leq n$ and $k=n+2, n+4, n+6, \cdots, k \leq 2 n$.
- Color the edges $u_{i} v_{k}$ with color 2 , for $k=2,4,6, \cdots, k \leq n$ and $k=n+1, n+3, n+5, \cdots, k \leq 2 n$.
- For $i=2,4,6, \cdots, i \leq n$ and $i=n+1, n+3, n+5, \cdots, i \leq 2 n$.
- Color the edges $u_{i} v_{k}$ with color 3 for $k=1,3,5, \cdots, k \leq n$ and $k=n+2, n+4, n+6, \cdots, k \leq 2 n$.
- Color the edges $u_{i} v_{k}$ with color 4 , for $k=2,4,6, \cdots, k \leq n$ and $k=n+1, n+3, n+5, \cdots, k \leq 2 n$.
- Color the edges $u_{i} u_{j}$ of L_{n} with $\chi_{i}^{\prime}\left(L_{n}\right)$ colors.
- Color the edges $v_{k} v_{l}$ of L_{m} with $\chi_{i}^{\prime}\left(L_{m}\right)$ colors.

In the next section, some results on injective edge chromatic index of Cartesian product of different classes of graphs are obtained. Recall from [12] that the Cartesian product of G_{1} and G_{2}, denoted by $G_{1} \times G_{2}$, has vertex set $V_{1} \times V_{2}$ and two vertices $u=\left(u_{1}, u_{2}\right)$ and $v=\left(v_{1}, v_{2}\right)$ are adjacent in $G_{1} \times G_{2}$ whenever $u_{1}=v_{1}$ and u_{2} adjacent to v_{2} or $u_{2}=v_{2}$ and u_{1} adjacent to v_{1}. Some results on the injective edge chromatic index of $P_{n} \square P_{m}$ are available in [4]. The following are few results on Cartesian product of P_{n}, C_{n} and K_{n} we have obtained.

Proposition 2.18 ([4]). $\chi_{i}^{\prime}\left(P_{n} \square P_{m}\right)=\left\{\begin{array}{l}3 \text { if } n \geq 3, m=2, \\ 4 \text { if } m, n \geq 4 .\end{array}\right.$
The Prism graph [10], denoted by Y_{n} is a graph corresponding to the skeleton of an n-prism and also Y_{n} is isomorphic to the graph Cartesian product $P_{2} \square C_{n}$. Further $P_{2} \square C_{n}$ is isomorphic to the generalized Petersen graph $P(n, 1)$. The injective edge chromatic index of the generalized Petersen graph $P(n, 1)$ is given below.

Proposition 2.19 ([14]). If $n \geq 6, \chi_{i}^{\prime}(P(n, 1))=\left\{\begin{array}{l}3 \text { if } n \equiv 0 \bmod 6, \\ 4 \text { otherwise. }\end{array} \quad\right.$ Moreover, $\chi_{i}^{\prime}(P(3,1))=6, \chi_{i}^{\prime}(P(4,1))=4$ and $\chi_{i}^{\prime}(P(5,1))=5$.

Theorem 2.20. Injective edge chromatic index of $P_{m} \square C_{n}$ is obtained as follows

1. For $n>5, \chi_{i}^{\prime}\left(P_{2} \square C_{n}\right)=\left\{\begin{array}{l}3 \text { if } n \equiv 0 \bmod 6, \\ 4 \text { otherwise. }\end{array} \quad\right.$ Moreover, $\chi_{i}^{\prime}\left(P_{2} \square C_{3}\right)=6, \chi_{i}^{\prime}\left(P_{2} \square C_{4}\right)=4$ and $\chi_{i}^{\prime}\left(P_{2} \square C_{5}\right)=$ 5.
2. For even $n, \chi_{i}^{\prime}\left(P_{3} \square C_{n}\right)=4$. Moreover $\chi_{i}^{\prime}\left(P_{3} \square C_{3}\right)=6$ and $\chi_{i}^{\prime}\left(P_{3} \square C_{5}\right)=5$.
3. $\chi_{i}^{\prime}\left(P_{m} \square C_{3}\right)=6$ if $m \geq 2$.
4. $\chi_{i}^{\prime}\left(P_{m} \square C_{n}\right)=4$ if $n \equiv 0 \bmod 4$ and $m \geq 3$.

Proof.

1. First part of the theorem directly follows from Proposition 2.19.
2. In general the graph $P_{3} \square C_{n}$ consists of 3 cycles $C_{n}^{i}, i=1,2,3$, where C_{n}^{i} is the $i^{\text {th }}$ copy of C_{n} (with C_{n}^{1} has vertices $u_{1}, u_{2}, \cdots, u_{n}, C_{n}^{2}$ has vertices $v_{1}, v_{2}, \cdots, v_{n}$ and C_{n}^{3} has vertices $w_{1}, w_{2}, \cdots, w_{n}$) and the paths $u_{i}-v_{i}-w_{i}, i=1,2,3$.
Case 1. Assume that n is even.
Here the graph $P_{3} \square P_{4}$ is a subgraph of $P_{3} \square C_{n}$ with $\chi_{i}^{\prime}\left(P_{3} \square P_{4}\right)=4$ (Proposition 2.18). Thus $\chi_{i}^{\prime}\left(P_{3} \square C_{n}\right) \geq$ 4. Now providing an injective edge coloring of $P_{3} \square C_{n}$ with 4 colors shows that $\chi_{i}^{\prime}\left(P_{3} \square C_{n}\right)=4$. The coloring in each cases are given below.
Subcase i. $n \equiv 0 \bmod 4$.

- Color the edges $u_{1} u_{2}, u_{2} u_{3}, \cdots, u_{n} u_{1}$ with colors 1 and 2 in the pattern $1,1,2,2,1,1, \cdots$.
- Color the edges $v_{2} v_{3}, v_{3} v_{4}, \cdots, v_{n} v_{1}, v_{1} v_{2}$, with colors 3 and 4 in the pattern $3,3,4,4,3,3, \cdots$.
- Color the edges $w_{1} w_{2}, w_{2} w_{3}, \cdots, w_{n} w_{1}$ with colors 1 and 2 in the pattern $2,2,1,1,2,2, \cdots$.
- For $i=1,5,9, \cdots$, color the edges $u_{i} v_{i}$ and $v_{i} w_{i}$ with color 4 .
- For $i=2,6,10, \cdots$, color the edges $u_{i} v_{i}$ and $v_{i} w_{i}$ with colors 1 and 2 respectively.
- For $i=3,7,11, \cdots$, color the edges $u_{i} v_{i}$ and $v_{i} w_{i}$ with color 3 .
- For $i=4,8,12, \cdots$, color the edges $u_{i} v_{i}$ and $v_{i} w_{i}$ with colors 2 and 1 respectively.

Subcase ii. $n \equiv 2 \bmod 4$.

- Color the edges $u_{n-1} u_{n}$ and $u_{n} u_{1}$ with color 4 and for $i=1,2, \cdots, n-2$, color the edges $u_{i} u_{i+1}$ with the colors 1 and 2 in the order $1,1,2,2, \cdots$.
- Color the edges $v_{n-2} v_{n-1}, v_{n-1} v_{n}, v_{n} v_{1}$ and $v_{1} v_{2}$ with color $1,1,2$ and 2 respectively and for $i=$ $2,3, \cdots, n-3$, color the edges $v_{i} v_{i+1}$ with the colors 3 and 4 in the order $3,3,4,4, \cdots$.
- Color the edges $w_{n-3} w_{n-2}, w_{n-2} w_{n-1}, w_{n-1} w_{n}, w_{n} w_{1}, w_{1} w_{2}$ and $w_{2} w_{3}$ with colors $4,4,3,3,4$ and 4 respectively and for $i=3,4, \cdots, n-4$, color the edges $w_{i} w_{i+1}$ with the colors 1 and 2 in the order $1,1,2,2, \cdots$.
- If the adjacent edges $u_{i} u_{j}$ and $u_{j} u_{k}$ are of same color, assign this color to the edge $u_{j} v_{j}$.
- If the adjacent edges $v_{i} v_{j}$ and $v_{j} v_{k}$ are of same color, assign this color to the edges $u_{j} v_{j}$ and $v_{j} w_{j}$.
- If the adjacent edges $w_{i} w_{j}$ and $w_{j} w_{k}$ are of same color, assign this color to the edge $v_{j} w_{j}$.

Case 2. Assume that $n=3,5$.
The graph $P(3,1)$ is a subgraph of $P_{3} \square C_{3}$ and from Proposition 2.19, $\chi_{i}^{\prime}\left(P_{3} \square C_{3}\right) \geq 6$. Now Figure 2.7 provides an injective edge coloring of $P_{3} \square C_{3}$ with 6 colors, which shows that $\chi_{i}^{\prime}\left(P_{3} \square C_{3}\right)=6$. Similarly, from Proposition 11, $\chi_{i}^{\prime}\left(P_{3} \square C_{5}\right) \geq 5$ and Figure 2.8 provides an injective edge coloring of $P_{3} \square C_{5}$ with 5 colors.
\square Color $1 ■$ Color $2 \square$ Color $3 \square$ Color $4 ■$ Color $5 ■$ Color 6

Figure 2.7: Injective edge coloring of $P_{3} \square C_{3}$

Figure 2.8: Injective edge coloring of $P_{3} \square C_{5}$
3. Here the graph $P_{m} \square C_{3}$ consists of m cycles $C_{3}^{i}, i=1,2, \cdots, m$, where C_{3}^{i} is the $i^{\text {th }}$ copy of C_{3} (C_{3}^{i} has vertices u_{1}^{i}, u_{2}^{i} and u_{3}^{i}) and the paths $u_{j}^{1}-u_{j}^{2}-u_{j}^{3}-\cdots-u_{j}^{m}, j=1,2,3$. The Injective edge chromatic index of $P_{2} \square C_{3}$ and $P_{3} \square C_{3}$ follows from Theorem 2.20(1,2). Now for $m>3$, the graph $P_{3} \square C_{3}$ is a subgraph of $P_{m} \square C_{3}$ with $\chi_{i}^{\prime}\left(P_{3} \square C_{3}\right)=6$ and by Proposition 1.2, $\chi_{i}^{\prime}\left(P_{m} \square C_{3}\right) \geq 6$. Now providing an injective edge coloring of $P_{m} \square C_{3}$ with 6 colors shows that $\chi_{i}^{\prime}\left(P_{m} \square C_{3}\right)=6$. The coloring is as follows.

- For $i=1,7,13, \cdots$, color the edges $u_{1}^{i} u_{2}^{i}, u_{2}^{i} u_{3}^{i}$ and $u_{3}^{i} u_{1}^{i}$ with the colors 1,2 and 3 respectively.
- For $i=2,8,14, \cdots$, color the edges $u_{1}^{i} u_{2}^{i}, u_{2}^{i} u_{3}^{i}$ and $u_{3}^{i} u_{1}^{i}$ with the colors 4,5 and 6 respectively.
- For $i=3,9,15, \cdots$, color the edges $u_{1}^{i} u_{2}^{i}, u_{2}^{i} u_{3}^{i}$ and $u_{3}^{i} u_{1}^{i}$ with the colors 2,3 and 1 respectively.
- For $i=4,10,16, \cdots$, color the edges $u_{1}^{i} u_{2}^{i}, u_{2}^{i} u_{3}^{i}$ and $u_{3}^{i} u_{1}^{i}$ with the colors 5, 6 and 4 respectively.
- For $i=5,11,17, \cdots$, color the edges $u_{1}^{i} u_{2}^{i}, u_{2}^{i} u_{3}^{i}$ and $u_{3}^{i} u_{1}^{i}$ with the colors 3,1 and 2 respectively.
- For $i=6,12,18, \cdots$, color the edges $u_{1}^{i} u_{2}^{i}, u_{2}^{i} u_{3}^{i}$ and $u_{3}^{i} u_{1}^{i}$ with the colors 6,4 and 5 respectively.
- Color the edges $u_{1}^{1} u_{1}^{2}, u_{1}^{2} u_{1}^{3}, u_{1}^{3} u_{1}^{4}, \cdots, u_{1}^{m-1} u_{1}^{m}$ with colors $1,4,2,5,3,6$ up to $u_{1}^{6} u_{1}^{7}$, repeat the same order of the colors after $u_{1}^{6} u_{1}^{7}$ up to the remaining.
- Color the edges $u_{2}^{1} u_{2}^{2}, u_{2}^{2} u_{2}^{3}, u_{2}^{3} u_{2}^{4}, \cdots, u_{2}^{m-1} u_{2}^{m}$ with colors $2,5,3,6,1,4$ up to $u_{2}^{6} u_{2}^{7}$, repeat the same order of the colors after $u_{2}^{6} u_{2}^{7}$ up to the remaining.
- Color the edges $u_{3}^{1} u_{3}^{2}, u_{3}^{2} u_{3}^{3}, u_{3}^{3} u_{3}^{4}, \cdots, u_{3}^{m-1} u_{3}^{m}$ with colors $3,6,1,4,2,5$ up to $u_{3}^{6} u_{3}^{7}$, repeat the same order of the colors after $u_{3}^{6} u_{3}^{7}$ up to the remaining.

4. In general the graph $P_{m} \square C_{n}$ consists of m cycles $C_{n}^{i}, i=1,2, \cdots, m$, where C_{n}^{i} is the $i^{\text {th }}$ copy of $C_{n}\left(C_{n}^{i}\right.$ has vertices $\left.u_{1}^{i}, u_{2}^{i}, \cdots, u_{n}^{i}\right)$ and the paths $u_{j}^{1}-u_{j}^{2}-u_{j}^{3}-\cdots-u_{j}^{m}, j=1,2,3, \cdots, n$. Here for $n \geq 3$, the graph $P_{3} \square P_{4}$ is a subgraph of $P_{m} \square C_{n}$ with $\chi_{i}^{\prime}\left(P_{3} \square P_{4}\right)=4$ (Proposition 2.18). Thus $\chi_{i}^{\prime}\left(P_{m} \square C_{n}\right) \geq 4$. Now providing an injective edge coloring of $P_{m} \square C_{n}$ with 4 colors shows that $\chi_{i}^{\prime}\left(P_{m} \square C_{n}\right)=4$. The coloring is as follows.

- For $i=1,5,9, \cdots$, color the edges $u_{1}^{i} u_{2}^{i}, u_{2}^{i} u_{3}^{i}, \cdots, u_{n}^{i} u_{1}^{i}$ with colors 1 and 2 in the pattern $1,1,2,2,1,1, \cdots$.
- For $i=2,6,10, \cdots$, color the edges $u_{2}^{i} u_{3}^{i}, u_{3}^{i} u_{4}^{i}, \cdots, u_{n}^{i} u_{1}^{i}, u_{1}^{i} u_{2}^{i}$, with colors 3 and 4 in the pattern 3,3,4,4,3,3, \cdot.
- For $i=3,7,11, \cdots$, color the edges $u_{1}^{i} u_{2}^{i}, u_{2}^{i} u_{3}^{i}, \cdots, u_{n}^{i} u_{1}^{i}$ with colors 1 and 2 in the pattern $2,2,1,1,2,2, \cdots$.
- For $i=4,8,12, \cdots$, color the edges $u_{2}^{i} u_{3}^{i}, u_{3}^{i} u_{4}^{i}, \cdots, u_{n}^{i} u_{1}^{i}, u_{1}^{i} u_{2}^{i}$, with colors 3 and 4 in the pattern $4,4,3,3,4,4, \cdots$.
- For $j=1,5,9, \cdots$, color the edges $u_{j}^{1} u_{j}^{2}, u_{j}^{2} u_{j}^{3}, \cdots, u_{j}^{m-1} u_{j}^{m}$ with colors 3 and 4 in the pattern $4,4,3,3,4,4, \cdots$.
- For $j=2,6,10, \cdots$, color the edges $u_{j}^{1} u_{j}^{2}, u_{j}^{2} u_{j}^{3}, \cdots, u_{j}^{m-1} u_{j}^{m}$ with colors 1 and 2 in the pattern $1,2,2,1,1,2,2, \cdots$.
- For $j=3,7,11, \cdots$, color the edges $u_{j}^{1} u_{j}^{2}, u_{j}^{2} u_{j}^{3}, \cdots, u_{j}^{m-1} u_{j}^{m}$ with colors 3 and 4 in the pattern $3,3,4,4,3,3, \cdots$.
- For $j=4,8,12, \cdots$, color the edges $u_{j}^{1} u_{j}^{2}, u_{j}^{2} u_{j}^{3}, \cdots, u_{j}^{m-1} u_{j}^{m}$ with colors 1 and 2 in the pattern $2,1,1,2,2,1,1,2,2, \cdots$.

Illustration 2.21. Injective edge coloring of $P_{4} \square C_{4}$ with four colors is illustrated below.

Figure 2.9: Injective edge coloring of $P_{4} \square C_{4}$
From [9], we have the corona of two graphs G_{1} and G_{2} (where G_{i} has p_{i} vertices and q_{i} edges) as the graph $G=G_{1} \odot G_{2}$ obtained by taking one copy of G_{1} and p_{1} copies of G_{2}, and then joining by an edge the $i^{\text {th }}$ vertex of G_{1} to every vertex in the $i^{\text {th }}$ copy of G_{2}. Some results on the injective edge chromatic index of few classes of corona products are given as the following.

Figure 2.10
Theorem 2.22. For any two connected nonempty graphs G and $H, \chi_{i}^{\prime}(G \bigodot H) \geq \chi_{i}^{\prime}(H)+2$.
Proof. Let $u_{1}, u_{2}, \cdots, u_{n}$ be the vertices of G and $v_{i 1}, v_{i 2}, \cdots, v_{i m}$ be the vertices of $i^{\text {th }}$ copy of H for $i=1,2, \cdots, n$. Let $v_{i k} v_{i l}$ be an arbitrary edge of H. Then the vertices $u_{i}, v_{i k}$ and $v_{i l}$ form an induced K_{3} (Figure 2.10). Also, $v_{i k}-v_{i l}-u_{i}-v_{i s}$ form paths of length 4 (Figure 2.11). Thus the color of $v_{i k} v_{i l}$ cannot be the color of $u_{i} v_{i s}$ for $s=1,2, \cdots, m$. Also since the vertices $u_{i}, v_{i k}$ and $v_{i l}$ form an induced K_{3}, the edges $u_{i} v_{i k}$ and $u_{i} v_{i l}$ colored with distinct 2 colors other than $\chi_{i}^{\prime}(H)$ colors.

Theorem 2.23. If $m, n \geq 2$, then $\chi_{i}^{\prime}\left(P_{n} \bigodot P_{m}\right)=\left\{\begin{array}{l}4 \text { if } m, n=2,3, \\ 5 \text { otherwise. }\end{array}\right.$

Proof. Let $u_{1}, u_{2}, \cdots, u_{n}$ be the vertices of P_{n} and $v_{i 1}, v_{i 2}, \cdots, v_{i m}$ be the vertices of $i^{\text {th }}$ copy of P_{m} for $i=1,2, \cdots, n$.

For Figure 2.12, Figure 2.13, Figure 2.14 and Figure 2.15
\square Color $1 \square$ Color $2 \square$ Color $3 \square$ Color $4 \square$ Color 4

Figure 2.12: $\quad P_{2} \bigodot P_{2}$

Figure 2.13: $P_{2} \bigodot P_{3}$

Figure 2.14: $\quad P_{3} \bigodot P_{3}$

Figure 2.15: \mathscr{H}

Case 1. Assume that $m=n=2$.
The vertices v_{11}, v_{12} and u_{1} form an induced K_{3} of $P_{2} \bigodot P_{2}$. Thus the edges $u_{1} v_{11}, u_{1} v_{12}$ and $v_{11} v_{12}$ are colored with the distinct colors 1,2 and 3 respectively. Now color the edge $u_{1} u_{2}$ and $u_{2} v_{21}$ with color 1 and 3 respectively. Further $v_{22}-u_{2}-u_{1}-v_{11}, v_{22}-u_{2}-u_{1}-v_{12}$ and $v_{22}-v_{21}-u_{2}$ form paths of length 4 . Therefore the edge $u_{2} v_{22}$ cannot be colored with the colors 1,2 and 3 (the colors of the edges $u_{1} v_{11}, u_{1} v_{12}$ and $u_{2} v_{21}$). Thus color 4 is given to the edge $u_{2} v_{22}$. Thus $\chi_{i}^{\prime}\left(P_{2} \bigodot P_{2}\right) \geq 4$ and the coloring in Figure 2.12 with 4 colors shows that $\chi_{i}^{\prime}\left(P_{2} \bigodot P_{2}\right)=4$.
Case 2. Assume that $m=3$ and $n=2,3$.
We have $P_{2} \bigodot P_{2}$ as a subgraph of $P_{2} \bigodot P_{3}$ and $P_{3} \bigodot P_{3}$. Now using Proposition 1.2, we have $\chi_{i}^{\prime}\left(P_{2} \bigodot P_{3}\right) \geq$ 4 and $\chi_{i}^{\prime}\left(P_{3} \bigodot P_{3}\right) \geq 4$. Also Figure 2.13 and Figure 2.14 provides an injective edge coloring with 4 colors. Therefore $\chi_{i}^{\prime}\left(P_{2} \bigodot P_{3}\right)=\chi_{i}^{\prime}\left(P_{3} \bigodot P_{3}\right)=4$.

Case 3. Assume that $m, n \geq 4$.
Consider a subgraph \mathscr{H} (Figure 2.15) of $P_{n} \bigodot P_{m}$. Since $P_{2} \bigodot P_{3}$ forms a subgraph of \mathscr{H} first color those edges in \mathscr{H} as in $P_{2} \bigodot P_{3}$. Next color the edge $v_{23} v_{24}$. Since $v_{24}-v_{23}-v_{22}-v_{21}, v_{24}-v_{23}-u_{2}-v_{22}$, $v_{24}-v_{23}-u_{2}-v_{21}$ and $v_{24}-v_{23}-u_{2}-u_{1}$ form paths of length 4 . Thus the edge $v_{23} v_{24}$ cannot be colored with the colors $1,2,3$ and 4 (colors of the edges $v_{22} v_{21}, u_{2} v_{22}, u_{2} v_{21}$ and $u_{2} u_{1}$). Thus the edge $v_{23} v_{24}$ is colored with color $5, \chi_{i}^{\prime}(\mathscr{H}) \geq 5$. Now the coloring depicted in Figure 2.15 is an injective edge coloring of \mathscr{H} with 5 colors. Thus $\chi_{i}^{\prime}(\mathscr{H})=5$. The graph \mathscr{H} is the smallest subgraph of $P_{n} \bigodot P_{m}$ with injective edge chromatic index 5 . Now the following is an injective edge coloring of $P_{n} \bigodot P_{m}$ with 5 colors.

- The edges $u_{1} v_{1 i}$ are colored with color 1 for odd i and color 2 for even $i, 1 \leq i \leq m$.
- The edges $v_{11} v_{12}, v_{12} v_{13}, \cdots, v_{1(m-1)} v_{1 m}$ with colors $3,3,4,4,3,3,4,4, \cdots$ respectively.
- The edge $u_{1} u_{2}$ is colored with color 1 .
- The edges $u_{2} v_{2 i}$ are colored with color 3 for odd i and color 4 for even $i, 1 \leq i \leq m$.
- The edges $v_{21} v_{22}, v_{22} v_{23}, \cdots, v_{2(m-1)} v_{2 m}$ with colors colors $2,2,5,5,2,2,5,5, \cdots$ respectively.

Next moving to the injective edge coloring of $G \bigodot C_{m}$ where $G=P_{n}$ or C_{n}. Let $u_{1}, u_{2}, \cdots, u_{n}$ be the vertices of G and $v_{i 1}, v_{i 2}, \cdots, v_{i m}$ be the vertices of $i^{\text {th }}$ copy C_{m}^{i} of C_{m} for $i=1,2, \cdots, n$.

Lemma 2.24. Let graph G be either the path P_{n} or the cycle C_{n}. Then for the graph $G \bigodot C_{m}$,
i. No color of the edge $v_{i j} v_{i(j+1)}$ can be the color of the edges $u_{i} v_{i k}$, and vice versa, for $i=1,2, \cdots, n$ and $j, k=1,2, \cdots, m$.
ii. The edges $u_{i} v_{i j}, i=1,2, \cdots, n$ and $j=1,2, \cdots, m$ are colored with two distinct colors when m is even.
iii. The edges $u_{i} v_{i j}, i=1,2, \cdots, n$ and $j=1,2, \cdots, m$ are colored with three distinct colors when m is odd.

Proof.

i. Without loss of generality assume $j+1$ as 1 when $j=m$. The vertices $v_{i j}, v_{i(j+1)}$ and u_{i} forms an induced K_{3}. Also $v_{i j}-v_{i(j+1)}-u_{i}-v_{i k}$ form a path of length $4, k \neq j, j+1$.
ii. Since $u_{i}, v_{i j}$ and $v_{i(j+1)}$ form an induced K_{3}, the three edges are colored with distinct three colors. In particular, the edges $u_{i} v_{i j}$ and $u_{i} v_{i(j+1)}$ are colored with 2 colors say color 1 and color 2 . Now coloring the edges $u_{i} v_{i j}$ with color 1 for odd j and coloring the edges $u_{i} v_{i j}$ with color 2 for even j provides an injective edge coloring with 2 colors.
iii. Since $u_{i}, v_{i j}$ and $v_{i(j+1)}$ form an induced K_{3}, the three edges are colored with distinct three colors. In particular, the edges $u_{i} v_{i j}$ and $u_{i} v_{i(j+1)}$ are colored with two colors say color 1 and color 2 . Now coloring the edges $u_{i} v_{i j}$ with color 1 for odd $j, j \neq m$ and coloring the edges $u_{i} v_{i j}$ with color 2 for even j. Now the vertices $u_{i}, v_{i m}$ and $v_{i(m-1)}$ form an induced K_{3} and similarly the vertices $u_{i}, v_{i m}$ and $v_{i 1}$ also form an induces K_{3}. Thus the edge $u_{i} v_{i m}$ cannot be colored with color 1 or color 2 (colors of the edges $u_{i} v_{i(m-1)}$ and $u_{i} v_{i 1}$). Thus the edge $u_{i} v_{i m}$ is colored with color 3 .

Theorem 2.25. If $n \geq 2$ and $m \geq 3$, then $\chi_{i}^{\prime}\left(P_{n} \bigodot C_{m}\right)=\left\{\begin{array}{l}\chi_{i}^{\prime}\left(P_{n}\right)+4 \text { if } m \equiv 0 \bmod 4, \\ \chi_{i}^{\prime}\left(P_{n}\right)+5 \text { if } m \equiv 2 \bmod 4, \\ \chi_{i}^{\prime}\left(P_{n}\right)+6 \text { if } m \text { odd. }\end{array}\right.$
Proof. Let $u_{1}, u_{2}, \cdots, u_{n}$ be the vertices of P_{n} and $v_{i 1}, v_{i 2}, \cdots, v_{i m}$ be the vertices of $i^{\text {th }}$ copy C_{m}^{i} of C_{m} for $i=1,2, \cdots, n$.
Case 1. Assume that $m \equiv 0 \bmod 4$.
By Proposition 1.1(ii) $\chi_{i}^{\prime}\left(C_{m}^{i}\right)=2$. Therefore two colors are needed to color the edges of C_{m}^{i} and by Lemma 2.24(i) and Lemma 2.24(ii), new set of two colors are needed to color the edges $u_{i} v_{j}$. Color the edges $u_{i} v_{i j}$ and $v_{i j} v_{i k}$ as follows.
For an odd i

- Color the edges $v_{i j} v_{i(j+1)}, j=1,2, \cdots, m$ with colors 1 and 2 in the pattern $1,1,2,2,1,1, \cdots$.
- Color the edges $u_{i} v_{i j}$ with color 3 when j is odd and with color 4 when j is even.

For an even i

- Color the edges $v_{i j} v_{i(j+1)}, j=1,2, \cdots, m$ with colors 3 and 4 in the pattern $3,3,4,4,3,3, \cdots$.
- Color the edges $u_{i} v_{i j}$ with color 1 when j is odd and with color 2 when j is even.

Now for any $u_{i} u_{i+1}$, the paths $u_{i+1}-u_{i}-v_{i 3}-v_{i 4}, u_{i+1}-u_{i}-v_{i 3}-v_{i 2}, u_{i}-u_{i+1}-v_{(i+1) 3}-v_{(i+1) 4}$ and $u_{i}-u_{i+1}-$ $v_{(i+1) 3}-v_{(i+1) 2}$ form paths of length 4 and the edges $v_{i 3} v_{i 4}, v_{i 3} v_{i 2}, v_{(i+1) 3} v_{(i+1) 4}$ and $v_{(i+1) 3} v_{(i+1) 2}$ have colors 1,2,3 and 4. Now the edges $u_{i} u_{i+1}$ of P_{n} are colored with $\chi_{i}^{\prime}\left(P_{n}\right)$ new colors. Hence $\chi_{i}^{\prime}\left(P_{n}+C_{m}\right)=4+\chi_{i}^{\prime}\left(P_{n}\right)$.
Case 2. Assume that $m \equiv 2 \bmod 4$.
Here $\chi_{i}^{\prime}\left(C_{m}\right)=3$. Therefore color the edges $v_{i j} v_{i(j+1)}$ of C_{m}^{i} with 3 colors. Now by using Lemma 2.24(ii), the edges $u_{i} v_{i j}$ are colored with new set of two colors.
For an odd i

- For $j=1,2, \cdots, m-2$, color the edges $v_{i j} v_{i(j+1)}$ with the colors 1 and 2 in a pattern $1,1,2,2,1,1, \cdots$ and color the edges $v_{i(m-1)} v_{i m}$ and $v_{i m} v_{i 1}$ with color 3 .
- Color the edges $u_{i} v_{j}$ with color 4 for odd j, with color 5 for even j.

For an even i

- For $j=1,2, \cdots, m-2$, color the edges $v_{i j} v_{i(j+1)}$ with the colors 4 and 5 in a pattern $4,4,5,5,4,4, \cdots$ and color the edges $v_{i(m-1)} v_{i m}$ and $v_{i m} v_{i 1}$ with color 3 .
- Color the edges $u_{i} v_{j}$ with color 1 for odd j, with color 2 for even j.

Now for any $u_{i} u_{i+1}$, the paths $u_{i+1} u_{i}-v_{i 3}-v_{i 4}, u_{i+1} u_{i}-v_{i 3}-v_{i 2}$ and $u_{i+1} u_{i}-v_{i m}-v_{i 1}$ form paths of length 4 and the edges $v_{i 3} v_{i 4}, v_{i 3} v_{i 2}$ and $v_{i m} v_{i 1}$ have colors 1 and 2 and 3 . Similarly, $u_{i} u_{i+1}-v_{(i+1) 3}-v_{(i+1) 4}$ and $u_{i} u_{i+1}-v_{(i+1) 3}-v_{(i+1) 2}$ form paths of length 4 and the edges $v_{i 3} v_{i 4}, v_{i 3} v_{i 2}$ have colors 4 and 5 . Thus the edges $u_{i} u_{i+1}$ cannot be colored with colors $1,2,3,4$ and 5 . Now the edges $u_{i} u_{i+1}$ of P_{n} are colored with $\chi_{i}^{\prime}\left(P_{n}\right)$ new colors. Hence $\chi_{i}^{\prime}\left(P_{n}+C_{m}\right)=5+\chi_{i}^{\prime}\left(P_{n}\right)$.

Case 3. Assume that m is odd.
Here $\chi_{i}^{\prime}\left(C_{m}\right)=3$. Therefore color the edges $v_{i j} v_{i(j+1)}$ of C_{m}^{i} with 3 colors. Now by using Lemma 2.24(iii), the edges $u_{i} v_{i j}$ are colored with new set of three colors.
Subcase i. $m \equiv 1 \bmod 4$.
For an odd i

- For $j=1,2, \cdots, m-3$, color the edges $v_{i j} v_{i(j+1)}$ with the colors 1 and 2 in a pattern $1,1,2,2,1,1, \cdots$ and color the edge $v_{i(m-2)} v_{i(m-1)}, v_{i(m-1)} v_{i m}, v_{i m} v_{i 1}$ with colors 1,3,2 respectively.
- Color the edges $u_{i} v_{j}$ with color 4 for j odd and $j \neq m$, with color 5 for even j and with color 6 for $j=m$.

For an even i

- For $j=1,2, \cdots, m-3$, color the edges $v_{i j} v_{i(j+1)}$ with the colors 4 and 5 in a pattern $4,4,5,5,4,4, \cdots$ and color the edge $v_{i(m-2)} v_{i(m-1)}, v_{i(m-1)} v_{i m}, v_{i m} v_{i 1}$ with colors $4,6,5$ respectively.
- Color the edges $u_{i} v_{j}$ with color 1 for j odd and $j \neq m$, with color 2 for even j and with color 3 for $j=m$.

Subcase ii. $m \equiv 3 \bmod 4$.
For an odd i

- For $j=1,2, \cdots, m-3$, color the edges $v_{i j} v_{i(j+1)}$ with the colors 1 and 2 in a pattern $1,1,2,2,1,1, \cdots$ and color the edge $v_{i m} v_{i 1}$ with color 3 .
- Color the edges $u_{i} v_{j}$ with color 4 for j odd and $j \neq m$, with color 5 for even j and with color 6 for $j=m$.

For an even i

- For $j=1,2, \cdots, m-1$, color the edges $v_{i j} v_{i(j+1)}$ with the colors 4 and 5 in a pattern $4,4,5,5,4,4, \cdots$ and color the edge $v_{i m} v_{i 1}$ with color 6 .
- Color the edges $u_{i} v_{j}$ with color 1 for j odd and $j \neq m$, with color 2 for even j and with color 3 for $j=m$.

Now for any $u_{i} u_{i+1}$, the paths $u_{i+1} u_{i}-v_{i 3}-v_{i 4}, u_{i+1} u_{i}-v_{i 3}-v_{i 2}, u_{i+1} u_{i}-v_{i m}-v_{i 1} u_{i+1} u_{i}-v_{i(m-1)}-v_{i m}$ form paths of length 4 and the edges $v_{i 3} v_{i 4}, v_{i 3} v_{i 2}, v_{i m} v_{i 1}$ and $v_{i(m-1)} v_{i m}$ have colors 1,2 and 3. Similarly, $u_{i} u_{i+1}-v_{(i+1) 3}-v_{(i+1) 4}$, $u_{i} u_{i+1}-v_{(i+1) 3}-v_{(i+1) 2}$ and $u_{i} u_{i+1}-v_{(i+1)(m-1)}-v_{(i+1) m}$ form paths of length 4 and the edges $v_{i 3} v_{i 4}, v_{i 3} v_{i 2}$ and $v_{(i+1)(m-1)} v_{(i+1) m}$ have colors 4,5 and 6 . Thus the edges $u_{i} u_{i+1}$ cannot be colored with colors $1,2,3,4,5$ and 6 . Now the edges $u_{i} u_{i+1}$ of P_{n} are colored with $\chi_{i}^{\prime}\left(P_{n}\right)$ new colors. Hence $\chi_{i}^{\prime}\left(P_{n}+C_{m}\right)=6+\chi_{i}^{\prime}\left(P_{n}\right)$.

Let $u_{1}, u_{2}, \cdots, u_{n}$ be the vertices of C_{n} and $v_{i 1}, v_{i 2}, \cdots, v_{i m}$ be the vertices of $i^{\text {th }}$ copy C_{m}^{i} of C_{m} for $i=$ $1,2, \cdots, n$. The following Lemma is on $C_{n} \odot C_{m}$.

Lemma 2.26. For the graph $C_{n} \bigodot C_{m}$,
i. No color of the edges in the set $\left\{u_{i} v_{i j}, j=1,2, \cdots, m\right\}$ can be the color of the edges in the set $\left\{u_{k} v_{k j}, j=1,2, \cdots, m\right\}$ for $k=i-1$ or $k=i+1$.
ii. When m is even, either three or four distinct colors cannot be the color of $v_{i j} v_{i(j+1)}$ for each i.
iii. When m is odd, either four or five distinct colors cannot be the color of $v_{i j} v_{i(j+1)}$ for each i.

Proof. Without loss of generality assume $i+1$ as 1 when $i=n$ and $i-1$ as n when $i=1$.
i. For any $j, l=1,2, \cdots, m, v_{i j}-u_{i}-u_{i+1}-v_{(i+1) l}$ forms paths of length 4 . Thus no color of the edges in the set $\left\{u_{i} v_{i j}, j=1,2, \cdots, m\right\}$ can be the color of the edges in the set $\left\{u_{(i+1)} v_{(i+1) j}, j=1,2, \cdots, m\right\}$. Similarly $v_{i j}-u_{i}-u_{i-1}-v_{(i-1) l}$ forms paths of length 4 . Thus no color of the edges in the set $\left\{u_{i} v_{i j}, j=1,2, \cdots, m\right\}$ can be the color of the edges in the set $\left\{u_{(i-1)} v_{(i-1) j}, j=1,2, \cdots, m\right\}$.
ii. The color of $u_{i-1} u_{i}$ and $u_{i} u_{i+1}$ cannot be the color of $v_{i j} v_{i(j+1)}$, since $u_{i-1}-u_{i}-v_{i j}-v_{i(j+1)}$ and $u_{i+1}-u_{i}-$ $v_{i j}-v_{i(j+1)}$ form paths of length 4. Also by Lemma 2.24(i) and Lemma 2.24(ii) the two colors of $u_{i} v_{i j}$ cannot be the color of $v_{i j} v_{i(j+1)}$. Now if the edges $u_{i-1} u_{i}$ and $u_{i} u_{i+1}$ are of same colors, then a total of three colors cannot be the color of $v_{i j} v_{i(j+1)}$. And if the edges $u_{i-1} u_{i}$ and $u_{i} u_{i+1}$ are of different colors, then a total of four colors cannot be the color of $v_{i j} v_{i(j+1)}$.
iii. The color of $u_{i-1} u_{i}$ and $u_{i} u_{i+1}$ cannot be the color of $v_{i j} v_{i(j+1)}$, since $u_{i-1}-u_{i}-v_{i j}-v_{i(j+1)}$ and $u_{i+1}-u_{i}-$ $v_{i j}-v_{i(j+1)}$ form paths of length 4. Also by Lemma 2.24(i) and Lemma 2.24(iii) the three colors of $u_{i} v_{i j}$ cannot be the color of $v_{i j} v_{i(j+1)}$. Now if the edges $u_{i-1} u_{i}$ and $u_{i} u_{i+1}$ are of same colors, then a total of four colors cannot be the color of $v_{i j} v_{i(j+1)}$. And if the edges $u_{i-1} u_{i}$ and $u_{i} u_{i+1}$ are of different colors, then a total of five colors cannot be the color of $v_{i j} v_{i(j+1)}$.

Theorem 2.27. For $m, n \geq 3, \chi_{i}^{\prime}\left(C_{n} \odot C_{m}\right)=\left\{\begin{array}{l}6 \text { if } m \equiv 0 \bmod 4, \\ 7 \text { if } m \equiv 2 \bmod 4, \\ 8 \text { if } m \text { is odd and } n \neq 3, \\ 9 \text { if } m \text { is odd and } n=3 .\end{array}\right.$
Proof. Let $u_{1}, u_{2}, \cdots, u_{n}$ be the vertices of C_{n} and $v_{i 1}, v_{i 2}, \cdots, v_{i m}$ be the vertices of $i^{\text {th }}$ copy C_{m}^{i} of C_{m} for $i=1,2, \cdots, n$.

1. $m \equiv 0 \bmod 4$.

Here $\chi_{i}^{\prime}\left(C_{m}\right)=2$. Now by Lemma 2.24(ii), Lemma 2.24(iii) and Lemma 2.26(ii), we can see that at least 6 colors are needed to color $C_{n} \bigodot C_{m}$. Now providing an injective edge coloring with 6 colors concludes.
Case 1. Assume that $n \equiv 0 \bmod 4$.

- For odd i, color the edges $v_{i j} v_{i(j+1)}$ with colors 1 and 2 in the pattern $1,1,2,2,1,1, \cdots$. Also color the edges $u_{i} v_{i j}$ with colors 3 for odd j and with color 4 for even j.
- For even i, color the edges $v_{i j} v_{i(j+1)}$ with colors 3 and 4 in the pattern $3,3,4,4,3,3, \cdots$. Also color the edges $u_{i} v_{i j}$ with colors 1 for odd j and with color 2 for even j.
- For the edges $u_{i} u_{i+1}, i=1,2, \cdots, n$, without loss of generality assume $i+1=1$ when $i=n$. Color the edges $u_{i} u_{i+1}$ with colors 5 and 6 in the pattern $5,5,6,6,5,5, \cdots$.
Case 2. Assume that $n \equiv 1 \bmod 4$.
- For odd i and $i \neq n$, color the edges $u_{i} v_{i j}$ with colors 1 for odd j and with color 2 for even j.
- For even i, color the edges $u_{i} v_{i j}$ with colors 3 for odd j and with color 4 for even j.
- For $i=n$, color the edges $u_{i} v_{i j}$ with colors 5 for odd j and with color 6 for even j.
- For $i=2,3, \cdots, n-3$, color the edges $u_{i} u_{i+1}$ with colors 5 and 6 in the pattern $5,5,6,6,5,5, \cdots$.
- Color the edges $u_{2} u_{1}, u_{1} u_{n}, u_{n} u_{n-1}$ and $u_{n-1} u_{n-2}$ with colors $3,2,4$, and 1 respectively.
- By Lemma 2.26(ii), either three or four colors cannot be the color of $v_{i j} v_{i(j+1)}$. Also $\chi_{i}^{\prime}\left(C_{m}\right)=2$ then the remaining two colors are used to color the edges $v_{i j} v_{i(j+1)}$, for each i.

Case 3. Assume that $n \equiv 2 \bmod 4$.

- For $i=1,2, \cdots, n-2$, color the edges $u_{i} u_{i+1}$ with the colors 1 and 2 in the pattern $1,1,2,2,1,1, \cdots$.
- Color the edges $u_{n-1} u_{n}$ and $u_{n} u_{1}$ with color 3 .
- Color the edges $u_{1} v_{1 j}$ with color 2 for odd j and with color 5 for even j.
- Color the edges $u_{2} v_{2 j}$ with color 1 for odd j and with color 4 for even j.
- For $i=3,5,7, \cdots, n-3$, color the edges $u_{i} v_{i j}$ with color 3 for odd j and with color 5 for even j.
- For $i=4,6,8, \cdots, n-2$, color the edges $u_{i} v_{i j}$ with color 2 for odd j and with color 4 for even j.
- Color the edges $u_{n-1} v_{(n-1) j}$ with color 1 for odd j and with color 5 for even j.
- Color the edges $u_{n} v_{n j}$ with color 3 for odd j and with color 4 for even j.
- By Lemma 2.26(ii), either three or four colors cannot be the color of $v_{i j} v_{i(j+1)}$. Also $\chi_{i}^{\prime}\left(C_{m}\right)=2$ then the remaining two colors are used to color the edges $v_{i j} v_{i(j+1)}$, for each i.

Case 4. Assume that $n \equiv 3 \bmod 4$.

- For $i=1,2, \cdots, n-3$, color the edges $u_{i} u_{i+1}$ with colors 1 and 2 in the pattern $1,1,2,2,1,1, \cdots$.
- Color the edges $u_{1} u_{n}, u_{n} u_{n-1}, u_{n-1} u_{n-2}$ with colors 2,3,1 respectively.
- Color the edges $u_{1} v_{1 j}$ with color 5 for odd j and with color 6 for even j.
- Color the edges $u_{n-2} v_{(n-2) j}$ with color 1 for odd j and with color 4 for even j.
- Color the edges $u_{n-1} v_{(n-1) j}$ with color 3 for odd j and with color 5 for even j.
- Color the edges $u_{n} v_{n j}$ with color 2 for odd j and with color 4 for even j.
- For $i=2,6,10, \cdots, i<n-1$, color the edges $u_{i} v_{i j}$ with color 1 for odd j and with color 3 for even j.
- For $i=3,5,7,9, \cdots, i<n-2$, color the edges $u_{i} v_{i j}$ with color 4 for odd j and with color 5 for even j.
- For $i=4,8,12, \cdots, i<n$, color the edges $u_{i} v_{i j}$ with color 2 for odd j and with color 3 for even j.
- By Lemma 2.26(ii), either three or four colors cannot be the color of $v_{i j} v_{i(j+1)}$. Also $\chi_{i}^{\prime}\left(C_{m}\right)=2$ then the remaining two colors are used to color the edges $v_{i j} v_{i(j+1)}$, for each i.

2. $m \equiv 2 \bmod 4$.

For C_{n} at least two colors are needed for an injective edge coloring, therefore there are two edges say $u_{i} u_{i+1}$ and $u_{i+1} u_{i+2}$ with distinct two colors. Then by Lemma 2.26(ii), four colors cannot be the color of $v_{i j} v_{i(j+1)}$. Also $\chi_{i}^{\prime}\left(C_{m}\right)=3$. Thus a new set of three colors are needed to color the edges of C_{m}^{i}. Hence $\chi_{i}^{\prime}\left(C_{n} \bigodot C_{m}\right) \geq 7$. Now providing an injective edge coloring with seven colors shows that $\chi_{i}^{\prime}\left(C_{n} \odot C_{m}\right)=7$. The coloring is given as follows.

Case 1. Assume that $n \equiv 0 \bmod 4$.

- For $i=1,2, \cdots, n$, color the edges $u_{i} u_{i+1}$ with color 1 and 2 in the pattern $1,1,2,2,1,1, \cdots$. Without loss of generality assume $i+1$ as 1 when $i=n$.
- Let $i=2,6,10, \cdots$.
- Color the edges $u_{i} v_{i j}$ with color 1 for odd j and with color 3 for even j.
- For $j=1,2, \cdots, m-2$, color the edges $u_{i j} u_{i(j+1)}$ with color 2 and 4 in the pattern $2,2,4,4,2,2, \cdots$ and color the edges $u_{i(m-1)} u_{i m}$ and $u_{i m} u_{i 1}$ with color 5 .
- Let $i=4,8,12, \cdots$.
- Color the edges $u_{i} v_{i j}$ with color 2 for odd j and with color 3 for even j.
- For $j=1,2, \cdots, m-2$, color the edges $u_{i j} u_{i(j+1)}$ with color 1 and 4 in the pattern $1,1,4,4,1,1, \ldots$ and color the edges $u_{i(m-1)} u_{i m}$ and $u_{i m} u_{i 1}$ with color 5 .
- Let i be odd.
- Color the edges $u_{i} v_{i j}$ with color 4 for odd j and with color 5 for even j.
- For $j=1,2, \cdots, m-2$, color the edges $u_{i j} u_{i(j+1)}$ with color 3 and 6 in the pattern $3,3,6,6,3,3, \cdots$ and color the edges $u_{i(m-1)} u_{i m}$ and $u_{i m} u_{i 1}$ with color 7 .

Case 2. Assume that $n \equiv 1 \bmod 4$ and $n \equiv 3 \bmod 4$.

- For odd i and $i \neq n$, color the edges $u_{i} v_{i j}$ with colors 1 for odd j and with color 2 for even j.
- For even i, color the edges $u_{i} v_{i j}$ with colors 3 for odd j and with color 4 for even j.
- For $i=n$, color the edges $u_{i} v_{i j}$ with colors 5 for odd j and with color 6 for even j.
- For $i=2,3, \cdots, n-3$, color the edges $u_{i} u_{i+1}$ with colors 5 and 6 in the pattern $5,5,6,6,5,5, \cdots$.
- color the edges $u_{2} u_{1}, u_{1} u_{n}, u_{n} u_{n-1}$ and $u_{n-1} u_{n-2}$ with colors $3,1,4$, and 2 respectively.
- By Lemma 2.26(ii), either three or four colors cannot be the color of $v_{i j} v_{i(j+1)}$. Also $\chi_{i}^{\prime}\left(C_{m}\right)=3$ then the remaining three colors are used to color the edges $v_{i j} v_{i(j+1)}$, for each i.

Case 3. Assume that $n \equiv 2 \bmod 4$.

- For $i=1,2, \cdots, n-2$, color the edges $u_{i} u_{i+1}$ with the colors 1 and 2 in the pattern $1,1,2,2,1,1, \cdots$.
- Color the edges $u_{n-1} u_{n}$ and $u_{n} u_{1}$ with color 3 .
- Color the edges $u_{1} v_{1 j}$ with color 2 for odd j and with color 6 for even j.
- Color the edges $u_{2} v_{2 j}$ with color 1 for odd j and with color 4 for even j.
- Color the edges $u_{n-2} v_{(n-2) j}$ with color 2 for odd j and with color 4 for even j.
- Color the edges $u_{n-1} v_{(n-1) j}$ with color 1 for odd j and with color 6 for even j.
- Color the edges $u_{n} v_{n j}$ with color 4 for odd j and with color 5 for even j.
- For $i=3,5,7, \cdots, n-3$, color the edges $u_{i} v_{i j}$ with color 5 for odd j and with color 6 for even j.
- For $i=4,6,8, \cdots, n-4$, color the edges $u_{i} v_{i j}$ with color 3 for odd j and with color 4 for even j.
- By Lemma 2.26(ii), either three or four colors cannot be the color of $v_{i j} v_{i(j+1)}$. Also $\chi_{i}^{\prime}\left(C_{m}\right)=3$ then the remaining three colors are used to color the edges $v_{i j} v_{i(j+1)}$, for each i.

3. m odd and $n \neq 3$

Here $\chi_{i}^{\prime}\left(C_{m}\right)=3$. Also by Lemma 2.24(i), Lemma 2.24(iii) and Lemma 2.26(iii) $\chi_{i}^{\prime}\left(C_{n} \bigodot C_{m}\right) \geq 8$. Now providing an injective edge coloring with eight colors shows that $\chi_{i}^{\prime}\left(C_{n} \bigodot C_{m}\right)=8$. The coloring is given as follows.
Case 1. Assume that $n \equiv 0 \bmod 4$.

- For odd i, color the edges $u_{i} v_{i j}$ with colors 1 when j is odd and $j \neq m$, with color 2 when j is even and with color 3 when $j=m$.
- For even i, color the edges $u_{i} v_{i j}$ with colors 4 when j is odd and $j \neq m$, with color 5 when j is even and with color 6 when $j=m$.
- Color the edges $u_{i} u_{i+1}$ with color 7 and 8 in the pattern $7,7,8,8,7,7, \cdots$.
- For odd i, color the edges of C_{m}^{i} with colors 4,5 and 6.
- For even i, color the edges of C_{m}^{i} with colors 1,2 and 3 .

Case 2. Assume that $n \equiv 1 \bmod 4$.

- For $i=1,2, \cdots, n-1$, color the edges $u_{i} u_{i+1}$ with colors $1,2,3,4,1,2,3,4$ and color the edge $u_{n} u_{1}$ with color 5.
- For $i=n$, color the edges $u_{i} v_{i j}$ with colors 2 when j is odd and $j \neq m$, with color 5 when j is even and with color 7 when $j=m$.
- For $i=1$, color the edges $u_{i} v_{i j}$ with colors 1 when j is odd and $j \neq m$, with color 3 when j is even and with color 8 when $j=m$.
- For $i=2$, color the edges $u_{i} v_{i j}$ with colors 2 when j is odd and $j \neq m$, with color 4 when j is even and with color 6 when $j=m$.
- For $i=3,7,11, \cdots$, color the edges $u_{i} v_{i j}$ with colors 3 when j is odd and $j \neq m$, with color 5 when j is even and with color 7 when $j=m$.
- For $i=4,8,12, \cdots$, color the edges $u_{i} v_{i j}$ with colors 4 when j is odd and $j \neq m$, with color 6 when j is even and with color 8 when $j=m$.
- For $i=5,9,13, \cdots$ and $i<n-1$, color the edges $u_{i} v_{i j}$ with colors 1 when j is odd and $j \neq m$, with color 5 when j is even and with color 7 when $j=m$.
- For $i=6,10,14, \cdots$, color the edges $u_{i} v_{i j}$ with colors 2 when j is odd and $j \neq m$, with color 6 when j is even and with color 8 when $j=m$.
- By Lemma 2.26(iii), either four or five colors cannot be the color of $v_{i j} v_{i(j+1)}$. Also $\chi_{i}^{\prime}\left(C_{m}\right)=3$ thus the remaining three colors are used to color the edges of C_{m}^{i}, for each i.

Case 3. Assume that $n \equiv 2 \bmod 4$.

- For $i=1,2, \cdots, n-2$, color the edges $u_{i} u_{i+1}$ with the colors 1 and 2 in the pattern $1,1,2,2,1,1, \cdots$.
- Color the edges $u_{n-1} u_{n}$ and $u_{n} u_{1}$ with color 3 .
- For $i=1$, color the edges $u_{i} v_{i j}$ with colors 2 when j is odd and $j \neq m$, with color 6 when j is even and with color 7 when $j=m$.
- For $i=n$, color the edges $u_{i} v_{i j}$ with colors 3 when j is odd and $j \neq m$, with color 4 when j is even and with color 5 when $j=m$.
- For $i=n-1$, color the edges $u_{i} v_{i j}$ with colors 1 when j is odd and $j \neq m$, with color 6 when j is even and with color 7 when $j=m$.
- For $i=2,6,10, \cdots, i<n-1$, color the edges $u_{i} v_{i j}$ with colors 1 when j is odd and $j \neq m$, with color 4 when j is even and with color 5 when $j=m$.
- For i odd and $3 \leq i \leq n-3$, color the edges $u_{i} v_{i j}$ with colors 3 when j is odd and $j \neq m$, with color 6 when j is even and with color 7 when $j=m$.
- For $i=4,8,12, \cdots, i<n-1$, color the edges $u_{i} v_{i j}$ with colors 2 when j is odd and $j \neq m$, with color 4 when j is even and with color 5 when $j=m$.
- By Lemma 2.26(iii), either four or five colors cannot be the color of $v_{i j} v_{i(j+1)}$. Also $\chi_{i}^{\prime}\left(C_{m}\right)=3$ thus the remaining three colors are used to color the edges of C_{m}^{i}, for each i.

Case 4. Assume that $n \equiv 3 \bmod 4$.

- For $i=1$, color the edges $u_{i} v_{i j}$ with colors 1 when j is odd and $j \neq m$, with color 2 when j is even and with color 3 when $j=m$.
- For $i=2$, color the edges $u_{i} v_{i j}$ with colors 4 when j is odd and $j \neq m$, with color 5 when j is even and with color 6 when $j=m$.
- For $i=n$, color the edges $u_{i} v_{i j}$ with colors 6 when j is odd and $j \neq m$, with color 7 when j is even and with color 8 when $j=m$.
- For $i=3,7,11, \cdots, i<n$, color the edges $u_{i} v_{i j}$ with colors 1 when j is odd and $j \neq m$, with color 2 when j is even and with color 7 when $j=m$.
- For even $i, 4<i<n, i<n$, color the edges $u_{i} v_{i j}$ with colors 3 when j is odd and $j \neq m$, with color 4 when j is even and with color 5 when $j=m$.
- For $i=5,9,13, \cdots, i<n$, color the edges $u_{i} v_{i j}$ with colors 1 when j is odd and $j \neq m$, with color 2 when j is even and with color 6 when $j=m$.
- Color the edges $u_{n-2} u_{n-1}, u_{n-1} u_{n}, u_{n} u_{1}, u_{1} u_{2}$ with colors $2,4,1$ and 3 respectively and for $i=$ $2,3,4, \cdots, n-3$, color the edges $u_{i} u_{i+1}$ with the colors 7 and 6 in the pattern $7,7,6,6,7,7, \cdots$.
- By Lemma 2.26(iii), either four or five colors cannot be the color of $v_{i j} v_{i(j+1)}$. Also $\chi_{i}^{\prime}\left(C_{m}\right)=3$ then the remaining three colors are used to color the edges of C_{m}^{i}, for each i.

4. m odd and $n=3$

By Lemma 2.24(iii) and Lemma 2.26(i), nine distinct colors are used to color the edges $u_{i} v_{i j}, i=1,2,3$ and $j=1,2, \cdots, m$. Therefore $\chi_{i}^{\prime}\left(C_{3} \bigodot C_{m}\right) \geq 9$. Now providing an injective edge coloring with nine colors shows that $\chi_{i}^{\prime}\left(C_{3} \bigodot C_{m}\right)=9$. The coloring is given as follows.

- For $i=1$, color the edges $u_{i} v_{i j}$ with color 1 when j is odd and $j \neq m$, with color 2 when j is even and with color 3 when $j=m$.
- For $i=2$, color the edges $u_{i} v_{i j}$ with color 4 when j is odd and $j \neq m$, with color 5 when j is even and with color 6 when $j=m$.
- For $i=3$, color the edges $u_{i} v_{i j}$ with color 7 when j is odd and $j \neq m$, with color 8 when j is even and with color 9 when $j=m$.
- Color the edges of the cycle C_{m}^{1} with colors 5,6 and 7 .
- Color the edges of the cycle C_{m}^{2} with colors 1,2 and 3 .
- Color the edges of the cycle C_{m}^{3} with colors 2,3 and 4.
- Color the edges $u_{1} u_{2}, u_{2} u_{3}$ and $u_{3} u_{1}$ with colors 1,4 and 5 .

3. On the complexity of Injective edge coloring

In the literature, few authors have studied the complexity of the injective edge coloring problem [4, 8]. The results are depicted as follows. First here describe the injective 3-edge coloring is NP-complete for some classes of graphs in Figure 3.1.

Figure 3.1: Injective 3-edge coloring is NP-complete
Also in $[4,8]$ the authors have proved that the injective k-edge coloring is NP-complete for the following graphs.

- Graphs with maximum degree atmost $5 \sqrt{3 k}$.
- Graphs with maximum degree $O(\sqrt{k})$.

And injective 4-edge coloring is NP-complete for cubic graphs. Further, the authors proved that injective k-edge coloring is polynomial-time solvable for outer planar graphs and K_{4}-minor free planar graphs.

Here CHRIND (\mathcal{P}) denotes the chromatic index problem restricted to graphs with property \mathcal{P}. A result on the complexity of proper edge coloring of regular graphs is given as follows.

Theorem 3.1 ([2]). For each $r \geq 3$, CHRIND (r-regular graph) is NP-complete.

By using Theorem 3.1, it is obtained that, the problem of checking whether the injective edge chromatic index of a $(2,3, r)$-triregular graph is r is NP-complete.

Definition 3.2. Let p, q and r be integers, $1 \leq p<q<r$. A graph is said to be (p, q, r)-triregular graphs if its vertices assume exactly three different values p, q and r.

Instance: A (2,3,r)-triregular graph G.
Question: Is $\chi_{i}^{\prime}(G)=r$?

Figure 3.2: Edge gadget E with an injective 3 edge coloring

To prove Theorem 3.3, we use the gadget E in Figure 3.2 same as in [8].
Theorem 3.3. For each $r \geq 3$, it is NP-complete to determine whether the injective edge chromatic index of a $(2,3, r)$-triregular graph is r.

Proof. Let G be the input r-regular graph. The proof will be proceeded by two steps: first create a ($2,3, r$)-triregular graph H from G, then we show that H has an injective r-edge coloring if and only if G is properly r-edge colorable.
Create the graph H from G by removing all edges of G. For each edge $u v$ of G, create a copy of a gadget E and connect it to u and v. Add eight new vertices $i_{u v}, j_{u v}, a_{u v}, b_{u v}, c_{u v}, p_{u v}, q_{u v}$ and $r_{u v}$. Also create the following edges $u i_{u v}, v i_{u v}, i_{u v} j_{u v}, j_{u v} a_{u v}, j_{u v} c_{u v}, a_{u v} b_{u v}, b_{u v} c_{u v}, a_{u v} p_{u v}, c_{u v} r_{u v}, b_{u v} q_{u v}, p_{u v} q_{u v}$ and $q_{u v} r_{u v}$.
Let G be a graph on n vertices and m edges. On creating the graph H, corresponding to each edge eight vertices are added, thus H has $8 m+n$ vertices. In which n vertices have degree $r, 6 m$ vertices have degree 3 and $2 m$ vertices have degree 2 . Thus H becomes a $(2,3, r)$ - triregular graph.
Further, it is clear from [8] that G is proper r-edge colorable if and only if H is injectively r-edge colorable. As $r \geq 3$, there are enough colors to color the edges of the edge gadget E added in place of each edge.

Now by using the gadget \mathcal{F} in Figure 3.3, here shows that it is NP-complete to determine the injective edge chromatic index of $(2,4, r)$-triregular graph is r.

Theorem 3.4. For each $r \geq 3$, it is NP-complete to determine whether the injective edge chromatic index of a $(2,4, r)$-triregular graph is r.

Proof. Let G be the input r-regular graph. It will be proceeded in two steps: first create a $(2,4, r)-$ triregular graph H from G, then we show that H has an injective r-edge coloring if and only if G is properly r-edge

Figure 3.3: Edge gadget \mathcal{F} with an injective 2 edge coloring
colorable.
Create the graph H from G by removing all edges of G. For each edge $u v$ of G, create a copy of a gadget \mathcal{F} and connect it to u and v. Add four new vertices a, b, c and d. Also create the following edges $u a, v a, a d, a b, c d$ and $c b$.
Let G be a graph on n vertices and m edges. On creating the graph H, corresponding to each edge four vertices are added, thus H has $4 m+n$ vertices. In which n vertices have degree $r, 3 m$ vertices have degree 2 and m vertices have degree 4 . Thus H becomes a $(2,4, r)$ - triregular graph.
If G has an r-edge coloring c, then injectively r-edge color H by assigning to $u a, v a, a d$ and $a b$ in H the color $c(u v)$; then extend the coloring to each gadget \mathcal{F} corresponding to each edge, by assigning any one of the color from the remaining $r-1$ colors to $b c$ and $c d$.
Conversely, if H has an injective r-edge coloring, then color an edge $u v$ of G with the color of the edge $u a$ (or $v a$) of H. The coloring is proper since the color of $u a$ and $v a$ are the same.

Similarly for an r-edge colorable graph, construct a graph G^{\prime} by subdividing each edge $u v$ to $u x$ and $x v$ by adding a vertex x and assigning the same color of $u v$ to $u x$ and $x v$ gives an injective r-coloring of G^{\prime}. The converse also follows similarly. The graph thus obtained is a $(2, r)$-biregular graph.

Corollary 3.5. For each $r \geq 3$, it is NP-complete to determine whether the injective edge chromatic index of a $(2, r)$-biregular graph is r.

4. Conclusions

In this article, the injective edge chromatic index of different graph products are obtained. In particular, the injective edge chromatic index of union of finite number of graphs, injective edge chromatic index of join of G and H, where $G, H=K_{n}, \bar{K}_{n}, P_{n}, C_{n}, L_{n}$ and the injective edge chromatic index of Cartesian product (or corona) of G and H are obtained for $G, H=P_{n}, C_{n}$. Also determined bounds for $\chi_{i}^{\prime}(G)$ for the resultant graph G obtained by the operations join and corona. Furthermore, the injective edge colouring problem with $r \geq 3$ has been shown to be NP-complete for $(2,3, r)$-triregular graphs, $(2,4, r)$-triregular graphs, and $(2, r)$-biregular graphs. It is also open to compute the exact values of the injective chromatic index $\chi_{i}^{\prime}(G \square H)$ and $\chi_{i}^{\prime}(G \bigodot H)$ for any two arbitrary graphs G and H and the complexity of other classes of graphs.

References

[1] Y. Bu, C. Qi, Injective edge coloring of sparse graphs, Discrete Math. Algorithms Appl. 10 (2018): 1850022 (16 pages).
[2] L. Cai, J. A. Ellis, NP-completeness of edge-colouring some restricted graphs, Discrete Appl. Math. 30 (1991): 15-27.
[3] D. M. Cardoso, J. O. Cerdeira, C. Dominic and J. P. Cruz, Injective edge chromatic index of a graph, arXiv preprint arXiv:1510.02626, 2015.
[4] D. M. Cardoso, J. O. Cerdeira, C. Dominic and J. P. Cruz, Injective edge coloring of graphs, Filomat 33 (2019): 6411-6423.
[5] J. Clark, D. Holton, A First Look at Graph Theory, World Scientific, 1991.
[6] B. Ferdjallah, S. Kerdjoudj, A. Raspaud, Injective edge-coloring of sparse graphs, arXiv preprint arXiv:1907.09838, 2019.
[7] B. Ferdjallah, S. Kerdjoudj, A. Raspaud, Injective edge-coloring of subcubic graphs. Discrete Mathematics, Algorithms and Applications, 2250040, 2021.
[8] F. Foucaud, H. Hocquard, D. Lajou, Complexity and algorithms for injective edge-coloring in graphs, Inform. Process. Lett. 170 (2021) : 106121
[9] R. Frucht, F. Harary, On the corona of two graphs, Aequationes Math. 4 (1970): 322-325.
[10] J. A. Gallian, A dynamic survey of graph labeling, Electron. J. Combin. 1 (2018) DS6.
[11] G. Hahn, J. Kratochvıl, J. Širáň, D. Sotteau, On the injective chromatic number of graphs, Discrete Math. 256 (2002): 179-192.
[12] F. Harary, Graph theory, Addison-Wesley, Reading, MA., 1969.
[13] A. Kostochka, A. Raspaud, J. Xu, Injective edge-coloring of graphs with given maximum degree, European J. Combin. 96 (2021): 103355.
[14] Y. Li, L. Chen, Injective edge coloring of generalized Petersen graphs, AIMS Mathematics 6 (2021): 7929-7943.
[15] D. B. West, Introduction to graph theory, Prentice hall upper saddle river, NJ, 2, 1996.
[16] J. Yue, S. Zhang, X. Zhang, Note on the perfect EIC-graphs, Appl. Math. Comput. 289 (2016): 481-485.

[^0]: 2020 Mathematics Subject Classification. 05C15; 05C76; 03D15
 Keywords. injective edge chromatic index; union; join; Cartesian product; corona; complexity; triregular graphs.
 Received: 14 June 2022; Accepted: 15 November 2022
 Communicated by Paola Bonacini
 The research of Bhanupriya C K is supported by DST, Government of India under the scheme 'FIST'(No. SR/FST/MS-I/2019/40) and financial assistance given by Ministry of Human Resource Development, Government of India.

 * Corresponding author: Charles Dominic

 Email addresses: ckbhanupriya@gmail.com (Bhanupriya C K), charlesdominicpu@gmail.com, cd22129@essex.ac.uk (Charles Dominic), sunitha@nitc.ac.in (Sunitha M S)

