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Abstract. Recently, Shaun Cooper proved several interesting η-function identities of level 6 while finding
series and iterations for 1/π. In this sequel, we present some new proofs of the η-function identities of level
6 discovered by Cooper. Here, in this article, we make use of the modular equation of degree 3 in two
methods. We further give some interesting combinatorial interpretations of colored partitions. We also
briefly describe a potential direction for further researches based upon some related recent developments
involving the Jacobi’s triple-product identity and the theta-function identities as well as on several other
q-functions which emerged from the Rogers-Ramanujan continued fraction R(q) and its such associates as
G(q) and H(q). We point out the importance of the usage of the classical q-analysis and we also expose the
current trend of falsely-claimed “generalization” by means of its trivial and inconsequential (p, q)-variation
by inserting a forced-in redundant (or superfluous) parameter p.
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1. Introduction

The Dedekind η-function is defined as follows:

η(τ) := eiπτ/12
∞∏
j=1

(
1 − e2πiτ

)
= q1/24

∞∏
j=1

(
1 − q j

) (
ℑ(τ) > 0

)
.

Throughout this paper, we assume the |q| < 1 and employ the following standard notation:

(a; q)∞ :=
∞∏

n=0

(1 − aqn).

Ramanujan’s theta function f(a, b) is defined by

f(a, b) :=
∞∑

n=−∞

an(n+1)/2 bn(n−1)/2 (|ab| < 1).

The function f(a, b) satisfies the well-known triple-product identity of Jacobi [7, p. 35], which we state here
as follows:

f(a, b) = (−a; ab)∞(−b; ab)∞(ab; ab)∞.

Some important special cases of f(a, b) may be recalled as follows (see [7, p. 36]):

ψ(q) := f(q, q3) =
∞∑

n=0

q
n(n+1)

2 =
(q2; q2)∞
(q; q2)∞

,

φ(q) := f(q, q) =
∞∑

n=−∞

qn2
= (−q; q2)2

∞(q2; q2)∞

and

f (−q) := f(−q,−q2) =
∞∑

n=−∞

(−1)nqn(3n−1)/2 = (q; q)∞.

From this last definition, it is easily seen for the Dedekind η-function η(τ) that

f (−q) = q−1/24η(τ).

Following Ramanujan’s work, we define

χ(q) := (−q; q2)∞.

Furthermore, in what follows, we find it to be convenient to write f (−qn) = fn.
A theta-function identity, which relates f1, f2, fn and f2n is called the theta-function identity of level 2n.

Ramanujan documented many modular equations which involve quotients of the function f1 at different
arguments. For example, we recall the following result [8, p. 204, Entry 51].

If

P :=
f 2
1

q1/12 f 2
3

and Q :=
f 2
2

q1/6 f 2
6

,
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then

PQ +
9

PQ
=

(Q
P

)3

−

(
P
Q

)3

. (1)

The proof of the above result can be found in the monograph by Berndt [7], who also used similar
types of identities in order to evaluate various continued fractions, Weber class invariants and many
more. In fact, after the publication of [7], many researchers discovered similar identities (see, for example,
[3–6, 13, 21, 24, 25, 27–29]).

Recently, Cooper [10, 11] established several interesting Dedekind η-function identities in his devel-
opment of series expansions of π. In the present article, motivated by the above works, we prove some
η-function identities of level 6 given by Cooper [10, 11] by using modular equations of degree 3. Moreover,
as an application of the results derived here, we establish some interesting combinatorial interpretations of
colored partitions.

Before concluding this section, we define a modular equation by Ramanujan’s work. A modular
equation of degree n is an equation relating α and β that is induced by

n

 2F1

(
1
2 ,

1
2 ; 1; 1 − α

)
2F1

(
1
2 ,

1
2 ; 1;α

)  = 2F1

(
1
2 ,

1
2 ; 1; 1 − β

)
2F1

(
1
2 ,

1
2 ; 1; β

) ,

where

2F1(a, b; c; z) :=
∞∑

n=0

(a)n(b)n

(c)n

zn

n!
(|z| < 1)

denotes the Gauss hypergeometric function with

(λ)0 := 1 and (λ)n := λ(λ + 1)(λ + 2) · · · (λ + n − 1) (n ∈ {1, 2, 3, · · · }).

We say that β is of degree n over α and we refer to the following quotient:

m :=
z1

zn

as a multiplier for

z1 = 2F1

(1
2
,

1
2

; 1;α
)

and zn = 2F1

(1
2
,

1
2

; 1; β
)
.

2. Main Results

Our first main result as Theorem 1 below.

Theorem 1. It is asserted for the Dedekind η-function that

[η(τ)]5 η(3τ)
η(2τ)[η(6τ)]5 + 17 + 72

(
η(2τ)[η(6τ)]5

[η(τ)]5 η(3τ)

)
=

(
η(2τ)η(3τ)
η(τ)η(6τ)

)12

. (2)

Proof. [First Proof of Theorem 1] Ramanujan [14, p. 238] and Berndt [7, pp. 230–238, Entry 13 (ix) and
Entry 13 (xiv)] documented the following modular equations of degree 3. If β has degree 3 over α, we have

P :=
[
16αβ(1 − α)(1 − β)

]1/8
and Q :=

(
β(1 − β)
α(1 − α)

)1/4

,
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which yields

Q +
1
Q
+ 2
√

2
(
P −

1
P

)
= 0. (3)

Also, from [7, pp. 122–124, Entry 10 (i) and Entry 12 (v)], we find for q = e−y that

φ(q) =
√

z (4)

and

χ(q) = 21/6

(
x(1 − x)

q

)−1/24

. (5)

If we now transform (3) by using (5), we obtain(u
v

)6
+

(v
u

)6
= (uv)3

−
8

(uv)3 , (6)

where

u := u(q) = q−1/24 χ(q) and v := v(q) = q−1/8 χ(q3).

Upon multiplying both sides of (6) by

(uv)−18
(
4u12 + 48u3v3

− 3u9v9
− 4v12

)
,

we obtain

v3

u9 +
16

u15v3 −
4v6

u18 +
384

u12v12 −
72

u6v6 + 3 +
4u6

v18 +
80

u3v15 −
7u3

v9 = 0,

which is equivalent to

3
(
1 −

4u3

v9

)2

−
u8

v8

(
17
u5v
+

v11

u17

) (
4v3

u9 − 1
) (

1 −
4u3

v9

)
+ 24

u6

v18

(
4v3

u9 − 1
)2

= 0. (7)

Also, from [7, pp. 230-238, Entry 13 (iẍ) and Entry (ẍiv̈)], if β has degree 3 over α, then we have

m =
1 − 2

(
β3(1 − β)3

α(1 − α)

)1/8

1 − 2(αβ)1/4
and

3
m
=

2
(
α3(1 − α)3

β(1 − β)

)1/8

− 1

1 − 2(αβ)1/8
,

which would lead us to

m2

3
=

1 − 2
(
β3(1 − β)3

α(1 − α)

)1/8

2
(
α3(1 − α)3

β(1 − β)

)1/8

− 1

. (8)

Next, on transforming (8) in terms of the theta function from (4) and (5), we have

[φ(q)]4

3[φ(q3)]4 =
1 −

4u3

v9

4v3

u9 − 1
. (9)
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Employing (9) in (7), we find that

1 −
(

17
u5v
+

v11

u17

) (
v2

u2

φ(q3)
φ(q)

)4

−
72v14

u24

(
φ(q3)
φ(q)

)8

= 0. (10)

Furthermore, by using some known q-identities, we can easily see that

φ(q) =
f 5
2

( f1 f4)2 , χ(q) =
f 2
2

f1 f4
and χ(−q) =

f1
f2
, (11)

which readily yields

φ(q)
φ(q3)

= q1/6 u2

v2

f2
f6
. (12)

Using (12) in (10), we deduce that

1 − q2/3

(
17
u5v
+

v11

u17

) (
f6
f2

)4

−
72q4/3

u10v2

(
f6
f2

)8

= 0. (13)

Finally, if we replace q by −q in the above equation (13), rewrite u(−q) and v(−q) in terms of fn by using
(11), multiply the resulting equation by f 17

1 f 2
3 f 7

6 and then simplify by using the Dedekind η-function, we
complete the first proof of Theorem 1.

Proof. [Second Proof of Theorem 1] Upon first rewriting the assertion (2) of Theorem 1 in terms of fn and
then dividing the resulting equation by f 17

1 f 11
2 f 13

3 f 7
6 , we obtain

1 + 17q
f2 f 5

6

f 5
1 f3
+ 72q2

f 2
2 f 10

6

f 10
1 f 2

3

−
f 13
2 f 11

3

f 17
1 f 7

6

= 0. (14)

We also see from [29, Theorem 3.4 (i)] that, if

A =
f1

q
1
24 f2

and B =
f3

q
1
8 f6
,

then

(AB)3 +
8

(AB)3 =
( B

A

)6

−

(A
B

)6

. (15)

Now, if we make use of P, Q, A and B as defined in (1) and (15), (14) reduces to

P7Q2(AB)6 + (17P6
−Q6)Q(AB)3 + 72P5 = 0

or, equivalently, to

(AB)3 =
(Q6
− 17P6)Q ±

√
(Q6 − 17P6)2Q2 − 288P12Q2

2P7Q2 . (16)

Thus, by first using (16) in (15) and then factorizing the resulting equation, we obtain

L(P,Q)M(P,Q) = 0,

where

L(P,Q) = P6
− 9P2Q2

− P4Q4 +Q6

and

M(P,Q) = 32P14Q2(9P12
− 8P10Q4

− 72P8Q2
− 26P6Q6 +Q12)

Clearly, L(P,Q) is the same as in (1), so we have completed our second proof of Theorem 1.



Raksha et al. / Filomat 37:12 (2023), 3755–3767 3760

We now state our second main result as Theorem 2 below.

Theorem 2. For the Dedekind η-function η(z), it is asserted that

[η(2τ)]8[η(3τ)]4

[η(τ)]4[η(6τ)]8 − 10 + 9
(

[η(τ)]4[η(6τ)]8

[η(2τ)]8[η(3τ)]4

)
=

(
η(τ)η(3τ)
η(2τ)η(6τ)

)6

. (17)

Proof. [First Proof of Theorem 2] On multiplying both sides of (6) by

u−10v−26
(
3u12

− u9v9
− 8u3v3 + 3v12

)
,

we obtain

3
u10v2 +

16
u7v11 −

64
u4v20 +

6u2

v14 +
16u5

v23 −
4

uv5 +
u8

v8 −
4u11

v17 +
3u14

v26 = 0,

which is equivalent to

3
u10v2

(
1 −

4u3

v9

)2

+

(
10u2

v14 −
u8

v8

) (
1 −

4u3

v9

) (
4v3

u9 − 1
)
+

3u14

v26

(
4v3

u9 − 1
)2

= 0. (18)

Now, if we use (9) in the equation (18), we find that

1
u10v2 +

(
10

(uv)6 − 1
)

u8

v8

[φ(q3)]4

[φ(q)]4 +
9u14

v18

[φ(q3)]8

[φ(q)]8 = 0,

which, in view of (12), yields

1
u10v2 + q2/3

( 10
u6v6 − 1

) ( f6
f2

)4

+
9q4/3

u2v10

(
f6
f2

)8

= 0. (19)

Finally, if we replace q by −q in (19), rewrite u(−q) and v(−q) in terms of fn by using (11), multiply both
sides of the resulting equation by f 16

2 f 8
3 and then simplify by using the Dedekind η-function, we complete

our first proof of Theorem 2.

Proof. [Second Proof of Theorem 2] We rewrite the assertion (17) of Theorem 2 in terms of fn and divide
the resulting equation by f 2

1 f 16
2 f 10

3 . Then, by using P, Q, A and B as defined in (1) and (15), we obtain

(AB)3 =

√
9P4 − 10P2Q4 +Q8

PQ2 ,

which, when used in (15) followed by factorization, leads us to

L(P,Q)M(P,Q) = 0, (20)

where

L(P,Q) = P6
− P4Q4

− 9P2Q2 +Q6

and

M(P,Q) = 9P10
− P8Q4

− P2Q10 +Q14.

Since L(P,Q) is the same as (1), we have completed our second proof of Theorem 2.
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Theorem 3. The following Dedekind η-function identity holds trur:

[η(2τ)]3[η(3τ)]9

[η(τ)]3[η(6τ)]9 − 7 − 8
(

[η(τ)]3[η(6τ)]9

[η(2τ)]3[η(3τ)]9

)
=

(
η(τ)η(6τ)
η(2τ)η(3τ)

)4

. (21)

Proof. [First Proof of Theorem 3] On multiplying both sides of (6) by

(uv)−18
(
16u3v3 + 8u12

− 16v12 + u9v9
)
,

we get

16v6

u18 −
17v3

u9 +
112

u15v3 +
16

u6v6 + 1 +
7u3

v9 −
128

u12v12 −
80

u3v15 −
8u6

v18 = 0,

which is equivalent to(
1 +

7u3

v9 −
8u6

v18

) (
4v3

u9 − 1
)2

−
9v3

u9

(
1 −

4u3

v9

)2

= 0.

If we now use (9) in the above equation, we find that

1 +
7u3

v9 −
8u6

v18 −
v3

u9

φ8(q)
φ8(q3)

= 0,

which, in light of (12), yields

1 +
7u3

v9 −
8u6

v8 −
q−4/3u7

v13

(
f2
f6

)8

= 0. (22)

Finally, if we replace q by −q in the equation (22), rewrite u(−q) and v(−q) in terms of fn by using (11),
multiply the resulting equation by f 6

2 f 18
3 , and then simplify by using the Dedekind η-function, we complete

our first proof of Theorem 3.

Proof. [Second Proof of Theorem 3] After rewriting the assertion (21) of Theorem 3 in terms of fn, if we
divide the resulting equation by f 6

2 f 18
3 and make use of the definitions of P,Q,A and B as in (1) and (15), we

obtain

Q6(AB)6
−Q3(7P2 + P5Q2) − 8P6 = 0

or, equivalently,

(AB)3 =
Q3(7P2 + P5Q2) ±

√
Q6(7P2 + P5Q2)2 + 32P6Q6

2Q6 . (23)

Now, by using (23) in (15) and then factorizing, we have

L(P,Q)M(P,Q) = 0,

where

L(P,Q) == P6
− P4Q4

− 9P2Q2 +Q6

and

M(P,Q) = 32P8Q8(P6 + 9P2Q2 + P4Q4)

Since L(P,Q) is the same as in (1), our second proof of Theorem 3 is completed.
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Remark. Since the proof of Cooper’s Dedekind η-function identities of level 6 are similar, we omit the proof
of the following (presumably new) η-function identities.

1 − 9
(

[η(τ)]4[η(6τ)]8

[η(2τ)]8[η(3τ)]4

)
=

[η(τ)]9[η(6τ)]3

[η(2τ)]9[η(3τ)]3 , (24)

1 −
[η(τ)]4[η(6τ)]8

[η(2τ)]8[η(3τ)]4 =
η(τ)[η(3τ)]5

[η(2τ)]5 η(6τ)
, (25)

1 − 8
(

[η(τ)]3[η(6τ)]9

[η(2τ)]3[η(3τ)]9

)
=

[η(τ)]8[η(6τ)]4

[η(2τ)]4[η(3τ)]8 (26)

and

1 +
[η(τ)]3[η(6τ)]9

[η(2τ)]3[η(3τ)]9 =
[η(2τ)]5η(6τ)
η(τ)[η(3τ)]5 . (27)

3. Applications to Colored Partitions

The Dedekind η-function identities, which we have proved in Section 2, have applications to the theory
of partitions. In this section, we demonstrate the applications in colored partitions for Theorem 1 and 2.
Similarly, we can identify other applications for the remaining identities derived in Section 2.

For convenience, we use the following standard notation:

(x1, x2, · · · , xm; q)∞ :=
m∏

j=1

(x j; q)∞. (28)

Moreover, by definition, a positive integer n has l colors if there are l copies of n available colors and all of
them are viewed as distinct objects. Partitions of a positive integer into parts with colors are called colored
partitions. For example, if 1, 2 and 3 are assigned with two colors, then the possible partitions of 3 are given
as follows:
3i, 3v, 2v + 1v, 2i + 1i, 2i + 1v, 2v + 1i, 1i + 1i + 1i, 1v + 1v + 1v, 1i + 1i + 1v and 1i + 1v + 1v,
where we used the indices i (indigo) and v (violet) to differentiate two colors of 1, 2 and 3. Also, the
generating function for the number of partitions of n is denoted by

1
(qa; qb)k

∞

,

with k colors and with all of the parts being congruent to a (mod b).

Theorem 4. Let A(n) denote the number of partitions of n being split into parts congruent to ±1, ±2 or +3 modulo 6
with 5, 4 and 6 colors, respectively. Suppose also that B(n) represents the number of partitions of n into several parts
congruent to ±1, ±2 or +3 modulo 6 with 10, 8 and 12 colors, respectively. If C(n) is the number of partitions of n
being divided into parts congruent to ±1, ±2 or +3 modulo 6 with 17, 4 and 6 colors, respectively, then the following
identity holds true:

17A(n − 1) + 72B(n − 2) − C(n) = 0 (n ∈N \ {1} = {2, 3, 4, · · · }). (29)
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Proof. Upon rewriting the assertion (2) of Theorem 1 by using Dedekind η-function, if we divide both sides
of the resulting equation by f 17

1 f 13
2 f 13

3 f 17
6 and rewrite it subject to the common base q6, we have

1 +
17q(

q1
5, q

2
4, q

3
6, q

4
4, q

5
5; q6

)
∞

+
72q2(

q1
10, q

2
8, q

3
12, q

4
8, q

5
10; q6

)
∞

−
1(

q1
17, q

2
4, q

3
6, q

4
4, q

5
17; q6

)
∞

= 0. (30)

Since (
qa±; qb

)
∞
=

(
qa, qb−a; qb

)
∞

(a, b ∈N; a < b),

the equation (30) can be reduced to

1 +
17q(

q1±
5 , q

2±
4 , q

3+
6 ; q6

)
∞

+
72q2(

q1±
10 , q

2±
8 , q

3+
12 ; q6

)
∞

−
1(

q1±
17 , q

2±
4 , q

3+
6 ; q6

)
∞

= 0. (31)

The above identity (31) generates A(n), B(n) and C(n), and hence we have

1 + 17q
∞∑

n=0

A(n)qn + 72q2
∞∑

n=0

B(n)qn
−

∞∑
n=0

C(n)qn = 0. (32)

Thus, upon extracting the powers of qn in (32), we obtain the result (29) as asserted by Theorem 4.

The following table verifies Theorem 4 for the partitions for n = 2.

Table 1. Verification of the Partitions for n = 2

A(1) = 5 : 1r, 1o, 1y, 1b, 1v
B(0) = 1 :
C(2) = 157 : 1r + 1r, 1y + 1y and 15 more colors of the same type,

1r + 1y, 1r + 1b and 134 colors of similar type
and 2r, 20, 2b, 2y

Theorem 5. Let A(n) represent the number of partitions of n into several parts congruent to ±1 or +3 modulo 6
with 10 and 12 colors, respectively. Suppose also that B(n) denotes the number of partitions of n being split into parts
congruent to ±1, ±2 or +3 modulo 6 with 6, 4 and 12 colors, respectively. Let C(n) be the number of partitions of n
being divided into parts congruent to ±1 or +3 modulo 6 with 2 and 12 colors, respectively. Also let D(n) represent
the number of partitions of n into several parts congruent to 2± modulo 6 with 4 colors. Then the following identity
holds true:

A(n) − 10B(n − 1) + 9C(n − 2) −D(n) = 0 (n ∈N \ {1}). (33)

Proof. We rewrite the assertion (17) of Theorem 2 using the Dedekind η-function, divide both sides of the
resulting equation by f 10

1 f 16
2 f 10

3 f 16
6 and rewrite it subject to the common base q6. We thus find that

1(
q1

10, q
3
12, q

5
10; q6

)
∞

−
10q(

q1
6, q

2
4, q

3
12, q

4
4, q

5
6; q6

)
∞

+
9q2(

q1
2, q

3
12, q

5
2; q6

)
∞

−
1(

q2
4, q

4
4; q6

)
∞

= 0,

which is equivalent to

1(
q1±

10 , q
3+
12 ; q6

)
∞

−
10q(

q1±
6 , q

2±
4 , q

3+
12 ; q6

)
∞

+
9q2(

q1±
2 , q

3+
12 ; q6

)
∞

−
1(

q2±
4 ; q6

)
∞

= 0. (34)
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The identity (34) provides the generating functions of A(n), B(n), C(n) and D(n), and hence we have

∞∑
n=0

A(n)qn
− 10q

∞∑
n=0

B(n)qn + 9q2
∞∑

n=0

C(n)qn
−

∞∑
n=0

D(n)qn = 0,

which, upon extracting the powers of qn, yields the desired result as asserted by Theorem 5.

The following table verifies Theorem 5 for the partitions for n = 2.

Table 2. Verification of the Partitions for n = 2

A(2) = 55 : 1r + 1r, 1y + 1y and the remaining 8 colors of the same type,
1r + 1y, 1r + 1b and the remaining 43 colors of similar type,
2r, 2y, 2b.

B(1) = 6 : 1r, 1y, 1b, 1o, 1m, 1v.
C(0) = 1 :
D(2) = 4 : 2r, 2y, 2b, 2m.

4. Jacobi’s Triple-Product Identities, Theta-Function Identities and Associated q-Functions

In this section, we choose to present a brief description of some related recent developments involving
the Jacobi’s triple-product identities, theta-function identities and other associated q-functions.

First of all, we recall that the general theta function f(a, b),which was introduced by Srinivasa Ramanujan
(1887–1920) in Chapter 16 of his celebrated Notebooks, is given by (see also [15] and Section 1)

f(a, b) = 1 +
∞∑

n=1

(ab)
n(n−1)

2 (an + bn)

=

∞∑
n=−∞

a
n(n+1)

2 b
n(n−1)

2 = f (b, a) (|ab| < 1). (35)

Clearly, this last equation (35) shows that

f(a, b) = a
n(n+1)

2 b
n(n−1)

2 f
(
a(ab)n, b(ab)−n

)
= f(b, a) (n ∈ Z). (36)

In fact, Ramanujan also rediscovered Jacobi’s famous triple-product identity which, in Ramanujan’s nota-
tion, can be written as follows (see [14, p. 35, Entry 19]):

f(a, b) = (−a; ab)∞ (−b; ab)∞ (ab; ab)∞ (37)

or, equivalently, by (see [12])

∞∑
n=−∞

qn2
zn =

∞∏
n=1

(
1 − q2n

) (
1 + zq2n−1

) (
1 +

1
z

q2n−1
)

=
(
q2; q2

)
∞

(
−zq; q2

)
∞

(
−

q
z

; q2
)
∞

(|q| < 1; z , 0). (38)

The q-series identity (38) or its above-mentioned equivalent form was first proved by Carl Friedrich Gauss
(1777–1855).
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Next, we present the set of four theta functions ϑ j(z, q) ( j = 1, 2, 3, 4), which were introduced in 1829 by
Carl Gustav Jacob Jacobi (1804–1851), defined by (see [12] and [30]; see also [16])

ϑ1(z, q) = −i
∞∑

n=−∞

(−1)n e(2n+1)iz

= 2
∞∑

n=0

(−1)n q

(
n+ 1

2
2

)2

sin[(2n + 1)z]

= 2q
1
4

∞∑
n=0

(−1)n qn(n+1) sin[(2n + 1)z], (39)

ϑ2(z, q) =
∞∑

n=−∞

q

(
n+ 1

2
2

)2

e(2n+1)iz

= 2
∞∑

n=0

q

(
n+ 1

2
2

)2

cos[(2n + 1)z]

= 2q
1
4

∞∑
n=0

qn(n+1) cos[(2n + 1)z], (40)

ϑ3(z, q) =
∞∑

n=−∞

qn2
e2niz = 1 + 2

∞∑
n=1

qn2
cos(2nz) (41)

and

ϑ4(z, q) =
∞∑

n=−∞

(−1)n qn2
e2niz = 1 + 2

∞∑
n=1

(−1)n qn2
cos(2nz), (42)

where z ∈ C and |q| < 1. A set of three most interesting q-functions, which are related rather closely to such
entities as Ramanujan’s general theta function in (36), Jacobi’s triple-product identity in (38) and Jacobi’s
theta functions in the equations (39) to (42), can now be introduced here as follows (see [1], [2], [20] and
[17]):

f (−q) := f(−q,−q2) =
∞∑

n=−∞

(−1)n q
n(3n−1)

2 = (q; q)∞ =
1
√

3
q−

1
24 ϑ2

(
π
6
, q

1
6

)
, (43)

φ(q) := f(q, q) =
∞∑

n=−∞

qn2
=

(−q; q2)∞ (q2; q2)∞
(q; q2)∞ (−q2; q2)∞

= ϑ3(0, q), (44)

and

ψ(q) := f(q, q3) =
∞∑

n=0

q
n(n+1)

2 =
(q2; q2)∞
(q; q2)∞

=
1
2

q−
1
8

[
ϑ2(0,

√
q) − 1

]
. (45)
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The theory of the above-defined (Jacobi’s) theta functions ϑ j(z, q) ( j = 1, 2, 3, 4) has a long history and
many applications in a wide variety of research fields such as Number Theory (in, especially, Quadratic
Forms and Elliptic Functions) and Quantum Physics. Besides, the subject of q-analysis, which is popularly
known as the quantum analysis, has its roots in such important areas as (for example) Mathematical
Physics, Analytic Number Theory and the Theory of Partitions. Motivated essentially by the potential
for applications of q-series and q-products, in their recent investigation, Srivastava et al. [26] introduced
and studied the three functions Rα, Rβ and Rm, which emerged from the Rogers-Ramanujan continued
fraction R(q) and its such associates as G(q) and H(q) (see, for details, [26, Eqs. (12), (13) and (14)]) and
for which some modular equations of degree 3 and higher can possibly be developed in a sequel to our
present investigation. More recently, Srivastava et al. [22] developed several q-identities involving the theta
functions φ(q) and ψ(q) defined by (44) and (45), respectively.

5. Conclusion

Motivated by a number of earlier works including especially the work of Cooper [10, 11], which we
have cited herein, we have presented new and alternative proofs to the Dedekind η-function identities of
level 6 documented in [11]. Here, in this sequel, we have used Ramanujan’s modular equations of degree 3.
Furthermore, as an application of the identities which we have presented here, we have established some
interesting combinatorial interpretations of colored partitions.

The subject of the basic or quantum (or q-) analysis has found widespread applications which are based
upon the extensive study of q-series and q-polynomials and, especially, q-hypergeometric functions and
q-hypergeometric polynomials (see, for details, [23, pp. 350–351]). With a view to aiding and motivating
the interested reader for further researches on the subject, therefore, we have chosen to cite some recent
developments in addition to many of the above-cited works (see, for example, [9] and [19]) for potential
usages of the basic or quantum (or q-) calculus.

In concluding our present work based upon the basic (or q-) analysis, we recall a recently-published
review-cum-expository review article in which, in addition to employing the q-analysis in Geometric Func-
tion Theory of Complex Analysis, Srivastava [17] pointed out the fact that the results involving the q-analysis
can easily (and possibly trivially) be translated into the corresponding results for the so-called (p, q)-analysis
(with 0 < |q| < p ≦ 1) by applying some parametric and argument variations, the additional parameter p
being obviously redundant. Of course, this exposition and observation of Srivastava (see, for details, [17,
p. 340] and [18, pp. 1511–1512]) would apply also to the results which we have considered in our present
investigation for |q| < 1.
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