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Abstract. Let R be a ring, 1R be the identity of ring R and N be an R-module on R. In this work, we are
going to give a new definition that it is called an action of R-module groupoids. First, we are going to
give the definition of the action of the R-module groupoids on the R-module N. Then we obtained a new
category RMGpdOp(Ω) of actions of Ω on R-modules. We also find that there is a groupoid Ω ▷◁ N on N.
Ω ▷◁ N is called action R-module groupoid. Finally, we prove that the category RMGpdOp(Ω) of actions of
R-module groupoids is equivalent to RMGpdCov(Ω) of coverings of R-module groupoids.

1. Introduction

First of all, the groupoid was given by Brandt [4]. Then Ehresmann offered the other versions of the
groupoid in the 1950s [11]. So the groupoids theory has been improved and it has been found in many
applications such as noncommutative geometry, differential topology, algebraic topology and theoretical
physics.

The action is the major appliance in the algebraic and differential topology. This structure plays a major
role in the category theory when it is studied groupoids. Ehresmann has defined a groupoid action over
a set [11]. Then the action of groupoids has been pointed to most work in the differential and algebraic
topology. Mathematicians have studied with different viewpoint of groupoid [8, 9, 14, 15, 17, 20].

Privately, to provide that two categories are equivalent is an important problem in the algebraic topology.
Algebraic topology has searched some categories that equivalent to the categories of action groupoids. Such
as, Gabriel et al. have proved that the category GpdCov(Ω) of covering groupoids of Ω and the category
GpdOp(Ω) of actions ofΩ are equivalent [12]. Brown et al. have studied this equivalence as topological [7].
Moreover, there are other the categories that are equivalence to groupoids [10, 13, 16].

On the other hand, the notion of groups with operations which originally comes from Higgins and
Orzech is adapted in the following paper [21] unifying groups, rings, associative algebras, associative
commutative algebras, Lie algebras, Leibniz algebras, alternative algebras and others. Then in the paper
[1] the result was generalised to the internal groupoids and groups with operations (Theorem 4.2).

In this presentation, we investigate the actions of the R-module groupoid and R-module action groupoid.
First of all, we defined groupoids and their actions of groupoids. Secondly, we have given the definition of
R-module groupoids described in [2]. And then we described the action of the R-module groupoid and we
obtained the action R-module groupoid. We proved that RMGpdCov(Ω) and RMGpdOp(Ω) categories are
eqivalent.
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2. Groupoids

Definition 2.1. ([5, 6]) Let Ω be a category. If all morphisms of Ω are isomorphisms, then we say that Ω is
a groupoid. Ω0 is the object set, Ω is the all of morphisms set, for x, y ∈ Ω0, from x to y morphisms set is
Ω(x, y), on the brink of structure maps are given as follow;

1. For ∀α ∈ Ω(x, y) and s, t : Ω → Ω0 such that s(α) = x and t(α) = y are called source and target maps,
respectively.

2. For ∀x ∈ Ω0, a map ε : Ω0 → Ω, x 7→ 1x is called the object (unit) map.

In a groupoid a composition operation ⊛ : Ωs ×t Ω→ Ω, (β, α) 7→ β ⊛ α is defined on the pull back

Ωs ×t Ω = {(β, α)|s(β) = t(α)}

These have to satisfy the following:

1. ∀(β, α) ∈ Ωs ×t Ω, s(β ⊛ α) = s(α) and t(β ⊛ α) = t(β).
2. ∀α, β, γ ∈ Ω, γ ⊛ (β ⊛ α) = (γ ⊛ β) ⊛ α so that s(β) = t(α) and s(γ) = t(β).
3. ∀x ∈ Ω0, s(1x) = t(1x) = x.
4. ∀α ∈ Ω, α ⊛ 1s(α) = α and 1t(α) ⊛ α = α.
5. s(α−1) = t(α) and t(α−1) = s(α), α−1 ⊛ α = 1s(α) and α ⊛ α−1 = 1t(α).

We denote a groupoid over Ω0 by Ω.
LetΩ be a groupoid and x, y ∈ Ω0. Ω(x, y) is a set of all morphisms defined from x to y such that s(α) = x,

t(α) = y. For x ∈ Ω0, Ωx is a set of morphisms that is started at x and Ωy is a set of morphisms that is
ended at y. Finally, the object group or the vertex group at x is the set Ω(x, x) = {α ∈ Ω|s(α) = t(α) = x} and
is denoted by Ω{x}. If Ω′ is the most widely connected subgroupoid of Ω, then it is called the connected
component of Ω [6].

Example 2.2. ([19]) Let S be a set and (N,+) be a group. Then S ×N × S be a groupoid over S. This is clear
from the following items.

1. For x, y ∈ S and m ∈ N, a morphism from x to y is (y,m, x) ∈ S ×N × S.
2. For x, y, z ∈ S and m,n ∈ N, (z,n, y) ⊛ (y,m, x) = (z,m + n, x) gives the composition of morphisms.
3. Let e ∈ N be the unit element of N. For x ∈ S, a unit morphism in x is (x, e, x) ∈ S ×N × S.
4. An inverse morphism is (x,−m, y) ∈ S ×N × S, for (y,m, x) ∈ S ×N × S.

So S ×N × S is a groupoid.

Definition 2.3. ([6]) Let Ω and Ω′ be two groupoids. A groupoid morphism is a pair (F,F0) of maps
F : Ω′ → Ω and F0 : Ω′0 → Ω0 such that sΩ ⊛ F = F0 ⊛ sΩ′ , tΩ ⊛ F = F0 ⊛ tΩ′ and F(β ⊛ α) = F(β) ⊛ F(α) for
all (β, α) ∈ Ω′s ×t Ω

′. The (F,F0) is represented by F shortly. If F is injective and surjective then its called a
groupoid isomorphism.

Thus, from the above definition, we have the category Gpd of the groupoids, such that objects are all of
groupoids and morphisms are groupoids morphisms [6].

LetΩ be a groupoid. Ω′ is called a subgroupoid ofΩ ifΩ′ is a subcategory that is also a groupoid. That
is the condition α ∈ Ω⇒ α−1

∈ Ω is satisfied. For ∀x, y ∈ Ω′ if Ω′(x, y) = Ω(x, y) is hold then we say that Ω′

is full, and if Ω0 = Ω
′

0 is hold we say that Ω′ is wide [6].
Let α ∈ Ω(x, y) is given. The left-translation Lα : Ωx

→ Ωy, β 7→ α ⊛ β and the right-translation
Rα : Ωy → Ωx, β 7→ β⊛ α are isomorphisms. In addition to the map Iα : Ω(x, x)→ Ω(y, y), β 7→ α⊛ β⊛ α−1 is
the inner automorphism [6].

Definition 2.4. ([7, 12, 18]) LetΩ be a groupoid and N be a set. Let λ : N→ Ω0 is a map. A left action ofΩ
on N via λ is a map φ : Ωs ×λ N→ N; (α,m) 7→α m which satisfies the following:



A.F. Özcan, İ. İçen / Filomat 37:13 (2023), 4239–4247 4241

1. λ(αm) = t(α),
2. β(αm) =β⊛α m,
3. 1λ(m) m = m

for α, β ∈ Ω and m ∈ N. N is called a left Ω-set. We also can define a right action. Let ξ : Nλ ×t Ω → N;
(m, α) 7→ mα satisfying the following conditions:

1. λ(mα) = s(α),
2. (mα)β = mα⊛β,
3. m1λ(m) = m

for α, β ∈ Ω and m ∈ N. In this case, N is called a right Ω-set.

Example 2.5. ([5]) We can easily show that every groupoid acts on itself from left and right sides by the
composition of Ω. Here s and t are supposed that left and right actions, respectively.

Example 2.6. ([19]) Let Ω be a groupoid and S be a set. Let Ω act over S via λ : S → Ω0. So, Ω ▷◁ S action
groupoid is obtained with the object set S via this action. This action groupoid’s morphisms set is Gα ×λ X.
Namely, a morphism is (a, x) such that αx = y for x, y ∈ S from x to y. The source and target maps are given
by s(α, x) = x and t(α, x) =α x = y. Unit and Inverse maps are defined by x 7→ (1λ(x), x) and (α, x)−1 = (α−1,α x),
respectively. Finally, (β, y) ⊛ (α, x) = (β ⊛ α, x) is the composition over Ω ▷◁ S. So, Ω ▷◁ S is a groupoid over
S and this groupoid is called action groupoid.

3. R-module groupoids

Definition 3.1. ([3]) Let (R,⊕, ·) be a ring with unity 1R and (N,+) be an abelian group. Let δ : R ×N → N,
(r,m) 7→ r ⊙ m be a map of R on N. If the following condition provide, N is (left) R-module for r, s ∈ R,
m,n ∈ N.

1. r ⊙ (m + n) = (r ⊙m) + (r ⊙ b),
2. (r ⊕ s) ⊙m = (r ⊙m) ⊕ (s ⊙m),
3. (r · s) ⊙m = r · (s ⊙m),
4. 1R ⊙m = m.

Definition 3.2. ([2]) Let R be a ring with identity 1R. An R-module groupoid is a Ω groupoid in which
morphisms set Ω and objects set Ω0 are both R-modules such that source and target maps s, t : Ω → Ω0,
unit map ε : Ω0 → Ω, an inverse map u : Ω→ Ω, α 7→ α−1, a composition ⊛ : Ωs ×t Ω→ Ω, (α, β) 7→ α ⊛ β
are all R-module morphisms. These morphisms are have to keep the following items. For r ∈ R, x ∈ Ω0 and
α, β ∈ Ω and composition α ⊛ β is defined.

1. s(r ⊙ α) = r · s(α), t(r ⊙ α) = r · t(α).
2. (r ⊙ α)−1 = r ⊙ (α−1).
3. ε(r · x) = r ⊙ ε(x) = r ⊙ 1x.
4. (r ⊙ α) ⊛ (r ⊙ β) = r ⊙ (α ⊛ β).

So, an R-module groupoid Ω is a Ω-groupoid such that the above conditions 1 − 4 are satisfied.
Considering the internal categories, the R-module groupoid is a groupoid object in the R-modules

category. So it is an internal category in the category of R-modules.

Example 3.3. ([2]) Let R be a topological ring, 1R be a unit element of R and N is a topological R-module.
So, the fundamental groupoid π1(N) of N is an R-module groupoid: since N is a topological R-module,
we have continuous operations as follows: group addition + : N × N → N, (m,n) 7→ m + n, inverse map
u : N→ N; m 7→ −m and δ : R ×N→ N, (r,m) 7→ r ⊙m. Therefore we have the following.
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π1(+) : π1(N) × π1(N)→ π1(N), ([m], [n]) 7→ [m + n]
π1(u) : π1(N)→ π1(N), [m] 7→ [−m] = −[m]

R × π1(N)→ π1(N), (r, [m]) 7→ r ⊙ [m] = [r ⊙m]

where the r⊙αdefined by (r⊙α)(x) = r·α(x), for x ∈ [0, 1]. We know thatπ1(N) is aΩ-groupoid. Furthermore
This action makes π1(N) an R-module groupoid, as is required.

Example 3.4. ([19]) If N is an R-module, we know that Ω = N × N on N is a Ω-groupoid. Further for
r ∈ R,m,n, k ∈ N and α = (m,n), β = (n, k) we have that s(r ⊙ α) = r ⊙ s(α), t(r ⊙ α) = r ⊙ t(α), (r ⊙ α)−1 =
r ⊙ (α−1), 1r·m = r ⊙ 1m and (r ⊙ α) ⊛ (r ⊙ β) = r ⊙ (α ⊛ β). Therefore Ω is an R-module groupoid.

Proposition 3.5. Let Ω be an R-module groupoid. Then the following assertions hold:
1. 1m ⊛ α = α,∀α ∈ s−1(1m),
2. α ⊛ 1m = α,∀α ∈ t−1(1m).

Proof. If α ∈ s−1(1m), then s(α) = m = t(1m). So (1m, α) ∈ Ω ×Ω and, using the condition associativity from
groupoid definition, one obtains that 1m ⊛ α = α. In the same way, we obtain α ⊛ 1m = α

Definition 3.6. Let Ω be an R-module groupoid on Ω0. An R-module subgroupoid of Ω is a pair of sub
R-modules Ω′ ⊂ Ω,Ω0 ⊂ Ω0 such that s(Ω′) ⊂ Ω′0, t(Ω

′) ⊂ Ω′0, 1h ∈ Ω
′ for all h ∈ Ω0, and Ω′ is closed under

the composition and the inversion in Ω. An R-module subgroupoid Ω′ of Ω is called wide if Ω′0 = Ω0, and
is called full if Ω′(h, k) = Ω(h, k) for all h, k ∈ Ω′0.

The identity R-module subgroupoid of Ω is the R-module subgroupoid △Ω = {1m|m ∈ Ω0}. The inner
R-module subgroupoid of Ω is the R-module subgroupoid IΩ =

⋃
m∈Ω0

Ω(m,m)

Definition 3.7. LetΩ be an R-module groupoid andN be a wide R-module subgroupoid. If α⊙n⊙α−1
∈ N

is hold then we say that N is a normal R-module subgroupoid, for any n ∈ N and any α ∈ Ω with
s(α) = s(n) = t(n).

Definition 3.8. ([2]) Let Ω1 and Ω2 be two R-module groupoids. An R-module groupoid morphism is a
groupoid morphism F : Ω1 → Ω2 such that F is a homo- morphism. Namely, F preserves the all algebraic
structures. So, we have the category RMGpd of the R-module groupoids, such that objects are all of
R-module groupoids and morphisms are R-module groupoids morphisms.

Definition 3.9. Let Ω be an R-module groupoid on Ω0. Ω is transitive if Ω(x, y) , ∅ for all x, y ∈ Ω0. Ω is
totally intransitive if Ω(x, y) = ∅ for all x, y ∈ Ω0.

For example, it can easily be shown that the inner and the identity R-module subgroupoid of an R-
module groupoid Ω are totally intransitive.

4. Actions of R-module groupoids

Definition 4.1. Let Ω be an R-module groupoid over Ω0 and N be an R-module. Let λ : N → Ω0 be an
R-module morphism. If there exists an R-module morphism φ : Ωs ×λ N → N, (α,m) 7→α m such that this
morphism satisfies the following conditions, we say that Ω acts on n via λ and φ is the left action. This
action is shown with (N, λ).

i) λ(αm) = t(α),
ii) β(αm) =(β⊛α) m,
iii) 1λ(m) m = m.

Similarly, we can do it for right action of R-module. Namely; let λ : N → Ω0 be an R-module morphism
andφ : Ns×λΩ→ N be an R-module groupoid morphism. In addition, φ is has to keep the following items.

i) λ(mα) = s(α),
ii) (mα)β = m(α⊛β),
iii) m1λ(m) = m.
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Lemma 4.2. Every R-module groupoid object set Ω0 acts on its R-module groupoid Ω on both sides.

Proof. Let Ω be an R-module groupoid over Ω0. We know that Ω0 is an R-module. We can choose N = Ω0.
So, assume that λ = Id : N = Ω0 → Ω0 be an R-module morphism. There exists φ : Ωs ×λ Ω0 → Ω0,
(α, x) 7→ φ(α, x) =α x = t(α). Now we show that this structure provides the above conditions.

i) Id(αx) =α x = t(α) is apparent by our acception.
ii) φ(α, φ(β, x)) = φ(α,β x) = φ(α, t(β)) =α t(β) = t(α)

and
φ((α ⊛ β), x) =(α⊛β) x = t(α ⊛ β) = t(α),
so, φ(α, φ(β, x)) = φ((α ⊛ β), x)

iii)φ(1Id(x), x) =1Id(x) x = t(1Id(x)) = t(1x) = x.
Now, we show that φ is an R-module groupoid morphism. φ : Ωs ×λ Ω0 → Ω0 and r ∈ R and all
(α, x), (β, y) ∈ Ωs ×λ Ω0

φ((α, x) + (β, y) = φ((α + β), (x + y))

=(α+β) (x + y)
= t(α + β)
= t(α) + t(β)

=α x +β y
= φ((α, x)) + φ((β, y))

and

φ(r · (α, x)) = φ((r · α, r · x))

=(r·α) (r · x)
= t(r · α)
= r · t(α)
= r · (αx)
= r · φ((α, x))

Therefore, every R-module groupoid object set acts on its R-module groupoid from the left side. Simi-
larly, we can show that also from the right side.

Example 4.3. Let Ω be an R-module groupoid and N be an R-module. Assume that Ω acts over N via
λ : N→ Ω0. So,Ω ▷◁ N action groupoid is obtained over object set N via this action. This action groupoid’s
morphisms set is Ωs ×λ N. Namely, a morphism is (α,m) such that αm = n for m,n ∈ N from m to n.
Source map is s(α,m) = m, target map is t(α,m) =α m = n. Unit map is m 7→ (1λ(m),m). Inverse map is
(α,m)−1 = (α−1,αm). Composition is defined by (β,n) ⊛ (α,m) = (β ⊛ α,m). We have shown that Ω ▷◁ N
is a Ω-groupoid in [5]. Now we show that Ω ▷◁ N is an R-module groupoid. (Ω ▷◁ N)0 has an R-module
structure, since it is defined by N. R-module operations on Ω ▷◁ N are defined as follows:

+ : (Ω ▷◁ N) × (Ω ▷◁ N)→ Ω ▷◁ N, ((α,m), (β,n)) 7→ (α,m) + (β,n) = (α + β,m + n)
u : Ω ▷◁ N→ Ω ▷◁ N, (α,m) 7→ (−α,−m) and

δ : R × (Ω ▷◁ N)→ Ω ▷◁ N, (r, (α,m)) 7→ r ⊙ (α,m) = (r ⊙ α, r ⊙m)

where +,u and δ are the R-module operations on Ω and N.
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For r ∈ R,m ∈ N = (Ω ▷◁ N)0 and (α,m), (β,n) ∈ Ω ▷◁ N,
α(r ⊙ (α,m)) = s(r ⊙ α, r ⊙m) = r ⊙m = r · s(α,m),
t(r ⊙ (α,m)) = t(r ⊙ α, r ⊙m) =r⊙α (r ⊙m) = r · (αm) = r · t(α,m),
(r ⊙ (α,m))−1 = (r ⊙ α, r ⊙m)−1 = (r ⊙ α−1, r ⊙m) = r ⊙ (α−1,m) = r ⊙ (α,m)−1

ε(r ·m) = (1λ(r·m, r ·m) = r ⊙ (1λ(m),m) = r ⊙ 1m
(r⊙ (β,n))⊛ (r⊙ (α,m)) = (r⊙β, r⊙n)⊛ (r⊙α, r⊙m) = ((r⊙β)⊛ (r⊙α), r⊙m) = (r⊙ (β⊛α), r⊙m) = r⊙ (β◦α,m).

Hence the R-module groupoid conditions are satisfied. As a result, Ω ▷◁ N is an R-module groupoid
over N.

Definition 4.4. Let Ω be an R-module groupoid on Ω0 acting on R-modules N and N′. An R-module
morphism ϕ : N → N′ is called equivariant if and only if λN(m) = λN′ (ϕ(m)) and ϕ(αm) =α ϕ(m), for all
m ∈ N and α ∈ Ωλ(m).

Thus we obtain a category whose objects are all actions of the R-module groupoid Ω denoted by
RMGpdOp(Ω) The objects of this category are actions (N, λ) and morphisms are as the above definition.
Namely, A morphism from (N, λN) to (N′, λN′ ) is the following commutative diagram.

N N′

Ω0

-
ϕ

@
@RλN

�
�	 λN′

Ω ×N Ω ×N′

N N′

-
Id×ϕ

?
ϕN

?
ϕN′

-
ϕ

Source and target maps are defined by s(ϕ) = (M, λN) and T(ϕ) = (N′, λN′ ), respectively. A unit map
is defined by 1(N,λN) : (N, λN) → (N, λN). Finally, composition operation is defined by the following
commutative diagram.

N N′ N′′

Ω0

-
ϕ

@
@
@@R

λN
?

λN′

-
ϕ′

�
�

��	
λN′′

Ωs ×λN N N

Ωs ×λN′ N′ N′

Ωs ×λN′′ N′′ N′′

-φ

?
1×ϕ

?

ϕ

-φ
′

?
1×ϕ′

?

ϕ′

-φ
′′

Let Ω1 and Ω2 be groupoids. A morphism p : Ω1 → Ω2 of groupoids is called a covering morphism
if for each x ∈ (Ω1)0 the restriction (Ω1)x → (Ω2)p(x) of p is bijective. Let p : Ω1 → Ω2 be covering
morphism of groupoids and (Ω2)s ×p0 (Ω1)0 = {(α, x) ∈ Ω2 × (Ω2)0|s(α) = p0(x)} be pullback. Function
sp : (Ω2)s ×p0 (Ω1)0 → Ω1 is inverse (p, s) : Ω1 → (Ω2)s ×p0 (Ω1)0. So p is a covering morphism if and only if
(p, s) is bijective.

Definition 4.5. ([2]) Let Ω1 and Ω2 be R-module groupoids. A morphism p : Ω1 → Ω2 of R-module
groupoids is called a covering morphism if p is a covering morphism on the underlying groupoids.

Example 4.6. Let p : Ω̃ → Ω be a morphism of R-module groupoids. If it is defined S = Ω̃0 and λ = p0 :
Ω̃0 → Ω0 thenΩ acts S = Ω̃0 via λ = p0. The action is defined byφ : Ωs×p0 Ω̃0 → Ω̃0, (α, x̃) 7→α x̃ = t̃(α̃). since
p is the covering morphism, there is unique α̃ lifting of α (s(α̃) = x̃) such that for x̃ ∈ S = Ω̃0 and α ∈ Ωp0(x̃),
p(α̃) = α and p0(x̃) = x. Now we show that action conditions are satisfied. λ(αx̃) = p0(αx̃) = p0(t̃(α̃)) = t(α).
β(αx̃) =β t̃(α̃) = t̃(β̃) and β⊛αx̃ = t̃(β̃ ⊛ α̃) = t̃(β̃). So we have that β(αx̃) =β⊛α x̃. Finally, 1p0(x̃)x̃ = t̃(γ̃) = x̃. So,
the action conditions are satisfied. Since p is the covering morphism of the R-module groupoid and λ is
defined by p0, it is an R-module morphism. Similarly, it is an R-module morphism since φ is defined by t̃
target morphism of Ω̃.
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So, we have a category of coverings of R-module groupoidΩ denoted by RMGpdCov(Ω). The objects of
this category are covering morphisms of Ω. A morphism from p : Ω′ → Ω to q : Ω′′ → Ω is defined by the
following commutative diagram.

Ω′ Ω′′

Ω

@
@Rp

-r

�
�	 q

Structure maps of the category are defined by s(r) = p, t(r) = q and 1(p) : Ω′ → Ω′. For r : Ω′ → Ω′′ and
r′ : Ω′′ → Ω′′′, the composition map is defined by the following commutative diagram

Ω′ Ω′′ Ω′′′

Ω

@
@

@@R
q

-r

?

p

-r′

�
�

��	
q′

Theorem 4.7. Let Ω be an R-module groupoid. RMGpdCov(Ω) category of coverings of R-module groupoid and
RMGpdOp(Ω) category of actions of R-module groupoid are equivalent.

Proof. A functor Γ : RMGpdOp(Ω)→ RMGpdCov(Ω) is defined as follows: Suppose thatΩ acts on R-module
N via λ : N → Ω0. This action is given with φ : Ωs ×λ N → N, (α,m) 7→ φ(α,m) =α m. In this case, we
have the action R-module groupoid Ω ▷◁ N from Example 4.3. If a morphism p : Ω ▷◁ N → Ω is defined
by (α,m) 7→ α and λ on the morphisms and the objects, respectively, then p is a covering morphism of
R-module groupoids. We have that p((β,n) ⊛ (α,m)) = p(β ⊛ α,m) = β ⊛ α = p(β,n) ⊛ p(α,m), from the
definition of p. Since p is defined by λ on objects, we have that p(1λ(m),m) = 1λ(m) = 1p(1λ(m),m). So, p is a
groupoid morphism. At the same time it is a covering morphism, since (α,m′) is only one element ofΩwith
s(α,m′) = m′ and p(α,m) = α, for α ∈ Ω(x, y) and m′ ∈ λ−1(x). Thus (p, s) is bijective. Furthermore we have
that p((α,m)+(β,n)) = p(α+β,m+n) = α+β = p(α,m)+p(β,n) and p(r⊙(α,m)) = p(r⊙α, r⊙m) = r⊙α = r⊙p(α,m).
Therefore p also Γ(N, λ) is an R-module groupoid morphism. If (N, λ) and (N′, λ′) are actions of R-module
grupoid Ω, then Γ(N, λ) and Γ(N′, λ′) are coverings of R-module groupoid Ω. Let these coverings be
p : Ω ▷◁ N → Ω and q : Ω ▷◁ N′ → Ω. If ϕ : N → N′ is a morphism of actions, then Γ(ϕ) = r is a morphism
of covering morphisms with r0 = ϕ and r = 1 × ϕ. This situation is given in the following commutative
diagram

Ω ▷◁ N Ω ▷◁ N′

Ω

-
r=1×ϕ

Q
QQsp

�
��+ q

(α,m) (α, ϕ(m))

α

-
r=1×ϕ

Q
QQsp

�
��+ q

In addition, if ϕ : N → N′ and ϕ′ : N′ → N′′ are morphisms of R-module groupoid actions then we have
that Γ(ϕ′ ⊛ ϕ) = Γ(ϕ′) ⊛ Γ(ϕ). For Γ(N, λ) = Ω ▷◁ N, Γ(N′, λ′) = Ω ▷◁ N′, Γ(N′′, λ′′) = Ω ▷◁ N′′, Γ(ϕ) = r and
Γ(ϕ′) = r′, we have that ϕ′ ⊛ ϕ : N→ N′′ and Γ(ϕ′ ⊛ ϕ) = r′ ⊛ r = Γ(ϕ′) ⊛ Γ(ϕ). This situation is given in the
following commutative diagram.

N N′ N′′

Ω0

-
ϕ

@
@
@@R

λ
?

λ′

-
ϕ′

�
�

��	
λ′′

Ω ▷◁ N Ω ▷◁ N′ Ω ▷◁ N′′

Ω

-r

Q
Q

Q
Q
Qs

p
?

q

-r′

�
�

�
��+

q′

Therefore Γ is a functor.
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Define a functor Φ : RMGpdCov(Ω)→ RMGpdOp(Ω) as follows:

Let p : Ω̃ → Ω be a covering morphism of R-module groupoids. If we suppose that N = Ω̃0 and
λ = p0 : Ω̃0 → Ω0 then (N, λ) is an action of R-module groupoid over N from Example 4.6. Namely Φ(p)
is an action of R-module groupoid Ω over N. Thus if p : Ω̃ → Ω and q : Ω′ → Ω are covering morphisms
of R-module groupoids then Φ(p) and Φ(q) are action of R-module groupoid Ω over Ω̃0 and Ω′0 R-modules
via p0 and q0, respectively. Let these actions be denoted by (Ω̃0, p0) and (Ω′0, q0). We known that if p and q
are covering morphisms of R-module groupoids then r : Ω̃ → Ω′ is the covering morphisms of R-module
groupoids with p = q ⊛ r. Therefore r0 = ϕ and Φ(r) = ϕ are morphisms of the R-module actions. This
situation is given in the following commutative diagram.

Ω̃0 Ω′0

Ω0

-
r0=ϕ

@
@Rp0

�
�	 q0

we see that the action is protected from the following commutative diagram since we have that p = q ⊛ r
and p0 = q0 ⊛ r0.

Ωs ×p0 Ω̃0 Ω̃0

Ωs ×q0 H0 Ω′0

-φ

?

1×r0

?

ϕ=r0

-
φ′

(α, x̃) αx̃

(α, r0(x̃) = ϕ(x̃)) ϕ(αx̃) =α ϕ(x̃)

-φ

?

1×r0

?

ϕ=r0

-
φ′

Let r : Ω̃ → Ω′ be a morphism from p : Ω̃ → Ω to q : Ω′ → Ω and let r′ : Ω′ → Ω′′ be a morphism from
q : Ω′ → Ω to p′ : Ω′′ → Ω. Then we have Φ(r′ ⊛ r) = Φ(r′) ⊛ Φ(r). For Φ(p) = (Ω̃0, p0), Φ(q) = (Ω′0, q0),
Φ(p′) = (Ω′′0 , p

′

0), Φ(r) = ϕ and Φ(r′) = ϕ′,

r′ ⊛ r : Ω̃→ Ω′′

a covering morphism of R-module groupoids. So we findΦ(r′ ⊛ r) = ϕ′ ⊛ϕ = Φ(r′)⊛Φ(r). This is seen from
the following commutative diagram.

Ω̃ Ω′ Ω′′

Ω

-r

@
@
@@R

p
?

q

-r′

�
�

��	
p′

Ω̃0 Ω′0 Ω′′0

Ω0

-
ϕ

@
@
@R

p0
?

q0

-
ϕ′

�
�

�	
p′0

Therefore Φ is a functor.
It is obvious that ΓΦ � 1RMGpdCov(Ω) and ΦΓ � 1RMGpdOp(Ω).
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