Some results on higher order symmetric operators

Junli Shen ${ }^{\text {a }}$, Fei Zuo ${ }^{\text {b }}$, Alatancang Chen ${ }^{\text {c }}$
${ }^{a}$ College of Computer and Information Technology, Henan Normal University, Xinxiang 453007, China.
${ }^{b}$ College of Mathematics and Information Science, Henan Normal University, Xinxiang 453007, China. ${ }^{c}$ School of Mathematical Science, Inner Mongolia Normal University, Hohhot 010022, China.

Abstract

For some operator $A \in \mathcal{B}(\mathcal{H})$, positive integers m and k, an operator $T \in \mathcal{B}(\mathcal{H})$ is called k-quasi(A, m)-symmetric if $T^{* k}\left(\sum_{j=0}^{m}(-1)^{j}\left(j_{j}^{m}\right) T^{* m-j} A T^{j}\right) T^{k}=0$, which is a generalization of the m-symmetric operator. In this paper, some basic structural properties of k-quasi- (A, m)-symmetric operators are established with the help of operator matrix representation. We also show that if T and Q are commuting operators, T is k-quasi- (A, m)-symmetric and Q is n-nilpotent, then $T+Q$ is $(k+n-1)$-quasi- $(A, m+2 n-2)$-symmetric. In addition, we obtain that every power of k-quasi- (A, m)-symmetric is also k-quasi- (A, m)-symmetric. Finally, some spectral properties of k-quasi- (A, m)-symmetric are investigated.

1. Introduction

Let $\mathcal{B}(\mathcal{H})$ denote the algebra of all bounded linear operators on the complex separable Hilbert space \mathcal{H}. For $S, T \in \mathcal{B}(\mathcal{H})$, let L_{S} and $R_{T} \in \mathcal{B}(\mathcal{B}(\mathcal{H}))$ denote the operators $L_{S}(X)=S X$ and $R_{T}(X)=X T$ of left multiplication by S and right multiplication by T. Recall the definition of the usual derivation operator $\delta_{S, T}(X)$ given by $\delta_{S, T}(X)=S X-X T$ for $X \in \mathcal{B}(\mathcal{H})$. For every positive integer m, we have $\delta_{S, T}^{m}(X)=\delta_{S, T}\left(\delta_{S, T}^{m-1}(X)\right)$ for $X \in \mathcal{B}(\mathcal{H})$. Given any positive integer m, an operator $T \in \mathcal{B}(\mathcal{H})$ is said to be m-symmetric (also called m-selfadjoint in the literature) if

$$
\delta_{T^{*}, T}^{m}(I)=\left(L_{T^{*}}-R_{T}\right)^{m}(I)=\sum_{j=0}^{m}(-1)^{j}\binom{m}{j} T^{* m-j} T^{j}=0
$$

where $\binom{m}{j}$ is the binomial coeffcient and T^{*} is the adjoint operator of T. The m-symmetric operators have applications in positive definite differential operators of odd order, conjugate point theory, and classical disconjugacy theory $[1,3,12,13]$. In [11] Helton initiated the study of the m-symmetric operator, in a series of papers [11-13], he modelled these operators as multiplication t on a Sobolev space, established their connections to Sturm-Liouville operators. Note that T is 1 -symmetric if and only if T is selfadjoint. It is clear that if T is m-symmetric, then T is n-symmetric for all $n \geq m$. In [17], McCullough and Rodman obtained some algebraic and spectral properties of m-symmetric operators. On the other hand, the perturbation of

[^0]m-symmetric operators by nilpotent operators has been considered in $[9,16,17]$, and products and sums of two commuting m-symmetric operators were discussed in [4, 5, 7-9]. In addition, m-symmetric weighted shift operators have been explored in [18]. Recently, in [14], Jeridi and Rabaoui extended the notion of m-symmetric operators to (A, m)-symmetric operators. For a positive $A \in \mathcal{B}(\mathcal{H})$ and positive integer m, an operator $T \in \mathcal{B}(\mathcal{H})$ is called (A, m)-symmetric if
$$
\delta_{T^{*}, T}^{m}(A)=\left(L_{T^{*}}-R_{T}\right)^{m}(A)=\sum_{j=0}^{m}(-1)^{j}\binom{m}{j} T^{* m-j} A T^{j}=0 .
$$
(A, m)-symmetric operators inherit many interesting properties of m-symmetric operators, for example, if T and Q are commuting operators, T is an (A, m)-symmetric operator and Q is n-nilpotent, then $T+Q$ is an $(A, m+2 n-2)$-symmetric operator; if T is an (A, m)-symmetric operator, then T is an (A, n)-symmetric operator for all $n \geq m$; the powers of an (A, m)-symmetric operator are also (A, m)-symmetric operators.

Now we consider an extension of the notion of the (A, m)-symmetric operator.
Definition 1.1. For some operator $A \in \mathcal{B}(\mathcal{H})$, positive integers m and k, an operator $T \in \mathcal{B}(\mathcal{H})$ is called k-quasi(A, m)-symmetric if

$$
T^{* k} \delta_{T^{*}, T}^{m}(A) T^{k}=T^{* k}\left(L_{T^{*}}-R_{T}\right)^{m}(A) T^{k}=T^{* k}\left(\sum_{j=0}^{m}(-1)^{j}\binom{m}{j} T^{* m-j} A T^{j}\right) T^{k}=0
$$

In particular, for $A=I$, the operator T is said to be k-quasi- m-symmetric if

$$
T^{* k}\left(\sum_{j=0}^{m}(-1)^{j}\binom{m}{j} T^{* m-j} T^{j}\right) T^{k}=0
$$

In this paper, we study various properties of k-quasi- (A, m)-symmetric operators. The perturbation of k -quasi- (A, m)-symmetric operators by nilpotent operators is obtained. In addition, some spectral properties of k-quasi- (A, m)-symmetric are investigated.

2. Main Results

Henceforth, let $\mathbb{N}, \mathbb{R}, \mathbb{C}$ be the set of natural numbers, real numbers and complex numbers, respectively. A will denote a bounded linear operator unless explicitly stated otherwise, $\overline{\mathcal{M}}$ will denote the closure of a set \mathcal{M}. If $T \in \mathcal{B}(\mathcal{H})$, we shall write $\mathcal{N}(T), \mathcal{R}(T)$ and $\sigma(T)$ for the null space, the range space and the spectrum of T, respectively.
Theorem 2.1. Let $A=A_{1} \oplus A_{2}$ be an operator on \mathcal{H} where $A_{1}=\left.A\right|_{\overline{\mathcal{R}}\left(T^{k}\right)}$ and $A_{2}=\left.A\right|_{\overline{\mathcal{N}}\left(T^{* *}\right)}$. Suppose that $\mathcal{R}\left(T^{k}\right)$ is not dense. Then the following statements are equivalent:
(1) T is a k-quasi- (A, m)-symmetric operator;
(2) $T=\left(\begin{array}{cc}T_{1} & T_{2} \\ 0 & T_{3}\end{array}\right)$ on $\mathcal{H}=\overline{\mathcal{R}\left(T^{k}\right)} \oplus \mathcal{N}\left(T^{* k}\right)$, where T_{1} is an $\left(A_{1}, m\right)$-symmetric operator and $T_{3}^{k}=0$. Furthermore, $\sigma(T)=\sigma\left(T_{1}\right) \cup\{0\}$.
Proof. (1) \Rightarrow (2) Consider the matrix representation of T with respect to the decomposition $\mathcal{H}=\overline{\mathcal{R}\left(T^{k}\right)} \oplus$ $\mathcal{N}\left(T^{* k}\right):$

$$
T=\left(\begin{array}{ll}
T_{1} & T_{2} \\
0 & T_{3}
\end{array}\right)
$$

Let P be the projection onto $\overline{\mathcal{R}\left(T^{k}\right)}$. Since T is a k-quasi- (A, m)-symmetric operator, we have

$$
P\left(\sum_{j=0}^{m}(-1)^{j}\binom{m}{j} T^{* m-j} A T^{j}\right) P=0
$$

Therefore

$$
\sum_{j=0}^{m}(-1)^{j}\binom{m}{j} T_{1}^{* m-j} A_{1} T_{1}^{j}=0
$$

On the other hand, for any $x=\left(x_{1}, x_{2}\right)^{T} \in \mathcal{H}$, we have

$$
\left(T_{3}^{k} x_{2}, x_{2}\right)=\left(T^{k}(I-P) x,(I-P) x\right)=\left((I-P) x, T^{* k}(I-P) x\right)=0
$$

which implies $T_{3}^{k}=0$. Since $\sigma\left(T_{1}\right) \cap\{0\}$ has no interior point, by [10, Corollary 7] $\sigma(T)=\sigma\left(T_{1}\right) \cup\{0\}$.
(2) \Rightarrow (1) Suppose that $T=\left(\begin{array}{ll}T_{1} & T_{2} \\ 0 & T_{3}\end{array}\right)$ on $\mathcal{H}=\overline{\mathcal{R}\left(T^{k}\right)} \oplus \mathcal{N}\left(T^{* k}\right)$, where T_{1} is an $\left(A_{1}, m\right)$-symmetric operator and $T_{3}^{k}=0$. We have

$$
T^{k}=\left(\begin{array}{cc}
T_{1}^{k} & \sum_{j=0}^{k-1} T_{1}^{j} T_{2} T_{3}^{k-1-j} \\
0 & 0
\end{array}\right)
$$

Let $F=\sum_{j=0}^{m}(-1)^{j}\left({ }_{j}^{m}\right) T_{1}^{* m-j} A_{1} T_{1}^{j}$. Then $F=0$. Since

$$
\begin{aligned}
& T^{* k}\left(\sum_{j=0}^{m}(-1)^{j}\binom{m}{j} T^{* m-j} A T^{j}\right) T^{k} \\
= & \left(\begin{array}{cc}
T_{1}^{* k} & 0 \\
\left(\sum_{j=0}^{k-1} T_{1}^{j} T_{2} T_{3}^{k-1-j}\right)^{*} & 0
\end{array}\right)\left(\begin{array}{cc}
\sum_{j=0}^{m}(-1)^{j}\binom{m}{j} T_{1}^{* m-j} A_{1} T_{1}^{j} & * \\
* & *
\end{array}\right)\left(\begin{array}{cc}
T_{1}^{k} & \sum_{j=0}^{k-1} T_{1}^{j} T_{2} T_{3}^{k-1-j} \\
0 & 0
\end{array}\right) \\
= & \left(\begin{array}{cc}
T_{1}^{* k} F T_{1}^{k} & T_{1}^{* k} F \sum_{j=0}^{k-1} T_{1}^{j} T_{2} T_{3}^{k-1-j} \\
\left(\sum_{j=0}^{k-1} T_{1}^{j} T_{2} T_{3}^{k-1-j}\right)^{*} F T_{1}^{k} & \left(\sum_{j=0}^{k-1} T_{1}^{j} T_{2} T_{3}^{k-1-j}\right)^{*} F \sum_{j=0}^{k-1} T_{1}^{j} T_{2} T_{3}^{k-1-j}
\end{array}\right) \\
= & 0
\end{aligned}
$$

for some non specified entries $*$. Hence T is a k-quasi- (A, m)-symmetric operator.
Corollary 2.2. ([19]) Suppose that $\mathcal{R}\left(T^{k}\right)$ is not dense. Then the following statements are equivalent:
(1) T is a k-quasi-m-symmetric operator;
(2) $T=\left(\begin{array}{ll}T_{1} & T_{2} \\ 0 & T_{3}\end{array}\right)$ on $\mathcal{H}=\overline{\mathcal{R}\left(T^{k}\right)} \oplus \mathcal{N}\left(T^{* k}\right)$, where T_{1} is an m-symmetric operator and $T_{3}^{k}=0$. Furthermore, $\sigma(T)=\sigma\left(T_{1}\right) \cup\{0\}$.

Proof. This is a result of Theorem 2.1.
Corollary 2.3. Suppose that T is a k-quasi- (A, m)-symmetric operator and $\mathcal{R}\left(T^{k}\right)$ is dense. Then T is an (A, m) symmetric operator.

Proof. This is a result of Definition 1.1.
Proposition 2.4. Suppose that T is a k-quasi- (A, m)-symmetric operator. Then T^{n} is also a k-quasi- (A, m)-symmetric operator for any $n \in \mathbb{N}$.

Proof. Since T is a k-quasi- (A, m)-symmetric operator, we have

$$
T^{* k} \delta_{T^{*}, T}^{m}(A) T^{k}=T^{* k}\left(L_{T^{*}}-R_{T}\right)^{m}(A) T^{k}=T^{* k}\left(\sum_{j=0}^{m}(-1)^{j}\binom{m}{j} T^{* m-j} A T^{j}\right) T^{k}=0
$$

Therefore

$$
\begin{aligned}
T^{* n k} \delta_{T^{* n}, T^{n}}^{m}(A) T^{n k}= & T^{* n k}\left(L_{T^{* n}}-R_{T^{n}}\right)^{m}(A) T^{n k} \\
= & T^{* n k}\left(L_{T^{*}}^{n}-R_{T}^{n}\right)^{m}(A) T^{n k} \\
= & T^{* n k}\left\{L_{T^{*}}^{n-1} \delta_{T^{*}, T}+L_{T^{*}}^{n-2} \delta_{T^{*}, T} R_{T}+L_{T^{*}}^{n-3} \delta_{T^{*}, T} R_{T}^{2}\right. \\
& \left.+\cdots+L_{T^{*}} \delta_{T^{*}, T} R_{T}^{n-2}+\delta_{T^{*}, T} R_{T}^{n-1}\right\}^{m}(A) T^{n k} \\
= & T^{*(n-1) k}\left\{L_{T^{*}}^{n-1}+L_{T^{*}}^{n-2} R_{T}+L_{T^{*}}^{n-3} R_{T}^{2}+\cdots\right. \\
& \left.+L_{T^{*}} R_{T}^{n-2}+R_{T}^{n-1}\right\}^{m}\left\{T^{* k} \delta_{T^{*}, T}^{m}(A) T^{k}\right\} T^{(n-1) k} \\
= & 0,
\end{aligned}
$$

i.e., T^{n} is a k-quasi- (A, m)-symmetric operator for any $n \in \mathbb{N}$.

Remark The converse of Proposition 2.4 is not true in general as shown in the following example.
Example 2.5. Let $A=\left(\begin{array}{llll}0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1\end{array}\right) \in B\left(\mathbb{C}^{4}\right)$ and $T=\left(\begin{array}{llll}0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0\end{array}\right) \in B\left(\mathbb{C}^{4}\right)$. A simple calculation shows that $T^{* 2}\left(T^{* 6} A-3 T^{* 4} A T^{2}+3 T^{* 2} A T^{4}-A T^{6}\right) T^{2}=0$ and $T^{*}\left(T^{* 3} A-3 T^{* 2} A T+3 T^{*} A T^{2}-A T^{3}\right) T \neq 0$. So, we obtain that T^{2} is a quasi- $(A, 3)$-symmetric operator, but T is not a quasi- $(A, 3)$-symmetric operator.

Corollary 2.6. Suppose that T is an invertible k-quasi- (A, m)-symmetric operator. Then T^{-1} is a k-quasi- $(A, m)-$ symmetric operator.

Proof. Suppose that T is an invertible k-quasi- (A, m)-symmetric operator. Then T is an (A, m)-symmetric operator, and so is T^{-1}. Hence T^{-1} is a k-quasi- (A, m)-symmetric operator.

Proposition 2.7. Suppose that $\left\{T_{n}\right\}$ is a sequence of k-quasi- (A, m)-symmetric operators such that $\lim _{n \rightarrow \infty}\left\|T_{n}-T\right\|=0$. Then T is a k-quasi- (A, m)-symmetric operator.

Proof. Suppose that $\left\{T_{n}\right\}$ is a sequence of k-quasi- (A, m)-symmetric operators such that $\lim _{n \rightarrow \infty}\left\|T_{n}-T\right\|=0$. Then

$$
\begin{aligned}
& \left\|T_{n}^{* k}\left(\sum_{j=0}^{m}(-1)^{j}\binom{m}{j} T_{n}^{* m-j} A T_{n}^{j}\right) T_{n}^{k}-T^{* k}\left(\sum_{j=0}^{m}(-1)^{j}\binom{m}{j} T^{* m-j} A T^{j}\right) T^{k}\right\| \\
& \leq\left\|T_{n}^{* k}\left(\sum_{j=0}^{m}(-1)^{j}\binom{m}{j} T_{n}^{* m-j} A T_{n}^{j}\right) T_{n}^{k}-T_{n}^{* k}\left(\sum_{j=0}^{m}(-1)^{j}\binom{m}{j} T^{* m-j} A T^{j}\right) T^{k}\right\| \\
& +\left\|T_{n}^{* k}\left(\sum_{j=0}^{m}(-1)^{j}\binom{m}{j} T^{* m-j} A T^{j}\right) T^{k}-T^{* k}\left(\sum_{j=0}^{m}(-1)^{j}\binom{m}{j} T^{* m-j} A T^{j}\right) T^{k}\right\| \\
& \leq\left\|T_{n}^{* k}\right\|\| \| \sum_{j=0}^{m}(-1)^{j}\binom{m}{j} T_{n}^{* m-j} A T_{n}^{j+k}-\sum_{j=0}^{m}(-1)^{j}\binom{m}{j} T^{* m-j} A T^{j+k} \| \\
& +\left\|T_{n}^{* k}-T^{* k} \mid\right\|\left\|\sum_{j=0}^{m}(-1)^{j}\binom{m}{j} T^{* m-j} A T^{j+k}\right\| \rightarrow 0 .
\end{aligned}
$$

Since $\left\{T_{n}\right\}$ is a k-quasi- (A, m)-symmetric operator,

$$
T_{n}^{* k}\left(\sum_{j=0}^{m}(-1)^{j}\binom{m}{j} T_{n}^{* m-j} A T_{n}^{j}\right) T_{n}^{k}=0
$$

we have

$$
T^{* k}\left(\sum_{j=0}^{m}(-1)^{j}\binom{m}{j} T^{* m-j} A T^{j}\right) T^{k}=0
$$

i.e., T is a k-quasi- (A, m)-symmetric operator.

Lemma 2.8. ([6, Proposition 2.2]) Suppose that T is an (A, m)-symmetric operator and Q is an n-nilpotent operator such that $T Q=Q T$. Then $T+Q$ is an $(A, m+2 n-2)$-symmetric operator.

Theorem 2.9. Let $A=A_{1} \oplus A_{2}$ be an operator on \mathcal{H} where $A_{1}=\left.A\right|_{\overline{\mathcal{R}\left(T^{k}\right)}}$ and $A_{2}=\left.A\right|_{\overline{\mathcal{N}}\left(T^{* *}\right)}$. Suppose that T is a k-quasi- (A, m)-symmetric operator and Q is an n-nilpotent operator such that $T Q=Q T$. Then $T+Q$ is a ($k+n-1)$-quasi-($A, m+2 n-2)$-symmetric operator.

Proof. Assume that $\mathcal{R}\left(T^{k}\right)$ is dense. Then T is an (A, m)-symmetric operator, $T+Q$ is an $(A, m+2 n-2)$ symmetric operator by Lemma 2.8, hence $T+Q$ is a $(k+n-1)$-quasi- $(A, m+2 n-2)$-symmetric operator. Now we may assume that T^{k} does not have dense range. Then by Theorem 2.1 the k-quasi- (A, m)-symmetric T can be decomposed as follows:

$$
T=\left(\begin{array}{ll}
T_{1} & T_{2} \\
0 & T_{3}
\end{array}\right) \text { on } \mathcal{H}=\overline{\mathcal{R}\left(T^{k}\right)} \oplus \mathcal{N}\left(T^{* k}\right)
$$

where T_{1} is an $\left(A_{1}, m\right)$-symmetric operator and $T_{3}^{k}=0$. Since $T Q=Q T$, it follows that Q has the upper triangular representation

$$
Q=\left(\begin{array}{ll}
Q_{1} & Q_{2} \\
0 & Q_{3}
\end{array}\right) \text { on } \mathcal{H}=\overline{\mathcal{R}\left(T^{k}\right)} \oplus \mathcal{N}\left(T^{* k}\right)
$$

hence $T_{i} Q_{i}=Q_{i} T_{i}$ and $Q_{i}^{n}=0(i=1,3)$. Since T_{1} is an $\left(A_{1}, m\right)$-symmetric operator, by Lemma 2.8, $T_{1}+Q_{1}$ is an ($A_{1}, m+2 n-2$)-symmetric operator. We have

$$
\begin{aligned}
\delta_{T^{*}+Q^{*}, T+Q}^{m+2 n-2}(A) & =\sum_{j=0}^{m+2 n-2}(-1)^{j}\binom{m+2 n-2}{j}(T+Q)^{*(m+2 n-2-j)} A(T+Q)^{j} \\
& =\sum_{j=0}^{m+2 n-2}(-1)^{j}\binom{m+2 n-2}{j}\left(\begin{array}{cc}
T_{1}+Q_{1} & T_{2}+Q_{2} \\
0 & T_{3}+Q_{3}
\end{array}\right)^{*(m+2 n-2-j)} \\
& \left(\begin{array}{cc}
A_{1} & 0 \\
0 & A_{2}
\end{array}\right)\left(\begin{array}{cc}
T_{1}+Q_{1} & T_{2}+Q_{2} \\
0 & T_{3}+Q_{3}
\end{array}\right)^{j} \\
& =\left(\begin{array}{cc}
\delta_{T_{1}^{+}+Q_{1}^{\prime}, T_{1}+Q_{1}}^{m+2 n-2} & \left.A_{2}\right) \\
F_{1} & F_{3}
\end{array}\right) \\
& =\left(\begin{array}{cc}
0 & F_{1} \\
F_{2} & F_{3}
\end{array}\right)
\end{aligned}
$$

for some operators $F_{i}(i=1,2,3)$ and

$$
\begin{aligned}
(T+Q)^{k+n-1} & =\left(\begin{array}{cc}
T_{1}+Q_{1} & T_{2}+Q_{2} \\
0 & T_{3}+Q_{3}
\end{array}\right)^{k+n-1} \\
& =\left(\begin{array}{cc}
\left(T_{1}+Q_{1}\right)^{k+n-1} & F \\
0 & \left(T_{3}+Q_{3}\right)^{k+n-1}
\end{array}\right) \\
& =\left(\begin{array}{cc}
\left(T_{1}+Q_{1}\right)^{k+n-1} & F \\
0 & 0
\end{array}\right)
\end{aligned}
$$

for some operator F. Hence

$$
\begin{aligned}
& \left(T^{*}+Q^{*}\right)^{k+n-1} \delta_{T^{k+2}+Q^{-T}, T+Q}^{m+2}(A)(T+Q)^{k+n-1} \\
= & \left(\begin{array}{ccc}
\left(T_{1}^{*}+Q_{1}^{*}\right)^{k+n-1} & 0 \\
F^{*} & 0
\end{array}\right)\left(\begin{array}{ll}
0 & F_{1} \\
F_{2} & F_{3}
\end{array}\right)\left(\begin{array}{cc}
\left(T_{1}+Q_{1}\right)^{k+n-1} & F \\
0 & 0
\end{array}\right) \\
= & 0
\end{aligned}
$$

i.e., $T+Q$ is a $(k+n-1)$-quasi- $(A, m+2 n-2)$-symmetric operator.

In the sequel, let $\sigma_{a p}(T), \sigma_{p}(T), \sigma_{s u}(T), \sigma_{v}(T), \sigma_{b}(T)$ and $\sigma_{T}(x)$ for the approximate point spectrum of T, the point spectrum of T, the surjective spectrum of T, the Weyl spectrum of T, the Browder spectrum of T and the local spectrum of T at x, respectively.

Theorem 2.10. Suppose that $T \in \mathcal{B}(\mathcal{H})$ is a k-quasi- (A, m)-symmetric operator for some positive $A \in \mathcal{B}(\mathcal{H})$ and $0 \notin \sigma_{p}(A)$. The following statements hold:
(1) $\sigma_{p}(T) \subset \mathbb{R}$;
(2) For distinct non-zero real numbers a, b and non-zero vecters $x, y \in \mathcal{H}$, if $T x=a x$ and $T y=b y$, then $(A x, y)=0$;
(3) For distinct non-zero real numbers a, b and sequences of unit vectors $\left\{x_{n}\right\},\left\{y_{n}\right\} \subset \mathcal{H}$, if $\lim _{n \rightarrow \infty}(T-a) x_{n}=0$ and $\lim _{n \rightarrow \infty}(T-b) y_{n}=0$, then $\lim _{n \rightarrow \infty}\left(A x_{n}, y_{n}\right)=0$.
Proof. (1) We argue by contradiction. Assume that $\lambda \in \mathbb{C} \backslash \mathbb{R}$. If $\lambda \in \sigma_{p}(T)$, then there exists a non-zero vecter $x \in \mathcal{H}$ such that $(T-\lambda) x=0$. Thus, for each integer $l,\left(T^{l}-\lambda^{l}\right) x=0$. Moreover,

$$
\begin{aligned}
0 & =\left(T^{* k}\left(\sum_{j=0}^{m}(-1)^{j}\left({ }_{j}^{m}\right) T^{* m-j} A T^{j}\right) T^{k} x, x\right) \\
& =|\lambda|^{2 k}(\bar{\lambda}-\lambda)^{m}(A x, x) \\
& =|\lambda|^{2 k}(-2 I m(\lambda))^{m}| | A^{\frac{1}{2}} x \|,
\end{aligned}
$$

which implies that $\operatorname{Im}(\lambda)=0$ since $\left\|A^{\frac{1}{2}} x\right\| \neq 0$, this is a contradiction. Hence, $\sigma_{p}(T) \subset \mathbb{R}$.
(2) Since a, b are two non-zero eigenvalues of T and $T x=a x$ and $T y=b y$, we have

$$
0=\left(T^{* k}\left(\sum_{j=0}^{m}(-1)^{j}\left(c_{j}^{m}\right) T^{* m-j} A T^{j}\right) T^{k} x, y\right)=a^{k} b^{k}(a-b)^{m}(A x, y)
$$

Hence $(A x, y)=0$.
(3) By similar arguments of the proof of (2), we have

$$
0=\lim _{n \rightarrow \infty}\left(T^{* k}\left(\sum_{j=0}^{m}(-1)^{j}\binom{m}{j} T^{* m-j} A T^{j}\right) T^{k} x_{n}, y_{n}\right)=a^{k} b^{k}(a-b)^{m} \lim _{n \rightarrow \infty}\left(A x_{n}, y_{n}\right) .
$$

Hence $\lim _{n \rightarrow \infty}\left(A x_{n}, y_{n}\right)=0$.
Definition 2.11. [15] An operator $T \in \mathcal{B}(\mathcal{H})$ has the single-valued extension property, abbreviated SVEP, if, for every open set $\mathcal{G} \subseteq \mathbb{C}$, the only analytic solution $f: \mathcal{G} \rightarrow \mathcal{H}$ of the equation $(T-\lambda I) f(\lambda)=0$ for all $\lambda \in \mathcal{G}$ is the zero function on \mathcal{G}.

Theorem 2.12. Suppose that $T \in \mathcal{B}(\mathcal{H})$ is a k-quasi- (A, m)-symmetric operator for some positive $A \in \mathcal{B}(\mathcal{H})$ and $0 \notin \sigma_{p}(A)$. Then T has SVEP.

Proof. Suppose that $T \in \mathcal{B}(\mathcal{H})$ is a k-quasi- (A, m)-symmetric operator for some positive $A \in \mathcal{B}(\mathcal{H})$ and $0 \notin \sigma_{p}(A)$. Then by Theorem $2.10 \sigma_{p}(T) \subset \mathbb{R}$. An operator such that its point spectrum has empty interior has SVEP [2, Remark 2.4(d)], hence T has SVEP.

Corollary 2.13. Suppose that $T \in \mathcal{B}(\mathcal{H})$ is a k-quasi- (A, m)-symmetric operator for some positive $A \in \mathcal{B}(\mathcal{H})$ and $0 \notin \sigma_{p}(A)$. The following statements hold:
(1) $\sigma(T)=\sigma_{s u}(T)=\cup\left\{\sigma_{T}(x): x \in \mathcal{H}\right\}$;
(2) $\sigma_{w}(T)=\sigma_{b}(T)$.

Proof. Note that T has SVEP. For (1) we can apply [15, Proposition 1.3.2]. For (2) we can apply [2, Corollary 3.53].

Corollary 2.14. Suppose that $T \in \mathcal{B}(\mathcal{H})$ is a k-quasi-m-symmetric operator. The following statements hold:
(1) $\sigma(T)=\sigma_{\text {su }}(T)=\cup\left\{\sigma_{T}(x): x \in \mathcal{H}\right\}$;
(2) $\sigma_{w}(T)=\sigma_{b}(T)$.

Proof. This is a result of Corollary 2.13.

Acknowledgements

The authors would like to express their thanks to the referees for several delicate comments and suggestion to revise the original manuscript.

References

[1] J. Agler, A disconjugacy theorem for Toeplitz operators, Amer. J. Math. 112(1)(1990) 1-14.
[2] P. Aiena, Fredholm and Local Spectral Theory with Applications to Multipliers, Kluwer Academic Publishers, London, 2004.
[3] J.A. Ball, J.W. Helton, Nonnormal dilations, disconjugacy and constrained spectral factorization, Integral Equ. Oper. Theory 3(1980) 216-309.
[4] M. Cho, J.E. Lee, K. Tanahashi, J. Tomiyama, On [m, C]-symmetric operators, Kyungpook Math. J. 58(2018) 637-650.
[5] M. Cho, O.A. Mahmoud Sid Ahmed, (A, m)-Symmetric commuting tuples of operators on a Hilbert space, Math. Inequal. Appl. 22(2019) 931-947.
[6] B.P. Duggal, I.H. Kim, Left m-invertibility by the adjoint of Drazin inverse and m-selfadjointness of Hilbert spaces, Linear and Multilinear Algebra 70(12)(2022) 2264-2277.
[7] B.P. Duggal, I.H. Kim, Structure of elementary operators defining m-left invertible, m-selfadjoint and related classes of operators, J. Math. Anal. Appl. 49(2021) 5124718. doi: 10.1016/j.jmaa.2020.124718
[8] B.P. Duggal, I.H. Kim, Structure of n-quasi left m-invertible and related classes of operators, Demonstratio Math. 53(2020) 249-268.
[9] C. Gu, M. Stankus, Some results on higher order isometries and symmetries: products and sums with a nilpotent operator, Linear Algebra Appl. 469(2015) 500-509.
[10] J.K. Han, H.Y. Lee, W.Y. Lee, Invertible completions of $2 * 2$ upper triangular operator matrices, Proc. Amer. Math. Soc. 128(1999) 119-123.
[11] J.W. Helton, Operators with a representation as multiplication by x on a Sobolev space, Colloquia Mathematical Society Janos Bolyai 5. Hilbert Space Operator, Tihany, Hungary, 1970.
[12] J.W. Helton, Infinite dimensional Jordan operators and Sturm-Liouville conjugate point theory, Trans. Amer. Math. Soc. 170(1972) 305-331.
[13] J.W. Helton, Jordan operators in infinite dimensions and Sturn-Liouville conjugate point theory, Bull. Amer. Math. Soc. 78(1972) 57-61.
[14] N. Jeridi, R. Rabaoui, On (A, m)-symmetric operators in a Hilbert space, Results Math. 124(74)(2019) doi: 10.1007/s00025-019-1049-0
[15] K.B. Laursen, M.M. Neumann, Introduction to Local Spectral Theory, Clarendon Press, Oxford, 2000.
[16] T. Le, Algebraic properties of operator roots of polynomials, J. Math. Anal. Appl. 421(2015) 1238-1246.
[17] S.A. McCullough, L. Rodman, Hereditary classes of operators and matrices, Amer. Math. Monthly 104(1997) 415-430.
[18] M. Salehi, K. Hedayatian, On higher order selfadjoint operators, Linear Algebra Appl. 587(2020) 358-386.
[19] F. Zuo, S. Mecheri, A class of operators related to m-symmetric operators, Turk. J. Math. 45(2021) 1300-1309.

[^0]: 2020 Mathematics Subject Classification. Primary 47B20; Secondary 47A10
 Keywords. (A, m)-symmetric operator, m-symmetric operator, Perturbation by nilpotent operator, Spectrum.
 Received: 28 June 2022; Revised: 04 December 2022; Accepted:23 December 2022
 Communicated by Dragan S. Djordjević
 Research supported by the National Research Cultivation Foundation of Henan Normal University(No.20210372)
 Email addresses: zuoyawen1215@126.com (Junli Shen), zuofei2008@sina.com (Fei Zuo), alatanc@imu.edu. cn (Alatancang Chen)

