Some effect of drift of the generalized Brownian motion process: Existence of the operator-valued generalized Feynman integral

Jae Gil Choi ${ }^{\text {a }}$
${ }^{a}$ School of General Education, Dankook University, Cheonan 31116, Republic of Korea

Abstract

In this paper an analytic operator-valued generalized Feynman integral was studied on a very general Wiener space $C_{a, b}[0, T]$. The general Wiener space $C_{a, b}[0, T]$ is a function space which is induced by the generalized Brownian motion process associated with continuous functions a and b. The structure of the analytic operator-valued generalized Feynman integral is suggested and the existence of the analytic operator-valued generalized Feynman integral is investigated as an operator from $L^{1}\left(\mathbb{R}, v_{\delta, a}\right)$ to $L^{\infty}(\mathbb{R})$ where $\nu_{\delta, a}$ is a σ-finite measure on \mathbb{R} given by

$$
d v_{\delta, a}=\exp \left\{\delta \operatorname{Var}(a) u^{2}\right\} d u,
$$

where $\delta>0$ and $\operatorname{Var}(a)$ denotes the total variation of the mean function a of the generalized Brownian motion process. It turns out in this paper that the analytic operator-valued generalized Feynman integrals of functionals defined by the stochastic Fourier-Stieltjes transform of complex measures on the infinite dimensional Hilbert space $C_{a, b}^{\prime}[0, T]$ are elements of the linear space

$$
\bigcap_{\delta>0} \mathcal{L}\left(L^{1}\left(\mathbb{R}, v_{\delta, n}\right), L^{\infty}(\mathbb{R})\right) .
$$

1. Introduction

Before giving a basic survey and a motivation for our topic we fix some notation. Let $\mathbb{C}, \mathbb{C}_{+}$and $\widetilde{\mathbb{C}}_{+}$denote the set of complex numbers, complex numbers with positive real part and nonzero complex numbers with nonnegative real part, respectively. For all $\lambda \in \widetilde{\mathbb{C}}_{+}, \lambda^{1 / 2} \equiv \sqrt{\lambda}$ (or $\lambda^{-1 / 2}$) is always chosen to have positive real part. Furthermore, let $C[0, T]$ denote the space of real-valued continuous functions x on $[0, T]$ and let $C_{0}[0, T]$ denote those x in $C[0, T]$ such that $x(0)=0$. The function space $C_{0}[0, T]$ is referred to as one-parameter Wiener space, and we let m_{w} denote Wiener measure. Given two Banach spaces X and Y, let $\mathcal{L}(X, Y)$ denote the space of continuous linear operators from X to Y.

[^0]Let F be a \mathbb{C}-valued measurable functional on $C[0, T]$. For $\lambda>0, \psi \in L^{2}(\mathbb{R})$, and $\xi \in \mathbb{R}$, consider the Wiener integral

$$
\begin{equation*}
\left(I_{\lambda}(F) \psi\right)(\xi) \equiv \int_{C_{0}[0, T]} F\left(\lambda^{-1 / 2} x+\xi\right) \psi\left(\lambda^{-1 / 2} x(T)+\xi\right) d m_{w}(x) \tag{1.1}
\end{equation*}
$$

In the application of the Feynman integral to quantum theory, the function ψ in (1.1) corresponds to the initial condition associated with Schrödinger equation.

In [1], Cameron and Storvick considered the following natural and interesting questions. Under what conditions on F will the linear operator $I_{\lambda}(F)$ given by (1.1) be an element of $\mathcal{L}\left(L^{2}(\mathbb{R}), L^{2}(\mathbb{R})\right)$? If so, does the operator valued function $\lambda \rightarrow I_{\lambda}(F)$ have an analytic extension, write $I_{\lambda}^{\text {an }}(F)$ (it is called the analytic operator-valued Wiener integral of F with parameter λ), to \mathbb{C}_{+}? If so, for each nonzero real number q, does the limit

$$
J_{q}^{\mathrm{an}}(F) \equiv \lim _{\substack{\lambda \rightarrow-i q \\ \lambda \in \mathbb{C}_{+}}} I_{\lambda}^{\mathrm{an}}(F)
$$

exist in some topological (normed) structure? The functional $J_{q}^{\text {an }}(F)$ (if it exists) is called the analytic operator-valued Feynman integral of F with parameter q.

Cameron and Storvick in [1] introduced the analytic operator-valued function space "Feynman integral" $J_{q}^{\text {an }}(F)$, which mapped an $L^{2}(\mathbb{R})$ function ψ into an $L^{2}(\mathbb{R})$ function $J_{q}^{\text {an }}(F) \psi$. In [1] and several subsequent papers $[2,3,15-22]$, the existence of this integral as an element of $\mathcal{L}\left(L^{2}(\mathbb{R}), L^{2}(\mathbb{R})\right)$ was established for various functionals. Next, the existence of the integral as an element of $\mathcal{L}\left(L^{1}(\mathbb{R}), L^{\infty}(\mathbb{R})\right)$ was established in [4, 5, 14, 23]. Finally, the $L_{p} \rightarrow L_{p^{\prime}}$ theory $\left(1<p \leq 2\right.$ and $\left.1 / p+1 / p^{\prime}=1\right)$ was developed as an element of $\mathcal{L}\left(L^{p}(\mathbb{R}), L^{p^{\prime}}(\mathbb{R})\right)$ in [24].

The Wiener space $C_{0}[0, T]$ can be considered as the space of sample paths of standard Brownian motion process (SBMP). Thus, in various Feynman integration theories, the integrand F of the Feynman integral (1.1) is a functional of the SBMP, see [1-5, 14-24].

Let $D=[0, T]$ and let (Ω, \mathcal{F}, P) be a probability space. By the definition, a generalized Brownian motion process (GBMP) on $D \times \Omega$ is a Gaussian process $Y \equiv\left\{Y_{t}\right\}_{t \in D}$ such that $Y_{0}=0$ almost surely and for any $0 \leq s<t \leq T$,

$$
Y_{t}-Y_{s} \sim N(a(t)-a(s), b(t)-b(s))
$$

where $N\left(m, \sigma^{2}\right)$ denotes the normal distribution with mean m and variance $\sigma^{2}, a(t)$ is a continuous realvalued function on $[0, T]$ and $b(t)$ is an increasing continuous real-valued function on $[0, T]$. Thus a GBMP is determined by the continuous functions $a(t)$ and $b(t)$. The function space $C_{a, b}[0, T]$, induced by GBMP, was introduced by Yeh $[25,26]$ and was used extensively in [6-13]. The function space $C_{a, b}[0, T]$ used in [6-13] can be considered as the space of sample paths of the GBMP.

The generalized Feynman integral studied in $[6,7,9,10]$ are scalar-valued. In this paper, the analytic operator-valued generalized Feynman integral (AOVG'Feynman'I) of functionals F on the general Wiener space $C_{a, b}[0, T]$ is investigated as an element of $\mathcal{L}\left(L^{1}\left(\mathbb{R}, v_{\delta, a}\right), L^{\infty}(\mathbb{R})\right)$, where $v_{\delta, a}$ is a measure on \mathbb{R} given by

$$
d v_{\delta, a}=\exp \left\{\delta \operatorname{Var}(a) u^{2}\right\} d u
$$

and where $\delta>0$ and $\operatorname{Var}(a)$ denotes the total variation of the mean function a of the GBMP. It turns out in this paper that the AOVG'Feynman'Is of functionals defined by the stochastic Fourier-Stieltjes transform of complex measures on the infinite dimensional Hilbert space $C_{a, b}^{\prime}[0, T]$, the space of absolutely continuous functions in $C_{a, b}[0, T]$, are elements of the linear space

$$
\bigcap_{\delta>0} \mathcal{L}\left(L^{1}\left(\mathbb{R}, v_{\delta, a}\right), L^{\infty}(\mathbb{R})\right)
$$

Note that when $a(t) \equiv 0$ and $b(t)=t$, the GBMP is an SBMP, and so the function space $C_{a, b}[0, T]$ reduces to the classical Wiener space $C_{0}[0, T]$. But we are obliged to point out that an SBMP used in $[1-5,14-24]$
is stationary in time and is free of drift. While, the GBMP used in this paper, as well as in [6-13], is nonstationary in time and is subject to a drift $a(t)$. It turns out, as noted in Remark 4.2 below, that including a drift term $a(t)$ makes establishing the existence of the analytic operator-valued generalized function space integral (AOVGFSI) and AOVG'Feynman'I of functionals on $C_{a, b}[0, T]$ very difficult.

In [13], Chang, Skoug and the current author introduced the analytic operator-valued Feynman integrals $J_{q}^{\mathrm{an}}(F)$ of finite-dimensional functionals $F: C_{a, b}[0, T] \rightarrow \mathbb{C}$, having the form

$$
F(x)=f\left(\int_{0}^{T} \theta_{1}(t) d x(t), \ldots, \int_{0}^{T} \theta_{n}(t) d x(t)\right)
$$

where $f: \mathbb{R}^{n} \rightarrow \mathbb{C}$ is a Lebesgue measurable function, $\int_{0}^{T} \theta(t) d x(t)$ denotes the Paley-Wiener-Zygmund stochastic integral with x in $C_{a, b}[0, T]$, and $\left\{\theta_{1}, \ldots, \theta_{n}\right\}$ is a set of functions of bounded variation on the time interval $[0, T]$ such that

$$
\int_{0}^{T} \theta_{j}(t) \theta_{l}(t) d m_{b,|a|}(t)=\delta_{j l} \quad \text { (Kronecker delta) }
$$

and where $m_{b,|a|}$ denots the Lebesgue-Stieltjes measure induced by the variance function b and the mean function a of the GBMP Y. But, in [13], the topological structures between the domain and the codomain of the operator " $J_{q}^{\text {an" was not discussed. }}$

The results in this paper are quite a lot more complicated because the GBMP Y referred to above is neither stationary nor centered. We refer to the reference $[6,7,9]$ for an unusual behavior of the GBMP.

2. Preliminaries

In this section, we briefly list some of the preliminaries from [6, 7, 9, 10] that we need to establish our results in next sections; for more details, see $[6,7,9,10]$.

Let $\left(C_{a, b}[0, T], \mathcal{B}\left(C_{a, b}[0, T]\right), \mu\right)$ denote the function space induced by the GBMP Y determined by continuous functions $a(t)$ and $b(t)$, where $\mathcal{B}\left(C_{a, b}[0, T]\right)$ is the Borel σ-field induced by the sup-norm, see [25, 26]. We assume in this paper that $a(t)$ is an absolutely continuous real-valued function on $[0, T]$ with $a(0)=0$, $a^{\prime}(t) \in L^{2}[0, T]$, and $b(t)$ is an increasing, continuously differentiable real-valued function with $b(0)=0$ and $b^{\prime}(t)>0$ for each $t \in[0, T]$. We complete this function space to obtain the complete probability measure space $\left(C_{a, b}[0, T], \mathcal{W}\left(C_{a, b}[0, T]\right), \mu\right)$ where $\mathcal{W}\left(C_{a, b}[0, T]\right)$ is the set of all μ-Carathéodory measurable subsets of $C_{a, b}[0, T]$.

We can consider the coordinate process $X:[0, T] \times C_{a, b}[0, T] \rightarrow \mathbb{R}$ given by $X(t, x)=x(t)$ which is a continuous process. The separable process X induced by Y [26] also has the following properties:
(i) $X(0, x)=x(0)=0$ for every $x \in C_{a, b}[0, T]$.
(ii) For any $s, t \in[0, T]$ with $s \leq t$ and $x \in C_{a, b}[0, T], x(t)-x(s) \sim N(a(t)-a(s), b(t)-b(s))$.

Thus it follows that for $s, t \in[0, T], \operatorname{Cov}(X(s, x), X(t, x))=\min \{b(s), b(t)\}$.
A subset B of $C_{a, b}[0, T]$ is said to be scale-invariant measurable provided ρB is $\mathcal{W}\left(C_{a, b}[0, T]\right)$-measurable for all $\rho>0$, and a scale-invariant measurable set N is said to be scale-invariant null provided $\mu(\rho N)=0$ for all $\rho>0$. A property that holds except on a scale-invariant null set is said to hold scale-invariant almost everywhere (s-a.e.). A functional F is said to be scale-invariant measurable provided F is defined on a scale-invariant measurable set and $F(\rho \cdot)$ is $\mathcal{W}\left(C_{a, b}[0, T]\right)$-measurable for every $\rho>0$.

Let $L_{a, b}^{2}[0, T]$ be the separable Hilbert space of functions on $[0, T]$ which are Lebesgue measurable and square integrable with respect to the Lebesgue-Stieltjes measures on $[0, T]$ induced by $b(t)$ and $a(t)$: i.e.,

$$
L_{a, b}^{2}[0, T]=\left\{v: \int_{0}^{T} v^{2}(s) d b(s)<+\infty \text { and } \int_{0}^{T} v^{2}(s) d|a|(s)<+\infty\right\}
$$

where $|a|(t)$ denotes the total variation function of $a(t)$ on $[0, T]$. The inner product on $L_{a, b}^{2}[0, T]$ is defined by $(u, v)_{a, b}=\int_{0}^{T} u(t) v(t) d[b(t)+|a|(t)]$. Note that $\|u\|_{a, b}=\sqrt{(u, u)_{a, b}}=0$ if and only if $u(t)=0$ a.e. on $[0, T]$ and that all functions of bounded variation on $[0, T]$ are elements of $L_{a, b}^{2}[0, T]$. Also note that if $a(t) \equiv 0$ and $b(t)=t$, then $L_{a, b}^{2}[0, T]=L^{2}[0, T]$. In fact,

$$
\left(L_{a, b}^{2}[0, T],\|\cdot\|_{a, b}\right) \subset\left(L_{0, b}^{2}[0, T],\|\cdot\|_{0, b}\right)=\left(L^{2}[0, T],\|\cdot\|_{2}\right)
$$

since the two norms $\|\cdot\|_{0, b}$ and $\|\cdot\|_{2}$ are equivalent.
Throughout the rest of this paper, we consider the linear space

$$
C_{a, b}^{\prime}[0, T]=\left\{w \in C_{a, b}[0, T]: w(t)=\int_{0}^{t} z(s) d b(s) \text { for some } z \in L_{a, b}^{2}[0, T]\right\}
$$

For $w \in C_{a, b}^{\prime}[0, T]$, with $w(t)=\int_{0}^{t} z(s) d b(s)$ for $t \in[0, T]$, let $D: C_{a, b}^{\prime}[0, T] \rightarrow L_{a, b}^{2}[0, T]$ be defined by the formula

$$
\begin{equation*}
D w(t)=z(t)=\frac{w^{\prime}(t)}{b^{\prime}(t)} \tag{2.1}
\end{equation*}
$$

Then $C_{a, b}^{\prime} \equiv C_{a, b}^{\prime}[0, T]$ with inner product

$$
\left(w_{1}, w_{2}\right)_{C_{a, b}^{\prime}}=\int_{0}^{T} D w_{1}(t) D w_{2}(t) d b(t)=\int_{0}^{T} z_{1}(t) z_{2}(t) d b(t)
$$

is also a separable Hilbert space.
Note that the two separable Hilbert spaces $L_{a, b}^{2}[0, T]$ and $C_{a, b}^{\prime}[0, T]$ are topologically homeomorphic under the linear operator given by equation (2.1). The inverse operator of D is given by

$$
\left(D^{-1} z\right)(t)=\int_{0}^{t} z(s) d b(s)
$$

for $t \in[0, T]$.
In this paper, in addition to the conditions put on $a(t)$ above, we now add the condition

$$
\begin{equation*}
\int_{0}^{T}\left|a^{\prime}(t)\right|^{2} d|a|(t)<+\infty \tag{2.2}
\end{equation*}
$$

Then, the function $a:[0, T] \rightarrow \mathbb{R}$ satisfies the condition (2.2) if and only if $a(\cdot)$ is an element of $C_{a, b}^{\prime}[0, T]$, see $[11,12]$. Under the condition (2.2), we observe that for each $w \in C_{a, b}^{\prime}[0, T]$ with $D w=z$,

$$
(w, a)_{C_{a, b}^{\prime}}=\int_{0}^{T} D w(t) D a(t) d b(t)=\int_{0}^{T} z(t) \frac{a^{\prime}(t)}{b^{\prime}(t)} d b(t)=\int_{0}^{T} z(t) d a(t)
$$

Next we will define a Paley-Wiener-Zygmund (PWZ) stochastic integral. Let $\left\{g_{j}\right\}_{j=1}^{\infty}$ be a complete orthonormal set in $C_{a, b}^{\prime}[0, T]$ such that for each $j=1,2, \ldots, D g_{j}=\alpha_{j}$ is of bounded variation on $[0, T]$. For each $w=D^{-1} z \in C_{a, b}^{\prime}[0, T]$, the PWZ stochastic integral $(w, x)^{\sim}$ is defined by the formula

$$
(w, x)^{\sim}=\lim _{n \rightarrow \infty} \int_{0}^{T} \sum_{j=1}^{n}\left(w, g_{j}\right)_{C_{a, b}^{\prime}} D g_{j}(t) d x(t)=\lim _{n \rightarrow \infty} \int_{0}^{T} \sum_{j=1}^{n} \int_{0}^{T} z(s) \alpha_{j}(s) d b(s) \alpha_{j}(t) d x(t)
$$

for all $x \in C_{a, b}[0, T]$ for which the limit exists.
It is known that for each $w \in C_{a, b}^{\prime}[0, T]$, the PWZ stochastic integral $(w, x)^{\sim}$ exists for μ-a.e. $x \in C_{a, b}[0, T]$. If $D w=z \in L_{a, b}^{2}[0, T]$ is of bounded variation on $[0, T]$, then the $P W Z$ stochastic integral $(w, x)^{\sim}$ equals the

Riemann-Stieltjes integral $\int_{0}^{T} z(t) d x(t)$. It also follows that for $w, x \in C_{a, b}^{\prime}[0, T],(w, x)^{\sim}=(w, x)_{C_{a, b}^{\prime}}$. For each $w \in C_{a, b}^{\prime}[0, T]$, the PWZ stochastic integral $(w, x)^{\sim}$ is a Gaussian random variable on $C_{a, b}[0, T]$ with mean $(w, a)_{C_{a, b}^{\prime}}$ and variance $\|w\|_{C_{a, b}^{\prime}}^{2}$. Note that for all $w_{1}, w_{2} \in C_{a, b}^{\prime}[0, T]$,

$$
\int_{C_{a, b}[0, T]}\left(w_{1}, x\right)^{\sim}\left(w_{2}, x\right)^{\sim} d \mu(x)=\left(w_{1}, w_{2}\right)_{C_{a, b}^{\prime}}+\left(w_{1}, x\right)_{C_{a, b}^{\prime}}\left(w_{2}, x\right)_{C_{a, b}^{\prime}}
$$

Hence we see that for $w_{1}, w_{2} \in C_{a, b}^{\prime}[0, T],\left(w_{1}, w_{2}\right)_{C_{a, b}^{\prime}}=0$ if and only if $\left(w_{1}, x\right)^{\sim}$ and $\left(w_{2}, x\right)^{\sim}$ are independent random variables. We thus have the following function space integration formula: let $\left\{e_{1}, \ldots, e_{n}\right\}$ be an orthonormal set in $\left(C_{a, b}^{\prime}[0, T],\|\cdot\|_{a, b}^{\prime}\right)$, and given a Lebesgue measurable function $r: \mathbb{R}^{n} \rightarrow \mathbb{C}$, let $R: C_{a, b}[0, T] \rightarrow \mathbb{C}$ be given by equation

$$
R(x)=r\left(\left(e_{1}, x\right)^{\sim}, \ldots,\left(e_{n}, x\right)^{\sim}\right)
$$

Then

$$
\begin{align*}
\int_{C_{a, b}[0, T]} R(x) d \mu(x) & \equiv \int_{C_{a, b}[0, T]} r\left(\left(e_{1}, x\right)^{\sim}, \ldots,\left(e_{n}, x\right)^{\sim}\right) d \mu(x) \\
& =(2 \pi)^{-n / 2} \int_{\mathbb{R}^{n}} r\left(u_{1}, \ldots, u_{n}\right) \exp \left\{-\sum_{j=1}^{n} \frac{\left(u_{j}-\left(e_{j}, a\right)_{C_{a, b}^{\prime}}\right)^{2}}{2}\right\} d u_{1} \cdots d u_{n} \tag{2.3}
\end{align*}
$$

in the sense that if either side of equation (2.3) exists, both sides exist and equality holds.
The following integration formula is also used in this paper:

$$
\begin{equation*}
\int_{\mathbb{R}} \exp \left\{-\alpha u^{2}+\beta u\right\} d u=\sqrt{\frac{\pi}{\alpha}} \exp \left\{\frac{\beta^{2}}{4 \alpha}\right\} \tag{2.4}
\end{equation*}
$$

for complex numbers α and β with $\operatorname{Re}(\alpha)>0$.

3. Analytic operator-valued generalized function space integral

In this section, we introduce the definition of the AOVGFSI as an element of $\mathcal{L}\left(L^{1}(\mathbb{R}), L^{\infty}(\mathbb{R})\right)$. The definition below is based on the previous definitions in [3-5, 14, 22-24].

Definition 3.1. Let $F: C[0, T] \rightarrow \mathbb{C}$ be a scale-invariant measurable functional and let h be an element of $C_{a, b}^{\prime}[0, T] \backslash\{0\}$. Given $\lambda>0, \psi \in L^{1}(\mathbb{R})$ and $\xi \in \mathbb{R}$, let

$$
\begin{equation*}
\left(I_{\lambda}(F ; h) \psi\right)(\xi) \equiv \int_{C_{a, b}[0, T]} F\left(\lambda^{-1 / 2} x+\xi\right) \psi\left(\lambda^{-1 / 2}(h, x)^{\sim}+\xi\right) d \mu(x) . \tag{3.1}
\end{equation*}
$$

$\operatorname{If~}_{\lambda}(F ; h) \psi$ is in $L^{\infty}(\mathbb{R})$ as a function of ξ and if the correspondence $\psi \rightarrow I_{\lambda}(F ; h) \psi$ gives an element of $\mathcal{L}\left(L^{1}(\mathbb{R}), L^{\infty}(\mathbb{R})\right)$, we say that the operator-valued generalized function space integral (OVGFSI) $I_{\lambda}(F ; h)$ exists.

Let Γ be a region in \mathbb{C}_{+}such that $\operatorname{Int}(\Gamma)$ is a simply connected domain in \mathbb{C}_{+}and $\operatorname{Int}(\Gamma) \cap(0,+\infty)$ is a nonempty open interval of positive real numbers. Suppose that there exists an $\mathcal{L}\left(L^{1}(\mathbb{R}), L^{\infty}(\mathbb{R})\right)$-valued function which is analytic in λ on $\operatorname{Int}(\Gamma)$ and agrees with $I_{\lambda}(F ; h)$ on $\operatorname{Int}(\Gamma) \cap(0,+\infty)$, then this $\mathcal{L}\left(L^{1}(\mathbb{R}), L^{\infty}(\mathbb{R})\right)$-valued function is denoted by $I_{\lambda}^{\mathrm{an}}(F ; h)$ and is called the AOVGFSI of F associated with λ.

The notation $\|\cdot\|_{\text {o }}$ will be used for the norm of operators in $\mathcal{L}\left(L^{1}(\mathbb{R}), L^{\infty}(\mathbb{R})\right)$.

Remark 3.2. (i) In equation (3.1) above, choosing $h(t)=\int_{0}^{t} d b(s)=b(t) \in C_{a, b}^{\prime}[0, T]$, we obtain

$$
(h, x)^{\sim}=(b, x)^{\sim}=\int_{0}^{T} D b(t) d x(t)=\int_{0}^{T} d x(t)=x(T) .
$$

In this case, equation (3.1) is rewritten by

$$
\begin{equation*}
\left(I_{\lambda}(F ; b) \psi\right)(\xi)=\int_{C_{a, b}[0, T]} F\left(\lambda^{-1 / 2} x+\xi\right) \psi\left(\lambda^{-1 / 2} x(T)+\xi\right) d \mu(x) \tag{3.2}
\end{equation*}
$$

Moreover, if $a(t) \equiv 0$ and $b(t)=t$ on $[0, T]$, then the function space $C_{a, b}[0, T]$ reduces to the classical Wiener space $C_{0}[0, T]$ and the definition of the OVGFSI $I_{\lambda}(F ; b)$ in equation (3.2) agrees with the definitions of the operator-valued function space integrals $I_{\lambda}(F)$ with $\lambda>0$ defined in [1-5, 14-24].
(ii) In the case that $a(t) \equiv 0$ and $h(t)=b(t)=t$ on $[0, T]$, choosing $\Gamma=\mathbb{C}_{+} \cap\left\{\lambda \in \mathbb{C}:|\lambda|<\lambda_{0}\right\}$ for some $\lambda_{0} \in(0,+\infty)$, then the definition of the AOVGFSI $I_{\lambda}^{\text {an }}(F ; b)$ (if it exists) agrees with the definitions of the analytic operator-valued function space integral $I_{\lambda}^{\text {an }}(F)$ associated with $\lambda>0$ defined in [23,24].

4. The $\mathcal{F}\left(C_{a, b}[0, T]\right)$ theory

In [6, 8], Chang, Choi and Lee introduced a Banach algebra $\mathcal{F}\left(C_{a, b}[0, T]\right)$ of functionals on function space $C_{a, b}[0, T]$, each of which is a stochastic Fourier transform of \mathbb{C}-valued Borel measure on $C_{a, b}^{\prime}[0, T]$, and showed that it contains many functionals of interest in Feynman integration theory. In [6, 7], the authors showed that the analytic (but scalar-valued) generalized Feynman integral exists for functionals in $\mathcal{F}\left(C_{a, b}[0, T]\right)$. In this section, we show that the AOVGFSI $I_{\lambda}^{\text {an }}(F ; h)$ is in $\mathcal{L}\left(L^{1}(\mathbb{R}), L^{\infty}(\mathbb{R})\right)$ for functionals F in $\mathcal{F}\left(C_{a, b}[0, T]\right)$.

Let $\mathcal{M}\left(C_{a, b}^{\prime}[0, T]\right)$ denote the space of \mathbb{C}-valued, countably additive (and hence finite) Borel measures on $C_{a, b}^{\prime}[0, T]$. We define the Fresnel type class $\mathcal{F}\left(C_{a, b}[0, T]\right)$ of functionals on $C_{a, b}[0, T]$ as the space of all stochastic Fourier-Stieltjes transforms of elements of $\mathcal{M}\left(C_{a, b}^{\prime}[0, T]\right)$; that is, $F \in \mathcal{F}\left(C_{a, b}[0, T]\right)$ if and only if there exists a measure f in $\mathcal{M}\left(C_{a, b}^{\prime}[0, T]\right)$ such that

$$
\begin{equation*}
F(x)=\int_{C_{a, b}^{\prime}[0, T]} \exp \left\{i(w, x)^{\sim}\right\} d f(w) \tag{4.1}
\end{equation*}
$$

for s-a.e. $x \in C_{a, b}[0, T]$.
More precisely, since we shall identify functionals which coincide s-a.e. on $C_{a, b}[0, T], \mathcal{F}\left(C_{a, b}[0, T]\right)$ can be regarded as the space of all s-equivalence classes of functionals having the form (4.1).

We note that $\mathcal{M}\left(C_{a, b}^{\prime}[0, T]\right)$ is a Banach algebra under the total variation norm and with convolution as multiplication. The Fresnel type class $\mathcal{F}\left(C_{a, b}[0, T]\right)$ also is a Banach algebra with norm

$$
\|F\|=\|f\|=\int_{C_{a, b}^{\prime}[0, T]} d|f|(w)
$$

In fact, the correspondence $f \mapsto F$ is injective, carries convolution into pointwise multiplication and is a Banach algebra isomorphism where f and F are related by (4.1). For a more detailed study of functionals in $\mathcal{F}\left(C_{a, b}[0, T]\right)$, see $[6,8]$.

Remark 4.1. If F is in $\mathcal{F}\left(C_{a, b}[0, T]\right)$, then F is scale-invariant measurable and s-a.e. defined on $C_{a, b}[0, T]$. If x in $C_{a, b}[0, T]$ is such that $F(x)$ is defined, then by (4.1) and the definition of the PWZ stochastic integral, it follows that $F(x+\xi)=F(x)$ for all $\xi \in \mathbb{R}$.

Let h be a (fixed) function in $C_{a, b}^{\prime}[0, T] \backslash\{0\}$. Then for any function w in $C_{a, b}^{\prime}[0, T]$, we obtain an orthonormal set $\left\{e_{1}, e_{2}(w)\right\}$ in $C_{a, b}^{\prime}[0, T]$, by the Gram-Schmidt process, such that $h=\|h\|_{C_{a, b}^{\prime}}^{\prime} e_{1}$ and

$$
\begin{equation*}
w=\left(w, e_{1}\right)_{C_{a, b}^{\prime}} e_{1}+\beta_{w} e_{2}(w) \tag{4.2}
\end{equation*}
$$

where

$$
\beta_{w}=\left\|w-\left(w, e_{1}\right)_{C_{a, b}^{\prime}} e_{1}\right\|_{C_{a, b}^{\prime}}=\left[\|w\|_{C_{a, b}^{\prime}}^{2}-\left(w, e_{1}\right)_{C_{a, b}^{\prime}}^{2}\right]^{1 / 2}
$$

Throughout this paper, we will use the following notations for convenience:

$$
\begin{align*}
& M(\lambda ; h)=\left(\frac{\lambda}{2 \pi\|h\|_{C_{a, b}^{\prime}}^{2}}\right)^{1 / 2}, \tag{4.3}\\
& V(\lambda ; \xi, v ; h, w)=\exp \left\{\frac{1}{2 \lambda\|h\|_{C_{a, b}^{\prime}}^{2}}\left[\left(i \lambda(v-\xi)+(h, w)_{C_{a, b}^{\prime}}\right)^{2}-\|h\|_{C_{a, b}^{\prime}}^{2}\|w\|_{C_{a, b}^{\prime}}^{2}\right]\right\}, \tag{4.4}\\
& L(\lambda ; \xi, v ; h)=\exp \left\{\frac{\lambda}{2} \frac{(v-\xi)^{2}}{\|h\|_{C_{a, b}^{\prime}}^{2}}\right\}, \tag{4.5}\\
& H(\lambda ; \xi, v ; h)=\exp \left\{-\frac{\left(\sqrt{\lambda}(v-\xi)-(h, a)_{C_{a, b}^{\prime}}\right)^{2}}{\left.2\|h\|_{C_{a, b}^{\prime}}^{2}\right\},}\right. \tag{4.6}\\
& A(\lambda ; w)=\exp \left\{\frac{i}{\sqrt{\lambda}} \beta_{w}\left(e_{2}(w), a\right)_{C_{a, b}^{\prime}}\right\}=\exp \left\{\frac{i}{\sqrt{\lambda}}\left[\|w\|_{C_{a, b}^{\prime}}^{2}-\left(w, e_{1}\right)_{C_{a, b}^{\prime}}^{2}\right]^{1 / 2}\left(e_{2}(w), a\right)_{C_{a, b}^{\prime}}\right\} \tag{4.7}
\end{align*}
$$

and

$$
\begin{equation*}
\left(K_{\lambda}(F ; h) \psi\right)(\xi)=M(\lambda ; h) \int_{C_{a, b}^{\prime}[0, T]} \int_{\mathbb{R}} \psi(v) V(\lambda ; \xi, v ; h, w) L(\lambda ; \xi, v ; h) H(\lambda ; \xi, v ; h) A(\lambda ; w) d v d f(w) \tag{4.8}
\end{equation*}
$$

for $(\lambda, \xi, v, h, w, \psi) \in \widetilde{\mathbb{C}}_{+} \times \mathbb{R}^{2} \times\left(C_{a, b}^{\prime}[0, T] \backslash\{0\}\right) \times C_{a, b}^{\prime}[0, T] \times L^{1}(\mathbb{R})$. In equation (4.7) above, w, e_{1} and e_{2} are related by equation (4.2).

Remark 4.2. Clearly, for $\lambda>0,|H(\lambda ; \xi, v ; h)| \leq 1$ for all $(\xi, v, h) \in \mathbb{R}^{2} \times\left(C_{a, b}^{\prime}[0, T] \backslash\{0\}\right)$. But for $\lambda \in \widetilde{\mathbb{C}}_{+}$, $|H(\lambda ; \xi, v ; h)|$ is not necessarily bounded by 1. Note that for each $\lambda \in \widetilde{\mathbb{C}}_{+}, \operatorname{Re}(\lambda) \geq 0$ and $\operatorname{Re}(\sqrt{\lambda}) \geq|\operatorname{Im}(\sqrt{\lambda})| \geq 0$. Hence for each $\lambda \in \widetilde{\mathbb{C}}_{+}$,

$$
\begin{equation*}
H(\lambda ; \xi, v ; h)=\exp \left\{-\frac{[\operatorname{Re}(\lambda)+i \operatorname{Im}(\lambda)](v-\xi)^{2}}{2\|h\|_{C_{a, b}^{\prime}}^{2}}+\frac{[\operatorname{Re}(\sqrt{\lambda})+i \operatorname{Im}(\sqrt{\lambda})](v-\xi)(h, a)_{C_{a, b}^{\prime}}}{\|h\|_{C_{a, b}^{\prime}}^{2}}-\frac{(h, a)_{C_{a, b}^{\prime}}^{2}}{2\|h\|_{C_{a, b}^{\prime}}^{2}}\right\} \tag{4.9}
\end{equation*}
$$

and so

$$
\begin{equation*}
|H(\lambda ; \xi, v ; h)|=\exp \left\{-\frac{\operatorname{Re}(\lambda)(v-\xi)^{2}}{2\|h\|_{C_{a, b}^{\prime}}^{2}}+\frac{\operatorname{Re}(\sqrt{\lambda})(v-\xi)(h, a)_{C_{a, b}^{\prime}}}{\|h\|_{C_{a, b}^{\prime}}^{2}}-\frac{(h, a)_{C_{a, b}^{\prime}}^{2}}{2\|h\|_{C_{a, b}^{\prime}}^{2}}\right\} . \tag{4.10}
\end{equation*}
$$

Note that for $\lambda \in \mathbb{C}_{+}$, the case we consider throughout Section $4, \operatorname{Re}(\sqrt{\lambda})>|\operatorname{Im}(\sqrt{\lambda})| \geq 0$, which implies that $\operatorname{Re}(\lambda)=[\operatorname{Re}(\sqrt{\lambda})]^{2}-[\operatorname{Im}(\sqrt{\lambda})]^{2}>0$. Hence for each $\lambda \in \mathbb{C}_{+}, 0<|\operatorname{Arg}(\lambda)|<\pi / 2$ and so

$$
\begin{equation*}
\frac{[\operatorname{Re}(\sqrt{\lambda})]^{2}}{\operatorname{Re}(\lambda)}=\frac{1}{2}\left(\frac{|\lambda|}{\operatorname{Re}(\lambda)}+1\right)=\frac{1}{2}(\sec \operatorname{Arg}(\lambda)+1) \tag{4.11}
\end{equation*}
$$

For $(\lambda, h) \in \mathbb{C}_{+} \times\left(C_{a, b}^{\prime}[0, T] \backslash\{0\}\right)$, let

$$
\begin{equation*}
S(\lambda ; h)=\exp \left\{(\sec \operatorname{Arg}(\lambda)+1) \frac{(h, a)_{C_{a, b}^{\prime}}^{2}}{4\|h\|_{C_{a, b}^{\prime}}^{2}}\right\} \tag{4.12}
\end{equation*}
$$

Using (4.10), (4.11), and (4.12), we obtain that for all $\lambda \in \mathbb{C}_{+}$,

$$
\begin{align*}
& |H(\lambda ; \xi, v ; h)| \\
& =\exp \left\{-\frac{\operatorname{Re}(\lambda)(v-\xi)^{2}}{2\|h\|_{C_{a, b}^{\prime}}^{2}}+\frac{\operatorname{Re}(\sqrt{\lambda})(v-\xi)(h, a)_{C_{a, b}^{\prime}}^{\prime}}{\|h\|_{C_{a, b}^{\prime}}^{2}}-\frac{(h, a)_{C_{a, b}^{\prime}}^{2}}{2\|h\|_{C_{a, b}^{\prime}}^{2}}\right\} \\
& =\exp \left\{-\frac{\operatorname{Re}(\lambda)}{2\|h\|_{C_{a, b}^{\prime}}^{2}}\left[(v-\xi)-\frac{\operatorname{Re}(\sqrt{\lambda})}{\operatorname{Re}(\lambda)}(h, a)_{C_{a, b}^{\prime}}^{\prime}\right]^{2}+\frac{[\operatorname{Re}(\sqrt{\lambda})]^{2}}{\operatorname{Re}(\lambda)} \frac{(h, a)_{C_{a, b}^{\prime}}^{2}}{2\|h\|_{C_{a, b}^{\prime}}^{2}}-\frac{(h, a)_{C_{a, b}^{\prime}}^{2}}{2\|h\|_{C_{a, b}^{\prime}}^{2}}\right\} \tag{4.13}\\
& \leq S(\lambda ; h) .
\end{align*}
$$

These observations are critical to the development of the existence of the AOVGFSI $I_{\lambda}^{\text {an }}(F ; h)$.
One can see that for all $(\lambda, \xi, v, h, w) \in \mathbb{C}_{+} \times \mathbb{R}^{2} \times\left(C_{a, b}^{\prime}[0, T] \backslash\{0\}\right) \times C_{a, b}^{\prime}[0, T]$,

$$
\begin{align*}
& |V(\lambda ; \xi, v ; h, w) L(\lambda ; \xi, v ; h)| \\
& =\left|\exp \left\{\frac{\left[\left(i \lambda(v-\xi)+(h, w)_{C_{a, b}^{\prime}}\right)^{2}-\|h\|_{C_{a, b}^{\prime}}^{2}\|w\|_{C_{a, b}^{\prime}}^{2}\right]}{2 \lambda\|h\|_{C_{a, b}^{\prime}}^{2}}+\frac{\lambda}{2}\left(\frac{v-\xi}{\|h\|_{C_{a, b}^{\prime}}^{\prime}}\right)^{2}\right\}\right| \tag{4.14}\\
& =\exp \left\{-\frac{\operatorname{Re}(\lambda)}{2|\lambda|^{2}\|h\|_{C_{a, b}^{\prime}}^{2}}\left[\|h\|_{C_{a, b}^{\prime}}^{2}\|w\|_{C_{a, b}^{\prime}}^{2}-(h, w)_{C_{a, b}^{\prime}}^{2}\right]\right\} \\
& \leq 1
\end{align*}
$$

because $(h, w)_{C_{a, b}^{\prime}}^{2} \leq\|h\|_{C_{a, b}^{\prime}}^{2}\|w\|_{C_{a, b}^{\prime}}^{2}$. However, the expression (4.7) is an unbounded function of w for $w \in C_{a, b}^{\prime}[0, T]$, because $\beta_{w}\left(e_{2}(w), a\right)_{C_{a, b}^{\prime}}$ with

$$
\begin{equation*}
e_{2}(w)=\frac{1}{\beta_{w}}\left[w-\left(w, e_{1}\right)_{C_{a, b}^{\prime}} e_{1}\right]=\frac{1}{\beta_{w}}\left[w-\frac{1}{\|h\|_{C_{a, b}^{\prime}}^{2}}(h, w)_{C_{a, b}^{\prime}} h\right] \tag{4.15}
\end{equation*}
$$

is an unbounded function of w for $w \in C_{a, b}^{\prime}[0, T]$. Throughout this section, we thus will need to put additional restrictions on the complex measure f corresponding to F in order to obtain the existence of our AOVGFSI $I_{\lambda}^{\text {an }}(F ; h)$ of F in $\mathcal{F}\left(C_{a, b}[0, T]\right)$.

In order to obtain the existence of the AOVGFSI, we need to impose additional restrictions on the functionals in $\mathcal{F}\left(C_{a, b}[0, T]\right)$.

For a positive real number q_{0}, let

$$
\begin{equation*}
k\left(q_{0} ; w\right)=\exp \left\{\left(2 q_{0}\right)^{-1 / 2}\|w\|_{C_{a, b}^{\prime}}\|a\|_{C_{a, b}^{\prime}}\right\} \tag{4.16}
\end{equation*}
$$

and let

$$
\begin{equation*}
\Gamma_{q_{0}}=\left\{\lambda \in \widetilde{\mathbb{C}}_{+}:\left|\operatorname{Im}\left(\lambda^{-1 / 2}\right)\right|=\sqrt{\frac{|\lambda|-\operatorname{Re}(\lambda)}{2|\lambda|^{2}}}<\left(2 q_{0}\right)^{-1 / 2}\right\} . \tag{4.17}
\end{equation*}
$$

Define a subclass $\mathcal{F}^{q_{0}}$ of $\mathcal{F}\left(C_{a, b}[0, T]\right)$ by $F \in \mathcal{F}^{q_{0}}$ if and only if

$$
\begin{equation*}
\int_{C_{a, b}^{\prime}[0, T]} k\left(q_{0} ; w\right) d|f|(w)<+\infty \tag{4.18}
\end{equation*}
$$

Then for all $\lambda \in \Gamma_{q_{0}}$,

$$
\begin{equation*}
|A(\lambda ; w)|<k\left(q_{0} ; w\right) \tag{4.19}
\end{equation*}
$$

Remark 4.3. The region $\Gamma_{q_{0}}$ given by (4.17) satisfies the conditions stated in Definition 3.1; i.e., $\operatorname{Int}\left(\Gamma_{q_{0}}\right)$ is a simple connected domain in \mathbb{C}_{+}and $\operatorname{Int}\left(\Gamma_{q_{0}}\right) \cap(0,+\infty)$ is an open interval. We note that for all real q with $|q|>q_{0}$, $(-i q)^{-1 / 2}=1 / \sqrt{2|q|}+i \operatorname{sign}(q) / \sqrt{2|q|}$. Also, by a close examination of (4.17), it follows that $-i q$ is an element of the region $\Gamma_{q_{0}}$. In fact, $\Gamma_{q_{0}}$ is a simple connected neighborhood of -iq in $\widetilde{\mathbb{C}}_{+}$.

Lemma 4.4. Let q_{0} be a positive real number and let F be an element of $\mathcal{F}^{q_{0}}$. Let h be an element of $C_{a, b}^{\prime}[0, T] \backslash\{0\}$ and let $\Gamma_{q_{0}}$ be given by (4.17). Let $\left(K_{\lambda}(F ; h) \psi\right)(\xi)$ be given by equation (4.8) for $(\lambda, \xi, \psi) \in \Gamma_{q_{0}} \times \mathbb{R} \times L^{1}(\mathbb{R})$. Then $K_{\lambda}(F ; h)$ is an element of $\mathcal{L}\left(L^{1}(\mathbb{R}), L^{\infty}(\mathbb{R})\right)$ for each $\lambda \in \operatorname{Int}\left(\Gamma_{q_{0}}\right)$.

Proof. Let $\Gamma_{q_{0}}$ be given by (4.17). Using (4.8), (4.3), (4.4), (4.5), (4.6), (4.7), (4.14), the Fubini theorem, (4.13), and (4.19), we observe that for all $(\lambda, \xi, \psi) \in \operatorname{Int}\left(\Gamma_{q_{0}}\right) \times \mathbb{R} \times L^{1}(\mathbb{R})$,

$$
\begin{aligned}
& \left|\left(K_{\lambda}(F ; h) \psi\right)(\xi)\right| \\
& \leq M(|\lambda| ; h) \int_{C_{a, b}^{\prime}[0, T]} \int_{\mathbb{R}}|\psi(v)\|V(\lambda ; \xi, v ; h, w) L(\lambda ; \xi, v ; h)|\times|H(\lambda ; \xi, v ; h) \| A(\lambda ; w)| d v d| f \mid(w) \\
& \leq M(|\lambda| ; h) \int_{\mathbb{R}}|\psi(v)||H(\lambda ; \xi, v ; h)| d v \int_{C_{a, b}^{\prime}[0, T]}|A(\lambda ; w)| d|f|(w) \\
& \leq\|\psi\|_{1} S(\lambda ; h) M(|\lambda| ; h) \int_{C_{a, b}^{\prime}[0, T]} k\left(q_{0} ; w\right) d|f|(w) \\
& <+\infty
\end{aligned}
$$

where $S(\lambda ; h)$ is given by equation (4.12). Clearly $K_{\lambda}(F ; h): L_{1}(\mathbb{R}) \rightarrow L_{\infty}(\mathbb{R})$ is linear. Thus, for all $\lambda \in \operatorname{Int}\left(\Gamma_{q_{0}}\right)$,

$$
\left\|K_{\lambda}(F ; h)\right\|_{0} \leq S(\lambda ; h) M(|\lambda| ; h) \int_{C_{a, b}^{\prime}[0, T]} k\left(q_{0} ; w\right) d|f|(w)
$$

and the lemma is proved.
Lemma 4.5. Let $q_{0}, F, h, \Gamma_{q_{0}}$ and $\left(K_{\lambda}(F ; h) \psi\right)(\xi)$ be as in Lemma 4.4. Then $\left(K_{\lambda}(F ; h) \psi\right)(\xi)$ is an analytic function of λ on $\operatorname{Int}\left(\Gamma_{q_{0}}\right)$.

Proof. Let $\lambda \in \operatorname{Int}\left(\Gamma_{q_{0}}\right)$ be given and let $\left\{\lambda_{l}\right\}_{l=1}^{\infty}$ be a sequence in \mathbb{C}_{+}such that $\lambda_{l} \rightarrow \lambda$. Clearly, $0 \leq|\operatorname{Arg}(\lambda)|<$ $\pi / 2$. Thus there exist $\theta_{0} \in(\operatorname{Arg}(\lambda), \pi / 2)$ and $n_{0} \in \mathbb{N}$ such that $\lambda_{l} \in \operatorname{Int}\left(\Gamma_{q_{0}}\right)$ and $0<\left|\operatorname{Arg}\left(\lambda_{l}\right)\right|<\theta_{0}$ for all $l>n_{0}$. We first note that for each $l>n_{0}$,

$$
\frac{\left[\operatorname{Re}\left(\sqrt{\lambda_{l}}\right)\right]^{2}}{\operatorname{Re}\left(\lambda_{l}\right)}=\frac{1}{2}\left(\frac{\left|\lambda_{l}\right|}{\operatorname{Re}\left(\lambda_{l}\right)}+1\right)=\frac{1}{2}\left(\sec \operatorname{Arg}\left(\lambda_{l}\right)+1\right)<\frac{1}{2}\left(\sec \theta_{0}+1\right)
$$

Using this and the Cauchy-Schwartz inequality, it follows that for all $l>n_{0}$ and $\psi \in L^{1}(\mathbb{R})$,

$$
\begin{align*}
& \left|\psi(v) \| V\left(\lambda_{l} ; \xi, v ; h, w\right) L\left(\lambda_{l} ; \xi, v ; h\right) H\left(\lambda_{l} ; \xi, v ; h\right) A\left(\lambda_{l} ; w\right)\right| \\
& =|\psi(v)| \exp \left\{-\frac{\operatorname{Re}\left(\lambda_{l}\right)(v-\xi)^{2}}{2\|h\|_{C_{a, b}^{\prime}}^{2}}-\frac{\operatorname{Re}\left(\lambda_{l}\right)}{2\left|\lambda_{l}\right|^{2}\|h\|_{C_{a, b}^{\prime}}^{2}}\left[\|h\|_{C_{a, b}^{\prime}}^{2}\|w\|_{C_{a, b}^{\prime}}^{2}-(h, w)_{C_{a, b}^{\prime}}^{2}\right]\right. \tag{4.21}\\
&
\end{align*} \quad+\frac{\left.\operatorname{Re}\left(\sqrt{\lambda_{l}}\right)(v-\xi)(h, a)_{C_{a, b}^{\prime}}-\frac{(h, a)_{C_{a, b}^{\prime}}^{2}}{2\|h\|_{C_{a, b}^{\prime}}^{2}}-\operatorname{Im}\left(\lambda_{l}^{-1 / 2}\right)\left[\|w\|_{C_{a, b}^{\prime}}^{2}-\left(w, e_{1}\right)_{C_{a, b}^{\prime}}^{2}\right]^{1 / 2}\left(e_{2}(w), a\right)_{C_{a, b}^{\prime}}^{\prime}\right\}}{} \quad l
$$

$$
\begin{aligned}
& \leq|\psi(v)| \exp \{ -\frac{\operatorname{Re}\left(\lambda_{l}\right)(v-\xi)^{2}}{2\|h\|_{C_{a, b}^{\prime}}^{2}}+\frac{\operatorname{Re}\left(\sqrt{\lambda_{l}}\right)(v-\xi)(h, a)_{C_{a, b}^{\prime}}}{\|h\|_{C_{a, b}^{\prime}}^{2}}-\frac{(h, a)_{C_{a, b}^{\prime}}^{2}}{2\|h\|_{C_{a, b}^{\prime}}^{2}} \\
&\left.-\operatorname{Im}\left(\lambda^{-1 / 2}\right)\left[\|w\|_{C_{a, b}^{\prime}}^{2}-\left(w, e_{1}\right)_{C_{a, b}^{\prime}}^{2}\right]^{1 / 2}\left(e_{2}(w), a\right)_{C_{a, b}^{\prime}}\right\} \\
&=|\psi(v)| \exp \{ -\frac{\operatorname{Re}\left(\lambda_{l}\right)}{2\|h\|_{C_{a, b}^{\prime}}^{2}}\left[(v-\xi)-\frac{\operatorname{Re}\left(\sqrt{\lambda_{l}}\right)}{\operatorname{Re}\left(\lambda_{l}\right)}(h, a)_{C_{a, b}^{\prime}}\right]^{2} \\
&\left.+\frac{\left[\operatorname{Re}\left(\sqrt{\lambda_{l}}\right)\right]^{2}}{2\|h\|_{C_{a, b}^{\prime}}^{2} \operatorname{Re}\left(\lambda_{l}\right)}(h, a)_{C_{a, b}^{\prime}}^{2}-\frac{(h, a)_{C_{a, b}^{\prime}}^{2}}{2\|h\|_{C_{a, b}^{\prime}}^{2}}-\operatorname{Im}\left(\lambda^{-1 / 2}\right)\left[\|w\|_{C_{a, b}^{\prime}}^{2}-\left(w, e_{1}\right)_{C_{a, b}^{\prime}}^{2}\right]^{1 / 2}\left(e_{2}(w), a\right)_{C_{a, b}^{\prime}}^{\prime}\right\} \\
& \leq|\psi(v)| \exp \left\{\frac{(h, a)_{C_{a, b}^{\prime}}^{2}}{2\|h\|_{C_{a, b}^{\prime}}^{2}} \frac{\left.\operatorname{Re}\left(\sqrt{\lambda_{l}}\right)\right]^{2}}{\operatorname{Re}\left(\lambda_{l}\right)}+\left|\operatorname{Im}\left(\lambda^{-1 / 2}\right)\right|\left[\|w\|_{C_{a, b}^{\prime}}^{2}-\left(w, e_{1}\right)_{C_{a, b}^{\prime}}^{2}\right]^{1 / 2}\left|\left(e_{2}(w), a\right)_{C_{a, b}^{\prime}}\right|\right\} \\
&=|\psi(v)| \exp \left\{\frac{(h, a)_{C_{a, b}^{\prime}}^{2}}{2\|h\|_{C_{a, b}^{\prime}}^{2}} \frac{\left.\operatorname{Re}\left(\sqrt{\lambda_{l}}\right)\right]^{2}}{\operatorname{Re}\left(\lambda_{l}\right)}+\left|\operatorname{Im}\left(\lambda^{-1 / 2}\right)\right|\|w\|_{C_{a, b}^{\prime}}\|a\|_{C_{a, b}^{\prime}}\right\} \\
&<|\psi(v)| \exp \left\{\frac{(h, a)_{C_{C, b}^{\prime}}^{2}}{4\|h\|_{C_{a, b}^{\prime}}^{2}}\left(\sec \theta_{0}+1\right)\right\} k\left(q_{0} ; w\right)
\end{aligned}
$$

where $e_{2}(w)$ and $k\left(q_{0} ; w\right)$ are given by (4.15) and (4.16), respectively. Since $\psi \in L^{1}(\mathbb{R})$, and f, the corresponding measure of F by (4.1), satisfies condition (4.18), the last expression of (4.21) is integrable on the product space $\left(\mathbb{R} \times C_{a, b}^{\prime}[0, T], \mathrm{m}_{L} \times f\right)$, as a function of (v, w), where m_{L} denotes the Lebesgue measure on \mathbb{R}. Hence by the dominated convergence theorem, we see that the right-hand side of equation (4.8) is a continuous function of λ on $\operatorname{Int}\left(\Gamma_{q_{0}}\right)$. Next we note that for all $(\xi, v, h, w) \in \mathbb{R}^{2} \times\left(C_{a, b}^{\prime}[0, T] \backslash\{0\}\right) \times C_{a, b}^{\prime}[0, T]$,

$$
V(\lambda ; \xi, v ; h, w) L(\lambda ; \xi, v ; h) H(\lambda ; \xi, v ; h) A(\lambda ; w)
$$

is an analytic function of λ throughout the domain $\operatorname{Int}\left(\Gamma_{q_{0}}\right)$. Thus using (4.8), the Fubini theorem, and the Morera theorem, it follows that for every rectifiable simple closed curve $\Delta \operatorname{in} \operatorname{Int}\left(\Gamma_{q_{0}}\right)$,

$$
\begin{aligned}
& \left.\int_{\Delta} K_{\lambda}(F ; h) \psi\right)(\xi) d \lambda \\
& =M(\lambda ; h) \int_{C_{a, b}^{\prime}[0, T]} \int_{\mathbb{R}} \psi(v)\left(\int_{\Delta} V(\lambda ; \xi, v ; h, w) L(\lambda ; \xi, v ; h) H(\lambda ; \xi, v ; h) A(\lambda ; w) d \lambda\right) d v d f(w) \\
& =0 .
\end{aligned}
$$

Therefore for all $(\xi, h, \psi) \in \mathbb{R} \times\left(C_{a, b}^{\prime}[0, T] \backslash\{0\}\right) \times L^{1}(\mathbb{R}),\left(K_{\lambda}(F ; h) \psi\right)(\xi)$ is an analytic function of λ throughout the domain $\operatorname{Int}\left(\Gamma_{q_{0}}\right)$.

Theorem 4.6. Let q_{0}, F, h and $\Gamma_{q_{0}}$ be as in Lemma 4.4. Then for each $\lambda \in \operatorname{Int}\left(\Gamma_{q_{0}}\right)$, the AOVGFSI $I_{\lambda}^{\text {an }}(F ; h)$ exists and is given by the right-hand side of equation (4.8). Thus, $I_{\lambda}^{\mathrm{an}}(F ; h)$ is an element of $\mathcal{L}\left(L^{1}(\mathbb{R}), L^{\infty}(\mathbb{R})\right.$) for each $\lambda \in \operatorname{Int}\left(\Gamma_{q_{0}}\right)$.

Proof. Let $(\lambda, \xi, \psi) \in(0,+\infty) \times \mathbb{R} \times L^{1}(\mathbb{R})$. We begin by evaluating the function space integral

$$
\begin{align*}
\left(I_{\lambda}(F ; h) \psi\right)(\xi) & =\int_{C_{a, b}[0, T]} F\left(\lambda^{-1 / 2} x+\xi\right) \psi\left(\lambda^{-1 / 2}(h, x)^{\sim}+\xi\right) d \mu(x) \\
& =\int_{C_{a, b}[0, T]} \int_{C_{a, b}^{\prime}[0, T]} \exp \left\{i \lambda^{-1 / 2}(w, x)^{\sim}\right\} \psi\left(\lambda^{-1 / 2}(h, x)^{\sim}+\xi\right) d f(w) d \mu(x) \tag{4.22}
\end{align*}
$$

Using the Fubini theorem, we can change the order of integration in (4.22). Since $\psi \in L^{1}(\mathbb{R}), f \in \mathcal{M}\left(C_{a, b}^{\prime}[0, T]\right)$, and $(h, x)^{\sim}$ is a Gaussian random variable with mean $(h, a)_{C_{a, b}^{\prime}}$ and variance $\|h\|_{C_{a, b}^{\prime}}^{2}$ it follows that for $\lambda>0$,

$$
\begin{aligned}
\left|\left(I_{\lambda}(F ; h) \psi\right)(\xi)\right| & \leq \int_{C_{a, b}^{\prime}[0, T]} \int_{C_{a, b}[0, T]}\left|\psi\left(\lambda^{-1 / 2}(h, x)^{\sim}+\xi\right)\right| d \mu(x) d|f|(w) \\
& \leq M(|\lambda| ; h) \int_{C_{a, b}^{\prime}[0, T]} \int_{\mathbb{R}}|\psi(v)| H(\lambda ; \xi, v ; h) d v d|f|(w) \\
& \leq M(|\lambda| ; h) \int_{C_{a, b}^{\prime}[0, T]} \int_{\mathbb{R}}|\psi(v)| d u d|f|(w) \\
& =M(|\lambda| ; h)\|\psi\|_{1}| | f \| \\
& <+\infty .
\end{aligned}
$$

Next, using (4.22), the Fubini theorem, (4.2), (2.3), (2.4), (4.3), (4.4), (4.5), (4.6), and (4.7), it follows that

$$
\begin{aligned}
&\left(I_{\lambda}(F ; h) \psi\right)(\xi) \\
&= \int_{C_{a, b}^{\prime}[0, T]} \int_{C_{a, b}[0, T]} \psi\left(\lambda^{-1 / 2}\|h\|_{C_{a, b}^{\prime}}\left(e_{1}, x\right)^{\sim}+\xi\right) \\
& \quad \times \exp \left\{i \lambda^{-1 / 2}\left(w, e_{1}\right)_{C_{a, b}^{\prime}}\left(e_{1}, x\right)^{\sim}+i \lambda^{-1 / 2} \beta_{w}\left(e_{2}(w), x\right)^{\sim}\right\} d \mu(x) d f(w) \\
&=\left(\frac{\lambda}{2 \pi}\right) \int_{C_{a, b}^{\prime}[0, T]} \int_{\mathbb{R}^{2}} \psi\left(\|h\|_{C_{a, b}^{\prime}} u_{1}+\xi\right) \\
& \times \exp \left\{i\left(w,, e_{1}\right)_{C_{a, b}^{\prime}} u_{1}+i \beta_{w} u_{2}-\frac{\left(\sqrt{\lambda} u_{1}-\left(e_{1}, a\right)_{C_{a, b}^{\prime}}\right)^{2}}{2}-\frac{\left(\sqrt{\lambda} u_{2}-\left(e_{2}(w), a\right)_{C_{a, b}^{\prime}}\right)^{2}}{2}\right\} d u_{1} d u_{2} d f(w) \\
&=\left(\frac{\lambda}{2 \pi}\right)^{1 / 2} \int_{C_{a, b}^{\prime}[0, T]} \int_{\mathbb{R}} \psi\left(\|h\|_{C_{a, b}^{\prime}} u_{1}+\xi\right) \exp \left\{i\left(w, e_{1}\right)_{C_{a, b}^{\prime}} u_{1}-\frac{\left(\sqrt{\lambda} u_{1}-\left(e_{1}, a\right)_{C_{a, b}^{\prime}}\right)^{2}}{2}\right\} d u_{1} \\
& \times \exp \left\{-\frac{1}{2 \lambda} \beta_{w}^{2}+\frac{i}{\sqrt{\lambda}} \beta_{w v}\left(e_{2}(w), a\right)_{C_{a, b}^{\prime}}\right\} d f(w) \\
&= M(\lambda ; h) \\
& \int_{C_{a, b}^{\prime}[0, T]} \int_{\mathbb{R}} \psi(v) \exp \left\{i \frac{\left(w, e_{1}\right)_{C_{a, b}^{\prime}}}{\|h\|_{C_{a, b}^{\prime}}^{\prime}}(v-\xi)-\frac{\left(\sqrt{\lambda}(v-\xi)-\|h\|_{C_{a, b}^{\prime}}\left(e_{1}, a\right)_{C_{a, b}^{\prime}}\right)^{2}}{2\|h\|_{C_{a, b}^{\prime}}^{2}}\right\} d v \\
& \times \exp \left\{-\frac{1}{2 \lambda} \beta_{w}^{2}+\frac{i}{\sqrt{\lambda}} \beta_{w v}\left(e_{2}(w), a\right)_{C_{a, b}^{\prime}}\right\} d f(w) \\
&= M(\lambda ; h) \int_{C_{a, b}^{\prime}[0, T]} \int_{\mathbb{R}} \psi(v) V(\lambda ; \xi, v ; h, w) L(\lambda ; \xi, v ; h) H(\lambda ; \xi, v ; h) A(\lambda ; w) d v d f(w) \\
&=\left(K_{\lambda}(F ; h) \psi\right)(\xi) .
\end{aligned}
$$

Hence we see that the $\operatorname{OVGFSI} I_{\lambda}(F ; h)$ exists for all $(\lambda, h) \in(0,+\infty) \times\left(C_{a, b}^{\prime}[0, T] \backslash\{0\}\right)$.
Let $I_{\lambda}^{\text {an }}(F ; h) \psi=K_{\lambda}(F ; h) \psi$ for all $\lambda \in \operatorname{Int}\left(\Gamma_{q_{0}}\right)$. Then by Lemmas 4.4 and 4.5, we obtain the desired result.

5. The analytic operator-valued generalized Feynman integral

In this section we study the $\mathrm{AOVG}^{\prime} F e y n m a n ' I J_{q}^{\text {an }}(F ; h)$ for functionals F in $\mathcal{F}\left(C_{a, b}[0, T]\right)$. First of all, we note that for any $q \in \mathbb{R} \backslash\{0\}$ and any $(\xi, v, h, w) \in \mathbb{R}^{2} \times\left(C_{a, b}^{\prime}[0, T] \backslash\{0\}\right) \times C_{a, b}^{\prime}[0, T]$,

$$
|V(-i q ; \xi, v ; h, w) L(-i q ; \xi, v ; h)|=1 .
$$

Let $\lambda=-i q \in \widetilde{\mathbb{C}}_{+}-\mathbb{C}_{+}$. Then

$$
\sqrt{\lambda}=\sqrt{-i q}=\sqrt{|q| / 2}-i \operatorname{sign}(q) \sqrt{|q| / 2} .
$$

Hence for $\lambda=-i q$ with $q \in \mathbb{R} \backslash\{0\},[\operatorname{Re}(\sqrt{-i q})]^{2}-[\operatorname{Im}(\sqrt{-i q})]^{2}=0$, and so

$$
|H(-i q ; \xi, v ; h)|=\exp \left\{\frac{\sqrt{2|q|}(h, a)_{C_{a, b}^{\prime}}(v-\xi)-(h, a)_{C_{a, b}^{\prime}}^{2}}{2\|h\|_{C_{a, b}^{\prime}}^{2}}\right\}
$$

which is not necessarily in $L^{p}(\mathbb{R})$, as a function of v, for any $p \in[1,+\infty]$. Hence $K_{-i q}(F ; h)$ might not exist as an element of $\mathcal{L}\left(L^{1}(\mathbb{R}), L^{\infty}(\mathbb{R})\right)$.

Let $q=-1$ and let h be an element of $C_{a, b}^{\prime}[0, T]$ with $\|h\|_{C_{a, b}^{\prime}}=1$ and with $(h, a)_{a, b}>0$ (we can choose h to be $a /\|a\|_{C_{a, b}^{\prime}}^{\prime}$ in $\left.C_{a, b}^{\prime}[0, T]\right)$. Let $\psi: \mathbb{R} \rightarrow \mathbb{C}$ be defined by the formula

$$
\psi(v)=v \chi_{[0,+\infty)}(v) \exp \left\{\frac{i v^{2}}{2}-\frac{i \sqrt{2}(h, a)_{C_{a, b}^{\prime}} v}{2}+\frac{(h, a)_{C_{a, b}^{\prime}}^{2}}{2}-\frac{\sqrt{2}(h, a)_{C_{a, b}^{\prime},}}{4}\right\} .
$$

We note that

$$
|\psi(v)|=v \chi_{[0,+\infty)}(v) \exp \left\{\frac{(h, a)_{C_{a, b}^{\prime}}^{2}}{2}-\frac{\sqrt{2}(h, a)_{C_{a, b}^{\prime}} v}{4}\right\},
$$

and hence $\psi \in L^{p}(\mathbb{R})$ for all $p \in[1,+\infty]$. In fact, ψ is also an element of $C_{0}(\mathbb{R})$, the space of bounded continuous functions on \mathbb{R} that vanish at infinity.

Let $F(x) \equiv 1$. Then F is an element of $\mathcal{F}^{q_{0}}$ for all $q_{0} \in(0,+\infty)$, and $\left(K_{-i q}(F ; h) \psi\right)(\xi)$ with $q=-1$ is given by

$$
\begin{equation*}
\left(K_{i}(1 ; h) \psi\right)(\xi)=\left(\frac{i}{2 \pi}\right)^{1 / 2} \int_{\mathbb{R}} \psi(v) H(i ; \xi, v ; h) d v . \tag{5.1}
\end{equation*}
$$

Next, using equation (4.9) with $\lambda=i$ and $\sqrt{\lambda}=\sqrt{i}=(1+i) / \sqrt{2}$, we observe that

$$
H(i ; \xi, v ; h)=\exp \left\{-i \frac{(v-\xi)^{2}}{2}+\frac{(h, a)_{C_{a, b}^{\prime}}(v-\xi)}{\sqrt{2}}+\frac{i(h, a)_{C_{a, b}^{\prime}}(v-\xi)}{\sqrt{2}}-\frac{(h, a)_{C_{a, b}^{\prime}}^{2}}{2}\right\},
$$

and hence,

$$
\begin{equation*}
\psi(v) H(i ; \xi, v ; h)=v \chi_{[0,+\infty)}(v) \exp \left\{\frac{\sqrt{2}(h, a)_{C_{a, b}^{\prime}} v}{4}+i \xi v-\frac{i \xi^{2}}{2}-\left(\frac{1+i}{\sqrt{2}}\right)(h, a)_{C_{a, b}^{\prime}}\right\} \tag{5.2}
\end{equation*}
$$

which is not an element of $L^{p}(\mathbb{R})$, as a function of v, for any $p \in[1,+\infty]$.
Then, using equations (5.1) and (5.2), we see that

$$
\left(K_{i}(1 ; h) \psi\right)(\xi)=\left(\frac{i}{2 \pi}\right)^{1 / 2} \exp \left\{-\frac{i \xi^{2}}{2}-\left(\frac{1+i}{\sqrt{2}}\right)(h, a)_{C_{a, b}^{\prime}} \xi\right\} \int_{\mathbb{R}} v \chi_{[0,+\infty)}(v) \exp \left\{\frac{\sqrt{2}(h, a)_{C_{a, b}^{\prime}} v}{4}+i \xi v\right\} d v .
$$

Hence, choosing $\xi=0$, and using the fact that $(h, a)_{C_{a, b}^{\prime}}$ is positive, we see that

$$
\left|\left(K_{i}(1 ; h) \psi\right)(0)\right|=(2 \pi)^{-1 / 2} \int_{0}^{+\infty} v \exp \left\{\frac{\sqrt{2}(h, a)_{C_{a, b}^{\prime}} v}{4}\right\} d v=+\infty .
$$

In fact, for each fixed $\xi \in \mathbb{R}$, we observe that

$$
\left|\left(K_{i}(1 ; h) \psi\right)(\xi)\right|=(2 \pi)^{-1 / 2} \exp \left\{-\frac{1}{\sqrt{2}}(h, a)_{C_{a, b}^{\prime}} \xi\right\}\left|\int_{\mathbb{R}} v \chi_{[0,+\infty)}(v) \exp \left\{\frac{\sqrt{2}(h, a)_{C_{a, b}^{\prime}} v}{4}+i \xi v\right\} d v\right|=+\infty,
$$

and so $\left(K_{i}(1 ; h) \psi\right)$ is not an element of $L^{\infty}(\mathbb{R})$ even though ψ was an element of $L^{1}(\mathbb{R})$. Hence $K_{-i q}(F ; h) \psi \equiv$ $K_{i}(1 ; h) \psi$ is not in $\mathcal{L}\left(L^{1}(\mathbb{R}), L^{\infty}(\mathbb{R})\right)$.

In this section, we thus clearly need to impose additional restrictions on ψ for the existence of our AOVG'Feynman'I.

For any positive real number δ, let $v_{\delta, a}$ be a measure on \mathbb{R} with

$$
d v_{\delta, a}=\exp \left\{\delta \operatorname{Var}(a) u^{2}\right\} d u
$$

where $\operatorname{Var}(a)=|a|(T)$ denotes the total variation of a, the mean function of the GBMP, on $[0, T]$ and let $L^{1}\left(\mathbb{R}, v_{\delta, a}\right)$ be the space of \mathbb{C}-valued Lebesgue measurable functions ψ on \mathbb{R} such that ψ is integrable with respect to the measure $v_{\delta, a}$ on \mathbb{R}. Let $\|\cdot\|_{1, \delta}$ denote the $L^{1}\left(\mathbb{R}, v_{\delta, a}\right)$-norm. Then for all $\delta>0$, we have the following inclusion

$$
\begin{equation*}
L^{1}\left(\mathbb{R}, v_{\delta, a}\right) \subsetneq L^{1}(\mathbb{R}) \tag{5.3}
\end{equation*}
$$

as sets, because $\|\psi\|_{1} \leq\|\psi\|_{1, \delta}$ for all $\psi \in L^{1}(\mathbb{R})$.
Let $\mathcal{L}\left(L^{1}\left(\mathbb{R}, v_{\delta, a}\right), L^{\infty}(\mathbb{R})\right)$ be the space of continuous linear operators form $L^{1}\left(\mathbb{R}, v_{\delta, a}\right)$ to $L^{\infty}(\mathbb{R})$. In Theorem 4.6, we proved that for all $\psi \in L^{1}(\mathbb{R}), I_{\lambda}^{\text {an }}(F ; h) \psi$ is in $L^{\infty}(\mathbb{R})$. From the inclusion (5.3), we see that for all $\psi \in L^{1}\left(\mathbb{R}, v_{\delta, a}\right), I_{\lambda}^{\text {an }}(F ; h) \psi$ is in $L^{\infty}(\mathbb{R})$. Furthermore, for all $\delta>0$,

$$
\begin{equation*}
\mathcal{L}\left(L^{1}(\mathbb{R}), L^{\infty}(\mathbb{R})\right) \subset \mathcal{L}\left(L^{1}\left(\mathbb{R}, v_{\delta, a}\right), L^{\infty}(\mathbb{R})\right) \tag{5.4}
\end{equation*}
$$

as sets.
Now, the notation $\|\cdot\|_{\mathrm{o}, \delta}$ will be used for the norm on $\mathcal{L}\left(L^{1}\left(\mathbb{R}, v_{\delta, a}\right), L^{\infty}(\mathbb{R})\right)$. We already shown in (4.20) that for all $(\lambda, \xi, \psi) \in \operatorname{Int}\left(\Gamma_{q_{0}}\right) \times \mathbb{R} \times L^{1}(\mathbb{R})$,

$$
\left|\left(K_{\lambda}(F ; h) \psi\right)(\xi)\right| \leq M(|\lambda| ; h) \int_{\mathbb{R}}|\psi(v) \| H(\lambda ; \xi, v ; h)| d v \int_{C_{a, b}^{\prime}[0, T]}|A(\lambda ; w)| d|f|(w) .
$$

But, by the same method, (4.13), and (4.19), it also follows that for any $\delta>0$ and all $(\lambda, \xi, \psi) \in \operatorname{Int}\left(\Gamma_{q_{0}}\right) \times \mathbb{R} \times$ $L^{1}\left(\mathbb{R}, v_{\delta, a}\right)$,

$$
\begin{aligned}
& \left|\left(K_{\lambda}(F ; h) \psi\right)(\xi)\right| \\
& \leq M(|\lambda| ; h) \int_{\mathbb{R}}|\psi(v)||H(\lambda ; \xi, v ; h)| d v \int_{C_{a, b}^{\prime}[0, T]}|A(\lambda ; w)| d|f|(w) \\
& \leq M(|\lambda| ; h) \int_{\mathbb{R}}\left|\psi(v) \exp \left\{\delta \operatorname{Var}(a) v^{2}\right\}\right||H(\lambda ; \xi, v ; h)| d v \int_{C_{a, b}^{\prime}[0, T]}|A(\lambda ; w)| d|f|(w) \\
& \leq M(|\lambda| ; h) S(\lambda ; h) \int_{\mathbb{R}}\left|\psi(v) \exp \left\{\delta \operatorname{Var}(a) v^{2}\right\}\right| d v \int_{C_{a, b}^{\prime}[0, T]} k\left(q_{0} ; w\right) d|f|(w) \\
& \leq\|\psi\|_{1, \delta}\left(S(\lambda ; h) M(|\lambda| ; h) \int_{C_{a, b}^{\prime}[0, T]} k\left(q_{0} ; w\right) d|f|(w)\right)
\end{aligned}
$$

and so

$$
\left\|K_{\lambda}(F ; h)\right\|_{\mathrm{o}, \delta} \leq S(\lambda ; h) M(|\lambda| ; h) \int_{C_{a, b}^{\prime}[0, T]} k\left(q_{0} ; w\right) d|f|(w)
$$

Thus we have the following definition.

Definition 5.1. Given a non-zero real number q, let Γ_{q} be a connected neighborhood of -iq in $\widetilde{\mathbb{C}}_{+}$such that $\operatorname{Int}\left(\Gamma_{q}\right)$ satisfies the conditions stated in Definition 3.1. If there exists an operator $J_{q}^{\text {an }}(F ; h)$ in $\mathcal{L}\left(L^{1}\left(\mathbb{R}, v_{\delta, a}\right), L^{\infty}(\mathbb{R})\right)$ for some $\delta>0$ such that for every ψ in $L^{1}\left(\mathbb{R}, v_{\delta, a}\right)$,

$$
\left\|J_{q}^{\mathrm{an}}(F ; h) \psi-I_{\lambda}^{\mathrm{an}}(F ; h) \psi\right\|_{\infty} \rightarrow 0
$$

as $\lambda \rightarrow$-iq through $\operatorname{Int}\left(\Gamma_{q}\right)$, then $J_{\lambda}^{\text {an }}(F ; h)$ is called the AOVG'Feynman'I of F with parameter q.
Theorem 5.2. Let q_{0}, F, h and $\Gamma_{q_{0}}$ be as in Lemma 4.4. Then for all real q with $|q|>q_{0}$, the $A O V G^{\prime} F e y n m a n ' I$ of F, $J_{q}^{\mathrm{an}}(F ; h)$, exists as an element of $\mathcal{L}\left(L^{1}\left(\mathbb{R}, v_{\delta, a}\right), L^{\infty}(\mathbb{R})\right)$ for any $\delta>0$, and is given by the right-hand side of equation (4.8) with $\lambda=-i q$.

Proof. First, we will show that $K_{-i q}(F ; h)$ is an element of $\mathcal{L}\left(L^{1}\left(\mathbb{R}, v_{\delta, a}\right), L^{\infty}(\mathbb{R})\right)$. Note that for every $\delta>0$, $|H(-i q ; \xi, v ; h)| \exp \left\{-\delta \operatorname{Var}(a) u^{2}\right\}$ is bounded by 1 . Hence for any $\delta \in(0,+\infty)$ and every $\psi \in L^{1}\left(\mathbb{R}, v_{\delta}\right)$,

$$
\begin{aligned}
& \int_{\mathbb{R}}|\psi(v)||H(-i q ; \xi, v ; h)| d v \\
& =\int_{\mathbb{R}}|\psi(v)| \exp \left\{\delta \operatorname{Var}(a) u^{2}\right\}|H(-i q ; \xi, v ; h)| \exp \left\{-\delta \operatorname{Var}(a) u^{2}\right\} d v \\
& \leq\|\psi\|_{1, \delta} .
\end{aligned}
$$

Also, by a simple calculation, it follows that

$$
|V(-i q ; \xi, v ; h, w)||L(-i q ; \xi, v ; h)|=1 .
$$

Thus, using these and (4.19), it also follows that for all real q with $|q|>q_{0}$,

$$
\begin{align*}
& \left|\left(K_{-i q}(F ; h) \psi\right)(\xi)\right| \\
& \leq M(|q| ; h) \int_{C_{a, b}^{\prime}[0, T]} \int_{\mathbb{R}}|\psi(v)\|V(-i q ; \xi, v ; h, w)\| L(-i q ; \xi, v ; h)\|H(-i q ; \xi, v ; h)\| A(-i q ; w)| d v d|f|(w) \\
& =M(|q| ; h) \int_{\mathbb{R}}|\psi(v) \| H(-i q ; \xi, v ; h)| d v \int_{C_{a, b}^{\prime}[0, T]}|A(-i q ; w)| d|f|(w) \tag{5.6}\\
& \leq\|\psi\|_{1, \delta}\left(M(|q| ; h) \int_{C_{a, b}^{\prime}[0, T]} k\left(q_{0} ; w\right) d|f|(w)\right) .
\end{align*}
$$

Therefore we have that

$$
\left\|K_{-i q}(F ; h) \psi\right\|_{\infty} \leq\|\psi\|_{1, \delta}\left(M(|q| ; h) \int_{C_{a, b}^{\prime}[0, T]} k\left(q_{0} ; w\right) d|f|(w)\right)
$$

and

$$
\left\|K_{-i q}(F ; h)\right\|_{\mathrm{o}, \delta} \leq M(|q| ; h) \int_{C_{a, b}^{\prime}[0, T]} k\left(q_{0} ; w\right) d|f|(w)
$$

and implies that $K_{-i q}(F ; h) \in \mathcal{L}\left(L^{1}\left(\mathbb{R}, v_{\delta, q}\right), L^{\infty}(\mathbb{R})\right)$.
We now want to show that the AOVG'Feynman'I $J_{q}^{a n}(F ; h)$ of F exists and is given by the right-hand side of (4.8) with $\lambda=-i q$. To do this, it suffices to show that for every ψ in $L^{1}\left(\mathbb{R}, v_{\delta, a}\right)$

$$
\left\|K_{-i q}(F ; h) \psi-I_{\lambda}^{\mathrm{an}}(F ; h) \psi\right\|_{\infty} \rightarrow 0
$$

as $\lambda \rightarrow-i q$ through $\operatorname{Int}\left(\Gamma_{q_{0}}\right)$, where $\Gamma_{q_{0}}$ is given by equation (4.17). But, in view of Lemmas 4.4, 4.5, Theorem 4.6, and equation (5.4), we already proved that $I_{\lambda}^{\text {an }}(F ; h)=K_{\lambda}(F ; h)$ for all $\lambda \in \operatorname{Int}\left(\Gamma_{q_{0}}\right)$ and that $K_{\lambda}(F ; h)$ is an element of $\mathcal{L}\left(L^{1}\left(\mathbb{R}, v_{\delta, a}\right), L^{\infty}(\mathbb{R})\right)$. Next, by (5.5) and (5.6), we obtain that for all $(\lambda, \xi, \psi) \in \Gamma_{q_{0}} \times \mathbb{R} \times L^{1}\left(\mathbb{R}, v_{\delta}\right)$,

$$
\begin{aligned}
& \left|\left(K_{\lambda}(F ; h) \psi\right)(\xi)\right| \\
& \leq \begin{cases}\|\psi\|_{1, \delta}\left\{S(\lambda ; h) M(|\lambda| ; h) \int_{C_{a, b}^{\prime}[0, T]} k\left(q_{0} ; w\right) d|f|(w)\right\}, & \lambda \in \operatorname{Int}\left(\Gamma_{q_{0}}\right) \\
\|\psi\|_{1, \delta}\left\{M(|q| ; h) \int_{C_{a, b}^{\prime}[0, T]} k\left(q_{0} ; w\right) d|f|(w)\right\}, & \lambda=-i q, q \in \mathbb{R} \backslash\{0\}\end{cases} \\
& <+\infty .
\end{aligned}
$$

Moreover, using the techniques similar to those used in the proof of Lemma 4.5, one can easily verify that there exists a sufficiently small $\varepsilon_{0}>0$ satisfying the inequality:

$$
\begin{aligned}
& \left|\left(K_{\lambda}(F ; h) \psi\right)(\xi)\right| \\
& \leq\|\psi\|_{1, \delta}\left(\exp \left\{\frac{(h, a)_{C_{a, b}^{\prime}}^{2}}{4\|h\|_{C_{a, b}^{\prime}}^{2}}\left(\frac{q_{0}}{\varepsilon_{0}}+1\right)\right\} M(1+|q| ; h) \int_{C_{a, b}^{\prime}[0, T]} k\left(q_{0} ; w\right) d|f|(w)\right) \\
& <+\infty
\end{aligned}
$$

for all $\lambda \in \Gamma_{q_{0}} \cap\left\{\lambda \in \widetilde{\mathbb{C}}:|\lambda-(-i q)|<\varepsilon_{0}\right\}$ (we have already commented in Remark 4.3 that $\Gamma_{q_{0}}$ is a simple connected neighborhood of $-i q$ in $\widetilde{\mathbb{C}}_{+}$). Hence by the dominated convergence theorem, we have

$$
\lim _{\substack{\lambda \rightarrow-i q \\ \lambda \in \operatorname{Int}\left(\Gamma_{\eta_{0}}\right)}}\left(I_{\lambda}^{\mathrm{an}}(F ; h) \psi\right)(\xi)=\lim _{\substack{\lambda \rightarrow-i q \\ \lambda \in \operatorname{Int}\left(\Gamma_{q_{0}}\right)}}\left(K_{\lambda}(F ; h) \psi\right)(\xi)=\left(K_{-i q}(F ; h) \psi\right)(\xi)
$$

for each $\xi \in \mathbb{R}$. Thus $J_{q}^{\text {an }}(F ; h)$ exists as an element of $\mathcal{L}\left(L^{1}\left(\mathbb{R}, v_{\delta, a}\right), L^{\infty}(\mathbb{R})\right)$ and is given by the right-hand side of equation (4.8) with $\lambda=-i q$.

It is clear that given two positive real number δ_{1} and δ_{2} with $\delta_{1}<\delta_{2}$,

$$
L^{1}\left(\mathbb{R}, v_{\delta_{2}, a}\right) \subsetneq L^{1}\left(\mathbb{R}, v_{\delta_{1}, a}\right) \subsetneq L^{1}(\mathbb{R})
$$

Thus it follows that

$$
\mathcal{L}\left(L^{1}(\mathbb{R}), L^{\infty}(\mathbb{R})\right) \subsetneq \mathcal{L}\left(L^{1}\left(\mathbb{R}, v_{\delta_{1}, a}\right), L^{\infty}(\mathbb{R})\right) \subsetneq \mathcal{L}\left(L^{1}\left(\mathbb{R}, v_{\delta_{2}, a}\right), L^{\infty}(\mathbb{R})\right)
$$

Let

$$
L^{1, a}(\mathbb{R})=\bigcup_{\delta>0} L^{1}\left(\mathbb{R}, v_{\delta, a}\right)
$$

and let

$$
\mathfrak{B}\left(L^{1, a}(\mathbb{R}), L^{\infty}(\mathbb{R})\right)=\bigcap_{\delta>0} \mathcal{L}\left(L^{1}\left(\mathbb{R}, v_{\delta, a}\right), L^{\infty}(\mathbb{R})\right)
$$

We note that $L^{1, a}(\mathbb{R})$ and $\mathfrak{B}\left(L^{1, a}(\mathbb{R}), L^{\infty}(\mathbb{R})\right)$ are not normed spaces. However we can suggest set theoretic structures between them as follows: since $L^{1}\left(\mathbb{R}, v_{\delta, a}\right) \subset L^{1, a}(\mathbb{R}) \subset L^{1}(\mathbb{R})$ for any $\delta>0$, it follows that

$$
\mathcal{L}\left(L^{1}(\mathbb{R}), L^{\infty}(\mathbb{R})\right) \subset \mathfrak{B}\left(L^{1, a}(\mathbb{R}), L^{\infty}(\mathbb{R})\right) \subset \mathcal{L}\left(L^{1}\left(\mathbb{R}, v_{\delta, a}\right), L^{\infty}(\mathbb{R})\right)
$$

From this observation and Theorem 5.2, we can obtain the following assertion.
Theorem 5.3. Let q_{0}, F, h and $\Gamma_{q_{0}}$ be as in Lemma 4.4. Then for all real q with $|q|>q_{0}$, the AOVG'Feynman'I $J_{q}^{\text {an }}(F ; h)$ exists as an element of $\mathfrak{B}\left(L^{1, a}(\mathbb{R}), L^{\infty}(\mathbb{R})\right)$.
Remark 5.4. If $b(t)=t$ and $a(t) \equiv 0$ on $[0, T]$, the function space $C_{a, b}[0, T]$ reduces to the classical Wiener space $C_{0}[0, T]$. In this case, the three linear spaces $L^{1}(\mathbb{R}), L^{1}\left(\mathbb{R}, v_{\delta, 0}\right)$ and $L^{1,0}(\mathbb{R})$ coincide each other. Furthermore, the three classes $\mathcal{L}\left(L^{1}(\mathbb{R}), L^{\infty}(\mathbb{R})\right), \mathfrak{B}\left(L^{1,0}(\mathbb{R}), L^{\infty}(\mathbb{R})\right)$, and $\mathcal{L}\left(L^{1}\left(\mathbb{R}, v_{\delta, 0}\right), L^{\infty}(\mathbb{R})\right)$ also coincide.

6. Examples

In this section, we present interesting examples to which our results in previous sections can be applied.
Let $\mathcal{M}(\mathbb{R})$ be the class of complex-valued, countably additive Borel measures on $\mathcal{B}(\mathbb{R})$. For $\eta \in \mathcal{M}(\mathbb{R})$, the Fourier transform $\widehat{\eta}$ of η is a \mathbb{C}-valued function defined on \mathbb{R}, given by the formula

$$
\widehat{\eta}(u)=\int_{\mathbb{R}} \exp \{i u v\} d \eta(v) .
$$

(1) Let $w_{0} \in C_{a, b}^{\prime}[0, T]$ and let $\eta \in \mathcal{M}(\mathbb{R})$. Define $F_{1}: C_{a, b}[0, T] \rightarrow \mathbb{C}$ by

$$
F_{1}(x)=\widehat{\eta}\left(\left(w_{0}, x\right)^{\sim}\right)
$$

Define a function $\phi: \mathbb{R} \rightarrow C_{a, b}^{\prime}[0, T]$ by $\phi(v)=v w_{0}$. Let $f=\eta \circ \phi^{-1}$. It is quite clear that f is in $\mathcal{M}\left(C_{a, b}^{\prime}[0, T]\right)$ and is supported by $\left[w_{0}\right]$, the subspace of $C_{a, b}^{\prime}[0, T]$ spanned by $\left\{w_{0}\right\}$. Now for s-a.e. $x \in C_{a, b}[0, T]$,

$$
\begin{aligned}
\int_{C_{a, b}^{\prime}[0, T]} \exp \left\{i(w, x)^{\sim}\right\} d f(w) & =\int_{C_{a, b}^{\prime}[0, T]} \exp \left\{i(w, x)^{\sim}\right\} d\left(\eta \circ \phi^{-1}\right)(w) \\
& =\int_{\mathbb{R}} \exp \left\{i(\phi(v), x)^{\sim}\right\} d \eta(v) \\
& =\int_{\mathbb{R}} \exp \left\{i\left(w_{0}, x\right)^{\sim} v\right\} d \eta(v) \\
& =\widehat{\eta}\left(\left(w_{0}, x\right)^{\sim}\right)
\end{aligned}
$$

Thus F_{1} is an element of $\mathcal{F}\left(C_{a, b}[0, T]\right)$.
Suppose that for a fixed positive real number $q_{0}>0$,

$$
\begin{equation*}
\int_{\mathbb{R}} \exp \left\{\left(2 q_{0}\right)^{-1 / 2}\left\|w_{0}\right\|_{C_{a, b}^{\prime}}\|a\|_{C_{a, b}^{\prime}}|v|\right\} d|\eta|(v)<+\infty \tag{6.1}
\end{equation*}
$$

It is easy to show that condition (6.1) is equivalent to condition (4.18) with $f=\eta \circ \phi^{-1}$. Thus, under condition (6.1), F_{1} is an element of $\mathcal{F}^{q_{0}}$ and so, by Theorem $5.2, J_{q}^{\text {an }}\left(F_{1} ; h\right)$ exists as an element of $\mathcal{L}\left(L^{1}\left(\mathbb{R}, v_{\delta, a}\right), L^{\infty}(\mathbb{R})\right)$ for all real q with $|q|>q_{0}$, all $h \in C_{a, b}^{\prime}[0, T] \backslash\{0\}$, and any $\delta>0$. Moreover $J_{q}^{\text {an }}\left(F_{1} ; h\right)$ is an element of the space $\mathfrak{B}\left(L^{1, a}(\mathbb{R}), L^{\infty}(\mathbb{R})\right)$ by Theorem 5.3.

Next, we present more explicit examples of functionals in $\mathcal{F}\left(C_{a, b}[0, T]\right)$ whose associated measures satisfy condition (6.1).
(2) Let $S: C_{a, b}^{\prime}[0, T] \rightarrow C_{a, b}^{\prime}[0, T]$ be the linear operator defined by $S w(t)=\int_{0}^{t} w(s) d b(s)$. Then the adjoint operator S^{*} of S is given by

$$
S^{*} w(t)=\int_{0}^{t}(w(T)-w(s)) d b(s)
$$

and for $x \in C_{a, b}[0, T],\left(S^{*} b, x\right)^{\sim}=\int_{0}^{T} x(t) d b(t)$ by an integration by parts formula.
Given m and σ^{2} in \mathbb{R} with $\sigma^{2}>0$, let $\eta_{\mathrm{m}, \sigma^{2}}$ be the Gaussian measure given by

$$
\begin{equation*}
\eta_{\mathrm{m}, \sigma^{2}}(B)=\left(2 \pi \sigma^{2}\right)^{-1 / 2} \int_{B} \exp \left\{-\frac{(v-\mathrm{m})^{2}}{2 \sigma^{2}}\right\} d v, \quad B \in \mathcal{B}(\mathbb{R}) . \tag{6.2}
\end{equation*}
$$

Then $\eta_{\mathrm{m}, \sigma^{2}} \in \mathcal{M}(\mathbb{R})$ and

$$
\widehat{\eta_{\mathrm{m}, \sigma^{2}}}(u)=\int_{\mathbb{R}} \exp \{i u v\} d \eta_{\mathrm{m}, \sigma^{2}}(v)=\exp \left\{-\frac{1}{2} \sigma^{2} u^{2}+i \mathrm{~m} u\right\}
$$

The complex measure $\eta_{m, \sigma^{2}}$ given by equation (6.2) satisfies condition (6.1) for all $q_{0}>0$. Thus we can apply the results in argument (1) to the functional $F_{2}: C_{a, b}[0, T] \rightarrow \mathbb{C}$ given by

$$
\begin{equation*}
F_{2}(x)=\widehat{\eta_{\mathrm{m}, \sigma^{2}}}\left(\left(w_{0}, x\right)^{\sim}\right)=\exp \left\{-\frac{1}{2} \sigma^{2}\left[\left(w_{0}, x\right)^{\sim}\right]^{2}+i \mathrm{~m}\left(w_{0}, x\right)^{\sim}\right\} \tag{6.3}
\end{equation*}
$$

For example, if we choose $w_{0}=S^{*} b, \mathrm{~m}=0$ and $\sigma^{2}=2$ in (6.3), we have

$$
F_{3}(x)=\exp \left\{-\left[\left(S^{*} b, x\right)^{\sim}\right]^{2}\right\}=\exp \left\{-\left(\int_{0}^{T} x(t) d b(t)\right)^{2}\right\}
$$

for $x \in C_{a, b}[0, T]$.
We note that the functional F_{3} is in $\cap_{q_{0}>0} \mathcal{F}^{q_{0}}$, and so that for every nonzero real number q, the AOVG'Feynman'I $J_{q}^{\text {an }}\left(F_{3} ; h\right)$ exists as an element of $\mathfrak{B}\left(L^{1, a}(\mathbb{R}), L^{\infty}(\mathbb{R})\right)$.
(3) Let $F_{4}: C_{a, b}[0, T] \rightarrow \mathbb{C}$ be given by

$$
F_{4}(x)=\exp \left\{i \int_{0}^{T} x(t) d b(t)\right\}
$$

Then F_{4} is a functional in $\mathcal{F}\left(C_{a, b}[0, T]\right)$, because

$$
F_{4}(x)=\exp \left\{i\left(S^{*} b, x\right)^{\sim}\right\}=\int_{C_{a, b}^{\prime}[0, T]} \exp \left\{i(w, x)^{\sim}\right\} d \zeta(w)
$$

for s-a.e. $x \in C_{a, b}[0, T]$, where ζ is the Dirac measure concentrated at $S^{*} b$ in $C_{a, b}^{\prime}[0, T]$. The Dirac measure ζ also satisfies condition (4.18) with f replaced with ζ for all $q_{0}>0$; that is, $F_{4} \in \cap_{q_{0}>0} \mathcal{F}^{q_{0}}$, and so that for every nonzero real number q, the AOVG ${ }^{\prime}$ eynman'I $J_{q}^{\text {an }}\left(F_{4} ; h\right)$ exists as an element of $\mathfrak{B}\left(L^{1, a}(\mathbb{R}), L^{\infty}(\mathbb{R})\right)$.

Acknowledgements

The author would like to express his gratitude to the editor and the referees for their valuable comments and suggestions which have improved the original paper.

References

[1] R. H. Cameron and D. A. Storvick, An operator valued function space integral and a related integral equation, J. Math. Mech. 18 (1968) 517-552.
[2] R. H. Cameron and D. A. Storvick, An integral equation related to the Schroedinger equation with an application to integration in function space, In: Gunning, R.C. (ed.) Problems in Analysis (A Symposium in Honor of Salomon Bochner, pp. 175-193. Princeton Univ. Press, Princeton, New Jersey, 1970.
[3] R. H. Cameron and D. A. Storvick, An operator valued function space integral applied to integrals of functions of class L_{2}, J. Math. Anal. Appl. 42 (1973) 330-372.
[4] R. H. Cameron and D. A. Storvick, An operator-valued function space integral applied to integrals of functions of class L_{1}, Proc. London Math. Soc. 27 (1973) 345-360.
[5] R. H. Cameron and D. A. Storvick, An operator valued function space integral applied to multiple integrals of functions of class L_{1}, Nagoya Math. J. 51 (1973) 91-122.
[6] S. J. Chang and J. G. Choi, Effect of drift of the generalized Brownian motion process: an example for the analytic Feynman integral, Arch. Math. 106 (2016) 591-600.
[7] S. J. Chang, J. G. Choi and A. Y. Ko, Multiple generalized analytic Fourier-Feynman transform via rotation of Gaussian paths on function space, Banach J. Math. Anal. 9 (2015) 58-80.
[8] S. J. Chang, J. G. Choi and S. D. Lee, A Fresnel type class on function space, J. Korean Soc. Math. Educ. Ser. B: Pure Appl. Math. 16 (2009) 107-119.
[9] S. J. Chang, J. G. Choi and D. Skoug, Integration by parts formulas involving generalized Fourier-Feynman transforms on function space, Trans. Amer. Math. Soc. 355 (2003) 2925-2948.
[10] S. J. Chang and D. Skoug, Generalized Fourier-Feynman transforms and a first variation on function space, Integral Transforms Spec. Funct. 14 (2003) 375-393.
[11] J. G. Choi, H. S. Chung and S. J. Chang, Sequential generalized transforms on function space, Abstr. Appl. Anal. 2013 (2013) Article ID: 565832.
[12] J. G. Choi and D. Skoug, Further results involving the Hilbert space $L_{a, b}^{2}[0, T], J$. Korean Soc. Math. Educ. Ser. B: Pure Appl. Math. 27 (2020) 1-11.
[13] J. G. Choi, D. Skoug and S. J. Chang, Analytic operator-valued Feynman integrals of certain finite-dimensional functionals on function space, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM 108 (2014) 907-916.
[14] D. M. Chung, C. Park and D. Skoug, Operator-valued Feynman integrals via conditional Feynman integrals, Pacific J. Math. 146 (1990) 21-42.
[15] G. W. Johnson and D.L. Skoug, Operator-valued Feynman integrals of certain finite-dimensional functionals, Proc. Amer. Math. Soc. 24 (1970) 774-780.
[16] G. W. Johnson and D.L. Skoug, Operator-valued Feynman integrals of finite-dimensional functionals, Pacific J. Math. 34 (1970) 415-425.
[17] G. W. Johnson and D.L. Skoug, An operator valued function space integral: A sequel to Cameron and Storvick's paper, Proc. Amer. Math. Soc. 27 (1971) 514-518.
[18] G. W. Johnson and D.L. Skoug, A Banach algebra of Feynman integrable functionals with application to an integral equation formally equivalent to Schroedinger's equation, J. Funct. Anal. 12 (1973) 129-152.
[19] G. W. Johnson and D.L. Skoug, Feynman integrals of non-factorable finite-dimensional functionals, Pacific J. Math. 45 (1973) 257-267.
[20] G. W. Johnson and D.L. Skoug, Cameron and Storvick's function space integral for certain Banach spaces of functionals, J. London Math. Soc. 9 (1974) 103-117.
[21] G. W. Johnson and D.L. Skoug, A function space integral for a Banach space of functionals on Wiener space, Proc. Amer. Math. Soc. 43 (1974) 141-148.
[22] G. W. Johnson and D.L. Skoug, Cameron and Storvick's function space integral for a Banach space of functionals generated by finite-dimensional functionals, Annali di Matematica Pura ed Applicata 104 (1975) 67-83.
[23] G. W. Johnson and D.L. Skoug, The Cameron-Storvick function space integral: The L_{1} theory, J. Math. Anal. Appl. 50 (1975) 647-667.
[24] G. W. Johnson and D.L. Skoug, The Cameron-Storvick function space integral: An $\mathcal{L}\left(L_{p}, L_{p^{\prime}}\right)$ theory, Nagoya Math. J. 60 (1976) 93-137.
[25] J. Yeh, Singularity of Gaussian measures on function spaces induced by Brownian motion processes with non-stationary increments, Illinois J. Math. 15 (1971) 37-46.
[26] J. Yeh, Stochastic Processes and the Wiener Integral, Marcel Dekker, New York, 1973.

[^0]: 2020 Mathematics Subject Classification. Primary 28C20 ; Secondary 46G12, 46B09.
 Keywords. Generalized Brownian motion process, analytic operator-valued generalized function space integral, analytic operatorvalued generalized Feynman integral.

 Received: 13 July 2022; Accepted: 01 August 2022
 Communicated by Dragan S. Djordjević
 This work was supported by the National Research Foundation of Korea(NRF) grant funded by the Korea government(MSIT) (No. 2021R1F1A1062770).

 Email address: jgchoi@dankook.ac.kr (Jae Gil Choi)

