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Abstract. Minimal cusco maps have applications in functional analysis, in optimization, in the study
of weak Asplund spaces, in the study of differentiability of functions, etc. It is important to know their
topological properties. Let X be a Hausdorff topological space, MC(X) be the space of minimal cusco maps
with values inR and τUC be the topology of uniform convergence on compacta. We study complete metriz-
ability and cardinal invariants of (MC(X), τUC). We prove that for two nondiscrete locally compact second
countable spaces X and Y, (MC(X), τUC) and (MC(Y), τUC) are homeomorphic and they are homeomorphic
to the space C(Ic) of continuous real-valued functions on Ic with the topology of uniform convergence.

1. Introduction

Minimal cusco maps are very important tool in functional analysis (see [1, 3, 4, 20, 28, 32]), in optimization
[7], in the study of weak Asplund spaces [30], etc.

As for topologies on spaces of set-valued maps, there are mainly two approaches in the literature -
function space topologies [13, 20–22] and hyperspace topologies [20, 23], in which set-valued maps are
identified with their graphs and are considered as elements of a hyperspace.

In our paper we study the topology of uniform convergence on compacta τUC on the space MC(X) of
all minimal cusco maps from a topological space X to R, the space of real numbers equipped with the
usual Euclidean metric. If X is locally compact, then (MC(X), τUC) is a locally convex topological vector
space [24]. If X is hemicompact, then (MC(X), τUC) is metrizable [21]. We will prove that if X is a locally
compact hemicompact space, then (MC(X), τUC) is completely metrizable. It is known [33] that if two
infinite-dimensional completely metrizable locally convex topological vector spaces have the same density,
then they are homeomorphic.

We will study density and other cardinal invariants of (MC(X), τUC). If (MC(X), τUC) is metrizable, then
all cardinal invariants, including density, weight and cellularity coincide on (MC(X), τUC). We find further
conditions on X under which the cardinal invariants coincide on (MC(X), τUC) as well as characterizations
of some cardinal invariants of (MC(X), τUC).
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The topology τUC of uniform convergence on compacta on MU(X,Y), the space of all minimal usco
maps from a topological space X to a metric space Y, was studied in many papers [18, 21, 22, 24, 25]. A
nice generalization of the Arzela-Ascoli Theorem from continuous functions to minimal usco/cusco maps
into metric spaces was proved in [18]. In papers [13] and [22] the topology τUC of uniform convergence on
compacta on the space of densely continuous forms was studied. There is a connection between minimal
usco maps and densely continuous forms.

2. Preliminaries

In what follows let X,Y be Hausdorff topological spaces,N be the set of positive integers and R be the
space of real numbers with the usual metric. The symbols A and IntA will stand for the closure and interior
of the set A in a topological space.

A set-valued map, or a multifunction, from X to Y is a function that assigns to each element of X a subset
of Y. Following [9] the term map is reserved for a set-valued map. If F is a map from X to Y, then its graph
is the set {(x, y) ∈ X × Y : y ∈ F(x)}. In our paper we will identify maps with their graphs.

Notice that if f : X→ Y is a single-valued function, we will use the symbol f also for the graph of f .
A map F : X→ Y is upper semicontinuous at a point x ∈ X if for every open set V containing F(x), there

exists an open set U such that x ∈ U and

F(U) =
⋃
{F(u) : u ∈ U} ⊂ V.

F is upper semicontinuous if it is upper semicontinuous at each point of X. Following Christensen [6] we
say, that a map F is usco if it is upper semicontinuous and takes nonempty compact values. A map F from
a topological space X to a linear topological space Y is cusco if it is usco and F(x) is convex for every x ∈ X.

Finally, a map F from a topological space X to a topological (linear topological space) Y is said to be
minimal usco (minimal cusco) if it is a minimal element in the family of all usco (cusco) maps (with the
domain X and the range Y); that is, if it is usco (cusco) and does not contain properly any other usco (cusco)
map from X into Y. Using the Kuratowski-Zorn principle we can guarantee that every usco (cusco) map
from X to Y contains a minimal usco (cusco) map from X to Y (see [5, 9]).

In papers [14, 16] we can find interesting characterizations of minimal usco and minimal cusco maps
using quasicontinuous and subcontinuous selections, which will be also useful for our analysis.

A function f : X→ Y is quasicontinuous at x ∈ X [15, 31] if for every neighborhood V of f (x) and every
neighbourhood U of x there is a nonempty open set G ⊂ U such that f (G) ⊂ V. If f is quasicontinuous at
every point of X, we say that f is quasicontinuous.

Let A be a dense subset of a topological space X and Y be a topological space. Let f : A→ Y be a function.
We say that f is densely defined. A densely defined function f is a densely defined quasicontinuous selection
of a set-valued map F, if f (x) ∈ F(x) for every x ∈ dom f , the domain of f and f : dom f → Y is quasicontinuous
with respect to the induced topology on dom f .

A function f : X → Y is subcontinuous at x ∈ X [11] if for every net (xi) convergent to x, there is
a convergent subnet of ( f (xi)). If f is subcontinuous at every x ∈ X, we say that f is subcontinuous.
The notion of subcontinuity can be extended for densely defined functions. Let A be a dense subset of a
topological space X and Y be a topological space. We say that f : A → Y is subcontinuous at x ∈ X ([27])
if for every net (xi) ⊂ A convergent to x ∈ X, ( f (xi)) has a convergent subnet. A function f : A → Y is
subcontinuous if it is subcontinuous at every x ∈ X.

Let Y be a linear topological space and B ⊂ Y be a set. By coB we denote the convex hull of the set B and
by coB we denote the closure of coB.

Theorem 2.1. ([16]) Let X be a topological space and Y be a Hausdorff locally convex (linear topological) space in
which the closed convex hull of a compact set is compact. Let F be a map from X to Y. The following are equivalent:

1. F is minimal cusco;
2. There is a quasicontinuous subcontinuous selection f of F such that co f (x) = F(x) for every x ∈ X;
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3. There is a densely defined quasicontinuous subcontinuous selection f of F such that co f (x) = F(x) for every
x ∈ X.

Remark 2.2. The spaceRwith the usual topology is a Hausdorff locally convex linear topological space, in
which the convex hull of a compact set is compact, so in the previous theorem we can omit the closure of
the convex hull of f (x).

Let F ⊂ X×R be such that F(x) is a nonempty bounded set for every x ∈ X. Then there are two real-valued
functions sup F and inf F defined on X by sup F(x) = sup{t ∈ R : t ∈ F(x)} and inf F(x) = inf{t ∈ R : t ∈ F(x)}.

Theorem 2.3. ([16]) Let X be a topological space. Let F be a map from X to R. The following are equivalent:

1. F is minimal cusco;
2. F is nonempty compact, convex valued, F has a closed graph, sup F and inf F are quasicontinuous, subcontinuous

functions and sup F = inf F;
3. F is nonempty compact valued, sup F and inf F are quasicontinuous, subcontinuous functions and F(x) =

co sup F(x) = co inf F(x) for every x ∈ X.

3. Minimal cusco maps with the topology of uniform convergence on compacta

Let X be a topological space and (Y, d) be a metric space.
The open d-ball with center z0 ∈ Y and radius ε > 0 will be denoted by Sε(z0) and the ε-parallel body⋃

a∈A Sε(a) for a subset A of Y will be denoted by Sε(A).
Denote by CL(Y) the space of all nonempty closed subsets of Y and by K(Y) the space of all nonempty

compact subsets of Y.
If A ∈ CL(Y), the distance functional d(·,A) : Y→ [0,∞) is described by the familiar formula

d(z,A) = inf{d(z, a) : a ∈ A}.

Let A and B be nonempty subsets of (Y, d). The excess of A over B with respect to d is defined by the
formula

ed(A,B) = sup{d(a,B) : a ∈ A}.

The Hausdorff (extended-valued) metric Hd on CL(Y) [2] is defined by

Hd(A,B) = max{ed(A,B), ed(B,A)}.

We will often use the following equality on CL(Y):

Hd(A,B) = inf{ε > 0 : A ⊂ Sε(B) and B ⊂ Sε(A)}.

The topology generated by Hd is called the Hausdorffmetric topology.
It is known that if (Y, d) is a complete metric space then (CL(Y),Hd) and (K(Y),Hd) are also complete

metric spaces ([2]).
Following [13] we will define the topology τp of pointwise convergence on CL(Y)X. The topology τp of

pointwise convergence on CL(Y)X is induced by the uniformity Up of pointwise convergence which has a
base consisting of sets of the form

W(A, ε) = {(Φ,Ψ) : ∀ x ∈ A Hd(Φ(x),Ψ(x)) < ε},

where A is a finite set in X and ε > 0. The general τp-basic neighborhood of Φ ∈ CL(Y)X will be denoted by
W(Φ,A, ε), where

W(Φ,A, ε) = {Ψ : ∀ x ∈ A Hd(Φ(x),Ψ(x)) < ε}.
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We will define the topology τUC of uniform convergence on compact sets on CL(Y)X [13]. This topology
is induced by the uniformity UUC which has a base consisting of sets of the form

W(K, ε) = {(Φ,Ψ) : ∀ x ∈ K Hd(Φ(x),Ψ(x)) < ε},

where K ∈ K(X) and ε > 0. The general τUC-basic neighborhood ofΦ ∈ CL(Y)X will be denoted by W(Φ,K, ε),
where

W(Φ,K, ε) = {Ψ : ∀ x ∈ K Hd(Φ(x),Ψ(x)) < ε}.

Denote by MC(X) the space of all minimal cusco maps from X to R, by MU(X) the space of all minimal
usco maps from X to R and by C(X) the space of all continuous functions from X to R.

Let d be the usual Euclidean metric on R and Hd be the Hausdorffmetric induced by d on CL(R).

Remark 3.1. In [17] we proved that for a locally compact space X the spaces (MC(X), τUC) and (MU(X), τUC)
are homeomorphic. Example 3.2 in [17] shows that (MC(X), τUC) and (MU(X), τUC) need not, in general, be
homeomorphic.

A topological space X is hemicompact if there is a countable cofinal subfamily in K(X) with respect to
the inclusion. If X is hemicompact, then (MC(X), τUC) is metrizable [21]. We will define a metric on the
space MC(X) compatible with the topology τUC.

Let {Kn : n ∈ Z+} be a countable cofinal subfamily in K(X) with respect to the inclusion. It is easy to
verify that the countable family {W(Km, 1/n) : m,n ∈N} is a base of the uniformityUUC. Thus the uniformity
UUC is metrizable [26]. We will define a compatible metric ρ on MC(X).

For every K ∈ K(X) let pK be the pseudometric on MC(X) defined by

pK(F,G) = sup{Hd(F(x),G(x)) : x ∈ K}.

Notice that for every F ∈MC(X) and every K ∈ K(X) the set F(K) is compact [2].
Then for every K ∈ K(X) we have the pseudometric hK defined as

hK(F,G) = min{1, pk(F,G)}.

We define a function ρ : MC(X) ×MC(X)→ R as follows

ρ(F,G) =
∞∑

n=1

1
2n hKn (F,G).

It is easy to see that ρ is a metric on MC(X) and uniformity UUC is generated by ρ.
Denote by CK(R) the space of all compact intervals in R. Then (CK(R),Hd) is a complete metric space

[2].

Lemma 3.2. ([26], Theorem 7.10 (c)) Let X be a topological space. (CK(R)X,UUC) is complete.

Proposition 3.3. Let X be a locally compact space. Then MC(X) is a closed subspace of (CK(R)X,UUC).

Proof. F ∈ MC(X) in (CK(R)X,UUC). First we prove that F is upper semicontinuous. Suppose that F is not
upper semicontinuous at x ∈ X. Let ε > 0 be such that for every open neighbourhood O of x there is

yO ∈ F(O) \ S2ε(F(x)).

Let U be an open neighbourhood of x such that U is compact. Let G ∈ W(F,U, ε) ∩MC(X). The upper
semicontinuity of G at x implies that there is an open neighbourhood U1 of x such that U1 ⊂ U and
G(z) ⊂ Sε(F(x)) for every z ∈ U1. Let s ∈ U1 be such that yU1 ∈ F(s) \ S2ε(F(x)), a contradiction, since there
must exist l ∈ G(s) such that d(yU1 , l) < ε.
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Now we prove that F is minimal cusco. Suppose that F is cusco but not minimal. Since F is cusco there
must exist a minimal cusco L contained in F. Let x ∈ X be such that there is y ∈ F(x) \ L(x). Let ε > 0 be such
that

Sε(y) ∩ Sε(L(x)) = ∅.

Let U be an open neighbourhood of x such that U is compact and L(z) ⊂ Sε(L(x)) for every z ∈ U. Let
G ∈W(F,U, ε/2) ∩MC(X). Without loss of generality we can suppose that sup L(x) + ε < y − ε. There must
exist z ∈ G(x) such that y − ε/2 < z ≤ sup G(x). By Theorem 2.3 sup G is quasicontinuous. Thus there is a
nonempty open set U1 such that U1 ⊂ U and

y − ε/2 < sup G(t) for every t ∈ U1.

By Theorem 2.3 G(t) = co sup G(t) ⊂ [y − ε/2,∞) for every t ∈ U1, a contradiction.

Corollary 3.4. Let X be a locally compact space. Then (MC(X),UUC) is complete.

Proof. By Lemma 3.2 (CK(R)X,UUC) is complete. By Proposition 3.3 MC(X) is a closed subspace of
(CK(R)X,UUC). Thus (MC(X),UUC) is complete too.

Proposition 3.5. Let X be a locally compact hemicompact space. Then (MC(X), τUC) is a completely metrizable
locally convex topological vector space.

Proof. By Theorem 7.5 in [24] if X is locally compact, then (MC(X), τUC) is a locally convex topological vector
space. By Corollary 3.4 (MC(X),UUC) is complete. Let {Kn : n ∈ Z+} be a countable cofinal subfamily in
K(X) with respect to the inclusion. The metric ρ defined above with respect to the family {Kn : n ∈ Z+}
generates the uniformity UUC. Thus (MC(X), τUC) is a completely metrizable locally convex topological
vector space.

It is known [33] that if two infinite-dimensional completely metrizable locally convex linear topological
spaces have the same density, then they are homeomorphic. In the next section we will study density and
other cardinal invariants of (MC(X), τUC).

4. Cardinal invariants of (MC(X), τUC)

In what follows let X be a Hausdorff topological space. We will consider the cardinal invariants of the
space (MC(X), τUC). Because of simplicity we will omit the specification of the topology τUC.

We start with the following bound of the cardinality of MC(X).

Proposition 4.1. Let X be a Baire space. Then |MC(X)| ≤ 2w(X).

Proof. Let F ∈ MC(X). Denote S(F) = {x ∈ X : |F(x)| = 1}. By Theorem 2.7 in [23] S(F) is a dense Gδ subset of
X. For every F ∈MC(X) the function F|S(F) is a continuous function defined on S(F). Thus F|S(F) ∈ C(S(F)).
The cardinality of the family of Gδ subsets of X is less than or equal to 2w(X). For each Gδ subset G in X, we
have |C(G)| ≤ 2d(G) [12]. Thus |C(G)| ≤ 2w(G)

≤ 2w(X). Denote C =
⋃
{C(G) : G is a Gδ set }.

Then |C| ≤ 2w(X). Define the mapping Ψ : MC(X) → C as follows: Ψ(F) = F|S(F). We show that Ψ is
injection. Let F,G ∈MC(X) and suppose that F|S(F) = G|S(G). Put H = F|S(F) = G|S(G). Then H is a densely
defined continuous and subcontinuous selection of F and G. (H is subcontinuous, since by Proposition 3.3
in [19] every selection of an usco map is subcontinuous.) By Theorem 2.1 coH(x) = F(x) for every x ∈ X and
coH(x) = G(x) for every x ∈ X. Thus F = G. We have |MC(X)| ≤ |C| ≤ 2w(X).

Throughout this section we assume that the space Z is not finite, i.e. |Z| ≥ ℵ0.
For many basic results relating to the following cardinal invariants, see [12].
For a topological space Z we define:
the weight of Z

w(Z) = ℵ0 +min{|B| : B is a base in Z},
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the density of Z
d(Z) = ℵ0 +min{|D| : D is dense in Z},

the cellularity of Z

c(Z) = ℵ0 + sup{|U| : U is a pairwise disjoint family of nonempty open subset of Z},

the network weight of Z

nw(Z) = ℵ0 +min{|N| : N is a network in Z}.

They are in general related by the inequalities

c(Z) ≤ d(Z) ≤ nw(Z) ≤ w(Z).

When Z is metrizable
c(Z) = d(Z) = nw(Z) = w(Z).

The character of a point z in Z is defined as

χ(Z, z) = ℵ0 +min{|O| : O is a base at z},

and the character of Z is defined as
χ(Z) = sup{χ(Z, z) : z ∈ Z}.

The pseudocharacter of a point z in a topological space Z is defined as

ψ(Z, z) = min{|G| : G is a family of open sets in Z such that
⋂
G = {z}},

and the pseudocharacter of Z is defined as:

ψ(Z) = ℵ0 + sup{ψ(Z, z) : z ∈ Z},

the diagonal degree of Z

∆(Z) = ℵ0 +min{|G| : G is a family of open sets in Z × Z,
⋂
G = ∆Z}.

The pseudocharacter ψ and the diagonal degree ∆ of MC(X) can be expressed using the so-called weak
k-covering number wkc(X) of X, which is defined as follows

wkc(X) = ℵ0 +min{|β| : β ⊂ K(X),
⋃

β = X}.

Theorem 4.2. Let X be a regular topological space. Then ψ(MC(X)) = ∆(MC(X)) = wkc(X).

Proof. To prove that wkc(X) ≤ ψ(MC(X)), let f be the zero function on X. Let {W( f ,At, εt) : At ∈ K(X), εt >
0, t ∈ T} be such that

f =
⋂
t∈T

W( f ,At, εt) and |T| ≤ ψ(MC(X)).

We claim that X =
⋃

At : t ∈ T. Suppose there is x ∈ X \
⋃

At : t ∈ T. Let V be an open set in X such that
x ∈ V ⊂ V ⊂ X \

⋃
At : t ∈ T. Let h : X→ R be defined as follows:

h(z) =
{

1, z ∈ V;
0, otherwise.
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The function h is quasicontinuous and subcontinuous. By Theorem 2.1 Φ = coh(x) is a minimal cusco map
and

Φ ∈
⋂
t∈T

W( f ,At, εt),

a contradiction since Φ(x) = 1 and f (x) = 0. Thus

wkc(X) ≤ |T| ≤ ψ(MC(X)) ≤ ∆(MC(X)).

To prove that ∆(MC(X)) ≤ wkc(X), let β ⊂ K(X) be such that wkc(X) = |β| and
⋃
β = X. For every A ∈ β and

n ∈N put
GA,n =

⋃
{W(Ψ,A, 1/n) ×W(Ψ,A, 1/n) : Ψ ∈MC(X)}

and we claim that ⋂
{GA,n : A ∈ β,n ∈N} = ∆MC(X).

Let Σ,Ψ ∈MC(X) be such that Σ , Ψ. Thus there is z ∈ X such that Σ(z) , Ψ(z). Suppose that supΣ(z) >
supΨ(z). In the following possible cases: supΣ(z) < supΨ(z), infΣ(z) > infΨ(z), infΣ(z) < infΨ(z) the
proof will be analogous. Put y = supΣ(z). Let ε > 0 be such that S4ε(y) ∩ Ψ(z) = ∅. Since Ψ is upper
semicontinuous at z, there is an open set O ⊂ X such that z ∈ O and Ψ(v) ∩ S3ε(y) = ∅ for every v ∈ O. By
Theorem 2.3 supΣ is quasicontinuous at z, so there is an open set V ⊂ O such that supΣ(l) ∈ Sε(y) for every
l ∈ V. Since by Theorem 2.3 co supΣ(l) = Σ(l), Σ(l) ⊆ Sε(y) for every l ∈ V. There is A ∈ βwith V∩A , ∅. Let
n ∈ N such that 1/n < ε/2. Suppose that there is Γ ∈ MC(X) such that (Σ,Ψ) ∈ W(Γ,A, 1/n) ×W(Γ,A, 1/n).
Let t ∈ V ∩A. Then Σ(t) ⊂ S2ε(y) andΨ(t)∩ S3ε(y) = ∅. Thus Γ(t) ⊂ Sε/2(Σ(t)) ⊂ S5ε/2(y) and simultaneously
Γ(t) ∩ S5ε/2(y) = ∅, a contradiction.

To define the π-character of a topological space Z, we first need a notion of a local π-base. If z ∈ Z,
a collection V of nonempty open subsets of Z is called a local π-base at z provided that for each open
neighborhood U of z, there exists a V ∈ V which is contained in U.

The π-character of a point z in Z is defined as

πχ(Z, z) = ℵ0 +min{|V| :V is a local π-base at z},

and the π-character of Z is defined as

πχ(Z) = sup{πχ(Z, z) : z ∈ Z}.

The k-cofinality of a topological space Z is defined to be

kco f (Z) = ℵ0 +min{|β| : β is a cofinal family in K(Z)}.

kco f (Z) = ℵ0 if and only if Z is hemicompact.

Theorem 4.3. Let X be a topological space. Then χ(MC(X)) = πχ(MC(X)) = kco f (X).

Proof. At first we prove that kco f (X) ≤ πχ(MC(X)). Let f be the zero function on X. Then f is a minimal
cusco map. Let {W(Φt,At, εt) : At ∈ K(X), εt > 0, t ∈ T} be a local π-base of f in MC(X) with |T| ≤ πχ(MC(X)).

We claim that {At : t ∈ T} is a cofinal family in K(X). Let A ∈ K(X). There must exist t ∈ T with

W(Φt,At, εt) ⊂W( f ,A, 1).

We show that A ⊂ At. Suppose there is a ∈ A \ At. Let U be an open set such that a ∈ U and U ∩ At = ∅.
Let 1 : X→ R be defined as follows:

1(z) =
{

1, z ∈ U;
supΦt, otherwise.
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The function 1 is quasicontinuous and subcontinuous (see Theorem 2.3). Put Γ(x) = co1(x) for every
x ∈ X. By Theorem 2.1, Γ ∈ MC(X). It is easy to verify that Γ(s) = Φt(s) for every s < U; thus also for every
s ∈ At. Γ ∈W(Φt,At, εt), but Γ <W( f ,A, 1), a contradiction. Thus

kco f (X) ≤ πχ(MC(X)) ≤ χ(MC(X)).

To prove that χ(MC(X)) ≤ kco f (X), let Φ ∈ MC(X) and let β be a cofinal subfamily of K(X) with
|β| = kco f (X). It is easy to verify that the family {W(Φ,K, 1/n) : K ∈ β,n ∈N} is a local base at Φ.

For a Tychonoff space Z we define the uniform weight of Z [10]

u(Z) = ℵ0 +min{m : there is a uniformity on Z of weight ≤ m}.

Theorem 4.4. Let X be a topological space. Then u(MC(X)) = kco f (X).

Proof. Let β be a cofinal family in K(X) such that kco f (X) = |β|. It is easy to verify that the family {W(K, 1/n) :
K ∈ β,n ∈ N} is a base of the uniformity UUC. Thus u(MC(X)) ≤ kco f (X). For every uniform space X we
have χ(X) ≤ u(X). Since by Theorem 4.3 kco f (X) = χ(MC(X)), we have u(MC(X)) = kco f (X).

Corollary 4.5. Let X be a topological space. The following are equivalent.

1. X is hemicompact,
2. MC(X) is metrizable,
3. MC(X) is first countable.

To define the π-weight of a topological space Z, we first need a notion of a π-base. A collection V of
nonempty open subsets of Z is called a π-base provided that for each open set U in Z, there exists a V ∈ V
which is contained in U.

Define the π-weight of Z by

πw(Z) = ℵ0 +min{|B| : B is a π-base in Z}.

For a topological space Z we define the extent of Z

e(Z) = ℵ0 + sup{|E| : E is a closed discrete set in Z}.

Theorem 4.6. For every space X πw(MC(X)) = w(MC(X)). In fact
πw(MC(X)) = kco f (X) · d(MC(X)) and w(MC(X)) = kco f (X) · c(MC(X)) = kco f (X) · e(MC(X)).

Proof. It is known (see [10]) that for a Tychonoff space Z, w(Z) = c(Z) · u(Z) and w(Z) = e(Z) · u(Z). Thus
by Theorem 4.4 w(MC(X)) = kco f (X) · c(MC(X)) and w(MC(X)) = kco f (X) · e(MC(X)). Since πw(MC(X)) ≥
πχ(MC(X)) = χ(MC(X)) = kco f (X) and πw(MC(X)) ≥ d(MC(X)) we have

πw(MC(X)) ≥ kco f (X) · d(MC(X)) ≥ w(MC(X)).

Lemma 4.7. Let X be a topological space which contains an infinite compact set. Then c(MC(X)) ≥ c and also
e(MC(X)) ≥ c.

Proof. Let K be an infinite compact set in X. There is a pairwise disjoint sequence {Un : n ∈ N} of open
sets such that Un ∩ K , ∅ for every n ∈ N. Let 2N denote the set of all functions from N to {0, 1}. Put
A = (

⋃
n∈NUn) ∪ (X \

⋃
n∈NUn). For every φ ∈ 2N let fφ : A→ {0, 1} be a function defined as follows:

fφ(x) =
{
φ(n), if x ∈ Un for some n ∈N;
0, x ∈ (X \

⋃
n∈NUn).
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Then fφ is a densely defined quasicontinuous subcontinuous function. Thus by Theorem 2.1 Fφ defined by
Fφ(x) = co fφ(x) for every x ∈ X, is a minimal cusco map.

For every φ ∈ 2N define Bφ =W(Fφ,K, 1/4). Then {Bφ : φ ∈ 2N} is a pairwise disjoint family of open sets
in (MC(X), τUC). Thus c(MC(X)) ≥ c. The set {Fφ : φ ∈ 2N} is a discrete set. We show that {Fφ : φ ∈ 2N} is a
closed set in (MC(X), τUC). Let G ∈MC(X) \ {Fφ : φ ∈ 2N}. Suppose that Fψ ∈W(G,K, 1/4) for some ψ ∈ 2N.
Since there may be at most one ψ ∈ 2N such that Fψ ∈ W(G,K, 1/4), the set W(G,K, 1/4) \ {Fψ} is an open
neighborhood of G such that {Fφ : φ ∈ 2N} ∩ (W(G,K, 1/4) \ {Fψ}) = ∅. Thus e(MC(X)) ≥ c.

For a topological space Z the Lindelöf degree of Z is

L(Z) = ℵ0 +min{κ : every open cover of Z has a subcover of cardinality at most κ}.

For a topological space Z the spread of Z is

s(Z) = ℵ0 + sup{|E| : E is a discrete set in Z}.

It is known that if a topological space Z is metrizable, then all cardinal invariants c, d,nw, s, e,L, πw,w
coincide on Z.

If X is hemicompact, i.e. kco f (X) = ℵ0, then by Corollary 4.5 MC(X) is metrizable, thus all cardinal
invariants c, d,nw, s, e,L, πw,w coincide on MC(X). The following theorem gives other conditions on X
under which the cardinal invariants coincide on MC(X).

Theorem 4.8. Let X be a topological space which contains an infinite compact set and let kco f (X) ≤ c. Then we have

c(MC(X)) = d(MC(X)) = nw(MC(X)) = L(MC(X)) =
s(MC(X)) = e(MC(X)) = πw(MC(X)) = w(MC(X)).

Proof. Recall that for a Tychonoff space Z, w(Z) = c(Z) · u(Z), w(Z) = e(Z) · u(Z). By Theorem 4.4 u(MC(X)) =
kco f (X), thus

kco f (X) · e(MC(X)) = w(MC(X)) = kco f (X) · c(MC(X)).

By Lemma 4.7 we have e(MC(X)) = w(MC(X)) = c(MC(X)). Since other cardinal invariants are between c,w
and e we are done.

Corollary 4.9. Let X be a discrete topological space. Then c(MC(X)) = ℵ0 and w(MC(X)) = kco f (X) = |X|.

Proof. If X is a discrete topological space, then the topology τUC coincides with the topology τp on MC(X)
and MC(X) = RX, so c(MC(X)) = ℵ0. Since by Theorem 4.6 w(MC(X)) = kco f (X) · c(MC(X)) we have that
w(MC(X)) = kco f (X) · c(MC(X)) = |X|.

Theorem 4.10. Let X be a Tychonoff topological space. The following are equivalent:

1. w(MC(X)) = ℵ0,
2. X is countable and every compact set in X is finite.

Proof. (1)⇒ (2) If w(MC(X)) = ℵ0, then c(MC(X)) = ℵ0, thus by Lemma 4.7 every compact set in X must be
finite. Then the topology τUC coincides with the topology τp on MC(X). Thus w(C(X)) = ℵ0 in the topology
τp. By Corollary 4.5.4 in [29] X must be countable.

(2) ⇒ (1) If every compact set in X is finite, the topology τUC = τp on MC(X). Since MC(X) ⊂ K(R)X,
w(MC(X)) ≤ w(K(R)X), where the space K(R) is equipped with the Hausdorff distance induced by the
Euclidean metric on R. X is countable, thus w(K(R)X) = ℵ0.

Theorem 4.11. Let X be a first countable topological space. The following are equivalent:

1. c(MC(X)) = ℵ0,
2. X is discrete.
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Proof. (2)⇒ (1) by Corollary 4.9.
(1) ⇒ (2) By Lemma 4.7 every compact set in X must be finite. Suppose there is a non-isolated point

x ∈ X. Then we can find a sequence {xn : n ∈ N} of different points which converges to x. The set
K = {x} ∪ {xn : n ∈N} is an infinite compact set in X, a contradiction.

Theorem 4.12. Let X be a first countable topological space. The following are equivalent:

1. nw(MC(X)) = ℵ0,
2. X is countable and discrete.

Proof. (2)⇒ (1) By Theorem 4.10 w(MC(X)) = ℵ0, so we are done.
(1) ⇒ (2) If nw(MC(X)) = ℵ0, then also c(MC(X)) = ℵ0, thus by Theorem 4.11 X must be discrete.

MC(X) = C(X) and the topology τUC coincides with the topology τp on MC(X). By Corollary 4.1.3 in [29] X
has a countable network, i.e. X must be countable.

Corollary 4.13. If X is a nondiscrete locally compact second countable space, then

c(MC(X)) = d(MC(X)) = e(MC(X)) = L(MC(X)) =
s(MC(X)) = nw(MC(X)) = πw(MC(X)) = w(MC(X)) = c,

and |MC(X)| = c.

Proof. Use Proposition 4.1, Lemma 4.7 and the fact that MC(X) is metrizable.

If X is a nondiscrete locally compact second countable space, then by Theorem 4.4.2 in [29] C(X) is
metrizable and by Corollary 4.2.2 in [29] d(C(X)) = ℵ0. Thus by Theorem 8.1 (c) in [12] we have

c(C(X)) = d(C(X)) = e(C(X)) = L(C(X)) =
s(C(X)) = nw(C(X)) = πw(C(X)) = w(C(X)) = ℵ0.

By Theorem 10.1 in [12] |C(X)| = c.

Theorem 4.14. For every two nondiscrete locally compact second countable spaces X and Y, MC(X) and MC(Y) are
homeomorphic and they are homeomorphic to C(Ic).

Proof. If X and Y are two nondiscrete locally compact second countable spaces, then by Corollary 4.13
d(MC(X)) = d(MC(Y)) = c. By Proposition 3.5 both MC(X) and MC(Y) are completely metrizable locally
convex topological vector spaces. By Corollary 5.2.2 in [29] C(Ic) is a completely metrizable space and by a
sentence before Theorem 1.1.7 in [29] it is also a locally convex topological vector space. By Theorem 4.2.4
in [29] d(C(Ic)) = c. By the result of Torunczyk [33] we are done.
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[14] Ľ. Holá, D. Holý, Minimal usco maps, densely continuous forms and upper semicontinuous functions, Rocky Mountain J. Math.

39, (2009), 545–562.
[15] Ľ. Holá, D. Holý, Pointwise convergence of quasicontinuous mappings and Baire spaces, Rocky Mountain J. Math. 41 (2011)

1883–1894.
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[25] D. Holý, Ascoli-type theorems for locally bounded quasicontinuous functions, minimal usco and minimal cusco maps, Ann.

Funct. Anal. 6:3 (2015) 29–41 (http://projecteuclid.org/afa).
[26] J. Kelley, General Topology, Springer, 1984.
[27] A. Lechicki, S. Levi, Extensions of semicontinuous multifunctions, Forum Math. 2 (1990) 341–360.
[28] W.B. Moors, A characterization of minimal subdifferential mappings of locally Lipschitz functions, Set-Valued Anal. 3 (1995)

129–141.
[29] R.A. McCoy, I. Ntantu, Topological Properties of Spaces of Continuous Functions, Lecture Notes in Mathematics 1315, Springer-

Verlag, Berlin, 1988.
[30] W.B. Moors, S. Somasundaram, A Gateaux differentiability space that is not weak Asplund, Proc. Amer. Math. Soc. 134 (2006)

2745–2754.
[31] T. Neubrunn, Quasi-continuity, Real Anal. Exchange 14 (1988) 259–306.
[32] R.R. Phelps, Convex Functions, Monotone Operators and Differentiability, Lecture Notes in Mathematics, vol.1364, Springer

Berlin, Heidelberg, 1993.
[33] H. Torunczyk, Characterizing Hilbert space topology, Fund. Math. 111 (1981) 247– 262.


