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Abstract. The purpose of this paper is to study the existence of solutions to an infinite system of Volterra-
Hammerstein type nonlinear integral equations in two variables in Banach space BC(R+ × R+,E) using
functions that are defined, continuous and bounded on R+ ×R+, taking values in a given Banach space E.
The method used in our research is linked to the creation of a suitable measure of noncompactness in the
space of functions defined, continuous and bounded on R+ × R+ with values in the space ℓ∞ consisting
of real bounded sequences endowed with the standard supremum norm. An example exemplifies our
investigations.

1. Introduction and Prelimaneries.

This section is for establishing the notation utilized in the paper. We also provide concepts that
serve as the foundation for our research, as well as certain information about the theory of measures of
noncompactness that are pertinent to our concerns.

Integral equations are well-known for their use in the description of a wide range of real-world
occurrences, and they form a significant area of nonlinear functional analysis. Obviously, the theory of
integral equations and the science of differential equations are intertwined (see[[1, 4, 7, 9, 10, 14, 17, 18]]).
Recently, various effective attempts have been made to apply the idea of measure of noncompactness to the
study of the existence and behaviour of nonlinear integral equation solutions (see[[5, 6, 12, 16]]).

The mentioned constraint is not addressed in this paper. To demonstrate the applicability of the
constructed measures of noncompactness , we provide formulas that express the constructed measures
in the Banach space BC(R+ × R+, ℓ∞), where ℓ∞ denotes the classical Banach sequence space consisting
of bounded real sequences and is equipped with the standard supremum norm. These measures of
noncompactness are also used to prove the existence of solutions of an infinite system of quadratic integral
equations of Volterra-Hammerstein type.

We will use the standard notation. Namely, by the symbol R we will denote the set of real numbers
whileN stands for the set of natural numbers.
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The Kuratowski measure of noncompactness for a bounded subset D of a metric space X is defined as

α(D) = inf
{
δ > 0 : D ⊂ ∪n

i=1Di,diam(Di) ≤ δ, for 1 ≤ i ≤ m ≤ ∞
}
,

where diam(Di) denotes diameter of the set Di.

Another important measure of non-compactness is the Hausdorffmeasure of non-compactness, which
is defined as

ϕ(D) = inf
{
ϵ > 0 : D has a finite ϵ-net in E

}
.

It can be shown that the Hausdorffmeasure of noncompactness ϕ is regular and it is equivalent to
the Kuratowski measure α(X). More precisely, for an arbitrary set X ∈ ME, the following inequalities hold
(see[5]):

ϕ(X) ≤ α(X) ≤ 2ϕ(X). (1.1)

Let (X, ||.||) be a Banach space, R+ = [0,∞), the symbols X̄ and Conv(X) denote closure of X and convex
closure of X respectively. Let ME denote the family of non-empty bounded subsets of E and NE its
subfamily consists of relatively compact subsets of E. We now define (MNC) axiomatically given by Banas
and Goebel[5].

Definition 1.1 [5] Let X be a Banach space. A function ϕ : MX → [0,+∞) is said to be measure of
non-compactnes in X if it satisfies the following axioms:

1. The family ker ϕ = {E ∈MX : ϕ(E) = 0} is a nonempty and ker ϕ ⊂ NX.
2. E1 ⊂ E2 ⇒ ϕ(E1) ≤ ϕ(E2).
3. ϕ(E) = ϕ(E).
4. ϕ(Conv(E)) = ϕ(E).
5. ϕ(λE1 + (1 − λE2) ≤ λϕ(E1). + (1 − λ)ϕ(E2) for all λ ∈ (0, 1).
6. If (Em) is a sequence of closed sets from MX such that Em+1 ⊂ Em and lim

m→∞
ϕ(Em) = 0, then the

intersection set E∞=
∞⋂

m=1
Em is non-empty.

The family ker ϕ appearing in axiom (i) will be called the kernel of the measure of noncompactness
ϕ. Let us notice that the set X∞ described in axiom (vi) is a member of the family ker ϕ. Indeed, it is a
simple consequence of the inclusion X∞ ⊂ Xp for p = 1, 2, ... and axiom (vi) which implies the inequality
ϕ(X∞) ≤ ϕ(Xp) for p = 1, 2, .... Hence we have ϕ(X∞) = 0. Consequently, ϕ(X∞) ∈ kerϕ. The above simple
observation is quite important in applications.

Let BC(R+×R+) be the Banach space of all real bounded and continuous functions onR+×R+ equipped
with the standard norm

||x|| = sup{|x(w, s)| : w, s ≥ 0}

For any nonempty bounded subset X of BC(R+ ×R+), x ∈ X, ζ > 0 and ϵ > 0, let

Ωζ(x, ϵ) = sup
{
|x(w, s) − x(u, v)| : w, s,u, v ∈ [0, ζ], |w − u| ≤ ϵ, |s − v| ≤ ϵ

}
,

Ωζ(X, ϵ) = sup
{
Ωζ(x, ϵ) : x ∈ X

}
,

Ωζ0(X) = lim
ϵ→0
,Ωζ(X, ϵ),

Ω0(X) = lim
ζ→∞
Ωζ0(X),

ϕ(X) = Ω0(X) + ρ(X)
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where

ρ(X) = lim
ζ→0
{sup

x∈X
{sup{|x(w, s| : w, s ≥ ζ)}}}.

Similar to [8], the function ϕ can be shown to be measure of noncompactness in the space BC(R+ ×R+) (as
defined in definition (1.1)).

The aim of this study is to create measures of noncompactnness in the Banach space BC(R+ × R+,E)
using functions that are defined, continuous and bounded on R+ × R+, taking values in a given Banach
space E and its application to the solvability of infinite system of nonlinear integral equations of Volterra-
Hammerstein type in two variables.

2. Measures of noncompactness in the space BC(R+ × R+, E).

Assume that E is an infinite dimensional Banach space and that ϕ is a measure of noncompactness
defined in E.

Consider the Banach space BC(R+ × R+,E) which consists of functions that are defined, continuous
and bounded on R+ × R+ and have values in the space E. We consider the space BC(R+ × R+,E) with the
supremum norm

||x||∞ = sup
{
||x(w, s)||E : w, s ∈ R+ ×R+

}
,

where the symbol ||.||E denotes the norm of the space E. BC(R+ ×R+,E) is clearly a Banach space with the
above mentioned norm.

Simultaneously, we consider the space Cζ = C([0, ζ]2,E), where ζ > 0 is arbitrarily fixed. Recall, that
the Cζ defines norm as

||x||ζ = sup
{
||x(w, s)||E : w, s ∈ [0, ζ]

}
.

If we take a function x ∈ BC(R+ ×R+,E), we can consider the restriction x|[0,ζ]2 of x to the square [0, ζ]2 is an
element of the space Cζ.

Let us take an arbitrary and bounded set X,X ⊂ BC(R+ ×R+,E) for the reminder of this section. Next,
let us define the quantity Ω∞(x, ϵ) for an arbitrarily fixed function x ∈ X and for ϵ > 0 as follows

Ω∞(x, ϵ) = sup
{
||x(w, s) − x(u, v)||E : w, s ∈ R+ ×R+, |w − u| ≤ ϵ, |s − v| ≤ ϵ

}
. (2.1)

Observe that lim
ϵ→0
Ω∞(x, ϵ) = 0 if and only if the function x = x(w, s) is uniformly continuous on the interval

R+ ×R+. On the other hand notice that for any ζ > 0 we have

Ωζ(x, ϵ) ≤ Ω∞(x, ϵ), (2.2)

where Ωζ(x, ϵ) denotes the modulus of continuity of restriction x|[0,ζ] in the space Cζ i.e.,

Ωζ(X, ϵ) = sup
{
||x(w, s) − x(u, v)||E : w, s ∈ [0, ζ], |w − u| ≤ ϵ, |s − v| ≤ ϵ

}
.

Next, we define

Ωζ(X, ϵ) = sup
{
Ωζ(x, ϵ) : x ∈ X

}
,

Ωζ0(x) = lim
ϵ→0
Ωζ(x, ϵ).
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Since the function ϵ→ Ωζ(X, ϵ) is nondecreasing and nonnegative for ϵ > 0, indicating that the above
limit exists and is finite. Finally, we put

Ω0(X) = lim
ζ→∞
Ωζ0(X). (2.2.1)

Further, assume that ϕ = ϕ(X) is a given measure of noncompactness in the Banach space E. For an
arbitrarily fixed number w, s ∈ R+ × R+ denoted by X(w, s) the cross section of the set X at w, s; that is,
X(w, s) = {x(w, s) : x ∈ X}. Obviously, X(w, s) is a subset of the space E.

Next, for a fixed ζ > 0, let us put

ϕζ(X) = sup{ϕ(X(w, s)) : w, s ∈ [0, ζ]}. (2.2.2)

Observe that the function ζ→ χζ(X) is nondecreasing and bounded from above since the set X is a bounded
subset of the space BC(R+ ×R+,E). Indeed, we have

||X(w, s)||E ≤ ||X(w, s)||BC(R+×R+,E) < ∞

for any w, s ∈ R+ ×R+. Consecutively, we define the following quantity

ϕ
∞

(X) = lim
ζ→∞
ϕζ(X).

In addition, we have lim
ϵ→0
Ωζ(x, ϵ) = 0 for every arbitrary function x ∈ BC(R+ ×R+,E).

Take a look at the following example :

Example 2.1: Consider the space BC(R+ × R+) = BC(R+ × R+,R × R). Take the function x = x(w, s) in the
space defined on the interval [0, 1] × [0, 1] as the function with graph being the pyramid with base equal
the interval [0, 1] × [0, 1] and with the height equal to 1. Analogously, we define consecutively the function
x on the intervals [1, 1 + 1

2 ], [1 + 1
2 , 1 +

1
2 +

1
3 ] etc.

Then for any ϵ > 0 we have that Ω∞(x, ϵ) = 1. Hence, we get that lim
ϵ→0
Ω∞(x, ϵ) = 1. But on the other

hand we have that lim
ϵ→0
Ωζ(x, ϵ) = 0 for any ζ > 0.

Further, taking into account (2.1), for X ∈MBC(R+×R+,E) we define

Ω∞(X, ϵ) = sup
{
Ω∞(x, ϵ) : x ∈ X

}
,

Ω∞0 (X) = lim
ϵ→0
Ω∞(X, ϵ). (2.3)

It is self-evident that Ω∞(X) = 0 if and only if functions from the set X are equicontinuous on R+ × R+, or
equivalently, functions from X are equiuniformly continuous on R+ ×R+.

let us have a look at the function ϕ
∞

which is defined on the family X ∈ MBC(R+×R+,E) according to the
formula

ϕ
∞

(X) = lim
ζ→∞
ϕζ(X), (2.4)

where

ϕζ(X) = sup
{
ϕ(X(w, s)) : w, s ∈ [0, ζ]

}
. (2.41)

It is worth noting that the existence of the limit in (2.4) is due to the fact that the function ζ → ϕζ(X) is
nondecreasing and bounded from above on R+ ×R+. Indeed, because the set X is a bounded subset in the
space BC(R+ ×R+,E), a constant c > 0 exists such that

sup
{
||x(w, s)| E : w, s ∈ R+ ×R+

}
≤ c
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for any x ∈ X. Thus fixing arbitrarily w, s ∈ R+ ×R+ we conclude that
sup
{
||x(w, s)||E : x ∈ X

}
≤ c. This implies that the measures of noncompactness ϕ(X(w, s)) are bounded from

above for w, s ∈ R+ ×R+.

Now, for ζ > 0 let us put

αζ(X) = sup
x∈X

{
sup{||x(w, s)||E : w, s ≥ ζ

}
.

Let us note that the function ζ→ αζ(X) is nonincreasing and bounded on R+ ×R+. As a result, there exists
a finite limit

α∞(X) = lim
ζ→∞
αζ(X). (2.5)

Let us consider various values related to monitoring the behaviour of functions from the set X at infinity.
Namely, for ζ > 0 let us put:

βζ(X) = sup
x∈X

{
sup{||x(w, s) − x(u, v)||E : w, s,u, v ≥ ζ

}
,

β∞(X) = lim
ζ→∞
βζ(X). (2.6)

Next, for w, s ∈ R+ ×R+ let us define

diamX(w, s) = sup
{
||x(w, s) − y(w, s)||E : x, y ∈ X

}
and

e(X) = lim
w,s→∞

diamX(w, s). (2.7)

Finally, by linking (2.3)-(2.7), we can define the following quantities by linking (2.3)-(2.7):

ϕα(X) = Ω∞0 (X) + ϕ
∞

(X) + α∞(X), (2.8)

ϕβ(X) = Ω∞0 (X) + ϕ
∞

(X) + β∞(X), (2.9)

ϕγ(X) = Ω∞0 (X) + ϕ
∞

(X) + γ∞(X). (2.10)

We show that the function ϕα, ϕβ and ϕγ defined by formulas (2.8)-(2.10) are measures of noncompctness
in the space BC(R+ ×R+,E) under some assumptions concerning the measure of noncompactness ϕ. Now
we recall some results due to Nussbaum [20] which will be utilized in our reasoning process.

Lemma 2.2. Let αζ = αζ(X) denote the Kuratowski measure of noncompactness in the space Cζ = C([0, ζ],E).
Then

max
{1

2
Ωζ0(X), αζ(X)

}
≤ αζ(X) ≤ 2Ωζ0(X) + αζ(X), (2.100)

where the quantity αζ was defined by (2.41)

In what follows let us notice that linking inequalities (2.100) and (1.1), we derive the estimates

1
4

[1
2
Ωζ0(X) + ϕζ(X)

]
≤ ϕζ(X) ≤ 2[Ωζ0(X) + ϕζ(X)] (2.10.1)

for any ζ > 0.
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Then, we are ready to create our main result.

Theorem 2.2. Assume that ϕ is the Hausdorff measure of noncompactness in the Banach space E. Then
the functions ϕα(X), ϕβ(X) and ϕγ(X) defined by (2.8)-(2.10) are measures of noncompactness in the space
BC(R+ ×R+,E) such that

ϕ(X) ≤2ϕβ(X), (2.11)
ϕ(X) ≤4ϕγ(X), (2.12)
ϕβ(X) ≤2ϕα(X), ϕγ(X) ≤ 2ϕα(X) (2.13)

for an arbitrary set X ∈MBC(R+×R+,E).

Proof: We first prove inequality (2.11). To this end, fix a set X ∈ MBC(R+×R+,E). From definition (2.2.1) and
(2.2.2), we have

Ωζ0(X) ≤Ω0(X), (2.14)

ϕζ(X) ≤ϕ
∞

(X) (2.15)

for a fixed ζ > 0. On the other hand, taking an arbitrary fixed number ϵ > 0 and using (2.6),we find a
number ζ0 > 0 such that for any arbitrary ζ ≥ ζ0, we have

βζ(X) ≤ β∞(X) + ϵ. (2.16)

Using (2.16) and the definition of βζ, we infer that

sup
{
||x(w, s) − x(u, v)||E : w, s,u, v ≥ ζ0

}
≤ β∞(X) + ϵ (2.17)

for an arbitrary function x ∈ X.
Let us fix an arbitrary number ζ, ζ ≥ ζ0. Then keeping in mind estimate (2.10.1) and inequalities (2.14) and
(2.15), we obtain the following innequality:

ϕζ(X) ≤ 2Ω0(X) + ϕ
∞

(X).

Hence we infer that, for an arbitrary fixed number δ > 0, we can find (2Ω0(X)+ϕ
∞

(X)+δ)-net x1, x2, ..., xm of
the set X in the space C([0, ζ],E). This means that for an arbitrary function x ∈ X there exists l ∈ {1, 2, ...,m}
such that

||x(w, s) − xl(w, s)||E ≤ 2Ω0(X) + ϕ
∞

(X) + δ (2.18)

for w, s ∈ [o, ζ].

Now, consider the extension xl of the function xl(l = 1, 2, ...,m) on the interval R+ × R+ defined in the
following way:

xl(w, s) =


xl(w, s) for w, s ∈ [0, ζ],

xl(ζ) for w, s > ζ.
(2.19)

Obviously, we have xl ∈ BC(R+ × R+,E)(l = 1, 2, ..,m). Further, using (2.17) and (2.18), for an arbitrary
w, s ≥ ζwe get

||x(w, s) − xl(w, s)||E ≤ ||x(w, s) − x(ζ)||E + ||x(ζ) − xl(w, s)||E

≤ β∞(X) + ϵ + ||x(ζ) − xl(ζ)||E ≤ β∞(X) + ϵ + 2Ω0(X) + ϕ
∞

(X) + δ

≤ 2Ω0(X) + 2ϕ
∞

(X) + 2β∞(X) + ϵ + δ.
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From the above estimate, it follows that the functions x1, x2, ..., xm form a finite
(
2Ω0(X)+ 2ϕ

∞
(X)+ 2β∞(X)+

ϵ + δ
)
-net of the set X in the space BC(R+ ×R+,E). Consiquently, we have

ϕ(X) ≤ 2Ω0(X) + 2ϕ
∞

(X) + 2β∞(X) + ϵ + δ.

Since , ϵ and δwere choosen arbitrary, we obtain

ϕ(X) ≤2ϕβ(X).

This proves inequality (2.11).

In order to prove (2.12), take an arbitrary ϵ > 0. Then, we can find a number ζ0 > 0 such that for
w, s ≥ ζ0 the following inequality is satisfied:

diamX(w, s) ≤ e(X) + ϵ. (2.20)

Furthermore, arguing in the same way as previously, we deduce that, for an arbitrary fixed number ζ > ζ0,
the set X considered in the space C([0, ζ],E), that is, the set

Xζ =
{
x|[0,ζ] : x ∈ X

}
,

has, for an arbitrary δ > 0, a finite (2Ω0(X) + ϕ
∞

(X) + δ)-net composed by functions x1, x2, ..., xm belonging
to the space C([0, ζ],E).

Now, let us choose arbitrary functions z1, z2, ..., zm ∈ X such that, for any i ∈ {1, 2, ...,m}, the inequality

||zi(w, s) − xi(w, s)||E ≤ 2Ω0(X) + ϕ
∞

(X) + δ (2.21)

is satisfied for w, s ∈ [0, ζ].
Further, taking an arbitrary function x ∈ X , we can find i ∈ {1, 2, ..,m} such that

||x(w, s) − xi(w, s)||E ≤ 2Ω0(X) + ϕ
∞

(X) + δ (2.22)

for an arbitrary w, s ∈ [0.ζ]. Next taking (2.21) and ( 2.22), we get

||x(w, s) − zi(w, s)||E ≤ ||x(w, s) − xi(w, s)||E + ||xi(w, s) + zi(w, s)||E

≤ 2(Ω0(X) + ϕ
∞

(X)) + 2δ (2.222)

for an arbitrary w, s ∈ [0.ζ].

Now, combining (2.20) and (2.222) for an arbitrary number w, s ∈ R+ ×R+, we obtain

||x(w, s) − zi(w, s)||E ≤ max
{
2(2Ω0(X) + ϕ

∞
(X)) + 2δ, e(X) + ϵ

}
≤ 4Ω0(X) + 2ϕ

∞
(X) + e(X) + ϵ + 2δ.

From the above estimate, we deduce that the functions z1, z2, ..., zm form a finite (4Ω0(X) + 2ϕ
∞

(X) + e(X) +
ϵ + 2δ)-net of the set X in the space BC(R+ ×R+,E). Thus, we have

ϕ(X) ≤ 4ϕγ(X) + ϵ + 2δ.

Hence, taking into account the arbitrariness of the numbers ϵ and δ, we derive the inequality (2.12).

It is simple to verify that β∞(X) ≤ 2α∞(X) and e(X) ≤ 2α∞(X) for an arbitrary set X ∈MBC(R+×R+,E).
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Next, consider the kernals of the functions ker ϕα, ker ϕβ and ker ϕγ which are represented by the
familiesϕα, ϕβ andϕγ, respectively. It is worth noting that the family kerϕα is nonempty because it contains
the set consisting of the function equivalent to θ on R+ × R+. We can infer the inclusions ker ϕα ⊂ ker ϕβ
and ker ϕα ⊂ ker ϕγ from the inequalities mentioned before. This demonstrates that the families ker ϕβ and
ker ϕγ are both nonempty.

Further, fix arbitrary ζ > 0 and consider the quantity ϕα,ζ on the space Cζ = C([0, ζ],E) defined for MCζ
by the formula

ϕα,ζ(X) = Ωζ0(X) + ϕζ(X).

Obviously in the space Cζ, ϕα,ζ is a measure of noncompactness. This means that ϕα meets the requirements
(1)-(6) of definition (1.1) on the family MBC(R+×R+,E).
Similarly we can show that the quantities ϕβ and ϕγ also satisfy the conditions (2)-(6) of definition (1.1).

Now, we prove that ϕα satisfies the condition (1) of definition (2.1). To this end assume that ϕα(X) = 0
i.e., assume that X ∈ kerϕα. then in view of (2.8) we have that Ω∞0 (X) = 0 and ϕ

∞
(X) = 0 and α∞(X) = 0.

Therefore, for each ϵ > 0 there is ζ > 0 such that αζ(X) < ϵ.
In view of compactness of the set X|[0,ζ] in the space Cζ we deduce that there is a finite set T ⊂ X such

that the restriction T|[0,ζ] is an ϵ-net of the set X|[0,ζ]. Hence we conclude that T is a 2ϵ-net of X in the space
BC(R+ ×R+,E). But this implies that X is relatively compact and we have that ker ϕα ⊂ NBC(R+×R+,E).
This shows that (1) is true . In the same way, we can show ϕβ and ϕγ satisfy condition (1).

In what follows we show that ϕα, ϕβ and ϕγ satisfy axiom (6) of definition (1.1).
Note that in view of Example (2.1), axiom cannot be expressed in the same way as axioms (2)-(5). This is
due to the fact that the equality

Ω∞(X, ϵ) = sup{Ωζ(X, ϵ) : ζ ≥ 0}

is not true, in general, for ϵ > 0.
Obviously, the equality

Ω∞(X, ϵ) = sup{Ωζ(X, ϵ) : ζ ≥ 0}

is also not true.

As an example, consider a sequence closed sets (Xn) from the family MBC(R+×R+,E) ssuch that Xn+1 ⊂ Xn
for n = 1, 2, ... and lim

n→∞
ϕα(Xn) = 0. As a result, in view of (2.8) we have

lim
n→∞
Ω∞0 (Xn) = 0, (2.23)

lim
n→∞
ϕ
∞

(Xn) = 0, (2.24)

lim
n→∞
α∞(Xn) = 0. (2.25)

Using (2.3), we can also derive that the following inequality holds for any k > 0.

Ω∞(Xn+1, k) ≤ Ω∞(Xn, k).

Now, let us pretend that (wi, si) is a sequence of nonnegative real numbers dense in the intervalR+×R+.
Next, consider the sequence of functions xn = xn(w, s) for w, s ∈ R+ × R+ such that xn ∈ Xn for n = 1, 2, ....
Using the diagonal procedure, without loss of generality we may assume that the sequence (xn) is pointwise
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convergent on the set of points of the sequence (wi, si). Finally, let us define the function x∞ on the set of
points of the sequence (wi, si) by putting

x∞ = lim
n→∞

xn(wi, si)

for each i = 1, 2, .... We show that the function x∞ is uniformly continuous on the set of points of the
sequence (wi, si).

To this end let us observe that for arbitrary fixed indices i, j and for arbitrary natural number n we
obtain

||x∞(wi, si) − x∞(w j, s j)||E ≤ ||x∞(wi, si) − xn(wi, si)||E + ||xn(wi, si) − xn(w j, s j)||E

+ ||xn(w j, s j) − x∞(w j, s j)||E

≤ ||x∞(wi, si) − xn(wi, si)||E +Ω∞(Xn, |wi − w j|, |si − sj|)

+ ||xn(w j, s j) − x∞(w j, s j)||E.

Hence, letting n→∞we get

||x∞(wi, si) − x∞(w j, s j)||E ≤ lim
n→∞
Ω∞(Xn, |wi − w j|, |si − sj|). (2.26)

From the above estimate and (2.23) it follows that the function x∞ is uniformly continuous on the points of
sequence (wi, si) .

Now, applying a theorem on the extension of functions , we deduce that the function x∞ can be extended
uniquely to a function being uniformly continuous on R+ ×R+. Obviously, from (2.26), we get

||x∞(w, s) − x∞(u, v)||E ≤ lim
n→∞
Ω∞(Xn, |w − u|, |s − v|) (2.27)

for arbitrary w, s,u, v ∈ R+ ×R+.
The function x∞ is then shown to be the uniform limit of the function sequence (xn). let us fix arbitrarily

a number ϵ > 0 and choosing δ > 0 such that

lim
n→∞
Ω∞(Xn, k) ≤

ϵ
2

(2.28)

for any number k such that 0 < k ≤ δ.
Indeed, to demonstrate the above mentioned fact, we can deduce fromm equality (2.23) that for a fixed

ϵ > 0 we can find a natural number n0 such that

Ω∞(Xn) ≤
ϵ
4

for n ≥ n0. As a result of of (2.3), we may deduce that there exists a number δ > 0 such that

Ω∞(Xn, k) ≤
ϵ
4
+
ϵ
4
=
ϵ
2

for each k such that 0 < k ≤ δ and for n ≥ n0.
From this fact we infer inequality (2.28) for k such that 0 < k ≤ δ.
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Now, let us choose (w j, s j) such that ||(w, s) − (w j, s j)|| < k. Then, we have

||x∞(w, s) − xn(w, s)||E ≤ ||x∞(w, s) − x∞(wi, si)||E + ||x∞(w j, s j) − xn(w j, s j)||E
+ ||xn(w j, s j) − xn(w, s)||E.

Hence, in view of (2.27) and (2.28) we obtain

||x∞(w, s) − xn(w, s)||E ≤ lim
n→∞
Ω∞(Xn, k) + ||x∞(w j, s j) − xn(w j, s j)||E +Ω∞(Xn, k).

From the above estimate, we get

lim
n→∞
||xn(w, s) − x∞(w, s)||E ≤ ϵ

for all w, s ∈ R+ ×R+. Hence we derive that

lim
n→∞
||xn − x∞||BC(R+×R+,E) = 0. (2.29)

As indicated by the above equality, the function x∞ is uniform limit of the function sequence (xn) on the
interval R+ × R+. Particularly, from (2.29) we conclude that x∞ is a cluster point of all sets Xn(n = 1, 2, ...).
As a result, we infer that x∞ ∈ Xn for n = 1, 2, .... Thus X∞ = ∩∞n=1Xn is nonempty intersection.

Finally, we deduce that the function ϕα satisfies axiom (6) of Definition 1.1 by linking the obtained
conclusion with equalities (2.24) and (2.25).

Similarly, we can show that functions ϕβ and ϕγ satisfy axiom (6) of Definition 1.1

Thus, functions ϕα, ϕβ and ϕγ are measures of noncompactness in the space BC(R+ × R+,E). This
completes the proof.

We will now look at the kernels of the measures of noncompactness ϕα, ϕβ and ϕγ which are defined
by formulas (2.8), (2.9) and (2.10), respectively.

It is worth mentioning that the kernel ker ϕα of the measure ϕα is made up of all bounded subsets X
of the space BC(R+ ×R+,E) such that the functions from X are uniformly continuous and equicontinuous
on R+ × R+ and with the same rate, it tends to zero at infinity. Furthermore, all cross sections X(w, s) of
the set X are relatively compact in Banach space E. Similarly, the kernel ker ϕβ of measure ϕβ defined by
(2.9) consists of all X of the space BC(R+ ×R+,E) such that the functions from X are uniformly continuous
and equicontinuous on R+ ×R+ and in Banach space E, all cross sections X(w, s) of the set X are relatively
compact. Furthermore, all functions from X tend to limits uniformly with respect to the set X.

Finally, to describe the kernel ker ϕγ of measure of noncompactness ϕγ defined by (2.10), note that it
contains all bounded subsets X of BC(R+ × R+,E) which are locally continuous on R+ × R+ and such that
the cross section X(w, s) of X are relatively compact in E for any w, s ∈ R+ ×R+. Apart from this, at infinity
the thickness of the bundle formed by graphs of functions from X tends to zero.

Also, note that measures of noncompactess ϕα, ϕβ and ϕγ defined by formulas (2.8)-(2.10) are not
complete. That is to say, the kernels ker ϕα, ker ϕβ and ker ϕγ are proper subfamilies of the family
NBC(R+×R+,E). let us fix a nonzero vector x0 ∈ E. In the space BC(R+ × R+,E) consider the functions x =
x(w, s), y = y(w, s) defined as follows:

x(w, s) = x0 sin(w, s), y(w, s) = y0 cos(w, s)

for w, s ∈ R+ × R+. Take the set X = {x, y}. Obviously X is a compact subset of the space BC(R+ × R+,E)
since it is finite. Moreover, it is easy to check that Ω∞0 (X) = 0 and ϕ

∞
(X) = 0, where the quantities Ω∞ and

ϕ
∞

are defined by (2.3) and (2.4), respectively.
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On the other hand, when the values α∞, β∞ and e defined consecutively by formulas(2.5), (2.6) and
(2.7), it clear that

α∞(X) = ||x0||E, β∞(X) = 2||x0||E, e(X) =
√

2||x0||E.

Thus the set X does not belong to the families ker ϕα, ker ϕβ and ker ϕγ.

Taking into mind our subsequent applications of the measures of noncompactness ϕα, ϕβ and ϕγ to
the theory of infinite system of integral equations, we shall consider as the Banach space E the sequence
space ℓ∞ containing of all sequences (xp) being bounded. We limit ourselves to the study of real sequences.
Obviously, the space ℓ∞ will be endowed with the classical supremum norm

||x|| = ||(xp)|| = sup
{
|xp| : p = 1, 2, ...

}
,

where x = (xp) ∈ ℓ∞.

Consider the space BC(R+×R+,E) consisting of functions x : R+×R+ → ℓ∞ which are continuous and
bounded on R+ ×R+. Obviously, such a function can be written in the form

x(w, s) = (xp(w, s)) = (x1(w, s), x2(w, s), ...)

for any w, s ∈ R+ ×R+, where the sequence (xp(w, s)) is an element of the space ℓ∞ for fixed (w, s). The norm
of the function x = x(w, s) = (xn(w, s)) is defined by the equality

||x|| = sup
{
||x(w, s)||ℓ∞ : w, s ∈ R+ ×R+

}
= sup

w,s∈R+×R+

{
sup{|xp(w, s)| : p = 1, 2, ...}

}
.

We then provide formulas that expresses measures of noncompactness ϕα, ϕβ and ϕγ in connection with
measures of noncompactness in the space ℓ∞.

At the beginning let us fix a set X ∈ MBC(R+×R+,E). For ϵ > 0 and for an arbitrary function x(w, s) =
(xn(w, s)) belonging to the set X consider the modulus Ω∞(x, ϵ) defined before, which is now stated in the
following form

Ω∞(x, ϵ) = sup{||x(w, s) − x(u, v)|||ℓ∞ : w, s,u, v ∈ R+ ×R+, |w − u| ≤ ϵ, |s − v| ≤ ϵ}

= sup
{

sup{|xp(w) − xp(u)|, |xp(s) − xp(v)| : p = 1, 2, ...} : w, s,u, v ∈ R+ ×R+,

|w − u| ≤ ϵ, |s − v| ≤ ϵ
}
.

Then, using the aforementioned formula and (2.3), we get

Ω∞(X, ϵ) = sup
x∈X

{
sup
{

sup
p∈N
{|xp(w) − xp(u)|, |xp(s) − xp(v)| : p = 1, 2, ...} : w, s,u, v ∈ R+ ×R+,

|w − u| ≤ ϵ, |s − v| ≤ ϵ
}}
.

In the end, we put

Ω∞0 (X) = lim
ϵ→0
Ω∞(X, ϵ)

= lim
ϵ→0

{
sup
x∈X

{
sup
{

sup
p∈N
{|xp(w) − xp(u)|, |xp(s) − xp(v)| : p = 1, 2, ...} : w, s,u, v ∈ R+ ×R+,

|w − u| ≤ ϵ, |s − v| ≤ ϵ}
}}
. (2.30)
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To define the second term ϕ
∞

of the measures ϕα, ϕβ and ϕγ given by formulas (2.8)-(2.10), we will assume
that in the space ℓ∞, we take into account the measures of noncompactness ϕ1, ϕ2 and ϕ3 defined on the
family Mℓ∞ as follows:

ϕ1(X) = lim
p→∞

{
sup

x=xi∈X

{
sup{|xl| : l ≥ p}

}}
,

ϕ2(X) = lim
n→∞

{
sup

x=xi∈X

{
sup{|xp − xq| : p, q ≥ n}

}}
,

ϕ3(X) = lim
p→∞

sup diamXp

where

Xp = {xp : x = (xi) ∈ X}

and

diamXp = sup{|xp − yp| : x = (xi), y = (yi) ∈ X}.

We can now define the terms ϕ−i
∞(i = 1, 2, 3) related with these formulas based on the above mentioned

formulas. Namely X ∈MBC(R+×R+,E) and for a fixed ζ > 0 we put :

ϕ−1
ζ (X) = sup{ϕ1(X(w, s)) : w, s ∈ [0.ζ]}

= sup
w,s∈[0,ζ]

{
lim
p→∞

{
sup

x=xi∈X

{
sup{|xl(w, s)| : l ≥ p}

}}}
, (2.31)

ϕ−2
ζ (X) = sup{ϕ2(X(w, s)) : w, s ∈ [0.ζ]}

= sup
w,s∈[0,ζ]

{
lim
n→∞

{
sup

x=xi∈X

{
sup{|xp(w, s) − xq(w, s)| : p, q ≥ n}

}}}
, (2.32)

ϕ−3
ζ (X) = sup{ϕ3(X(w, s)) : w, s ∈ [0.ζ]}

= sup
w,s∈[0,ζ]

{
lim
n→∞

sup
{
sup{|xp − yp| : x = x(w, s), y = y(w, s) ∈ X}

}}
. (2.33)

As a result, we arrive at the following formulas:

ϕ−1
∞ (X) = lim

ζ→∞
ϕ−1
ζ (X)

= lim
ζ→∞

{
sup

w,s∈[0,ζ]

{
lim
p→∞

{
sup

x=xi∈X

{
sup{|xl(w, s)| : l ≥ p}

}}}}
, (2.34)
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ϕ−2
∞ (X) = lim

ζ→∞
ϕ−2
ζ (X)

= lim
ζ→∞

{
sup

w,s∈[0,ζ]

{
lim
n→∞

{
sup

x=xi∈X

{
sup{|xp(w, s) − xq(w, s)| : p, q ≥ n}

}}}}
, (2.35)

ϕ−3
∞ (X) = lim

ζ→∞
ϕ−3
ζ (X)

= lim
ζ→∞

{
sup

w,s∈[0,ζ]

{
lim
n→∞

sup
{
sup{|xp − yp| : x = x(w, s), y = y(w, s) ∈ X}

}}}
. (2.36)

Now, we define Banach space BC(R+ ×R+,E) as the third term of the constructed measures of noncompact-
ness. let us observe that based on formulas (2.5), (2.6) and (2.7), we get:

α∞(X) = lim
ζ→∞
αζ(X)

= lim
ζ→∞

{
sup

x=x(w,s)∈X

{
sup{sup

p∈N
|xp(w, s)| : w, s ≥ ζ}

}}
, (2.37)

β∞(X) = lim
ζ→∞
βζ(X)

= lim
ζ→∞

{
sup

x=xi∈X

{
sup{sup

p∈N
|xp(w, s) − xp(u, v)| : w, s,u, v ≥ ζ}

}}
, (2.38)

e(X) = lim
w,s→∞

sup diamX(w, s)

= lim
w,s→∞

{
sup
{
sup{sup

p∈N
|xp(w, s) − yp(w, s)| : x = x(w, s), y = y(w, s) ∈ X}

}}}
. (2.39)

Finally,we can present nine formulas expressing suitable measures of noncompactness in the Banach space
BC(R+ ×R+,E) by remembering formulas (2.8)-(2.10) expressing measures of noncompactness in the Banach
space BC(R+ ×R+,E) and taking into account the above obtainned formulas (2.30)-(2.39). As a result, we
have:

ϕi
α(X) = Ω∞0 (X) + ϕ−i

∞(X) + α∞(X) (2.40)

for i = 1, 2, 3. Similarly, we obtain

ϕi
β(X) = Ω∞0 (X) + ϕ−i

∞(X) + β∞(X) (2.41)

for i = 1, 2, 3. Finally, we can define the measures of noncompactness related to the term e = e(X), by putting

ϕi
e(X) = Ω∞0 (X) + ϕ−i

∞(X) + e(X) (2.42)

for i = 1, 2, 3.

In order to accomplish this, we prove the following lemma.
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Lemma 2.3. The following equality is satisfied

ϕ
∞

(X) = sup{ϕ(X(w, s)) : w, s ∈ R+ ×R+},

where ϕ
∞

is defined by formula (2.4).

Proof. Obviously, for any ζ > 0 we have

sup{ϕ(X(w, s)) : w, s ∈ [0, ζ]} ≤ sup{ϕ(X(w, s)) : w, s ∈ R+ ×R+}.

Hence, we get

ϕ
∞

(X) = lim
ζ→∞

{
sup{ϕ(X(w, s)) : w, s ∈ [0, ζ]}

}
≤ sup{ϕ(X(w, s)) : w, s ∈ R+ ×R+}. (2.43)

To prove the converse inequality, let us denote

δ = sup{ϕ(X(w, s)) : w, s ∈ R+ ×R+}.

Further, fix an arbitrary number ϵ > 0. Then we can find w0, s0 ∈ R+ ×R+ such that

δ − ϵ ≤ ϕ(X(w0, s0)).

Hence, for ζ ≥ w0, s0 we obtain

δ − ϵ ≤ sup{ϕ(X(w, s)) : w, s ∈ [0, ζ]}. (2.44)

Since the function ζ→ sup{ϕ(X(w, s)) : w, s ∈ [0, ζ]} is nondecreasing, we get

sup{ϕ(X(w, s)) : w, s ∈ [0, ζ]} ≤ lim
ζ→∞

{
sup{ϕ(X(w, s)) : w, s ∈ [0, ζ]}

}
. (2.45)

Combining (2.44) and (2.45), we have

δ − ϵ ≤ lim
ζ→∞

{
sup{ϕ(X(w, s)) : w, s ∈ [0, ζ]}

}
. (2.46)

Consequently, in view of the arbitratiness of the number ϵ, we derive the following inequality

δ ≤ lim
ζ→∞

{
sup{ϕ(X(w, s)) : w, s ∈ [0, ζ]}

}
= ϕ

∞
(X). (2.47)

Finally, linking (2.43) and (2.47) we obtain the desired equality.

Now, let us notice that taking into account Lemma (2.3) and formula (2.34) expressing the quantity ϕ
∞

in
the case of the space BC(R+ ×R+,E), we obtain the following corollary.

Corollary 2.4. The quantity (2.34) can be expressed by the formula

ϕ−1
∞ (X) = sup

w,s≥0

{
lim
p→∞

{
sup

x=xi∈X

{
sup{|xl(w, s)| : l ≥ p}

}}}
.

We recall a useful fixed point theorem of Darbo type [8, 13] at the end of this section.
Let us assume that E is a Banach space and ϕ is a measure of noncompactness (as defined in Definition 2.1)
in the space E.

Theorem 2.5. Assume that Q is a nonempty, bounded, closed and convex subset of a Banach space E and
T : Q→ Q is a continuous operator such that there exists a constant k ∈ [0.1) for which ϕ(T(X)) ≤ kϕ(X) for
an arbitrary nonempty subset X of Q. Then there exists atleast one fixed point of the operator T in the set Q.

Remark 2.6. It can be shown that the set Fix T of all fixed points of the operator T belongs to the family ker
ϕ.
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3. Existence of solutions of infinite systems of integral equations on the Banach space BC(R+ × R+, E) .

We will look at the infinite system of Volterra-Hammerstein type nonlinear quadratic integral equations
with the form

xp(w, s) = αp(w, s) + fp(w, s, xp(w, s), xp+1(w, s), ...)

×

∫ w

0

∫ s

0
kp(w, s,u, v)1p(u, v, x1(u, v), x2(u, v), ...) dudv (3.1)

for w, s ∈ R+ ×R+ and for p = 1, 2, ....

Our considerations concerning the solvability of the infinite system of integral equations (3.1) will
proceed by a lemma which will be used in our later arguments.

Lemma 3.1. Let the function x(w, s) = (xp(w, s)) be an element of the space BC(R+ ×R+, ℓ∞). Then the space
(xp) is equibounded and locally conxvex on R+ ×R+.

Proof. First, let us note that the function x = x(w, s) acts continuously from R+ × R+ into ℓ∞. Hence, we
deduce that, for each ζ > 0, the function x(w, s) is uniformy continuous on the interval [0, ζ]. Thus for a
given ϵ > 0, we choose a δ > 0 such that ||(w2, s2) − (w1, s1)|| ≤ δ for w1,w2, s1, s2 ∈ [0, ζ] implies that

||x(w2, s2) − (w1.s1)||ℓ∞ = sup{|xp(w2) − xp(w1)|, |xp(s2) − xp(s1)| : p = 1, 2, ...} ≤ ϵ.

This means that |xp(w2) − xp(w1)| ≤ ϵ, |xp(s2) − xp(s1)| ≤ ϵ for p = 1, 2, ....

Summing up, we conclude that for any ϵ > 0 there exists δ > 0 such that, for arbitrary w1,w2, s1, s2 ∈

[0, ζ] such that ||(w2, s2)−(w1, s1)|| ≤ δ and for each p = 1, 2, ..., we have |xp(w2)−xp(w1)| ≤ ϵ, |xp(s2)−xp(s1)| ≤ ϵ.
Thus, the function sequence (xp) is equicontinuous om the interval [0, ζ]. Hence it follows that the mentioned
function sequence (xp) is locally equicontinuous on R+ ×R+.

On the other hand the function x = x(w, s) is bounded on R+ ×R+ implies that there exists a constant
M > 0 such that ||x(w, s)||ℓ∞ ≤ M for w, s ∈ R+ × R+. Thus, we obtain the desired equiboundedness of the
sequence (xp) on the interval R+ ×R+.

Now we will look at the assumptions that will be used to study the infinite system of integral equations
(3.1).

(i) The sequence (αp(w, s)) is an element of the space BC(R+ ×R+, ℓ∞). Moreover, the functionsαp = ap(w, s)
are equicontinuous on R+ ×R+.

(ii) The functions kp(w, s,u, v) = kp : R+×R+×R+×R+ → R are continuous on the setR+×R+×R+×R+(p =
1, 2, ...). Apart from this the functions w, s → kp(w, s,u, v) are equicontinuous on the set R+ × R+
uniformly with respect to u, v ∈ R+ ×R+ i.e, the following condition is satisfied

∀ϵ>0 ∃δ>0 ∀p∈N ∀u,v∈R+×R+ ∀w1,w2,s1,s2∈R+×R+

[
|w2 − w1| ≤ δ, |s2 − s1| ≤ δ

=⇒ |kp(w2, s2,u, v) − kp(w1, s1,u, v)| ≤ ϵ
]
.

(iii) There exists a constant G1 > 0 such that
w∫

o

s∫
o

|kp(w, s,u, v)| dudv ≤ G1

for any w, s ∈ R+ ×R+ and p = 1, 2, ....
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(iv) The sequence (kp(w, s,u, v)) is equibounded on R+ × R+ × R+ × R+ i.e, there exists a constant G2 > 0
such that |kp(w, s,u, v)| ≤ G2 for w, s,u, v ∈ R+ ×R+ and p = 1, 2, ....

(v) The functions fp are defined on the setR+ ×R+ ×R∞ and take real values for p = 1, 2, ....Moreover, the
functions w, s→ fp(w, s, x1, x2, ...) are equicontinuous onR+×R+ uniformly with respect to x = (xp) ∈ ℓ∞
i.e., the following condition is satisfied

∀ϵ>0 ∃δ>0 ∀p∈N ∀u,v∈R+×R+ ∀w1,w2,s1,s2∈R+×R+

[
|w2 − w1| ≤ δ, |s2 − s1| ≤ δ

=⇒ | fp(w2, s2, x1, x2, ...) − fp(w1, s1, x1, x2, ...)| ≤ ϵ
]
.

(vi) There exists a function l : R+ × R+ → R+ × R+ such that l is nondecreasing on R+ × R+, l(0) = 0, l is
continuous at 0 and the following is satisfied

| fp(w, s, x1, x2, ...) − fp(w, s, y1, y2, ...)| ≤ l(r) sup
{
|xi − yi| : i ≥ p

}
for any r > 0, for x = (xi), y = (yi) ∈ ℓ∞ such that ||x||ℓ∞ ≤ r, ||y||ℓ∞ ≤ r and for all w, s ∈ R+ × R+ and
p = 1, 2, ....

(vii) The sequence of functions ( f p) where f p(w, s) = | fp(w, s, 0, 0, 0, ...)| is an element of the space BC(R+ ×R+, ℓ∞).

Assume that we can define the finite constant based on assumption (vii).

F = sup{ f p)(w, s) : w, s ∈ R+ ×R+, p = 1, 2, ...}.

Now we formulate the final assumption about the infinite system (3.1).
(viii) The functions 1p are defined on the set R+ × R+ × R∞ and take real values for p = 1, 2, .... Moreover,

there exists a function m : R+ ×R+ → R+ ×R+ onR+ ×R+, continuous at r = 0,m(0) = 0 and such that
the following condition is satisfied

|1p(w, s, x1, x2, ...) − 1p(w, s, y1, y2, ...)| ≤ m(r) sup{|xi − yi| : i ≥ p}

for any r > 0, for x = (xi), y = (yi) ∈ ℓ∞ such that ||x||ℓ∞ ≤ r, ||y||ℓ∞ ≤ r and for all w, s ∈ R+ × R+ and
p = 1, 2, ....

(ix) The operator 1 defined on the space R+ ×R+ × ℓ∞ by the formula

(1x)(w, s) = (1p(w, s, x)) = (11(w, s, x), 12(w, s, x), ...)

is bounded i.e., there exists a positive constant 1 such that ||(1x)(w, s)||ℓ∞ ≤ 1 for any x ∈ ℓ∞ and for
each w, s ∈ R+ ×R+.

(x) There exists a positive constant M suc that for any w, s ∈ R+ × R+,n ∈ N and for each x = x(w, s) =
(xn(w, s)) ∈ BC(R+ ×R+, ℓ∞) the following inequality holds

w∫
o

s∫
o

|1p(u, v, x(u, v)| dudv =

w∫
o

s∫
o

|1p(u, v, x1(u, v), x1(u, v), ...| dudv ≤M.

(xi) There exists a positive solution r0 of the inequality

A + F1G1 + 1G1rl(r) ≤ r

such that

1G1l(r0) + (r0l(r0) + F)G1m(r0) < 1

where the constants F, 1,G1 were defined above and the constant A was defined in the following way

A = sup{|αp(w, s) : w, s ∈ R+ ×R+, p = 1, 2, ...}.
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Remark 3.2. Observe that from assumption (vi) we deduce that for any r > 0 and for x = xi, y = yi ∈ ℓ∞
such that ||x||ℓ∞ ≤ r, ||y||ℓ∞ ≤ r and for w, s ∈ R+ ×R+, p ∈N, the following inequality is satisfied

| fp(w, s, x1, x2, ...) − fp(w, s, x1, x2, ...)| ≤ l(r)||x − y||ℓ∞ ,

where l = l(r) is the function is the function from assumption (vi).
Similarly, from assumption (viii) we infer that

|1p(w, s, x1, x2, ...) − 1p(w, s, y1, y2, ...)| ≤ m(r)||x − y||ℓ∞
for w, s ∈ R+ × R+, p ∈ N and for r > 0, provided x = xi, y = yi ∈ ℓ∞ such that ||x||ℓ∞ ≤ r, ||y||ℓ∞ ≤ r. The
function m = m(r) appears in assumption (viii).

Now we can express our existence result in terms of an infinite system (3.1).

Theorem 3.3. Under assumptions (i) − (xi) the infinite system of integral equations (3.1) has atleast one
solution x(w, s) = (xp(w, s)) in the space BC(R+ ×R+, ℓ∞). Moreover, the function x = x(w, s) is uniformly
continuous on the interval R+ ×R+.

Proof. We start with defining three operators F,V,Q on the space BC(R+ ×R+, ℓ∞) in the following way:

(Fx)(w, s) = ((Fpx)(w, s)) = ( fp(w, s, x(w, s))) = ( fp(w, s, x1(w, s), x2(w, s), ...)),

(Vx)(w, s) = ((Vpx)(w, s)) =
( w∫

o

s∫
o

kp(w, s,u, v)1p(u, v, x1(u, v), x2(u, v), ...) dudv
)
,

(Qx)(w, s) = ((Qpx)(w, s)) = (αp(w, s) + (Fpx)(w, s)(Vpx)(w, s)).

At the begining we show that the operator F transforms the space BC(R+ ×R+, ℓ∞) into itself.
To this end let us choose a function x = (xn(w, s)) ∈ BC(R+ ×R+, ℓ∞). Fix a number n ∈ N and take

w, s ∈ R∞ ×R+. Then, in view of the imposed asssumptions and Remark (3.2), we obtain

|(Fpx)(w, s)| ≤ | fp(w, s, x1(w, s), x2(w, s), ...) − fp(w, s, 0, 0, ...)| + | fp(w, s, 0, 0, ...)|

≤ l(||x(w, s)||ℓ∞ ) sup{|xI(w, s) : i ≥ p} + | f n(w, s)|

≤ l(||x||BC(R+×R+,ℓ∞))||x||BC(R+×R+,ℓ∞) + F. (3.2)

Next, we show that the function Fx is continuous on R+ ×R+. In order to show this fact we will utilize the
continuity of an arbitrary function

x = x(w, s) = (xp(w, s)) ∈ BC(R+ ×R+, ℓ∞)

on the interval R+ ×R+. This means that the following condition holds

∀ϵ>0 ∃δ>0 ∀w0,s0∈R+×R+ ∀w,s,∈R+×R+

[
|w − w0| ≤ δ, |s − s0| ≤ δ

=⇒ ||x(w, s) − x(w0, s0)||{ℓ∞} ≤ ϵ
]
. (3.3)

Further, fix ϵ > 0 and w0, s0 ∈ R+ × R+. Next, choose δ > 0 according to condition (3.3). Then, for
w, s ∈ R+ ×R+ such that ||(w, s) − (w0, s0)|| ≤ δ, in view of remark (3.2), we obtain

|(Fpx)(w, s) − (Fpx)(w0, s0)| ≤ | fq(w, s, x1(w, s), x2(w, s), ...) − fn(w0, so, x1(w, s), x2(w, s), ...)|
+ l(||x(w, s)||ℓ∞ )||x(w, s) − x(w0, s0)||ℓ∞
≤ | fp(w, s, x1(w, s), x2(w, s), ...) − fp(w0, s0, x1(w, s), x2(w, s), ...)|
+ l(||x||BC(R+×R+,ℓ∞))ϵ. (3.4)
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Now, keeping assumption (v) in mind, we can select a number δ > 0 in such that

| fp(w, s, x1(w, s), x2(w, s), ...) − fp(w0, s0, x1(w, s), x2(w, s), ...)| ≤ ϵ

for ||(w, s) − (w0, s0)|| ≤ δ and for n = 1, 2, ....We can get the following estimate by combining this fact with
(3.4).

|(Fpx)(w, s) − (Fpx)(w0, s0)| ≤ (1 + l(||x||BC(R+×R+,ℓ∞)))ϵ

for p = 1, 2, ... and for any w, s ∈ R+ ×R+ such that ||(w, s) − (w0, s0)|| ≤ δ. This shows that the function Fx is
continuous at point w0, s0 ∈ R+ ×R+. Since w0, s0 was choosen arbitrary we conclude that the function Fx is
continuous onR+×R+. Joining the above deduced property of Fx with the earlier established boundedness
of Fx we infer that the operator F transforms the space BC(R+ ×R+, ℓ∞) into itself.

We now are going to show that the above mentioned operator V transforms the space BC(R+×R+, ℓ∞)
into itself. To this end, similarly as above, take a function x = x(w, s) = (xn(w, s)) ∈ BC(R+ ×R+, ℓ∞). Then,
for arbitrarily fixed numbers w, s ∈ R+ ×R+ and p ∈N, based on assumptions (iii) and (ix), we get

|(Vpx)(w, s)| ≤

w∫
o

s∫
o

|kp(w, s,u, v)||1p(u, v, x1(u, v), x2(u, v), ...)| dudv

≤

w∫
o

s∫
o

|kp(w, s,u, v)|1 dudv ≤ 1

w∫
o

s∫
o

|kp(w, s,u, v)| dudv ≤ 1G1. (3.5)

The derived estimate, in particular, shows that the function Vx is bounded on the intervalR+×R+. Next, fix
ϵ > 0 and determine a number δ > 0 according to assumption (ii). Then, for arbitrary w1,w2, s1, s2 ∈ R+×R+
such that ||(w2, s2) − (w1, s1)|| ≤ δ, on the basis of assumptions (ii) and (ix)(assuming, for example, that
(w1, s1) < (w2, s2)), we have

|(Vpx)(w2, s2) − (Vpx)(w1, s1)|

≤

∣∣∣∣∣
w2∫

o

s2∫
o

kp(w2, s2,u, v)1p(u, v, x1(u, v), x2(u, v), ...) dudv

−

w2∫
o

s2∫
o

kp(w1, s1,u, v)1p(u, v, x1(u, v), x2(u, v), ...) dudv
∣∣∣∣∣

+

∣∣∣∣∣
w2∫

o

s2∫
o

kp(w1, s1,u, v)1p(u, v, x1(u, v), x2(u, v), ...) dudv

−

w1∫
o

s1∫
o

kp(w1, s1,u, v)1p(u, v, x1(u, v), x2(u, v), ...) dudv
∣∣∣∣∣

≤

w2∫
o

s2∫
o

|kp(w2, s2,u, v) − kp(w1, s1,u, v)||1p(u, v, x1(u, v), ...)| dudv

+

w2∫
w1

s2∫
s1

|kp(w1, s1,u, v)||1p(u, v, x1(u, v), ...)| dudv
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≤ Ωk(δ)|1p(u, v, x1(u, v), x2(u, v)...)| dudv

+

w2∫
w1

s2∫
s1

G2|1p(u, v, x1(u, v), ...)| dudv,

where G2 is a constant from assumption (iv) andΩk(δ) denotes a common modulus of equicontnuity of the
sequence of functions w, s→ kp(w, s,u, v) (according to the assumption (iii)). Obviously we haveΩk(δ)→ 0
as δ→ 0.

Let us now notice that, using assumptions (ix) and (x), we can obtain the following estimate from the
previous one.

|(Vpx)(w2, s2) − (Vpx)(w1, s1)| ≤MΩk(δ) + 1G2δ. (3.6)

Hence, we get

||(Vx)(w2, s2) − (Vx)(w1, s1)||ℓ∞ ≤MΩk(δ) + 1G2δ.

This shows that the function Vx is continuous on the interval R+ × R+. We conclude that the operator V
transforms the space BC(R+ × R+, ℓ∞) into itself by linking the boundedness of the function Vx with its
continuity on R+ ×R+.

Taking into account the fact the space BC(R+ ×R+, ℓ∞) is a Banach algebra in terms of coordinatewise
multiplication of function sequences and keeping in mind the definition of the operator Q and assumption
(i), we deduce that for an arbitrarily fixed function x = x(w, s) ∈ BC(R+ × R+, ℓ∞) the function (Qx)(w, s) =
((Qpx)(w, s)) = (αp(w, s) + (Fpx)(w, s)(Vpx)(w, s)) transforms the interval R+ ×R+ into the space ℓ∞.
Indeed, in virtue of the fact that ((Fpx)(w, s)) ∈ ℓ∞ for any w, s ∈ R+ × R+ and in the light of estimate (3.5),
we get

|(Qpx)(w, s)| ≤ |αp(w, s)| + 1G1|(Fpx)(w, s)|

for any p ∈N. In view of (3.2) this yields that (Qx)(w, s) = ((Qpx)(w, s)) ∈ ℓ∞ for every w, s ∈ R+ ×R+.
Next, let us notice that the continuity of the function Qx onR+ ×R+ follows easily from the continuity

of the functions Fx and Vxv= on the interval R+ ×R+. Similarly, if we use assumption (i), we may infer the
boundedness of the function Qx on R+ ×R+.
Finally, by combining all the above established properties of the function Qx we infer that the operator Q
transforms the space BC(R+ ×R+, ℓ∞) into itself.

Now, let us observe that in view of estimates (3.2) and (3.5), for an arbitrarily fixed p ∈ N and
w, s ∈ R+ ×R+, we have

|(Qpx)(w, s)| ≤ |αp(w, s)| + |(Fpx)(w, s)||(Vpx)(w, s)|

≤ A +
[
l(||x(w, s||ℓ∞ )||x(w, s||ℓ∞ ) + F

]
1G1

As a result, we arrive at the following estimate:

||Qx||BC(R+×R+,ℓ∞) ≤ A + F1G1 + 1G1l(||x||BC(R+×R+,ℓ∞))||x||BC(R+×R+,ℓ∞).‘

Based on the aforementioned estimate and assumption (xi) we conclude that there exists a number r0 > 0
such that the operator Q transforms the ball Br0 (in the space BC(R+ ×R+, ℓ∞)) into itself.

In what follows we show that the operator Q is continuous on the ball Br0 . To achive this, it is sufficient
to show the continuity of the operator F and V seperately, taking into account the representation of the
operator Q.
So, let us fix an arbitrary ϵ > 0 and choose x ∈ Br0 . Next, take an arbitrary point y ∈ Br0 such that



T. Jalal, A. H. Jan / Filomat 37:12 (2023), 3791–3817 3810

||x − y||BC(R+×R+,ℓ∞) ≤ ϵ. Then, for a fixed p ∈ N and for w, s ∈ R+ × R+, in view of assumption (vi) and
Remark (3.5), we have

|(Fnx)(w, s) − (Fny)(w, s)| =| fn(w, s, x1(w, s), x2(w, s), ...) − fn(w, s, y1(w, s), y2(w, s), ...)|
≤ l(r0)||x − y||BC(R+×R+,ℓ∞) ≤ l(r0)ϵ.

Hence, we obtain

||Fx − Fy||BC(R+×R+,ℓ∞) ≤ l(r0)ϵ.

We may deduce the intended continuity of the operator F on the ball Br0 based on this approximation.
In what follows, let us choose arbitrary points x = (xi), y = (yi) ∈ Br0 . Thus in view of assumption

(viii), for fixed w, s ∈ R+ ×R+ and p ∈N, we obtain

|(Vpx)(w, s) − (Vpy)(w, s)|

≤

w∫
o

s∫
o

|kp(w, s,u, v)||1p(u, v, x1(u, v), x2(u, v), ...) − 1p(u, v, y1(u, v), y2(u, v), ...) dudv

≤

w∫
o

s∫
o

|kp(w, s,u, v)|m(r0) sup{|xi(u, v) − yp(u, v)| : i ≥ p} dudv

≤ m(r0)

w∫
o

s∫
o

|kp(w, s,u, v)|(||x(u, v) − y(u, v)||ℓ∞ ) dudv

≤ m(r0) sup{||x(u, v) − y(u, v)||ℓ∞ : u, v ∈ R+ ×R+}

w∫
o

s∫
o

|kp(w, s,u, v)| dudv.

Keeping assumption (iii) in mind, we arrive at the following inequality

|(Vpx)(w, s) − (Vpy(w, s))| ≤ G1m(r0)||x − y||BC(R+×R+,ℓ∞).

We deduce that the operator V is continuous on the ball Br0 based on the above-mentioned approximation.
In the sequel, let us fix an arbitrary number ϵ > 0. Next, choose w, s,u, v ∈ R+ × R+ such that

||(w, s)− (u, v)|| ≤ ϵ and take a nonempty set X of the ball Br0 . Then, for a function x = x(w, s) = (xp(w, s)) ∈ X
and for an arbitrarily fixed natural number p, estimating similarly as in (3.4), we get

|(Fpx)(w, s) − (Fpx)(w, s)| ≤ l(r0) sup{|xi(w, s) − xi(u, v)| : i ≥ p}
+ sup{| fp(w, s, x1, x2, ...) − fp(u, v, x1, x2, ...)| : |w − u| ≤ ϵ,
|s − v| ≤ ϵ, ||x||ℓ∞ = ||(xp)||ℓ∞ ≤ r0}

≤ l(r0)Ω∞(x, ϵ) +Ω1
∞( f , ϵ), (3.7)

where

Ω1
∞( f , ϵ) = sup

p∈N
{sup | fp(w, s, x1, x2, ...) − fp(u, v, x1, x2, ...)| : |w − u| ≤ ϵ, |s − v| ≤ ϵ,

||x||ℓ∞ = ||(xp)||ℓ∞ ≤ r0}.

Obviously, in view of assumption (v) we have Ω1
∞( f , ϵ)→ 0 as ϵ→ 0.
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Now, from estimate (3.7) we deduce that

Ω∞(Fx, ϵ) ≤ l(r0)Ω∞(x, ϵ) +Ω1
∞( f , ϵ). (3.8)

Further, let us observe that the same assumptions as above, asssuming additionally that (w, s) > (u, v),
similarly as in (3.6) we can obtain the following estimate

||(Vpx)(w, s) − (Vpx(u, v))| ≤MΩk(ϵ) + 1G2ϵ,

where the symbol Ωk(ϵ) denotes the modulus of equicontinuity of the sequence of functions w, s →
kp(w, s, τ1, τ2) i.e.,

Ωk(ϵ) = sup
p∈N

{
sup{|kp(w, s, τ1, τ2) − kp(u, v, τ1, τ2)| : w, s, ,u, v, τ1, τ2 ∈ R+ ×R+,

τ1, τ2 ≤ w, s, τ1, τ2 ≤ u, v, |w − u| ≤ ϵ, |S − v| ≤ ϵ}
}
.

Obviously Ωk(ϵ)→ 0 as ϵ→ 0.

Let us now take note of the fact that, based on the preceding calculation, we have

Ω∞(Vx, ϵ) ≤MΩk(ϵ) + 1G2ϵ. (3.9)

Now, for a fixed function x ∈ X and for arbitrary numbers w, s,u, v ∈ R+ × R+, taking into account the
representation of the operator Q, we have

||(Qx)(w, s) − (Qx)(u, v)||ℓ∞

≤ ||α(w, s) − α(u, v)||ℓ∞ + ||(Vx)(w, s)||ℓ∞ ||(Fx)(w, s) − (Fx)(u, v)||ℓ∞

||(Fx)(u, v)||ℓ∞ ||(Vx)(w, s) − (Vx)(u, v)||ℓ∞ ,

where we denoted α(w, s) = (αp(w, s)).

Further, fix ϵ > 0 and assume that ||(w, s) − (u, v)|| ≤ ϵ. Utilizing (3.3), (3.5), (3.8) and (3.9), from the
above inequality we get

Ω∞(Qx, ϵ) ≤ Ω∞(α, ϵ) + 1G1Ω
∞(Fx, ϵ) + (r0l(r0) + F)(MΩk(ϵ) + 1G2ϵ)

≤ Ω∞(α, ϵ) + 1G1

[
l(r0)Ω∞(x, ϵ) +Ω1

∞( f , ϵ)
]

+ (r0l(r0) + F)(MΩk(ϵ) + 1G2ϵ).

As a result, keeping in mind the above established properties of functions ϵ → Ω1
∞( f , ϵ), ϵ → Ωk(ϵ) and

assumption (i), we obtain

Ω∞0 (QX) ≤ 1G1l(r0)Ω∞(X). (3.10)

In what follows we will consider the second term of the measure of noncompactness ϕ3
e defined by the

formula (2.42) for i = 3. That term is denoted by ϕ−3
∞ and is expressed by formula (2.33). To this end fix a

set X ⊂ Br0 and take arbitrary x = x(w, s), y = y(w, s) ∈ X. Then, for arbitrarily w, s ∈ R+ ×R+ and k ∈N, we
have :

|(Qkx)(w, s) − (Qky)(w, s)| = |(Fkx)(w, s)(Vkx)(w, s) − (Fky)(w, s)(Vky)(w, s)|
≤ |(Vk)(w, s)||(Fkx)(w, s) − (Fky)(w, s)|
+ |(Fky)(w, s)||(Vkx)(w, s) − (Vky)(w, s)|. (3.11)
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Further on, we are going to estimate the terms appearing on the right hand side of inequality(3.11). To
this end, fix a natural number n and a number ζ > 0. Then, for t ∈ [0, ζ] and for p ∈ N, q ≥ p, based on
assumptions (viii) and (iii), for arbitrary functions x, y ∈ X, we obtain

|(Vqx)(w, s) − (Vqy)(w, s)|

≤

w∫
o

s∫
o

|kq(w, s,u, v)||1q(u, v, x1(u, v), x2(u, v), ...)

− 1q(u, v, y1(u, v), y2(u, v), ...)| dudv

≤ m(r0)

w∫
o

s∫
o

|kq(w, s,u, v)|
(

sup{|xi(u, v) − yi(u.v)| : i ≥ q}
)

dudv

≤ m(r0)

w∫
o

s∫
o

|kq(w, s,u, v)|
{

sup
w,s∈[0,ζ]

{
sup
i≥p
|xi(w, s) − yi(w, s)|

}}
dudv

≤ G1m(r0)
{

sup
w,s∈[0,ζ]

{{
sup
i≥p
{sup{|xi(w, s) − yi(w, s)| : x = x(w, s), y = y(w, s) ∈ X}}

}}
.

Hence, we get

sup
w,s∈[0,ζ]

{{
sup
i≥p
{sup{|xi(w, s) − yi(w, s)| : x = x(w, s), y = y(w, s) ∈ X}}

}
≤ G1m(r0)

{
sup

w,s∈[0,ζ]

{{
sup
i≥p
{sup{|xi(w, s) − yi(w, s)| : x = x(w, s), y = y(w, s) ∈ X}}

}}
.

The above estimate yields (cf.formula 2.33):

ϕ−3
∞ (VX) ≤ G1m(r0)ϕ−3

∞ (X). (3.12)

Similarly as above, for an arbitrarily fixed p ∈N,w, s ∈ R+ ×R+ and for x = x(w, s), y = y(w, s) ∈ X, utilizing
assumption (vi), we obtain

|(Fpx)(w, s) − (Fpy)(w, s)| ≤ l(r0) sup{|xi(w, s) − yi(w, s)| : i ≥ p}.

As a result, we arrive to the following estimate:

sup
w,s∈[0,ζ]

{
sup
i≥p

{
sup{|(Fix)(w, s) − (Fiy)(w, s)| : x = x(w, s), y = y(w, s) ∈ X}

}}

≤ l(r0)
{

sup
w,s∈[0,ζ]

{{
sup
i≥p
{sup{|xi(w, s) − yi(w, s)| : x = x(w, s), y = y(w, s) ∈ X}}

}}
.

We can now conclude the following inequality using the above estimate and formula (2.33).

ϕ−3
∞ (FX) ≤ l(r0)ϕ−3

∞ (X). (3.13)

Finally, joining estimates (3.2), (3.5), (3.11), (3.12) and (3.13), we obtain

ϕ−3
∞ (QX) ≤ 1G1l(r0)ϕ−3

∞ (X) +
(
l(r0)r0 + F

)
G1m(r0)ϕ−3

∞ (X). (3.14)
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In the sequel we will consider the third term of the measure of noncompactness ϕ3
e defined by (2.42) i.e.,

the term e(X) expressed by formula (2.39).
Thus, let us fix a nonempty subset X of the ball Br0 and the functions x = x(w, s), y = y(w, s) ∈ X. Next,

fix ζ > 0 and take w, s ≥ ζ. Then, for an arbitrary natural number p, on the basis of calculations performed
before estimate (3.12), we obtain

|(Vpx)(w, s) − (Vpy)(w, s)| ≤ G1m(r0)
{

sup
w,s≥ζ

{
sup
i≥p
|xi(w, s) − yi(w, s)|

}}
.

The above estimate yields

sup
w,s≥ζ

{
sup
{
sup
p∈N
|(Vpx)(w, s) − (Vpy)(w, s)| : x = x(w, s), y = y(w, s) ∈ X

}}
≤ G1m(r0)

{
sup
w,s≥ζ

{
sup
{
sup
p∈N
|(xp)(w, s) − (yp)(w, s)| : x = x(w, s), y = y(w, s) ∈ X

}}}
.

Consiquently, we get

e(VX) ≤ G1m(r0)e(X). (3.15)

Following that, we derive the following inequality using the same reasoning as in the calculations that
preceding estimate (3.13).

e(FX) ≤ l(r0)e(X). (3.16)

Finally, linking estimates (3.2), (3.5), (3.11), (3.15) and (3.16), we obtain

e(QX) ≤ 1G1l(r0)e(X) +
(
l(r0)r0 + F

)
G1m(r0)e(X). (3.17)

Now, combining estimates (3.10), (3.14), (3.17) and keeping in md formula (2.42) expressing the measure of
noncompactness ϕ3

e , we get

ϕ3
e (QX) ≤ 1G1l(r0)Ω∞0 (X)

+
[
1G1l(r0) + (r0l(r0) + F)G1m(r0)

]
ϕ−3

e (X)

+
[
1G1l(r0) + (r0l(r0) + F)G1m(r0)

]
e(X).

Hence, we derive the following estimate

ϕ3
e (QX) ≤

[
1G1l(r0) + (r0l(r0) + F)G1m(r0)

]
ϕ3

e (X) (3.18)

Further, taking into account the above obtained estimate, in view of the facts established in the
conducted proof, assumption (xi) and Theorem 2.5 we deduce that there exists atleast one element x ∈
Br0 which is the fixed point of the operator Q in the ball Br0 . Obviously the function x = x(w, s) is a solution
of infinite system of integral equations (3.1) in the space BC(R+ ×R+, ℓ∞).

Moreover, in view of remark and the description of the kernel of measure of noncompactnessϕα, ϕβ and
ϕγ located after the proof of Theorem 2.2, we conclude that the function = x(w, s) is uniformly continuous
on the interval R+ ×R+. This completes the proof.

The following example exemplifies the above result:
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Example 3.4. Let us consider the following infinite system 0f nonlinear quadratic integral eqyuations of the
Volterra-Hammerstein type

Xp(w, s) =
a(w + s)

1 + p2 + (ws)2 +
( b

p2 + (ws)2 +
zxp(w, s)

1 + x2
1(w, s)

+
zxp+1

p + x2
2(w, s)

)

×

w∫
o

s∫
o

uv

1 + p
(
(uv)2 + (ws)2

) arctan
(x1(u, v) + xp(u, v)

p + (uv)2

)
dudv (3.19)

for p = 1, 2, ... and w, s ∈ R+ ×R+. Also, we assume a, b, z appearing in the above are positive constants.
Observe that infinite system (3.19) is a particular case of system (3.1) if we put

αp(w, s) =
a(w + s)

1 + p2 + (ws)2 , (3.20)

fp(w, s, x1, x2, ...) =
b

p2 + (ws)2 +
zxp(w, s)

1 + x2
1(w, s)

+
zxp+1

p + x2
2(w, s)

, (3.21)

kp(w, s,u, v) =
uv

1 + p
(
(uv)2 + (ws)2

) , (3.22)

1p(w, s, x1, x2, ...) = arctan
(x1(u, v) + xp(u, v)

p + (uv)2

)
(3.23)

for p = 1, 2, ... and w, s ∈ R+ ×R+.
In order to show that the infinite system of integral equations (3.19) has a solution in the Banach space

BC(R+ × R+, ℓ∞) it is sufficient to apply Theorem (3.3). To this end, we have to show that the functions
defined by formulas (3.20)-(3.23) satisfy assumptions (i)-(xi) of Theorem (3.3).

At the begining let us observe that the functionsαp(w, s) defined by (3.20) satisfy the Lipschitz condition
with the constant l = 1 for p = 1, 2, .... Thus, these functions are equicontinuous on R+ ×R+. Moreover, we
have

A = sup{|αp(w, s)| : p = 1, 2, ...,w, s ∈ R+ ×R+} = 1.

This shows that the assumption (i) is satisfied.
Further, let us notice that the function kp(w, s,u, v) defined by (3.22) (p = 1, 2, ...) is continuous on

R+ ×R+ ×R+ ×R+. additionally, uusing standard tools of differential calculus it is easy seen that

|kp(w2, s2,u, v) − kp(w1, s1,u, v)| ≤
1
p
|(w2, s2) − (w1, s1)|

for p = 1, 2, 3, ... and for w1,w2, s1, s2 ∈ R+ × R+. This means that the sequence of functions (kp(.,u, v)) is
equicontinuous on R+ ×R+ uniformly with respect to u, v ∈ R+ ×R+.
Summing up, we see that there is satisfied assumption (ii).

Next, let us observe that for each p ∈ N and for arbitrary w, s,u, v ∈ R+ × R+ we have the following
estimate

|kp(w, s,u, v) ≤
uv

1 + p(uv)2 ≤
uv

1 + (uv)2 ≤
1
2
.

Hence it follows that the sequence kp(w, s,u, v) is equibounded on R+ ×R+ with the constant K2 =
1
2

. This
shows that there is satisfied assumption (iv).
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On the other hand we obtain

w∫
o

s∫
o

|kp(w, s,u, v)| dudv =

w∫
o

s∫
o

uv
1 + p((uv)2 + (ws)2)

dudv =
1
2

(1 + 2p(ws)2

1 + p(ws)2

)
≤

1
2p

ln 2 ≤
1
2

ln 2.

Next, let us notice that the functions fp = fp(w, s, x1, x2, ...) given by (3.21) act from R+ ×R+ ×R∞ → R(p =
1, 2, ...).Additionally, taking into account that the functions fp do not depend explicity on (w, s), we conclude
that there is satisfied assumption (v).

In order to verify assumption (vi) let us fix a number r > 0 and take x = (xi) such that ||x||ℓ∞ ≤ r. Then,
keeping in mind formula (3.21), for an arbitrary natural number p and w, s ∈ R+ ×R+, we have

| fp(w, s, x1, x2, ...)| ≤
b

p2 + (ws)2 + z
[
|xp|

1 + x2
1

+
|xp+1|

p + x2
2

]
≤

b
p2 + (ws)2 + z(|xp)| + |xp+1|)

≤
b

p2 + (ws)2 + z(|xp) + 2z sup{|xi| : i ≥ p}.

This shows that the inequality from assumption (vi) is satisfied with the following functions

f p(w, s) =
b

p2 + (ws)2 ,

l(r) = 2z

for p = 1, 2, .... Since f p(w, s) =
b

p2 + (ws)2 we infer that lim
w,s→∞

f p(w, s) = 0 uniformly with respect to p ∈ N.

Apart from this we have that lim
p→∞

f p(w, s) = 0 for any w, s ∈ R+ ×R+.

Summing up we see that assumption (vi) is satisfied. Moreover, let us notice that

F = sup{ f p(w, s) : w, s ∈ R+ ×R+, p = 1, 2, ...} = b.

Next, let us fix a number r > 0 and take x = (xi), y = (yi) such that ||x||ℓ∞ ≤ r, ||y||ℓ∞ ≤ r. Then, keeping in
mind formula (3.21), for an arbitrary natural number p and w, s ∈ R+ ×R+, we have
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| fp(w, s, x1, x2, ...) − fp(w, s, y1, y2, ...)|

≤ z
∣∣∣∣∣ xp

1 + x2
1

−
yp

1 + y2
1

∣∣∣∣∣ + z
∣∣∣∣∣ xp+1

p + x2
2

−
yp+1

p + y2
2

∣∣∣∣∣
≤ z
|xp + xpy2

1 − yp − ypx2
1|

(1 + x2
1)(1 + y2

1)
+ z
|pxp+1 + xp+1y2

2 − pyp+1 − yp+1x2
2|

(p + x2
2)(p + y2

2)

≤ z|xp − yp| + z
(xpy2

1 − ypx2
1) + (ypy2

1 − ypx2
1)

(1 + x2
1)(1 + y2

1)
+ yp

|xp+1 − yp+1

(p + x2
2)(p + y2

2)

+ z
(xpy2

1 − ypx2
1) + (yp+1y2

2 − yp+1x2
2)

(p + x2
2)(p + y2

2)

≤ 2z|xp − yp| + yr
(

|y1|

(1 + x2
1)(1 + y2

1

+
|x1|

(1 + x2
1)(1 + y2

1

)
|x1 − y1|

+ 2z|xp+1 − yp+1| + yr
(

|y2|

(1 + x2
2)(1 + y2

1

+
|x2|

(1 + x2
2)(1 + y2

2)

)
|x2 − z2|

≤ 2z|xp − yp| + yr|x1 − y1| + 2z|xp+1 − zp+1| + zr|x2 − z2|

≤ (4z + 2rz)||x − z||ℓ∞ = 2z(2 + r)||x − z||ℓ∞ .

Thus see that assumption (vii) is satisfied with the function m(r) = 2z(2 + r).
In the next step of our proof we are going to verify assumptuion (viii). To this end fix arbitrarily ∈ N

and consider the function 1p(w, s, x) = 1p(w, s, x1, x2, ...) defined by formula (3.23) i.e,.

1p(w, s, x1, x2, ...) = arctan
( x1 + xp

p + (ws)2

)
.

Then, from the estimate

1p(w, s, x1, x2, ...) ≤
|x1| + |xp|

p + (ws)2 ≤
|x1| + |xp|

p
.

We deduce that the operator 1 defined in assumption (viii) by the equality

(1x)(w, s) = (1p(w, s, x)) = (11(w, s, x), 12(w, s, x), ...)

transforms the set R+ ×R+ × ℓ∞ into ℓ∞.
Further on, fix w, s ∈ R+ ×R+ and take x = (xi), y = (yi) ∈ ℓ∞. Then we have

|1p(w, s, x) − 1p(w, s, z)| ≤
∣∣∣∣∣ x1 + xp

p + (ws)2 +
z1 + zp

p + (ws)2

∣∣∣∣∣ ≤ |x1 − z1

p
+
|xp − zp|

p
.

. This allows us to derive te following estimate:

||(1x)(w, s) − (1z)(w, s)||ℓ∞ = sup{|1p(w, s, x) − 1p(w, s, z)| : p ∈N}

≤ sup
{
|x1 − z1

p
+
|xp − zp|

p
: p ∈N

}
≤ 2 sup

{
|xp − zp|

p
: p ∈N

}
≤ 2||x − z||ℓ∞ .

From the above estimate we infer that the operator 1 satisfies assumption (viii).
Moreover, it is easily seen that for an arbitrary x ∈ ℓ∞ and w, s ∈ R+ ×R+ we get

||(1x)(w, s)||ℓ∞ = sup{1p(w, s, x) : p ∈N} ≤
π
2
.
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This means that the operator 1 satisfies the assumption (ix) with constant G =
π
2

.
Finally, let us consider the first inequality from assumption (x). Obviously, in our case that inequality

has the form
a

2
√

2
+
π
4

ln 2(b + 2zr) < r. (3.24)

On the other hand, taking the second inequality required in assumption (x), we get

z
π
2

ln 2(2 + r0) < 1. (3.25)

It is easy to check that choosing z <
1
π ln 2

and taking r0 >
a
√

2
+

b
2y

, we can easily verify that both

inequalities (3.24) and (3.25) are satisfied.
Thus, in the light of Theorem (3.3), we infer that infinite system of nonlinear integral equations (3.19) has
atleast one solution belonging to the ball Br0 in the space BC(R+ ×R+, ℓ∞).
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[10] J.Banaś and M.Mursaleen., Sequence spaces and measures of noncompactness with applications to differential and integral equations, New

Delhi: Springer, 2014.
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