Pointwise semi-slant Riemannian (PSSR) maps from almost Hermitian manifolds

Yılmaz Gündüzalp ${ }^{\text {a }}$, Mehmet Akif Akyol ${ }^{\text {b }}$
${ }^{a}$ Department of Mathematics, Dicle University, 21280, Diyarbakır, Türkiye
${ }^{b}$ Department of Mathematics, Faculty of Art and Sciences, Bingöl University, 12000, Bingöl, Türkiye

Abstract

In this paper, as a generalization of pointwise slant submanifolds [B-Y. Chen and O. J. Garay, Pointwise slant submanifolds in almost Hermitian manifolds, Turk J Math 36, (2012), 630-640.], pointwise slant submersions [J.W.Lee and B. Şahin, Pointwise slant submersions, Bulletin of the Korean Mathematical Sosiety, 51(4), (2014), 115-1126.] and pointwise slant Riemannian maps [Y. Gündüzalp and M. A. Akyol, Pointwise slant Riemannian maps from Kaehler manifolds, Journal of Geometry and Physics, 179, (2002), 104589.], we introduce pointwise semi-slant Riemannian maps (briefly, PSSR maps) from almost Hermitian manifolds to Riemannian manifolds, present examples and characterizations. We also investigate the harmonicity of such maps. Moreover, we give Chen-Ricci inequality for a PSSR map. Finally, we study some curvature relations in complex space forms, involving Casorati curvatures for PSSR maps.

1. Introduction

In differential geometry, it is good to use some types of maps in order to compare objects (in particular, manifolds). The theory of smooth maps between Riemannian manifolds plays a preeminent role in differential geometry and also in physics. The main smooth maps are isometric immersions, Riemannian submersions and Riemannian maps. These kinds of maps have many applications, including in supergravity and superstring theories, Yang-Mills theory, Kaluza-Klein theory, geometric modeling, computer vision, medical imaging, cartography and sustainability science ([9-11, 29-33, 55-57]).

Slant submanifolds were introduced by B. Y. Chen [13] as a generalization of almost complex submanifolds and totally real submanifolds of an almost Hermitian manifold in 1990. After that, N. Papaghiuc [34] defined the notion of semi-slant submanifolds of an almost Hermitian manifold as a generalization of CR-submanifolds and slant submanifolds of an almost Hermitian manifold.

In [12], Casorati introduced Casorati curvature which is a very natural concept of regular surfaces in the three-dimensional Euclidean space. The curvature is obtained by the normalized sum of the squared principal curvatures of the surface. After that, many geometers published some optimal inequalities involving Casorati curvatures in ([6], [7], [24], [25], [49], [50], [59], [60]).

[^0]The main extrinsic (the squared mean curvature) and main intrinsic invariants (the scalar curvature and the Ricci curvature) of a submanifold in a real space form was established by B. Y. Chen in [14] (see also [15]). For the inequalities, see: ([5, 27, 28, 48, 51, 52]).

In 1998, pointwise slant submanifolds were introduced by F. Etayo [17] as a natural generalization of slant submanifolds. In 2012, the notion were investigated by B. Y. Chen and O. J. Garay [16]. The notion of pointwise semi-slant submanifolds were intoduced by B. Şahin in [47].

Dual to slant submanifolds, B. Şahin introduced in [44] the notion of slant submersions as a generalization of anti-inviariant and holomorphic submersions in [45]. The notion of semi-slant Riemannian submersions were introduced by K. S. Park and R. Prasad in 2013 [36]. As a natural generalization of slant submersions. pointwise slant submersions were introduced by J. W. Lee and B. Şahin in [26].
A. Fischer [23] introduced Riemannian maps as a generalization of isometric immersions and Riemannian submersions. After that, many geometers published many papers related to Riemannian maps in ([2], [3], [4], [19],[20], [37], [38], [39], [40], [41], [43], [46], [53], [54]). Moreover, B. Şahin defined slant Riemannian maps in [42]. As a generalization of slant Riemannian maps and semi-slant submersions, semi-slant Riemannian maps were introduced by [35]. It is also important to note that Riemannian maps satisfy the eikonal equation which is a bridge between geometric optics and physical optics. For Riemannian maps and their applications in spacetime geometry (see: [1], [18]).

In 2022, as a more general class of Riemannian maps including slant submanifolds, slant submersions, slant Riemannian maps, pointwise slant submanifolds, pointwise slant submersions, pointwise slant Riemannian maps were introduced by the authors [20] as follows.
Definition 1.1. Let φ be a Riemannian map from an almost Hermitian manifold ($B_{1}, g_{B_{1}}, J_{1}$) to a Riemannian manifold ($B_{2}, g_{B_{2}}$). If at each given $q \in B_{1}$, the Wirtinger angle $\theta\left(U_{1}\right)$ between $J_{1} U_{1}$ and the space $\left(\operatorname{ker} \varphi_{*}\right)_{q}$ is independent of the choice of the non-zero vector field $U_{1} \in\left(\operatorname{ker} \varphi_{*}\right)$, then we say that φ is a pointwise slant Riemannian map. In this case, the angle θ can be regarded as a function on B_{1}, which is called the slant function of the pointwise slant Riemannian map.

In the present paper, as a more generalization of the above mentioned notions, we will define the notions of PSSR maps from almost Hermitian manifolds onto Riemannian manifolds and investigate the geometry of the total space and the base space.

We organize the paper as follows. In Sec. 2 we deal with some necessary notions and recall some basic notions. In Sec. 3 we introduce the definition of PSSR maps from almost Hermitian manifolds onto Riemannian manifolds, giving many examples and investigate the geometry of foliations which are arisen from the definition of a PSSR map. We also investigate the harmonicity of such maps and find necessary and sufficient conditions for PSSR maps to be totally geodesic. In Sec. 4, we give Chen-Ricci inequality for a PSSR map. In Sec. 5, we study some curvature relations in complex space form, involving Casorati curvatures for PSSR maps.

2. Preliminaries

In this section, we review some basic concepts and results on geometric structures for Riemannian maps.
Let $\left(B_{1}, g_{B_{1}}, J_{1}\right)$ be an almost Hermitian manifold. This means that B_{1} admits a tensor field J_{1} of type $(1,1)$ on B_{1} such that

$$
\begin{equation*}
J_{1}^{2}=-I, \quad g_{B_{1}}\left(J_{1} Y_{1}, J_{1} Y_{2}\right)=g_{B_{1}}\left(Y_{1}, Y_{2}\right), \quad Y_{1}, Y_{2} \in \Gamma\left(T B_{1}\right) . \tag{1}
\end{equation*}
$$

An almost Hermitian manifold B_{1} is called Kaehler manifold [58] if

$$
\begin{equation*}
\left(\nabla_{Y_{1}} J_{1}\right) Y_{2}=0, \quad Y_{1}, Y_{2} \in \Gamma\left(T B_{1}\right) \tag{2}
\end{equation*}
$$

where ∇ denotes the Riemannian connection of the metric $g_{B_{1}}$ on B_{1}.
Let $\left(B_{1}, g_{B_{1}}\right)$ and $\left(B_{2}, g_{B_{2}}\right)$ be Riemannian manifolds and $\varphi:\left(B_{1}, g_{B_{1}}\right) \rightarrow\left(B_{2}, g_{B_{2}}\right)$ is a differentiable map. Then the differential φ_{*} of φ can be viewed a section of the bundle $\operatorname{Hom}\left(T B_{1}, \varphi^{-1} T B_{2}\right) \rightarrow B_{1}$, where $\varphi^{-1} T B_{2}$
is the pullback bundle which has fibres $\left(\varphi^{-1} T B_{2}\right)_{q}=T_{\varphi(q)} B_{2}, q \in B_{1} . \operatorname{Hom}\left(T B_{1}, \varphi^{-1} T B_{2}\right)$ has a connection ∇ induced from the Levi-Civita connection $\nabla^{B_{1}}$ and the pullback connection. The second fundamental form of φ is given by [8]

$$
\begin{equation*}
\left(\nabla \varphi_{*}\right)\left(Y_{1}, Y_{2}\right)=\nabla_{Y_{1}}^{\varphi} \varphi_{*} Y_{2}-\varphi_{*}\left(\nabla_{Y_{1}}^{B_{1}} Y_{2}\right) \tag{3}
\end{equation*}
$$

for $Y_{1}, Y_{2} \in \Gamma\left(T B_{1}\right)$, where ∇^{φ} is the pullback connection. It is known that the second fundamental form is symmetric. Remind that φ is said to be harmonic if we get the tension field $\tau(\varphi)=\operatorname{trace}\left(\nabla \varphi_{*}\right)=0$ and we call the map a totally geodesic map if $\left(\nabla \varphi_{*}\right)\left(Y_{1}, Y_{2}\right)=0$. On the other hand, it is shown in [41] that $\left(\nabla \varphi_{*}\right)\left(Y_{1}, Y_{2}\right)$ has no components in $\operatorname{Im} \varphi_{*}$, provided that $Y_{1}, Y_{2} \in \Gamma\left(\left(\operatorname{ker} \varphi_{*}\right)^{\perp}\right)$. More precisely,

$$
\begin{equation*}
\left(\nabla \varphi_{*}\right)\left(Y_{1}, Y_{2}\right) \in \Gamma\left(\left(\operatorname{range}_{*}\right)^{\perp}\right), \forall Y_{1}, Y_{2} \in \Gamma\left(\left(\operatorname{ker} \varphi_{*}\right)^{\perp}\right) \tag{4}
\end{equation*}
$$

here $\left(\text { range }_{*}\right)^{\perp}$ is the subbundle of $\varphi^{-1}\left(T B_{2}\right)$ with fibre $\Gamma\left(\varphi_{*}\left(T_{q} B_{1}\right)^{\perp}\right), q \in B_{1}$.
Let φ be a Riemannian map from a Riemannian manifold $\left(B_{1}, g_{B_{1}}\right)$ to a Riemannian manifold $\left(B_{2}, g_{B_{2}}\right)$. Then, we define \mathcal{T} and \mathcal{A} as

$$
\begin{equation*}
\mathcal{T}_{Y_{1}} Y_{2}=h \nabla_{v Y_{1}} v Y_{2}+v \nabla_{v Y_{1}} h Y_{2} \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathcal{A}_{Y_{1}} Y_{2}=v \nabla_{h Y_{1}} h Y_{2}+h \nabla_{h Y_{1}} v Y_{2} \tag{6}
\end{equation*}
$$

for every $Y_{1}, Y_{2} \in \Gamma\left(T B_{1}\right)$, where ∇ is the Levi-Civita connection of $g_{B_{1}}$. In fact, one can see that these tensor
 $\mathcal{T}_{Y_{1}}$ and $\mathcal{A}_{Y_{1}}$ are skew-symmetric operators reversing the horizontal and the vertical distributions. We note that the tensor fields \mathcal{T} and \mathcal{A} satisfy

$$
\begin{equation*}
\mathcal{T}_{U_{1}} U_{2}=\mathcal{T}_{U_{2}} U_{1}, \mathcal{A}_{Y_{1}} Y_{2}=-\mathcal{A}_{Y_{2}} Y_{1}, \tag{7}
\end{equation*}
$$

for any $\forall U_{1}, U_{2} \in \Gamma\left(\operatorname{ker} \varphi_{*}\right), \forall Y_{1}, Y_{2} \in \Gamma\left(\operatorname{ker} \varphi_{*}\right)^{\perp}$. Using (5) and (6), we obtain

$$
\begin{align*}
& \nabla_{U_{1}} U_{2}=\mathcal{T}_{U_{1}} U_{2}+\hat{\nabla}_{U_{1}} U_{2} \tag{8}\\
& \nabla_{U_{1}} Y_{1}=\mathcal{T}_{U_{1}} Y_{1}+h \nabla_{U_{1}} Y_{1} \tag{9}\\
& \nabla_{Y_{1}} U_{1}=\mathcal{A}_{Y_{1}} U_{1}+v \nabla_{Y_{1}} U_{1} \tag{10}\\
& \nabla_{Y_{1}} Y_{2}=\mathcal{A}_{Y_{1}} Y_{2}+h \nabla_{Y_{1}} Y_{2} \tag{11}
\end{align*}
$$

for any $Y_{1}, Y_{2} \in \Gamma\left(\left(\operatorname{ker} \varphi_{*}\right)^{\perp}\right), U_{1}, U_{2} \in \Gamma\left(\operatorname{ker} \varphi_{*}\right)$, here $\hat{\nabla}_{U_{1}} U_{2}=v \nabla_{U_{1}} U_{2}$.

3. PSSR maps from Kaehler manifolds

Definition 3.1. Let $\left(B_{1}, g_{B_{1}}, J_{1}\right)$ be an almost Hermitian manifold and $\left(B_{2}, g_{B_{2}}\right)$ be a Riemannian manifold. Then we say that a Riemannian map $\varphi: B_{1} \rightarrow B_{2}$ is a pointwise semi-slant Riemannian map (briefly, PSSR map) if there exists a pair of orthogonal distributions D^{θ} and D^{\top} on $\operatorname{ker} \varphi_{*}$ such that

1. The space $\operatorname{ker} \varphi_{*}$ admits the orthogonal direct decomposition $\mathrm{D}^{\theta} \oplus \mathrm{D}^{\top}$.
2. The distribution D^{\top} is invariant.
3. The distribution D^{θ} is pointwise slant with semi-slant function θ.

In this case, the angle θ can be regarded as a function on B_{1}, which is called the semi-slant function of the PSSR map.
Now, we present some examples for proper PSSR maps. Let J_{1} be an almost complex structure on \mathbb{R}^{8} as follows:

$$
J_{1}\left(y_{1}, \ldots, y_{8}\right)=\left(y_{2},-y_{1}, \ldots, y_{8},-y_{7}\right)
$$

Example 3.1. Define a map $\varphi: \mathbb{R}^{8} \rightarrow \mathbb{R}^{6}$ by

$$
\varphi\left(y_{1}, \ldots, y_{8}\right)=\left(y_{1} \cos x-y_{3} \sin x, y_{2} \sin y-y_{4} \cos y, y_{5}, y_{6}, \pi, e\right)
$$

where $x, y: \mathbb{R}^{8} \rightarrow \mathbb{R}$ are real valued functions. Then the $\operatorname{map} \varphi$ is a PSSR map such that

$$
\mathrm{D}^{\top}=<\frac{\partial}{\partial y_{7}}, \frac{\partial}{\partial y_{8}}>\text { and } \mathrm{D}^{\theta}=<\sin x \frac{\partial}{\partial y_{1}}+\cos x \frac{\partial}{\partial y_{3}}, \cos y \frac{\partial}{\partial y_{2}}+\sin y \frac{\partial}{\partial y_{4}}>
$$

with the semi-slant function θ with $\cos \theta=\sin (x+y)$.
Example 3.2. Let $\left(\mathbb{R}^{8}, g_{\mathbb{R}^{8}}\right)$ be the Euclid space. Consider $\left\{J_{1}, J_{2}\right\}$ a pair of almost complex structures on \mathbb{R}^{8} satisfying $J_{1} J_{2}=-J_{2} J_{1}$, here

$$
J_{1}\left(a_{1}, \ldots, a_{8}\right)=\left(-a_{3},-a_{4}, a_{1}, a_{2},-a_{7},-a_{8}, a_{5}, a_{6}\right)
$$

and

$$
J_{2}\left(a_{1}, \ldots, a_{8}\right)=\left(-a_{2}, a_{1}, a_{4},-a_{3},-a_{6}, a_{5}, a_{8},-a_{7}\right) .
$$

For any real-valued function $\lambda: \mathbb{R}^{8} \rightarrow \mathbb{R}$, we define new almost complex structure J_{λ} on \mathbb{R}^{8} by $J_{\lambda}=$ $(\cos \lambda) J_{1}+(\sin \lambda) J_{2}$.
Then, $\mathbb{R}_{\lambda}^{8}=\left(\mathbb{R}^{8}, J_{\lambda}, g_{\mathbb{R}^{8}}\right)$ is an almost Hermitian manifold.
Consider a Riemannian map $\varphi: \mathbb{R}_{\lambda}^{8} \rightarrow \mathbb{R}^{8}$ by

$$
\varphi\left(y_{1}, \ldots, y_{8}\right)=\left(0,0,0,0,0, y_{6}, 0, y_{8}\right)
$$

Then we obtain

$$
\left(\operatorname{ker} \varphi_{*}\right)^{\perp}=<X_{1}=\frac{\partial}{\partial y_{6}}, X_{2}=\frac{\partial}{\partial y_{8}}>
$$

and

$$
\operatorname{ker} \varphi_{*}=<V_{1}=\frac{\partial}{\partial y_{5}}, V_{2}=\frac{\partial}{\partial y_{7}}, V_{3}=\frac{\partial}{\partial y_{1}}, V_{4}=\frac{\partial}{\partial y_{2}}, V_{5}=\frac{\partial}{\partial y_{3}}, V_{6}=\frac{\partial}{\partial y_{4}}>.
$$

On the other hand, we get $J_{\lambda}\left(V_{3}\right)=\sin \lambda V_{4}+\cos \lambda V_{5}, J_{\lambda}\left(V_{4}\right)=-\sin \lambda V_{3}+\cos \lambda V_{6}, J_{\lambda}\left(V_{5}\right)=-\cos \lambda V_{3}-$ $\sin \lambda V_{6}, J_{\lambda}\left(V_{6}\right)=-\cos \lambda V_{4}+\sin \lambda V_{5}$. Thus, φ is a PSSR map with the semi-slant function $\theta=\lambda$ with $\mathrm{D}^{\theta}=<V_{1}, V_{2}>$ and $\mathrm{D}^{\top}=<V_{3}, V_{4}, V_{5}, V_{6}>$.

Let $\varphi:\left(B_{1}, g_{B_{1}}, J_{1}\right) \rightarrow\left(B_{2}, g_{B_{2}}\right)$ be a PSSR map. Then, for $V \in \Gamma\left(\operatorname{ker} \varphi_{*}\right)$, we can write

$$
\begin{equation*}
J_{1} V=Q_{1} V+Q_{2} V \tag{12}
\end{equation*}
$$

here $Q_{1} V \in \Gamma\left(\mathrm{D}^{\top}\right)$ and $Q_{2} V \in \Gamma\left(\mathrm{D}^{\theta}\right)$. For $V \in \Gamma\left(\operatorname{ker} \varphi_{*}\right)$

$$
\begin{equation*}
J_{1} V=\zeta V+\eta V, \tag{13}
\end{equation*}
$$

here $\zeta V \in \Gamma\left(\operatorname{ker} \varphi_{*}\right)$ and $\eta V \in \Gamma\left(\operatorname{ker} \varphi_{*}\right)^{\perp}$. Also, for $Y \in \Gamma\left(\operatorname{ker} \varphi_{*}\right)^{\perp}$, we get

$$
\begin{equation*}
J_{1} Y=\bar{\zeta} Y+\bar{\eta} Y \tag{14}
\end{equation*}
$$

here $\bar{\zeta} Y \in \Gamma\left(\operatorname{ker} \varphi_{*}\right)$ and $\bar{\eta} Y \in \Gamma\left(\operatorname{ker} \varphi_{*}\right)^{\perp}$. For $Z \in \varphi^{-1} T B_{2}$, we have

$$
\begin{equation*}
Z=\overline{Q_{1}} Z+\overline{Q_{2}} Z \tag{15}
\end{equation*}
$$

here $\overline{Q_{1}} Z \in \Gamma\left(\right.$ rangep $\left._{*}\right)$ and $\overline{Q_{2}} Z \in \Gamma\left(\text { range }_{*}\right)^{\perp}$. Then,

$$
\begin{equation*}
\left(\operatorname{ker} \varphi_{*}\right)^{\perp}=\eta \mathrm{D}^{\theta} \oplus v, \tag{16}
\end{equation*}
$$

here v is the orthogonal complement of $\eta \mathrm{D}^{\theta}$ in $\Gamma\left(\operatorname{ker} \varphi_{*}\right)^{\perp}$ and is invariant under J_{1}.
In addition to,

$$
\begin{gathered}
\zeta \mathrm{D}^{\top}=\mathrm{D}^{\top}, \eta \mathrm{D}^{\top}=0, \zeta \mathrm{D}^{\theta} \subset \mathrm{D}^{\theta}, \bar{\zeta}\left(\left(\operatorname{ker} \varphi_{*}\right)^{\perp}\right)=\mathrm{D}^{\theta} \\
\zeta^{2}+\bar{\zeta} \eta=-I, \bar{\eta}^{2}+\eta \bar{\zeta}=-I, \eta \zeta+\bar{\eta} \eta=0, \bar{\zeta} \bar{\eta}+\zeta \bar{\zeta}=0 .
\end{gathered}
$$

Also, if $\left(B_{1}, g_{B_{1}}, J_{1}\right)$ is Kaehler, for $V_{1}, V_{2} \in \Gamma\left(\operatorname{ker} \varphi_{*}\right)$, then it is easy to get

$$
\begin{align*}
& \left(\nabla_{V_{1}} \eta\right) V_{2}=\bar{\eta} T_{V_{1}} V_{2}-T_{V_{1}} \zeta V_{2} \tag{17}\\
& \left(\nabla_{U_{1}} \zeta\right) V_{2}=\bar{\zeta} T_{V_{1}} V_{2}-T_{V_{1}} \eta V_{2}, \tag{18}
\end{align*}
$$

here ∇ is the Levi-Civita connection on B_{1} and define

$$
\begin{align*}
& \left(\nabla_{V_{1}} \eta\right) V_{2}=h \nabla_{V_{1}} \eta V_{2}-\eta \hat{\nabla}_{V_{1}} V_{2} \tag{19}\\
& \left(\nabla_{V_{1}} \zeta\right) V_{2}=\hat{\nabla}_{V_{1}} \zeta V_{2}-\zeta \hat{\nabla}_{V_{1}} V_{2} . \tag{20}
\end{align*}
$$

Theorem 3.3. Let φ be a PSSR map from an almost Hermitian manifold $\left(B_{1}, g_{B_{1}}, J_{1}\right)$ to a Riemannian manifold $\left(B_{2}, g_{B_{2}}\right)$ with semi-slant function θ. Then, we have

$$
\begin{equation*}
\zeta^{2} V_{1}=-\left(\cos ^{2} \theta\right) V_{1}, V_{1} \in \Gamma\left(\mathrm{D}^{\theta}\right) . \tag{21}
\end{equation*}
$$

Proof. Since,

$$
\cos \theta=\frac{g_{B_{1}}\left(J_{1} V_{1}, \zeta V_{1}\right)}{\left|J_{1} V_{1}\right|\left|\zeta V_{1}\right|}=-\frac{g_{B_{1}}\left(V_{1}, \zeta^{2} V_{1}\right)}{\left|V_{1}\right|\left|\zeta V_{1}\right|}
$$

and $\cos \theta==\frac{\left|\zeta V_{1}\right|}{\left|V_{1} V_{1}\right|}$, for $V_{1} \in \Gamma\left(\mathrm{D}^{\theta}\right)$ we obtain

$$
\cos ^{2} \theta=-\frac{g_{B_{1}}\left(V_{1}, \zeta^{2} V_{1}\right)}{\left|V_{1}\right|^{2}}
$$

Hence,

$$
\zeta^{2} V_{1}=-\left(\cos ^{2} \theta\right) V_{1}
$$

Also, conversely, it can be directly verified.
Using (1), (13) and (21), for $V_{1}, V_{2} \in \Gamma\left(\mathrm{D}^{\theta}\right)$ we have

$$
\begin{gather*}
g_{B_{1}}\left(\zeta V_{1}, \zeta V_{2}\right)=\cos ^{2} \theta g_{B_{1}}\left(V_{1}, V_{2}\right) \tag{22}\\
g_{B_{1}}\left(\eta V_{1}, \eta V_{2}\right)=\sin ^{2} \theta g_{B_{1}}\left(V_{1}, V_{2}\right) \tag{23}
\end{gather*}
$$

When semi-slant function θ, locally we can write an orthonormal frame $\left\{X_{1}, J_{1} X_{1}, \ldots, X_{k}, J_{1} X_{k}, \bar{X}_{1}, \sec \theta \zeta \bar{X}_{1}\right.$, $\left.\csc \theta \eta \bar{X}_{1}, \ldots, \bar{X}_{s}, \sec \theta \zeta \bar{X}_{s}, \csc \theta \eta \bar{X}_{s}, \hat{X}_{1}, J_{1} \hat{X}_{1}, \ldots, \hat{X}_{t}, J_{1} \hat{X}_{t}\right\}$ of $T B_{1}$ such that $\left\{X_{1}, J_{1} X_{1}, \ldots, X_{k}, J_{1} X_{k}\right\}$ is an orthonormal frame of $\mathrm{D}^{\top},\left\{\bar{X}_{1}, \sec \theta \zeta \bar{X}_{1}, \ldots, \bar{X}_{s}, \sec \theta \zeta \bar{X}_{s}\right\}$ an orthonormal frame of $\mathrm{D}^{\theta},\left\{\csc \theta \eta \bar{X}_{1}, \ldots, \csc \theta \eta \bar{X}_{s}\right\}$ an orthonormal frame of $\eta \mathrm{D}^{\theta}$, and $\left\{\hat{X}_{1}, J_{1} \hat{X}_{1}, \ldots, \hat{X}_{t}, J_{1} \hat{X}_{t}\right\}$ an orthonormal frame of v.

Lemma 3.4. Let φ be a PSSR map from a Kaehler manifold $\left(B_{1}, g_{B_{1}}, J_{1}\right)$ to a Riemannian manifold $\left(B_{2}, g_{B_{2}}\right)$ with semi-slant function θ. If η is parallel, then $V_{1} \in \Gamma\left(\mathrm{D}^{\theta}\right)$ we get:

$$
\begin{equation*}
T_{\zeta V_{1}} \zeta V_{1}=-\cos ^{2} \theta T_{V_{1}} V_{1} \tag{24}
\end{equation*}
$$

Proof. Assume that η is parallel. Then, for $V_{1}, V_{2} \in \Gamma\left(\mathrm{D}^{\theta}\right)$ we obtain

$$
T_{V_{1}} \zeta V_{2}=\bar{\eta} T_{V_{1}} V_{2} .
$$

By replacing V_{1} and V_{2} we get

$$
T_{V_{2}} \zeta V_{1}=\bar{\eta} T_{V_{2}} V_{1} .
$$

So,

$$
T_{V_{2}} \zeta V_{1}=T_{V_{1}} \zeta V_{2} .
$$

If we write ζV_{1} instead of V_{2} and using (21), then the proof is completed.
The proof of the following Theorem is the same with Theorem 49 in [45].
Theorem 3.5. Let φ be a PSSR map from a Kaehler manifold $\left(B_{1}, g_{B_{1}}, J_{1}\right)$ to a Riemannian manifold $\left(B_{2}, g_{B_{2}}\right)$. Then, the distribution D^{\top} is integrable if and only if for $V_{1}, V_{2} \in \Gamma\left(\mathrm{D}^{\top}\right)$ we get

$$
\eta\left(\hat{\nabla}_{V_{1}} V_{2}-\hat{\nabla}_{V_{2}} V_{1}\right)=0
$$

Theorem 3.6. Let φ be a PSSR map from a Kaehler manifold $\left(B_{1}, g_{B_{1}}, J_{1}\right)$ to a Riemannian manifold $\left(B_{2}, g_{B_{2}}\right)$ such that D^{\top} is integrable. Then, φ is harmonic if and only if $\operatorname{trace}\left(\nabla \varphi_{*}\right)=0$ on D^{θ} and $\bar{H}=0$, here $\bar{H}=0$ denotes the mean curvature vector field of Γ (range φ_{*}).

Proof. Using (4), we get $\left.\operatorname{trace}\left(\nabla \varphi_{*}\right)\right|_{\left(\operatorname{ker} \varphi_{*}\right)} \in \Gamma\left(\operatorname{range} \varphi_{*}\right)$ and $\left.\operatorname{trace}\left(\nabla \varphi_{*}\right)\right|_{\left(\operatorname{ker} \varphi_{*}\right)^{\perp}} \in \Gamma\left(\operatorname{range} \varphi_{*}\right)^{\perp}$ so that

$$
\operatorname{trace}\left(\nabla \varphi_{*}\right)=\left.0 \Leftrightarrow \operatorname{trace}\left(\nabla \varphi_{*}\right)\right|_{\left(\operatorname{ker} \varphi_{*}\right)}=0,\left.\operatorname{trace}\left(\nabla \varphi_{*}\right)\right|_{\left(\operatorname{ker} \varphi_{*}\right)^{\perp}}=0 .
$$

Since D^{\top} is invariant under J_{1}, locally we can write an orthonormal frame $\left\{X_{1}, J_{1} X_{1}, \ldots, X_{p}, J_{1} X_{p}\right\}$ of D^{\top}. Using the integrability of D^{\top},

$$
\begin{aligned}
\left(\nabla \varphi_{*}\right)\left(J_{1} X_{j}, J_{1} X_{j}\right) & =-\varphi_{*} \nabla_{J_{1} X_{j}} J_{1} X_{j}=-\varphi_{*} J_{1}\left(\nabla_{X_{j}} J_{1} X_{j}+\left[J_{1} X_{j}, X_{j}\right]\right) \\
& =\varphi_{*} \nabla_{X_{j}} X_{j}=-\left(\nabla \varphi_{*}\right)\left(X_{j}, X_{j}\right), 1 \leq j \leq p
\end{aligned}
$$

So,

$$
\left.\operatorname{trace}\left(\nabla \varphi_{*}\right)\right|_{\left(\operatorname{ker} \varphi_{*}\right)}=\left.0 \Leftrightarrow \operatorname{trace}\left(\nabla \varphi_{*}\right)\right|_{D^{\theta}}=0 .
$$

Furthermore, it is easy to get that

$$
\left.\operatorname{trace}\left(\nabla \varphi_{*}\right)\right|_{\left(\operatorname{ker} \varphi_{*}\right)^{\perp}}=k \bar{H}, k=\operatorname{dim}\left(\operatorname{ker} \varphi_{*}\right)^{\perp}
$$

so that

$$
\left.\operatorname{trace}\left(\nabla \varphi_{*}\right)\right|_{\left(\operatorname{ker} \varphi_{*}\right)^{\perp}}=0 \Leftrightarrow \bar{H}=0 .
$$

Thus, we have the result.
Using (24), we have:
Corollary 3.7. Let φ be a PSSR map from a Kaehler manifold $\left(B_{1}, g_{B_{1}}, J_{1}\right)$ to a Riemannian manifold $\left(B_{2}, g_{B_{2}}\right)$ such that D^{\top} is integrable and the semi-slant function θ. Assume that the tensor η is parallel. Then, φ is harmonic if and only if $\bar{H}=0$.

Theorem 3.8. Let φ be a PSSR map from a Kaehler manifold $\left(B_{1}, g_{B_{1}}, J_{1}\right)$ to a Riemannian manifold $\left(B_{2}, g_{B_{2}}\right)$ with the semi-slant function θ. Then, D^{\top} defines a totally geodesic foliation on B_{1} if and only if

$$
\begin{equation*}
g_{B_{1}}\left(\hat{\nabla}_{U_{1}} J_{1} U_{2}, \bar{\zeta} Y\right)=g_{B_{2}}\left(\left(\nabla \varphi_{*}\right)\left(U_{1}, J_{1} U_{2}\right), \varphi_{*} \bar{\eta} Y\right) \tag{25}
\end{equation*}
$$

and

$$
\begin{equation*}
-\cos ^{2} \theta g_{B_{1}}\left(\hat{\nabla}_{U_{1}} U_{2}, U_{3}\right)=g_{B_{2}}\left(\left(\nabla \varphi_{*}\right)\left(U_{1}, U_{2}\right), \varphi_{*} \eta \zeta U_{3}\right)+g_{B_{1}}\left(T_{U_{1}} J_{1} U_{2}, \eta U_{3}\right) \tag{26}
\end{equation*}
$$

for $U_{1}, U_{2} \in \Gamma\left(\mathrm{D}^{\top}\right), U_{3} \in \Gamma\left(\mathrm{D}^{\theta}\right)$ and $Y \in \Gamma\left(\operatorname{ker} \varphi_{*}\right)^{\perp}$.

Proof. For any $U_{1}, U_{2} \in \Gamma\left(\mathrm{D}^{\top}\right)$ and $Y \in \Gamma\left(\operatorname{ker} \varphi_{*}\right)^{\perp}$, we get:

$$
\begin{align*}
g_{B_{1}}\left(\nabla_{U_{1}} U_{2}, Y\right) & =g_{B_{1}}\left(\nabla_{U_{1}} J_{1} U_{2}, J_{1} Y\right) \\
& =g_{B_{1}}\left(\nabla_{U_{1}} J_{1} U_{2}, \bar{\zeta} Y\right)+g_{B_{1}}\left(\nabla \nabla_{U_{1}} J_{1} U_{2}, \bar{\eta} Y\right) \\
& =g_{B_{1}}\left(\hat{\nabla}_{U_{1}} J_{1} U_{2}, \bar{\zeta} Y\right)-g_{B_{2}}\left(\left(\nabla \varphi_{*}\right)\left(U_{1}, J_{1} U_{2}\right), \varphi_{*} \bar{\eta} Y\right) . \tag{27}
\end{align*}
$$

Moreover, for all $U_{1}, U_{2} \in \Gamma\left(\mathrm{D}^{\top}\right)$ and $U_{3} \in \Gamma\left(\mathrm{D}^{\theta}\right)$ we obtain:

$$
\begin{align*}
g_{B_{1}}\left(\nabla_{U_{1}} U_{2}, U_{3}\right) & =g_{B_{1}}\left(\nabla_{U_{1}} J_{1} U_{2}, J_{1} U_{3}\right) \\
& =\cos ^{2} \theta g_{B_{1}}\left(\hat{\nabla}_{U_{1}} U_{2}, U_{3}\right)+g_{B_{2}}\left(\left(\nabla \varphi_{*}\right)\left(U_{1}, U_{2}\right), \varphi_{*} \eta \zeta U_{3}\right) \\
& +g_{B_{1}}\left(\mathrm{~T}_{U_{1}} J_{1} U_{2}, \eta U_{3}\right) \tag{28}
\end{align*}
$$

So the proof comes from (27) and (28).
Theorem 3.9. Let φ be a PSSR map from a Kaehler manifold $\left(B_{1}, g_{B_{1}}, J_{1}\right)$ to a Riemannian manifold $\left(B_{2}, g_{B_{2}}\right)$ with the semi-slant function θ. Then, D^{θ} defines a totally geodesic foliation on B_{1} if and only if

$$
\begin{align*}
\sin ^{2} \theta g_{B_{1}}\left(\left[U_{1}, Y\right], U_{2}\right) & =\sin 2 \theta Y(\theta) g_{B_{1}}\left(U_{1}, U_{2}\right) \\
& +g_{B_{1}}\left(\mathrm{~A}_{Y} \eta \zeta U_{1}, U_{2}\right)-g_{B_{1}}\left(\mathrm{~A}_{\Upsilon} \eta U_{1}, \zeta U_{2}\right) \\
& -g_{B_{2}}\left(\varphi_{*} h \nabla_{Y} \eta U_{1}, \varphi_{*} \eta U_{2}\right) \tag{29}
\end{align*}
$$

and

$$
\begin{equation*}
g_{B_{1}}\left(\mathrm{~T}_{U_{1}} \eta \zeta U_{2}, U_{3}\right)=g_{B_{1}}\left(\mathrm{~T}_{U_{1}} \eta U_{2}, J_{1} U_{3}\right) \tag{30}
\end{equation*}
$$

for $U_{1}, U_{2} \in \Gamma\left(\mathrm{D}^{\theta}\right), U_{3} \in \Gamma\left(\mathrm{D}^{\top}\right)$ and $Y \in \Gamma\left(\operatorname{ker} \varphi_{*}\right)^{\perp}$.
Proof. For any $U_{1}, U_{2} \in \Gamma\left(\mathrm{D}^{\theta}\right)$ and $Y \in \Gamma\left(\operatorname{ker} \varphi_{*}\right)^{\perp}$, we obtain:

$$
\begin{aligned}
g_{B_{1}}\left(\nabla_{U_{1}} U_{2}, Y\right) & =-g_{B_{1}}\left(\left[U_{1}, Y\right], U_{2}\right)-g_{B_{1}}\left(\nabla_{Y} \zeta U_{1}, J_{1} U_{2}\right) \\
& -g_{B_{1}}\left(\nabla_{Y} \eta U_{1}, J_{1} U_{2}\right) .
\end{aligned}
$$

From (21), we have

$$
\begin{align*}
\sin ^{2} \theta g_{B_{1}}\left(\nabla_{U_{1}} U_{2}, Y\right) & =-\sin ^{2} \theta g_{B_{1}}\left(\left[U_{1}, Y\right], U_{2}\right)+\sin 2 \theta Y(\theta) g_{B_{1}}\left(U_{1}, U_{2}\right) \\
& +g_{B_{1}}\left(\mathrm{~A}_{Y} \eta \zeta U_{1}, U_{2}\right)-g_{B_{1}}\left(\mathrm{~A}_{Y} \eta U_{1}, \zeta U_{2}\right) \\
& -g_{B_{2}}\left(\varphi_{*} h \nabla_{Y} \eta U_{1}, \varphi_{*} \eta U_{2}\right) \tag{31}
\end{align*}
$$

Additionally, for all $U_{1}, U_{2} \in \Gamma\left(\mathrm{D}^{\theta}\right)$ and $U_{3} \in \Gamma\left(\mathrm{D}^{\top}\right)$, we get:

$$
g_{B_{1}}\left(\nabla_{U_{1}} U_{2}, U_{3}\right)=g_{B_{1}}\left(\nabla_{U_{1}} J_{1} U_{2}, J_{1} U_{3}\right)
$$

By using (9),(13) and (21), we arrive at

$$
\begin{equation*}
\sin ^{2} \theta g_{B_{1}}\left(\nabla_{U_{1}} U_{2}, U_{3}\right)=-g_{B_{1}}\left(\mathrm{~T}_{U_{1}} \eta \zeta U_{2}, U_{3}\right)+g_{B_{1}}\left(\mathrm{~T}_{U_{1}} \eta U_{2}, J_{1} U_{3}\right) \tag{32}
\end{equation*}
$$

Thus, the proof comes from (31) and (32).
Theorem 3.10. Let φ be a PSSR map from a Kaehler manifold $\left(B_{1}, g_{B_{1}}, J_{1}\right)$ to a Riemannian manifold $\left(B_{2}, g_{B_{2}}\right)$ with the semi-slant function θ. Then, the space $k e r \varphi_{*}$ defines a totally geodesic foliation on B_{1} if and only if

$$
\begin{align*}
g_{B_{1}}\left(\mathrm{~A}_{Y} J_{1} Q_{2} U_{1}, J_{1} U_{2}\right) & =-\sin ^{2} \theta g_{B_{1}}\left(\left[U_{1}, Y\right], U_{2}\right)+\cos ^{2} \theta g_{B_{1}}\left(v \nabla_{Y} Q_{2} U_{1}, U_{2}\right) \\
& +\sin 2 \theta Y(\theta) g_{B_{1}}\left(Q_{1} U_{1}, U_{2}\right)+g_{B_{1}}\left(\mathrm{~A}_{\curlyvee} \eta \zeta Q_{1} U_{1}, U_{2}\right) \\
& -g_{B_{1}}\left(\mathrm{~A}_{Y} \eta Q_{1} U_{1}, J_{1} U_{2}\right)-g_{B_{1}}\left(h \nabla_{Y} \eta Q_{1} U_{1}, J_{1} U_{2}\right) \\
& -g_{B_{1}}\left(v \nabla_{Y} J_{1} Q_{2} U_{1}, J_{1} U_{2}\right) . \tag{33}
\end{align*}
$$

for $U_{1}, U_{2} \in \Gamma\left(\operatorname{ker} \varphi_{*}\right)$ and $Y \in \Gamma\left(\operatorname{ker} \varphi_{*}\right)^{\perp}$.
Proof. For any $U_{1}, U_{2} \in \Gamma\left(\operatorname{ker} \varphi_{*}\right)$ and $Y \in\left(\operatorname{ker} \varphi_{*}\right)^{\perp}$, from (1),(2) and (12), we get

$$
\begin{aligned}
g_{B_{1}}\left(\nabla_{U_{1}} U_{2}, Y\right) & =-g_{B_{1}}\left(\left[U_{1}, Y\right], U_{2}\right)-g_{B_{1}}\left(\nabla_{Y} J_{1} Q_{1} U_{1}, J_{1} U_{2}\right) \\
& -g_{B_{1}}\left(\nabla_{Y} J_{1} Q_{2} U_{1}, J_{1} U_{2}\right) .
\end{aligned}
$$

By using (13) and (21), we have

$$
\begin{aligned}
g_{B_{1}}\left(\nabla_{U_{1}} U_{2}, Y\right) & =-g_{B_{1}}\left(\left[U_{1}, Y\right], U_{2}\right)-\cos ^{2} \theta g_{B_{1}}\left(\nabla_{Y} Q_{1} U_{1}, U_{2}\right) \\
& +\sin 2 \theta Y(\theta) g_{B_{1}}\left(Q_{1} U_{1}, U_{2}\right)+g_{B_{1}}\left(\nabla_{Y} \eta \zeta Q_{1} U_{1}, U_{2}\right) \\
& -g_{B_{1}}\left(\nabla_{Y} \eta Q_{1} U_{1}, J_{1} U_{2}\right)-g_{B_{1}}\left(\nabla_{Y} J_{1} Q_{2} U_{1}, J_{1} U_{2}\right) .
\end{aligned}
$$

By using (10) and (11), we obtain

$$
\begin{aligned}
\sin ^{2} \theta g_{B_{1}}\left(\nabla_{U_{1}} U_{2}, Y\right) & =-\sin ^{2} \theta g_{B_{1}}\left(\left[U_{1}, Y\right], U_{2}\right)+\cos ^{2} \theta g_{B_{1}}\left(v \nabla_{Y} Q_{2} U_{1}, U_{2}\right) \\
& +\sin 2 \theta Y(\theta) g_{B_{1}}\left(Q_{1} U_{1}, U_{2}\right)+g_{B_{1}}\left(\mathrm{~A}_{Y} \eta \zeta Q_{1} U_{1}, U_{2}\right) \\
& -g_{B_{1}}\left(\mathrm{~A}_{Y} \eta Q_{1} U_{1}, J_{1} U_{2}\right)-g_{B_{1}}\left(h \nabla_{Y} \eta Q_{1} U_{1}, J_{1} U_{2}\right) \\
& -g_{B_{1}}\left(\mathrm{~A}_{Y} J_{1} Q_{2} U_{1}, J_{1} U_{2}\right)-g_{B_{1}}\left(v \nabla_{Y} J_{1} Q_{2} U_{1}, J_{1} U_{2}\right) .
\end{aligned}
$$

Theorem 3.11. Let φ be a PSSR map from a Kaehler manifold $\left(B_{1}, g_{B_{1}}, J_{1}\right)$ to a Riemannian manifold $\left(B_{2}, g_{B_{2}}\right)$ with the semi-slant function θ. Then, the space $\left(\operatorname{ker} \varphi_{*}\right)^{\perp}$ defines a totally geodesic foliation on B_{1} if and only if

$$
\begin{equation*}
v \nabla_{U_{1}} \bar{\zeta} U_{2}=-\mathrm{A}_{U_{1}} \bar{\eta} U_{2} \tag{34}
\end{equation*}
$$

and

$$
\begin{align*}
g_{B_{2}}\left(\nabla_{U_{1}} \varphi_{*}\left(\eta V_{2}\right), \varphi_{*} \bar{\eta} U_{2}\right) & =g_{B_{2}}\left(\nabla_{U_{1}} \varphi_{*}\left(\eta \zeta V_{2}\right), \varphi_{*} U_{2}\right) \\
& -g_{B_{1}}\left(\mathrm{~A}_{U_{1}} \eta V_{2}, \bar{\zeta} U_{2}\right) . \tag{35}
\end{align*}
$$

for $V_{2} \in \Gamma\left(\mathrm{D}^{\theta}\right), V_{1} \in \Gamma\left(\mathrm{D}^{\top}\right)$ and $U_{1}, U_{2} \in \Gamma\left(\operatorname{ker} \varphi_{*}\right)^{\perp}$.
Proof. For any $V_{1} \in \Gamma\left(\mathrm{D}^{\top}\right)$ and $U_{1}, U_{2} \in \Gamma\left(\operatorname{ker} \varphi_{*}\right)^{\perp}$, from (1), (2), (10), (11) and (14), we get

$$
\begin{equation*}
g_{B_{1}}\left(\nabla_{U_{1}} U_{2}, V_{1}\right)=g_{B_{1}}\left(v \nabla_{U_{1}} \bar{\zeta} U_{2}+\mathrm{A}_{U_{1}} \bar{\eta} U_{2}, J_{1} V_{1}\right) . \tag{36}
\end{equation*}
$$

Also, for $V_{2} \in \Gamma\left(\mathrm{D}^{\theta}\right)$, by using (21) we have

$$
\begin{aligned}
\sin ^{2} \theta g_{B_{1}}\left(\nabla_{U_{1}} U_{2}, V_{2}\right) & =g_{B_{1}}\left(h \nabla_{U_{1}} \eta \zeta V_{2}, U_{2}\right)-g_{B_{1}}\left(h \nabla_{U_{1}} \eta V_{2}, \bar{\eta} U_{2}\right) \\
& -g_{B_{1}}\left(\mathrm{~A}_{U_{1}} \eta V_{2}, \bar{\zeta} U_{2}\right) .
\end{aligned}
$$

By using (3)and (4) we obtain

$$
\begin{align*}
\sin ^{2} \theta g_{B_{1}}\left(\nabla_{U_{1}} U_{2}, V_{2}\right) & =g_{B_{2}}\left(\nabla_{U_{1}} \varphi_{*}\left(\eta \zeta V_{2}\right), \varphi_{*} U_{2}\right)-g_{B_{2}}\left(\nabla_{U_{1}} \varphi_{*}\left(\eta V_{2}\right), \varphi_{*} \bar{\eta} U_{2}\right) \\
& -g_{B_{1}}\left(\mathrm{~A}_{U_{1}} \eta V_{2}, \bar{\zeta} U_{2}\right) . \tag{37}
\end{align*}
$$

So, (36) and (37) complete proof.

4. Chen-Ricci inequality

Let $\left(B_{1}, g_{B_{1}}, J_{1}\right)$ be a Kaehler manifold. The Riemannian-Christoffel curvature tensor of a complex space form $B_{1}(v)$ of constant holomorphic sectional curvature v satisfies

$$
\begin{align*}
R_{\mathcal{B}_{1}}\left(Y_{1}, Y_{2}, \boldsymbol{y}_{3}, \boldsymbol{y}_{4}\right) & =\frac{v}{4}\left\{g_{\mathcal{B}_{1}}\left(Y_{1}, \boldsymbol{y}_{4}\right) g_{\mathcal{B}_{1}}\left(Y_{2}, \boldsymbol{y}_{3}\right)-g_{\mathcal{B}_{1}}\left(Y_{1}, \boldsymbol{y}_{3}\right) g_{\mathcal{B}_{1}}\left(Y_{2}, \boldsymbol{y}_{4}\right)\right. \\
& +g_{\mathcal{B}_{1}}\left(Y_{1}, J_{1} \boldsymbol{y}_{3}\right) g_{\mathcal{B}_{1}}\left(J_{2} Y_{2}, \boldsymbol{y}_{4}\right)-g_{\mathcal{B}_{1}}\left(Y_{2}, J_{1} \boldsymbol{y}_{3}\right) g_{\mathcal{B}_{1}}\left(J_{1} Y_{1}, \boldsymbol{y}_{4}\right) \\
& \left.+2 g_{\mathcal{B}_{1}}\left(Y_{1}, J_{1} Y_{2}\right) g_{\mathcal{B}_{1}}\left(J_{1} \boldsymbol{y}_{3}, \boldsymbol{y}_{4}\right)\right\} \tag{38}
\end{align*}
$$

for all vector fields $Y_{1}, Y_{2}, Y_{3}, Y_{4} \in \Gamma\left(T B_{1}\right)([58])$.
Let $\left(B_{1}^{b_{1}}(v), g_{B_{1}}, J_{1}\right)$ be a complex space form, $\left(B_{2}, g_{B_{2}}\right)$ a Riemannian manifold and $\varphi: B_{1}(v) \rightarrow B_{2}$ be a PSSR map with $\left(\text { rangep }_{*}\right)^{\perp}=\{0\}$ and $\operatorname{dim}\left(\operatorname{ker} \varphi_{*}\right)=p=2 k_{1}+2 k_{2}$. For every $q \in B_{1}$, we consider $\left\{X_{1}, X_{2}=J_{1} X_{1}, \ldots, X_{2 k_{1}-1}, X_{2 k_{1}}=J_{1} X_{2 k_{1}-1}, X_{2 k_{1}+1}, X_{2 k_{1}+2}=\sec \theta \zeta X_{2 k_{1}+1 \ldots,} X_{2 k_{1}+2 k_{2}-1}, X_{p}=\sec \theta \zeta X_{2 k_{1}+2 k_{2}-1}\right\}$ and $\left\{X_{p+1}, X_{p+2}, \ldots, X_{b_{1}}\right\}$ two orthonormal bases of $\left(\operatorname{ker} \varphi_{*}\right)$ and $\left(\operatorname{ker} \varphi_{*}\right)^{\perp}$, respectively. One can get easily,

$$
g_{B_{1}}^{2}\left(J_{1} X_{k}, X_{k+1}\right)= \begin{cases}1, & \text { for } k \in\left\{1,2, \ldots, 2 k_{1}-1\right\} \\ \cos ^{2} \theta, & \text { for } k \in\left\{2 k_{1}+1, \ldots, 2 k_{1}+2 k_{2}-1\right\}\end{cases}
$$

Then

$$
\begin{equation*}
\sum_{k, s=1}^{p} g_{B_{1}}^{2}\left(J_{1} X_{k}, X_{k+1}\right)=2\left(k_{1}+k_{2} \cos ^{2} \theta\right) \tag{39}
\end{equation*}
$$

Let's denote $\mathcal{T}_{k s}^{\alpha}$ by

$$
\begin{equation*}
\mathcal{T}_{k s}^{\alpha}=g_{B_{1}}\left(\mathcal{T}_{X_{k}} X_{s}, X_{\alpha}\right) \tag{40}
\end{equation*}
$$

where $1 \leq k, s \leq p$ and $p+1 \leq \alpha \leq b_{1}$.
Now, for $\operatorname{ker} \varphi_{*}$ using (1.27) of [22] and (38) , since φ is a PSSR map with $\left(\text { range }_{*}\right)^{\perp}=\{0\}$ then, for each unit vector $F_{1} \in \Gamma\left(\operatorname{ker} \varphi_{*}\right)$ we arrive at

$$
\begin{align*}
\operatorname{Ric}^{\operatorname{kerp}_{*}}\left(F_{1}\right) & =\frac{v}{4}\left[p+2+3 \cos ^{2} \theta\right] \\
& -p g_{1}\left(\mathcal{T}_{F_{1}} F_{1}, \mathcal{H}\right)+\sum_{k=1}^{p} g_{1}\left(\mathcal{T}_{X_{k}} F_{1}, \mathcal{T}_{F_{1}} X_{k}\right), \tag{41}
\end{align*}
$$

here \mathcal{H} is the mean curvature vector field of the fiber.
From here, we get:
Theorem 4.1. Let $\varphi:\left(B_{1}(v), g_{B_{1}}\right) \rightarrow\left(B_{2}, g_{B_{2}}\right)$ be a PSSR map with $\left(\text { range } \varphi_{*}\right)^{\perp}=\{0\}$. Then, we have

$$
\begin{equation*}
\operatorname{Ric}^{\text {ker } \varphi_{*}}\left(F_{1}\right) \geq \frac{v}{4}\left[p+2+3 \cos ^{2} \theta\right]-p g_{B_{1}}\left(\mathcal{T}_{F_{1}} F_{1}, \mathcal{H}\right) \tag{42}
\end{equation*}
$$

For a unit vertical vector $F_{1} \in \Gamma\left(\operatorname{ker} \varphi_{*}\right)$, the equality status of the inequality satisfies if and only if every fibre is totally geodesic.

By polarization, using (41), we obtain:
Theorem 4.2. Let $\varphi:\left(B_{1}(v), g_{B_{1}}\right) \rightarrow\left(B_{2}, g_{B_{2}}\right)$ be a PSSR map with $\left(\text { range } \varphi_{*}\right)^{\perp}=\{0\}$. Then, the Ricci tensor $S^{k e r \varphi_{*}}$ on $k e r \varphi_{*}$ satisfies

$$
\begin{equation*}
S^{\operatorname{kerp}_{*}}\left(F_{1}, F_{2}\right) \geq \frac{v}{4}\left[p+2+3 \cos ^{2} \theta\right] g_{B_{1}}\left(F_{1}, F_{2}\right)-p g_{B_{1}}\left(\mathcal{T}_{F_{1}} F_{2}, \mathcal{H}\right) \tag{43}
\end{equation*}
$$

For $F_{1}, F_{2} \in \Gamma\left(\operatorname{ker} \varphi_{*}\right)$, the equality status of the inequality satisfies if and only if every fibre is totally geodesic.
Similarly, for $k e r \varphi_{*}$ using (1.27) of [22] and (38), we obtain

$$
\begin{align*}
2 \rho^{k e r \varphi_{*}} & =\frac{v}{4}\left[p(p-1)+6\left(k_{1}+k_{2} \cos ^{2} \theta\right)\right] \\
& -p^{2}\|\mathcal{H}\|^{2}+\sum_{k, s=1}^{p} g_{1}\left(\mathcal{T}_{X_{k}} X_{s}, \mathcal{T}_{X_{k}} X_{s}\right), \tag{44}
\end{align*}
$$

here $\rho^{k e r \varphi_{*}}=\sum_{1 \leq k<s \leq p} R^{k e r \varphi_{*}}\left(X_{k}, X_{s}, X_{s}, X_{k}\right)$.
Therefore, we can state the following result.
Theorem 4.3. Let $\varphi:\left(B_{1}(v), g_{B_{1}}\right) \rightarrow\left(B_{2}, g_{B_{2}}\right)$ be a PSSR map with $\left(\text { range }_{*}\right)^{\perp}=\{0\}$. Then, we have

$$
\begin{equation*}
2 \rho^{k e r \varphi_{*}} \geq \frac{v}{4}\left[p(p-1)+6\left(k_{1}+k_{2} \cos ^{2} \theta\right)\right]-p^{2}\|\mathcal{H}\|^{2} \tag{45}
\end{equation*}
$$

the equality status of the inequality satisfies if and only if every fibre is totally geodesic.
Now, we give Chen-Ricci inequality on $\operatorname{ker} \varphi_{*}$ for a PSSR map with $\left(\operatorname{range} \varphi_{*}\right)^{\perp}=\{0\}$.
By using (7), (40) and (44), we arrive at

$$
\begin{align*}
2 \rho^{k e r \varphi_{*}} & =\frac{v}{4}\left[p(p-1)+6\left(k_{1}+k_{2} \cos ^{2} \theta\right)\right] \\
& -p^{2}\|\mathcal{H}\|^{2}+\sum_{\alpha=p+1}^{b_{1}} \sum_{k, s=1}^{p}\left(\mathcal{T}_{k s}^{\alpha}\right)^{2} \tag{46}
\end{align*}
$$

From [21], we know that

$$
\begin{align*}
\sum_{\alpha=p+1}^{b_{1}} \sum_{k, s=1}^{p}\left(\mathcal{T}_{k s}^{\alpha}\right)^{2}= & \frac{1}{2} p^{2}\|\mathcal{H}\|^{2}+\frac{1}{2} \sum_{\alpha=p+1}^{b_{1}}\left[\mathcal{T}_{11}^{\alpha}-\mathcal{T}_{22}^{\alpha}-\ldots-\mathcal{T}_{p p}^{\alpha}\right]^{2}+2 \sum_{\alpha=p+1}^{b_{1}} \sum_{s=2}^{p}\left(\mathcal{T}_{1 s}^{\alpha}\right)^{2} \\
& -2 \sum_{\alpha=p+1}^{b_{1}} \sum_{2 \leq k<s \leq p}^{p}\left[\mathcal{T}_{k k}^{\alpha} \mathcal{T}_{s s}^{\alpha}-\left(\mathcal{T}_{k s}^{\alpha}\right)^{2}\right] . \tag{47}
\end{align*}
$$

If we put (47) in (46), we obtain

$$
\begin{aligned}
2 p^{k e r \varphi_{*}}= & \frac{v}{4}\left[p(p-1)+6\left(k_{1}+k_{2} \cos ^{2} \theta\right)\right] \\
- & \frac{1}{2} p^{2}\|\mathcal{H}\|^{2}+\frac{1}{2} \sum_{\alpha=p+1}^{b_{1}}\left[\mathcal{T}_{11}^{\alpha}-\mathcal{T}_{22}^{\alpha}-\ldots-\mathcal{T}_{p p}^{\alpha}\right]^{2} \\
& +2 \sum_{\alpha=p+1}^{b_{1}} \sum_{s=2}^{p}\left(\mathcal{T}_{1 s}^{\alpha}\right)^{2}-2 \sum_{\alpha=p+1}^{b_{1}} \sum_{2 \leq k<s \leq p}^{p}\left[\mathcal{T}_{k k}^{\alpha} \mathcal{T}_{s s}^{\alpha}-\left(\mathcal{T}_{k s}^{\alpha}\right)^{2}\right] .
\end{aligned}
$$

From here, we get

$$
\begin{align*}
& 2 \rho^{k e r \varphi_{*}} \geq \frac{v}{4}\left[p(p-1)+6\left(k_{1}+k_{2} \cos ^{2} \theta\right)\right] \\
&-\frac{1}{2} p^{2}\|\mathcal{H}\|^{2}-2 \sum_{\alpha=p+1}^{b_{1}} \sum_{2 \leq k<s \leq p}^{p}\left[\mathcal{T}_{k k}^{\alpha} \mathcal{T}_{s s}^{\alpha}-\left(\mathcal{T}_{k s}^{\alpha}\right)^{2}\right] . \tag{48}
\end{align*}
$$

On the other hand, using (1.27) of [22], taking $U=W=X_{k}, V=F=X_{s}$ and from (40), we have

$$
\begin{array}{r}
2 \sum_{2 \leq k<s \leq p} R^{B_{1}}\left(X_{k}, X_{s}, X_{s}, X_{k}\right)=2 \sum_{2 \leq k<s \leq p} R^{k e r \varphi_{*}}\left(X_{k}, X_{s}, X_{s}, X_{k}\right) \\
+2 \sum_{\alpha=p+1}^{b_{1}} \sum_{2 \leq k<s \leq p}^{p}\left[\mathcal{T}_{k k}^{\alpha} \mathcal{T}_{s s}^{\alpha}-\left(\mathcal{T}_{k s}^{\alpha}\right)^{2}\right] .
\end{array}
$$

From the last equality, (48) can be written as

$$
\begin{array}{r}
2 \rho^{k e r \varphi_{*}} \geq \frac{v}{4}\left[p(p-1)+6\left(k_{1}+k_{2} \cos ^{2} \theta\right)\right]-\frac{1}{2} p^{2}\|\mathcal{H}\|^{2} \\
+2 \sum_{2 \leq k<s \leq p} R^{k e r \varphi_{*}}\left(X_{k}, X_{s}, X_{s}, X_{k}\right)-2 \sum_{2 \leq k<s \leq p} R^{B_{1}}\left(X_{k}, X_{s}, X_{s}, X_{k}\right) . \tag{49}
\end{array}
$$

Also, using the equality

$$
2 \rho^{k e r \varphi_{*}}=2 \sum_{2 \leq k<s \leq p} R^{k e r \varphi_{*}}\left(X_{k}, X_{s}, X_{s}, X_{k}\right)+2 \sum_{s=1}^{p} R^{k e r \varphi_{*}}\left(X_{1}, X_{s}, X_{s}, X_{1}\right) .
$$

If we put the last equality in (49), then we have

$$
\begin{aligned}
& 2 \text { Ric }^{\text {ker } \varphi_{*}}\left(X_{1}\right) \geq \frac{v}{4}\left[p(p-1)+6\left(k_{1}+k_{2} \cos ^{2} \theta\right)\right] \\
& -\frac{1}{2} p^{2}\|\mathcal{H}\|^{2}-2 \sum_{2 \leq k<s \leq p} R^{B_{1}}\left(X_{k}, X_{s}, X_{s}, X_{k}\right)
\end{aligned}
$$

Since B_{1} is a complex space form, curvature tensor $R^{B_{1}}$ of B_{1} provides equation (38), therefore we acquire

$$
\operatorname{Ric}^{k e r \varphi_{*}}\left(X_{1}\right) \geq \frac{v}{4}(p-1)+\frac{3 v}{4}\left(1+\cos ^{2} \theta\right)-\frac{1}{4} p^{2}\|\mathcal{H}\|^{2} .
$$

Thus, we can give the following result:
Theorem 4.4. Let $\varphi: B_{1}(v) \rightarrow B_{2}$ be a PSSR map from a complex space form $\left(B_{1}(v), g_{B_{1}}\right)$ onto a Riemannian manifold $\left(B_{2}, g_{B_{2}}\right)$ with $\left(\text { range } \varphi_{*}\right)^{\perp}=\{0\}$. Then we have

$$
\operatorname{Ric}^{k e r \varphi_{*}}\left(X_{1}\right) \geq \frac{v}{4}(p-1)+\frac{3 v}{4}\left(1+\cos ^{2} \theta\right)-\frac{1}{4} p^{2}\|\mathcal{H}\|^{2}
$$

The equality status of the inequality satisfies if and only if

$$
\begin{gathered}
\mathcal{T}_{11}^{\alpha}=\mathcal{T}_{22}^{\alpha}+\ldots+\mathcal{T}_{p p}^{\alpha} \\
\mathcal{T}_{1 s}^{\alpha}=0, s=2, \ldots, p .
\end{gathered}
$$

Corollary 4.5. Let $\varphi: B_{1}(v) \rightarrow B_{2}$ be a PSSR map from a complex space form $\left(B_{1}(v), g_{B_{1}}\right)$ onto a Riemannian manifold $\left(B_{2}, g_{B_{2}}\right)$ with $\left(\text { range }_{*}\right)^{\perp}=\{0\}$ and the semi-slant function $\theta=\frac{\pi}{2}$. Then we get

$$
\operatorname{Ric}^{\text {ker }_{*}}\left(X_{1}\right) \geq \frac{v}{4}(p+2)-\frac{1}{4} p^{2}\|\mathcal{H}\|^{2}
$$

The equality status of the inequality satisfies if and only if

$$
\begin{gathered}
\mathcal{T}_{11}^{\alpha}=\mathcal{T}_{22}^{\alpha}+\ldots+\mathcal{T}_{p p}^{\alpha} \\
\mathcal{T}_{1 s}^{\alpha}=0, s=2, \ldots, p
\end{gathered}
$$

Corollary 4.6. Let $\varphi: B_{1}(v) \rightarrow B_{2}$ be a PSSR map from a complex space form $\left(B_{1}(v), g_{B_{1}}\right)$ onto a Riemannian manifold $\left(B_{2}, g_{B_{2}}\right)$ with $\left(\text { range } \varphi_{*}\right)^{\perp}=\{0\}$ and the semi-slant function $\theta=0$. Then we obtain

$$
\operatorname{Ric}^{k e r \varphi_{*}}\left(X_{1}\right) \geq \frac{v}{4}(p+5)-\frac{1}{4} p^{2}\|\mathcal{H}\|^{2}
$$

The equality status of the inequality satisfies if and only if

$$
\begin{gathered}
\mathcal{T}_{11}^{\alpha}=\mathcal{T}_{22}^{\alpha}+\ldots+\mathcal{T}_{p p}^{\alpha} \\
\mathcal{T}_{1 s}^{\alpha}=0, s=2, \ldots, p .
\end{gathered}
$$

5. Casorati curvatures

The following lemma plays a key role in the proof of our theorem:
Lemma 5.1. Let $W=\left\{\left(y_{1}, y_{2}, \ldots, y_{m}\right) \in R^{m}: y_{1}+y_{2}+\ldots+y_{m}=z\right\}$ be a hyperplane of R^{m}, and $g: R^{m} \rightarrow R$ a quadratic form given by

$$
g\left(y_{1}, y_{2}, \ldots, y_{m}\right)=c \sum_{k=1}^{m-1}\left(y_{k}\right)^{2}+d\left(y_{m}\right)^{2}-2 \Sigma_{1 \leq k<s \leq m} y_{k} y_{s}, c>0, d>0 .
$$

Then the constrained extremum problem $\min _{\left(y_{1}, y_{2}, \ldots, y_{m}\right) \in W} g$ has the following solution:

$$
y_{1}=y_{2}=\ldots=y_{m-1}=\frac{z}{c+1}, y_{m}=\frac{z}{d+1}=\frac{z(m-1)}{(c+1) d}=(c-m+2) \frac{z}{c+1}
$$

provided that $d=\frac{m-1}{c-m+2}[49]$.
Let φ be a PSSR map from a complex space form $\left(B_{1}^{b_{1}}(v), J_{1}, g_{B_{1}}\right)$ to a Riemannian manifold $\left(B_{2}^{b_{2}}, g_{B_{2}}\right)$ with $\left(\operatorname{range} \varphi_{*}\right)^{\perp}=\{0\}$. Suppose $\left\{X_{1}, \ldots, X_{p}\right\}$ is an orthonormal basis of the vertical space $\operatorname{ker} \varphi_{* q}$, for $q \in B_{1}$, and $\left\{X_{p+1}, \ldots, X_{b_{1}}\right\}$ be an orthonormal basis of the horizontal space $\left(\operatorname{ker} \varphi_{* q}\right)^{\perp}$.
We defined the scalar curvature $\tau^{\operatorname{ker} \varphi_{*}}$ on the vertical space $\operatorname{ker} \varphi_{* q}$ by

$$
\tau^{k e r \varphi_{*}}=\sum_{k, s=1}^{p} g_{B_{1}}\left(R^{k e r \varphi_{*}}\left(X_{k}, X_{s}\right) X_{s}, X_{k}\right)
$$

and the normalized scalar curvature $\kappa^{\operatorname{ker} \varphi_{*}}$ of $\operatorname{ker} \varphi_{* q}$ as

$$
\kappa^{k e r \varphi_{*}}=\frac{2 \tau^{k e r \varphi_{*}}}{p(p-1)} .
$$

Then, we can write

$$
\begin{aligned}
T_{k s}^{\beta} & =g_{\mathcal{B}_{1}}\left(T\left(X_{k}, X_{s}\right), X_{\beta}\right), k, s=1, \ldots, p, \beta=p+1, \ldots, b_{2}, \\
\|T\|^{2} & =\sum_{k, s=1}^{p} g_{\mathcal{B}_{1}}\left(T\left(X_{k}, X_{s}\right), T\left(X_{k}, X_{s}\right)\right), \\
\text { trace } T & =\sum_{k=1}^{p} T\left(X_{k}, X_{k}\right), \| \text { trace } T \|^{2}=g_{\mathcal{B}_{1}}(\text { trace } T, \text { trace } T)
\end{aligned}
$$

and the squared norm of T over the manifold B_{1}, denoted by $C^{k e r \varphi_{*}}$, is called the vertical Casorati curvatures of the vertical space $\left(\operatorname{ker} \varphi_{*}\right)_{q}$. Thus, we get

$$
C^{k e r \varphi_{*}}=\frac{1}{p}\|T\|^{2}=\frac{1}{p} \Sigma_{\beta=p+1}^{b_{1}} \Sigma_{k, s=1}^{p}\left(T_{k s}^{\beta}\right)^{2}
$$

Now, assume that $\mathrm{L}^{\operatorname{ker} \varphi_{*}}$ is a t-dimensional subspace $\left(\operatorname{ker} \varphi_{*}\right)_{q}, 2 \leq t$ and let $\left\{X_{1}, X_{2}, \ldots, X_{t}\right\}$ be an orthonormal basis of $\mathrm{L}^{k e r \varphi_{*}}$. Then the Casorati curvature $C^{k e r \varphi_{*}}\left(\mathrm{~L}^{k e r \varphi_{*}}\right)$ of $\mathrm{L}^{\operatorname{ker} \varphi_{*}}$ defined as

$$
C^{k e r \varphi_{*}}\left(\mathrm{~L}^{k e r \varphi_{*}}\right)=\frac{1}{t}\|T\|^{2}=\frac{1}{t} \Sigma_{\beta=p+1}^{b_{1}} \Sigma_{k, s=1}^{t}\left(T_{k s}^{\beta}\right)^{2}
$$

The normalized $\sigma^{k e r \varphi_{*}}$ - Casorati curvatures $\sigma_{C}^{k e r \varphi_{*}}(p-1)$ and $\bar{\sigma}_{C}^{k e r \varphi_{*}}(p-1)$ of $\left.\operatorname{ker} \varphi_{*}\right)_{q}$ are given by $\left[\sigma_{C}^{k e r \varphi_{*}}(p-1)\right]_{q}=\frac{1}{2} C_{q}^{k e r \varphi_{*}}+\frac{p+1}{2 p} \inf \left\{C^{k e r \varphi_{*}}\left(\mathrm{~L}^{\operatorname{ker} \varphi_{*}}\right): \mathrm{L}^{\operatorname{ker} \varphi_{*}}\right.$ a hyperplane of $\left.\left(\operatorname{ker} \varphi_{*}\right)_{q}\right\}$, and $\left[\bar{\sigma}_{C}^{k e r \varphi_{*}}(p-1)\right]_{q}=2 C_{q}^{\operatorname{ker} \varphi_{*}}-\frac{2 p-1}{2 p} \inf \left\{C^{\operatorname{ker} \varphi_{*}}\left(\mathrm{~L}^{\operatorname{ker} \varphi_{*}}\right): \mathrm{L}^{\operatorname{ker} \varphi_{*}}\right.$ a hyperplane of $\left.\left(\operatorname{ker} \varphi_{*}\right)_{q}\right\}$.
Theorem 5.2. Let φ be a PSSR map from a complex space form $\left(B_{1}^{b_{1}}(v), J_{1}, g_{B_{1}}\right)$ to a Riemannian manifold $\left(B_{2}^{b_{2}}, g_{B_{2}}\right)$ with $\left(\text { range } \varphi_{*}\right)^{\perp}=\{0\}$ and $3 \leq p$. Then the normalized $\sigma-$ Casorati curvatures $\sigma_{C}^{k e r \varphi_{*}}$ and $\bar{\sigma}_{C}^{k e r \varphi_{*}}$ on $\left(k e r \varphi_{*}\right)_{q}$ satisfy

$$
\begin{equation*}
\text { (i) } \kappa^{k e r \varphi_{*}} \leq \sigma_{C}^{k e r \varphi_{*}}(p-1)+\frac{v}{4}+\frac{3 v}{2 p(p-1)}\left(k_{1}+k_{2} \cos ^{2} \theta\right) \tag{50}
\end{equation*}
$$

(ii) $\kappa^{\text {ker }_{*}} \leq \bar{\sigma}_{C}^{k e r \varphi_{*}}(p-1)+\frac{v}{4}+\frac{3 v}{2 p(p-1)}\left(k_{1}+k_{2} \cos ^{2} \theta\right)$.

Furthermore, the equality case holds in any inequalities at a point $q \in B_{1}$ if and only if with respect to suitable orthonormal basis $\left\{X_{1}, \ldots, X_{p}\right\}$ on $\Gamma\left(\operatorname{ker} \varphi_{*}\right)_{q}$ and $\left\{X_{p+1}, \ldots, X_{b_{1}}\right\}$ on $\left.\Gamma\left(\left(\operatorname{ker} \varphi_{*}\right)_{q}\right)^{\perp}\right)$, the components of T satisfy

$$
\begin{aligned}
& T_{11}^{\beta}=T_{22}^{\beta}=\ldots=T_{p-1 p-1}^{\beta}=\frac{1}{2} T_{p p}^{\beta}, \quad \beta \in\left\{p+1, p+2, \ldots, b_{1}\right\}, \\
& T_{k s}^{\beta}=0, \quad k, s \in\{1, \ldots, p\}(k \neq s), \quad \beta \in\left\{p+1, p+2, \ldots, b_{1}\right\}
\end{aligned}
$$

Proof. Using (1.27) of [22] and (38) we have

$$
\begin{align*}
2 \tau^{\text {ker } \varphi_{*}} & =\frac{v}{4}\left(p^{2}-p\right)+\frac{3 v}{2}\left(k_{1}+k_{2} \cos ^{2} \theta\right) \\
& -p C^{k e r \varphi_{*}}+\|\operatorname{trace} T\|^{2} \tag{52}
\end{align*}
$$

Now we define a function $Q^{k e r \varphi_{*}}$ associated with the following quadratic polynomial with respect to the components of T :

$$
\begin{aligned}
Q^{k e r \varphi_{*}} & =\frac{1}{2}\left[\left(p^{2}-p\right) C^{k \operatorname{ker} \varphi_{*}}+\left(p^{2}-1\right) C^{k \operatorname{kr} \varphi_{*}}\left(\mathrm{~L}^{\operatorname{ker} \varphi_{*}}\right)\right] \\
& -2 \tau^{k e r \varphi_{*}}+\frac{v}{4}\left(p^{2}-p\right)+\frac{3 v}{2}\left(k_{1}+k_{2} \cos ^{2} \theta\right)
\end{aligned}
$$

Without loos of generality, by supposing that the hyperplane $L^{k e r \varphi_{*}}$ is spanned by $\left\{X_{1}, \ldots, X_{p-1}\right\}$, one can produce

$$
\begin{align*}
Q^{k e r \varphi_{*}} & =\sum_{\beta=p+1}^{b_{1}} \sum_{k=1}^{p-1}\left[p\left(T_{k k}^{\beta}\right)^{2}+(p+1)\left(T_{k p}^{\beta}\right)^{2}\right] \\
& +\Sigma_{\beta=p+1}^{b_{1}}\left[2(p+1) \Sigma_{1=k<s}^{p-1}\left(T_{k s}^{\beta}\right)^{2}\right. \\
& \left.-2 \Sigma_{1=k<s}^{p} T_{k k}^{\beta} T_{s s}^{\beta}+\frac{p-1}{2}\left(T_{p p}^{\beta}\right)^{2}\right] . \tag{53}
\end{align*}
$$

Using (53), we obtain the critical points

$$
T^{c}=\left(T_{11}^{p+1}, T_{12}^{p+1}, \ldots, T_{p p}^{p+1}, \ldots, T_{11}^{b_{1}}, \ldots, T_{p p}^{b_{1}}\right)
$$

of $Q^{k e r \varphi_{*}}$ are solutions of the next system of equations:
here $k, s \in\{1,2, \ldots, p-1\}, k \neq s$ and $\beta \in\left\{p+1, \ldots, b_{1}\right\}$. Frankly (54) is a system consisting only in linear homogeneous equations and it is easy to checky that every solution T^{c} has $T_{k s}^{\beta}=0$ for $k \neq s$, and the determinant corresponding to the first two series of linear homogeneous equations in (54) has vanishes. Furthermore, the Hessian matrix of $\mathcal{Q}^{k e r \varphi_{*}}$ is defined as

$$
\mathcal{H}\left(Q^{\operatorname{kerp}_{*}}\right)=\left(\begin{array}{ccc}
\mathcal{H}_{1} & 0 & 0 \\
0 & \mathcal{H}_{2} & 0 \\
0 & 0 & \mathcal{H}_{3}
\end{array}\right)
$$

here

$$
\mathcal{H}_{1}=\left(\begin{array}{ccccc}
2 p & -2 & \ldots & -2 & -2 \\
-2 & 2 p & \ldots & -2 & -2 \\
\ldots & \ldots & \ldots & \ldots & \ldots \\
-2 & -2 & \ldots & 2 p & -2 \\
-2 & -2 & \ldots & -2 & p-1
\end{array}\right)
$$

denotes the zero matrix of suitable dimensions and the matrices $\mathcal{H}_{2}, \mathcal{H}_{3}$ are ones having the following diagonal forms

$$
\begin{aligned}
\mathcal{H}_{2} & =\operatorname{diag}(4(p+1), 4(p+1), \ldots, 4(p+1)) \\
\mathcal{H}_{3} & =\operatorname{diag}(2(p+1), 2(p+1), \ldots, 2(p+1)) .
\end{aligned}
$$

Then a standard computation shows that the eigenvalues of $\mathcal{H}\left(Q^{k e r \varphi_{*}}\right)$ are

$$
\begin{array}{r}
\xi_{11}=0, \xi_{22}=p+3, \xi_{33}=\ldots=\xi_{p p}=2(p+1), \xi_{k s}=4(p+1), \\
\xi_{k b_{1}}=2(p+1), \forall k, s \in\{1,2, \ldots, p-1\}, k \neq s .
\end{array}
$$

Also it follows that $Q^{k e r \varphi_{*}}$ is parabolic and achieves a global minimum value $Q^{k e r \varphi_{*}}(c)$ for T^{c} - the solution of (54). However we obtain $Q^{k e r \varphi_{*}}(c)=0$ and we get $Q^{k e r \varphi_{*}} \geq 0$. Thus,

$$
\begin{array}{r}
2 \tau^{k e r \varphi_{*}} \leq \frac{1}{2}\left[\left(p^{2}-p\right) C^{k e r \varphi_{*}}+\left(p^{2}-1\right) C^{k \operatorname{ker} \varphi_{*}}\left(\mathrm{~L}^{\operatorname{ker} \varphi_{*}}\right)\right] \\
+\frac{v}{4}\left(p^{2}-p\right)+\frac{3 v}{2}\left(k_{1}+k_{2} \cos ^{2} \theta\right) \tag{55}
\end{array}
$$

and using (55) we obtain

$$
\begin{align*}
& \kappa^{{\operatorname{ker} \varphi_{*}} \leq} \leq\left[\frac{1}{2} C^{k e r \varphi_{*}}+\frac{p+1}{2 p} C^{k e r \varphi_{*}}\left(\mathrm{~L}^{k e r \varphi_{*}}\right)\right] \\
&+\frac{v}{4}+\frac{3 v}{2 p(p-1)}\left(k_{1}+k_{2} \cos ^{2} \theta\right) \tag{56}
\end{align*}
$$

for all hyperplane $L^{\text {kerp }_{*}}$ of B_{1}. Now, taking the infimum in (56) over every hyperplane $L^{\text {kerp }_{*}}$, we get (i)

$$
\begin{gather*}
\kappa^{k e r \varphi_{*}} \leq \sigma_{C}^{k e r \varphi_{*}}(p-1)+\frac{v}{4} \\
+\frac{3 v}{2 p(p-1)}\left(k_{1}+k_{2} \cos ^{2} \theta\right) \tag{57}
\end{gather*}
$$

Besides, simply we can check that the equality sign holds in the (57) if and only if

$$
T_{k s}^{\beta}=0, \forall k, s \in\{1,2, \ldots, p\}, k \neq s, \beta \in\left\{p+1, \ldots, b_{1}\right\}
$$

and

$$
T_{p p}^{\beta}=2 T_{11}^{\beta}=\ldots=2 T_{p-1 p-1}^{\beta}, \forall k, s \in\left\{p+1, p+2, \ldots, b_{1}\right\} .
$$

In a similar way we have (ii).
Using the Theorem 5.2, we obtain the following results:
Corollary 5.3. Let φ be a PSSR map from a complex space form $\left(B_{1}^{b_{1}}(v), J_{1}, g_{B_{1}}\right)$ to a Riemannian manifold $\left(B_{2}^{b_{2}}, g_{B_{2}}\right)$ with $\left(\text { range }_{*}\right)^{\perp}=\{0\}$, the semi-slant function $\theta=\frac{\pi}{2}$ and $3 \leq p$. Then the normalized $\sigma-$ Casorati curvatures $\sigma_{C}^{\text {ker }}{ }_{*}$ and $\bar{\sigma}_{C}^{k e r \varphi_{*}}$ on $\left(\operatorname{ker} \varphi_{*}\right)_{q}$ satisfy

$$
\begin{equation*}
\text { (i) } \kappa^{k e r \varphi_{*}} \leq \sigma_{C}^{k e r \varphi_{*}}(p-1)+\frac{v}{4}+\frac{3 k_{1} v}{2 p(p-1)} \tag{58}
\end{equation*}
$$

(ii) $\kappa^{\text {ker } \varphi_{*}} \leq \bar{\sigma}_{C}^{k e r \varphi_{*}}(p-1)+\frac{v}{4}+\frac{3 k_{1} v}{2 p(p-1)}$.

Furthermore, the equality case holds in any inequalities at a point $q \in B_{1}$ if and only if with respect to suitable orthonormal basis $\left\{X_{1}, \ldots, X_{p}\right\}$ on $\Gamma\left(\operatorname{ker} \varphi_{*}\right)_{q}$ and $\left\{X_{p+1}, \ldots, X_{b_{1}}\right\}$ on $\left.\Gamma\left(\left(\operatorname{ker} \varphi_{*}\right)_{q}\right)^{\perp}\right)$, the components of T satisfy

$$
\begin{aligned}
T_{11}^{\beta} & =T_{22}^{\beta}=\ldots=T_{p-1 p-1}^{\beta}=\frac{1}{2} T_{p p}^{\beta}, \quad \beta \in\left\{p+1, p+2, \ldots, b_{1}\right\} \\
T_{k s}^{\beta} & =0, \quad k, s \in\{1,, \ldots, p\}(k \neq s), \quad \beta \in\left\{p+1, p+2, \ldots, b_{1}\right\} .
\end{aligned}
$$

Corollary 5.4. Let φ be a PSSR map with $\left(\text { range } \varphi_{*}\right)^{\perp}=\{0\}$ from a complex space form $\left(B_{1}^{b_{1}}(v), g_{B_{1}}\right)$ to a Riemannian manifold $\left(B_{2}^{b_{2}}, g_{B_{2}}\right)$ with the semi-slant function $\theta=0$ and $3 \leq p$. Then the normalized σ-Casorati curvatures $\sigma_{C}^{k e r \varphi_{*}}$ and $\bar{\sigma}_{C}^{k e r \varphi_{*}}$ on $\left(\operatorname{ker} \varphi_{*}\right)_{q}$ satisfy
(i) $\kappa^{\text {ker } \varphi_{*}} \leq \sigma_{C}^{k e r \varphi_{*}}(p-1)+\frac{(p+2) v}{4(p-1)}$,
(ii) $\kappa^{\text {ker }_{*}} \leq \bar{\sigma}_{C}^{\text {ker } \varphi_{*}}(p-1)+\frac{(p+2) v}{4(p-1)}$.

Furthermore, the equality case holds in any inequalities at a point $q \in B_{1}$ if and only if with respect to suitable orthonormal basis $\left\{X_{1}, \ldots, X_{p}\right\}$ on $\Gamma\left(\operatorname{ker} \varphi_{*}\right)_{q}$ and $\left\{X_{p+1}, \ldots, X_{b_{1}}\right\}$ on $\left.\Gamma\left(\left(\operatorname{ker} \varphi_{*}\right)_{q}\right)^{\perp}\right)$, the components of T satisfy

$$
\begin{aligned}
T_{11}^{\beta} & =T_{22}^{\beta}=\ldots=T_{p-1 p-1}^{\beta}=\frac{1}{2} T_{p p}^{\beta}, \quad \beta \in\left\{p+1, p+2, \ldots, b_{1}\right\} \\
T_{k s}^{\beta} & =0, \quad k, s \in\{1,, \ldots, p\}(k \neq s), \quad \beta \in\left\{p+1, p+2, \ldots, b_{1}\right\}
\end{aligned}
$$

References

[1] R. Abraham, J.E. Marsden and T. Ratiu, Manifolds, Tensor Analysis and Applications, Applied Mathematical Sciences, Vol. 75. Springer, New York, 1988.
[2] M.A. Akyol and B. Şahin, Conformal anti-invariant Riemannian maps to Kahler manifolds, U.P.B. Sci. Bull., Series A, Vol. 80, Iss. 4, 2018.
[3] M.A. Akyol and B. Şahin, Conformal semi-invariant Riemannian maps to Kahler manifolds, Revista de la Union Matematica Argentina, 60(2), 2019, 459-468.
[4] M. A. Akyol and B. Şahin, Conformal slant Riemannian maps to Kahler manifolds, Tokyo J. Math. 42(1), 225-237, (2019).
[5] M. E. Aydın, A. Mihai, I. Mihai, Some Inequalities on submanifolds in statistical manifolds of constant curvature, Filomat 29 (2015), no. 3, 465-477.
[6] M. Aquib, J. W. Lee, G. E. Vîlcu and D. W. Yoon, Classifcation of Casorati ideal Lagrangian submanifolds in complex space forms, Dif. Geom. Appl. 63, 30-49 (2019).
[7] M. Aquib and M. H. Shahid, Generalized normalized δ-Casorati curvature for statistical submanifolds in quaternion Kaehler-like statistical space forms, J. Geom. 109(1), Art. 13 (2018).
[8] P. Baird, J.C. Wood, Harmonic Morphisms Between Riemannian Manifolds, Clarendon Press, Oxford, 2003.
[9] J. Benitez and N. Thome, Applications of differential geometry to cartography, International Journal of Mathematical Education in Science and Technology 35(1), (2004), 29-38.
[10] J. P. Bourguignon and H. B. Lawson, Stability and isolation phenomena for Yangmills fields, Commun. Math. Phys. 79, 189-230, (1981).
[11] J. P. Bourguignon and H. B. Lawson, A mathematician's Visit to Kaluza-Klein Theory, pp. 143-163. Rend. Sem. Mat. Univ. Politec. Torino, Special Issue (1989).
[12] F. Casorati, Nuova defnizione della curvatura delle superfcie e suo confronto con quella di Gauss. (New defnition of the curvature of the surface and its comparison with that of Gauss). Rend. Inst. Matem. Accad. Lomb. Ser. II 22(8), 335-346, (1889).
[13] B. Y. Chen, Slant immersions, Bull. Australian Math. Soc. 41(1), (1990), 135-147.
[14] B.-Y. Chen, Some pinching and classification theorems for minimal submanifolds, Arch. Math. (Basel) 60 (1993), 568-578.
[15] B.-Y. Chen, Relations between Ricci curvature and shape operator for submanifolds with arbitrary codimensions, Glasg. Math. J. 41 (1999), no. 1, 33-41.
[16] B-Y. Chen and O. J. Garay, Pointwise slant submanifolds in almost Hermitian manifolds, Turk J Math 36 (2012), 630-640.
[17] F. Etayo, On quasi-slant submanifolds of an almost Hermitian manifold, Publ. Math. Debrecen 53, 217-223 (1998).
[18] E. Garcia-Rio and D. N. Kupeli, Semi-Riemannian Maps and Their Applications (Kluwer Academic, Dordrecht, 1999).
[19] Y. Gündüzalp and M. A. Akyol, Remarks on conformal anti-invariant Riemannian maps to cosymplectic manifolds, Hacet. J. Math. Stat. 50(4) (2021), 1131-1139.
[20] Y. Gündüzalp and M. A. Akyol, Pointwise slant Riemannian maps from Kaehler manifolds, Journal of Geometry and Physics, Vol: 179, Page: 104589, (2022).
[21] M. Gülbahar, Ş.E. Meriç and E. Kılıç, Sharp inequalities involving the Ricci curvature for Riemannian submersions, Kragujevac Journal of Mathematics, 41(2) (2017), 279-293.
[22] M. Falcitelli, S. Ianus, A. M. Pastore, Riemannian Submersions and Related Topics, World Scientific, 2004.
[23] A. E. Fischer, Riemannian maps between Riemannian manifolds, Contemp. Math. 132, (1992), 331-366.
[24] C. W. Lee, J. W. Lee, G. E. Vilcu, Optimal inequalities for the normalized δ-Casorati curvatures of submanifolds in Kenmotsu space forms, Adv. Geom. 17(3), 355-362, (2017).
[25] J. Lee, J. H. Park, B. Şahin, D. Y. Song, Einstein conditions for the base of anti-invariant Riemannian submersions and Clairaut submersions, Taiwan. J. Math. 19(4), 1145-1160 (2015).
[26] J. W. Lee and B. Şahin, Pointwise slant submersions, Bulletin of the Korean Mathematical Sosiety, 51(4),(2014), 115-1126.
[27] A. Mihai and I. Mihai, Curvature invariants for statistical submanifolds of Hessian manifolds of constant Hessian curvature, Mathematics, (2018), 6, 44.
[28] A. Mihai and C. Özgür, Chen inequalities for submanifolds of real space forms with a semi-symmetric metric connection, Taiwanese J. Math. 14 (2010), no. 4, 1465-1477.
[29] S. Ianus and M. Visinescu,Kaluza-Klein theory with scalar fields and generalized Hopf manifolds, Class. Quantum Gravity 4, 1317-1325 (1987).
[30] S. Ianus and M. Visinescu, Space-time compactication and Riemannian submersions In: Rassias, G. (ed.) The Mathematical Heritage of C. F. Gauss, pp. 358-371. World Scientic, River Edge (1991).
[31] M. Jin, Y. Wang, S.T. Yau, and X. Gu, Optimal global conformal surface param- eterization, IEEE Visualization 2004 (2004), 267-274.
[32] J.M. Lima and M.R. Partidario, Plurality in sustainability-Multipe understand- ings with a variable geometry, Journal of Cleaner Production 250, (2020), 119474.
[33] M. T. Mustafa, Applications of harmonic morphisms to gravity, J. Math. Phys. 41, 6918-6929, (2000).
[34] N. Papaghiuc, Semi-slant submanifolds of a Kaehlerian manifold, An. Stiint. Al. I. Univ. Iasi. 1994, 40, 55-61.
[35] K-S. Park, Semi-slant Riemannian map, Quaestiones Mathematicae 41(1), 2018, 1-14.
[36] K-S. Park and R. Prasad, Semi-slant submersions, Bull. Korean Math. Soc. 50 (2013), No. 3, pp. 951-962.
[37] K-S. Park and B. Şahin, Semi-slant Riemannian maps into almost Hermitian manifolds, Czechoslovak Mathematical Journal, 64(4) (2014), 1045-1061.
[38] K-S. Park, Almost h-semi-slant Riemannian maps, Taiwanese J. Math. 17(3): 937-956, (2013).
[39] R. Prasad and S. Pandey, Slant Riemannian maps from an almost contact manifold, Filomat, 31(13), (2017), 3999-4007.
[40] B. Sahin, Conformal Riemannian maps between Riemannian manifolds,their harmonicity and decomposition theorems, Acta Appl. Math. 109(3), (2010), 829-847.
[41] B. Șahin, Invariant and anti-invariant Riemannian maps to Kahler manifolds, Int. J. Geom. Meth. Mod. Phys. 7(3), (2010), 1-19.
[42] B. Ṣahin, Slant Riemannian maps from almost Hermitian manifolds, Quaestiones Mathematicae, 36(3), 449-461, (2013).
[43] B. Șahin, Slant Riemannian maps to Kaehler manifolds, Int. J. Geom. Methods Mod. Phys. 10, (2013), 1250080.
[44] B. Şahin, Slant submersions from almost Hermitian manifolds, Bull. Math. Soc. Sci. Math. Roumanie Tome 54(102), (2011), no. 1, 93-105.
[45] B. Sahin, Riemannian Submersions, Riemannian Maps in Hermitian Geometry, and their Applications, Elsevier, Academic Press, (2017).
[46] B. S.Sahin and S. Yanan, Conformal Riemannian maps from almost Hermitian manifolds, Turk J. Math. 42, (2018), 2436-2451.
[47] B. Şahin, Warped product pointwise semi-slant submanifolds of Kaehler manifolds, Port. Math. 70, 2013, 252-268.
[48] B. Sahin, Chen's first inequality for Riemannian maps, Ann. Polon. Math. 117(3), (2016), 249-258.
[49] M. M. Tripathi, Inequalities for algebraic Casorati curvatures and their applications, Note Mat. 37(1), 161-186 (2017).
[50] G. E. Vîlcu, An optimal inequality for Lagrangian submanifolds in complex space forms involving Casorati curvatures, J. Math. Anal. Appl. 465(2), 1209-1222 (2018).
[51] G. E. Vilcu, B.-Y. Chen inequalities for slant submanifolds in quaternionic space forms, Turkish J. Math. 34, (2010), 115-128.
[52] G. E. Vilcu, On Chen invariants and inequalities in quaternionic geometry, Journal of Inequalities and Applications volume 2013, Article number: 66 (2013).
[53] A. Yadav and K. Meena, Clairaut invariant Riemannian maps with Kaehler structure, Turkish J. Math., 46(3), 1020-1035, 2022.
[54] A. Yadav and K. Meena, Clairaut anti-invariant Riemannian maps from Kaehler manifolds, Mediterranean J. Math., 19(3), 97, 1-19, 2022.
[55] Y. Wang, X. Gu, and S.T. Yau, Volumetric harmonic map, Communications in Information and Systems 3(3), (2003), 191-202.
[56] Y. Wang, J. Shi, X. Yin, X. Gu, T.F. Chan, S.T. Yau, A.W. Toga, and P.M. Thompson, Brain surface conformal parameterization with the Ricci flow, IEEE transactions on medical imaging 31(2) (2011), 251-264.
[57] B. Watson, G, G'-Riemannian submersions and nonlinear gauge field equations of general relativity. In: Rassias, T. (ed.) Global Analy-sis-Analysis on manifolds, dedicated M. Morse. Teubner-Texte Math., vol. 57, pp. 324-349. Teubner, Leipzig (1983).
[58] K. Yano and M. Kon, Structures on manifolds, World scientific, 1985.
[59] L. Zhang, X. Pan, P. Zhang, Inequalities for Casorati curvature of Lagrangian submanifolds in complex space forms, Adv. Math. (China) 45(5), 767-777 (2016).
[60] P. Zhang and L. Zhang, Inequalities for Casorati curvatures of submanifolds in real space forms, Adv. Geom. 16(3), 329-335 (2016).

[^0]: 2020 Mathematics Subject Classification. Primary 53C15; Secondary 53B40
 Keywords. Kaehler manifold, Riemannian map, pointwise semi-slant submersion, pointwise semi-slant submanifold, semi-slant function, Chen-Ricci inequality, Casorati curvature, pointwise semi-slant Riemannian map.

 Received: 12 July 2022; Revised: 26 October 2022; Accepted: 29 October 2022
 Communicated by Mića S. Stanković
 This paper is supported by the Scientific and Technological Council of Turkey (TUBITAK) with project number 121F277.
 Email addresses: ygunduzalp@dicle.edu.tr (Yılmaz Gündüzalp), mehmetakifakyol@bingol.edu.tr (Mehmet Akif Akyol)

