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Abstract. In this paper, as a generalization of pointwise slant submanifolds [B-Y. Chen and O. J. Garay,
Pointwise slant submanifolds in almost Hermitian manifolds, Turk J Math 36, (2012), 630-640.], pointwise slant
submersions [J.W.Lee and B. S. ahin, Pointwise slant submersions, Bulletin of the Korean Mathematical Sosiety,
51(4), (2014), 115-1126.] and pointwise slant Riemannian maps [Y. Gündüzalp and M. A. Akyol, Pointwise
slant Riemannian maps from Kaehler manifolds, Journal of Geometry and Physics, 179, (2002), 104589.], we
introduce pointwise semi-slant Riemannian maps (briefly, PSSR maps) from almost Hermitian manifolds
to Riemannian manifolds, present examples and characterizations. We also investigate the harmonicity of
such maps. Moreover, we give Chen-Ricci inequality for a PSSR map. Finally, we study some curvature
relations in complex space forms, involving Casorati curvatures for PSSR maps.

1. Introduction

In differential geometry, it is good to use some types of maps in order to compare objects (in partic-
ular, manifolds). The theory of smooth maps between Riemannian manifolds plays a preeminent role in
differential geometry and also in physics. The main smooth maps are isometric immersions, Riemannian
submersions and Riemannian maps. These kinds of maps have many applications, including in super-
gravity and superstring theories, Yang-Mills theory, Kaluza-Klein theory, geometric modeling, computer
vision, medical imaging, cartography and sustainability science ([9–11, 29–33, 55–57]).

Slant submanifolds were introduced by B. Y. Chen [13] as a generalization of almost complex subman-
ifolds and totally real submanifolds of an almost Hermitian manifold in 1990. After that, N. Papaghiuc
[34] defined the notion of semi-slant submanifolds of an almost Hermitian manifold as a generalization of
CR-submanifolds and slant submanifolds of an almost Hermitian manifold.

In [12], Casorati introduced Casorati curvature which is a very natural concept of regular surfaces in
the three-dimensional Euclidean space. The curvature is obtained by the normalized sum of the squared
principal curvatures of the surface. After that, many geometers published some optimal inequalities
involving Casorati curvatures in ([6], [7], [24], [25], [49], [50], [59], [60]).
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The main extrinsic (the squared mean curvature) and main intrinsic invariants (the scalar curvature and
the Ricci curvature) of a submanifold in a real space form was established by B. Y. Chen in [14] (see also
[15]). For the inequalities, see: ([5, 27, 28, 48, 51, 52]).

In 1998, pointwise slant submanifolds were introduced by F. Etayo [17] as a natural generalization of
slant submanifolds. In 2012, the notion were investigated by B. Y. Chen and O. J. Garay [16]. The notion of
pointwise semi-slant submanifolds were intoduced by B. Şahin in [47].

Dual to slant submanifolds, B. Şahin introduced in [44] the notion of slant submersions as a generalization
of anti-inviariant and holomorphic submersions in [45]. The notion of semi-slant Riemannian submersions
were introduced by K. S. Park and R. Prasad in 2013 [36]. As a natural generalization of slant submersions.
pointwise slant submersions were introduced by J. W. Lee and B. Şahin in [26].

A. Fischer [23] introduced Riemannian maps as a generalization of isometric immersions and Rieman-
nian submersions. After that, many geometers published many papers related to Riemannian maps in ([2],
[3], [4], [19],[20], [37], [38], [39], [40], [41], [43], [46], [53], [54]). Moreover, B. Şahin defined slant Rieman-
nian maps in [42]. As a generalization of slant Riemannian maps and semi-slant submersions, semi-slant
Riemannian maps were introduced by [35]. It is also important to note that Riemannian maps satisfy the
eikonal equation which is a bridge between geometric optics and physical optics. For Riemannian maps
and their applications in spacetime geometry (see: [1], [18]).

In 2022, as a more general class of Riemannian maps including slant submanifolds, slant submersions,
slant Riemannian maps, pointwise slant submanifolds, pointwise slant submersions, pointwise slant Rie-
mannian maps were introduced by the authors [20] as follows.
Definition 1.1. Let φ be a Riemannian map from an almost Hermitian manifold (B1, 1B1 , J1) to a Riemannian
manifold (B2, 1B2 ). If at each given q ∈ B1, the Wirtinger angle θ(U1) between J1U1 and the space (kerφ∗)q is
independent of the choice of the non-zero vector field U1 ∈ (kerφ∗), then we say that φ is a pointwise slant
Riemannian map. In this case, the angle θ can be regarded as a function on B1, which is called the slant
function of the pointwise slant Riemannian map.

In the present paper, as a more generalization of the above mentioned notions, we will define the notions
of PSSR maps from almost Hermitian manifolds onto Riemannian manifolds and investigate the geometry
of the total space and the base space.

We organize the paper as follows. In Sec. 2 we deal with some necessary notions and recall some
basic notions. In Sec. 3 we introduce the definition of PSSR maps from almost Hermitian manifolds onto
Riemannian manifolds, giving many examples and investigate the geometry of foliations which are arisen
from the definition of a PSSR map. We also investigate the harmonicity of such maps and find necessary
and sufficient conditions for PSSR maps to be totally geodesic. In Sec. 4, we give Chen-Ricci inequality
for a PSSR map. In Sec. 5, we study some curvature relations in complex space form, involving Casorati
curvatures for PSSR maps.

2. Preliminaries

In this section, we review some basic concepts and results on geometric structures for Riemannian maps.

Let (B1, 1B1 , J1) be an almost Hermitian manifold. This means that B1 admits a tensor field J1 of type
(1, 1) on B1 such that

J2
1 = −I, 1B1 (J1Y1, J1Y2) = 1B1 (Y1,Y2), Y1,Y2 ∈ Γ(TB1). (1)

An almost Hermitian manifold B1 is called Kaehler manifold [58] if

(∇Y1 J1)Y2 = 0, Y1,Y2 ∈ Γ(TB1), (2)

where ∇ denotes the Riemannian connection of the metric 1B1 on B1.

Let (B1, 1B1 ) and (B2, 1B2 ) be Riemannian manifolds and φ : (B1, 1B1 ) → (B2, 1B2 ) is a differentiable map.
Then the differential φ∗ of φ can be viewed a section of the bundle Hom(TB1, φ−1TB2)→ B1, where φ−1TB2
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is the pullback bundle which has fibres (φ−1TB2)q = Tφ(q)B2, q ∈ B1. Hom(TB1, φ−1TB2) has a connection ∇
induced from the Levi-Civita connection ∇B1 and the pullback connection. The second fundamental form
of φ is given by [8]

(∇φ∗)(Y1,Y2) = ∇φY1
φ∗Y2 − φ∗(∇B1

Y1
Y2) (3)

for Y1,Y2 ∈ Γ(TB1), where ∇φ is the pullback connection. It is known that the second fundamental form
is symmetric. Remind that φ is said to be harmonic if we get the tension field τ(φ) = trace(∇φ∗) = 0 and
we call the map a totally geodesic map if (∇φ∗)(Y1,Y2) = 0. On the other hand, it is shown in [41] that
(∇φ∗)(Y1,Y2) has no components in Imφ∗, provided that Y1,Y2 ∈ Γ((kerφ∗)⊥).More precisely,

(∇φ∗)(Y1,Y2) ∈ Γ((ran1eφ∗)⊥), ∀Y1,Y2 ∈ Γ((kerφ∗)⊥), (4)

here (ran1eφ∗)⊥ is the subbundle of φ−1(TB2) with fibre Γ(φ∗(TqB1)⊥), q ∈ B1.

Let φ be a Riemannian map from a Riemannian manifold (B1, 1B1 ) to a Riemannian manifold (B2, 1B2 ).
Then, we define T andA as

TY1 Y2 = h∇vY1 vY2 + v∇vY1 hY2 (5)

and

AY1 Y2 = v∇hY1 hY2 + h∇hY1 vY2 (6)

for every Y1,Y2 ∈ Γ(TB1),where ∇ is the Levi-Civita connection of 1B1 . In fact, one can see that these tensor
fields are O’Neill’s tensor fields which were defined for Riemannian submersions. For any Y1 ∈ Γ(TB1),
TY1 andAY1 are skew-symmetric operators reversing the horizontal and the vertical distributions. We note
that the tensor fields T andA satisfy

TU1 U2 = TU2 U1, AY1 Y2 = −AY2 Y1, (7)

for any ∀U1,U2 ∈ Γ(kerφ∗),∀Y1,Y2 ∈ Γ(kerφ∗)⊥. Using (5) and (6), we obtain

∇U1 U2 = TU1 U2 + ∇̂U1 U2; (8)

∇U1 Y1 = TU1 Y1 + h∇U1 Y1; (9)

∇Y1 U1 = AY1 U1 + v∇Y1 U1; (10)

∇Y1 Y2 = AY1 Y2 + h∇Y1 Y2, (11)

for any Y1,Y2 ∈ Γ((kerφ∗)⊥), U1,U2 ∈ Γ(kerφ∗), here ∇̂U1 U2 = v∇U1 U2.

3. PSSR maps from Kaehler manifolds

Definition 3.1. Let (B1, 1B1 , J1) be an almost Hermitian manifold and (B2, 1B2 ) be a Riemannian manifold. Then
we say that a Riemannian map φ : B1 → B2 is a pointwise semi-slant Riemannian map (briefly, PSSR map) if there
exists a pair of orthogonal distributions Dθ and D⊤ on kerφ∗ such that

1. The space kerφ∗ admits the orthogonal direct decomposition Dθ ⊕D⊤.
2. The distribution D⊤ is invariant.
3. The distribution Dθ is pointwise slant with semi-slant function θ.
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In this case, the angle θ can be regarded as a function on B1, which is called the semi-slant function of the PSSR map.

Now, we present some examples for proper PSSR maps. Let J1 be an almost complex structure on R8

as follows:
J1(y1, ..., y8) = (y2,−y1, ..., y8,−y7).

Example 3.1. Define a map φ : R8
→ R6 by

φ(y1, ..., y8) = (y1 cos x − y3 sin x, y2 sin y − y4 cos y, y5, y6, π, e),

where x, y : R8
→ R are real valued functions. Then the map φ is a PSSR map such that

D⊤ =<
∂
∂y7
,
∂
∂y8
> and Dθ =< sin x

∂
∂y1
+ cos x

∂
∂y3
, cos y

∂
∂y2
+ sin y

∂
∂y4
>

with the semi-slant function θwith cosθ = sin(x + y).

Example 3.2. Let (R8, 1R8 ) be the Euclid space. Consider {J1, J2} a pair of almost complex structures on R8

satisfying J1 J2 = −J2 J1, here

J1(a1, ..., a8) = (−a3,−a4, a1, a2,−a7,−a8, a5, a6)

and
J2(a1, ..., a8) = (−a2, a1, a4,−a3,−a6, a5, a8,−a7).

For any real-valued function λ : R8
→ R, we define new almost complex structure Jλ on R8 by Jλ =

(cosλ)J1 + (sinλ)J2.
Then, R8

λ = (R8, Jλ, 1R8 ) is an almost Hermitian manifold.
Consider a Riemannian map φ : R8

λ → R
8 by

φ(y1, ..., y8) = (0, 0, 0, 0, 0, y6, 0, y8).

Then we obtain

(kerφ∗)⊥ =< X1 =
∂
∂y6
, X2 =

∂
∂y8
>

and

kerφ∗ =< V1 =
∂
∂y5
, V2 =

∂
∂y7
,V3 =

∂
∂y1
, V4 =

∂
∂y2
,V5 =

∂
∂y3
,V6 =

∂
∂y4
> .

On the other hand, we get Jλ(V3) = sinλV4 + cosλV5, Jλ(V4) = − sinλV3 + cosλV6, Jλ(V5) = − cosλV3 −

sinλV6, Jλ(V6) = − cosλV4 + sinλV5. Thus, φ is a PSSR map with the semi-slant function θ = λ with
Dθ =< V1,V2 > and D⊤ =< V3,V4,V5,V6 > .

Let φ : (B1, 1B1 , J1)→ (B2, 1B2 ) be a PSSR map. Then, for V ∈ Γ(kerφ∗), we can write

J1V = Q1V +Q2V, (12)

here Q1V ∈ Γ(D⊤) and Q2V ∈ Γ(Dθ). For V ∈ Γ(kerφ∗)

J1V = ζV + ηV, (13)

here ζV ∈ Γ(kerφ∗) and ηV ∈ Γ(kerφ∗)⊥. Also, for Y ∈ Γ(kerφ∗)⊥, we get

J1Y = ζ̄Y + η̄Y, (14)

here ζ̄Y ∈ Γ(kerφ∗) and η̄Y ∈ Γ(kerφ∗)⊥. For Z ∈ φ−1TB2, we have

Z = Q̄1Z + Q̄2Z, (15)
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here Q̄1Z ∈ Γ(ran1eφ∗) and Q̄2Z ∈ Γ(ran1eφ∗)⊥. Then,

(kerφ∗)⊥ = ηDθ ⊕ ν, (16)

here ν is the orthogonal complement of ηDθ in Γ(kerφ∗)⊥ and is invariant under J1.

In addition to,
ζD⊤ = D⊤, ηD⊤ = 0, ζDθ ⊂ Dθ, ζ̄((kerφ∗)⊥) = Dθ

ζ2 + ζ̄η = −I, η̄2 + ηζ̄ = −I, ηζ + η̄η = 0, ζ̄η̄ + ζζ̄ = 0.

Also, if (B1, 1B1 , J1) is Kaehler, for V1,V2 ∈ Γ(kerφ∗), then it is easy to get

(∇V1η)V2 = η̄TV1 V2 − TV1ζV2 (17)
(∇U1ζ)V2 = ζ̄TV1 V2 − TV1ηV2, (18)

here ∇ is the Levi-Civita connection on B1 and define

(∇V1η)V2 = h∇V1ηV2 − η∇̂V1 V2 (19)
(∇V1ζ)V2 = ∇̂V1ζV2 − ζ∇̂V1 V2. (20)

Theorem 3.3. Let φ be a PSSR map from an almost Hermitian manifold (B1, 1B1 , J1) to a Riemannian manifold
(B2, 1B2 ) with semi-slant function θ. Then, we have

ζ2V1 = −(cos2 θ)V1, V1 ∈ Γ(Dθ). (21)

Proof. Since,

cosθ =
1B1 (J1V1, ζV1)
|J1V1||ζV1|

= −
1B1 (V1, ζ2V1)
|V1||ζV1|

and cosθ == |ζV1 |

|J1V1 |
, for V1 ∈ Γ(Dθ) we obtain

cos2 θ = −
1B1 (V1, ζ2V1)
|V1|

2 .

Hence,
ζ2V1 = −(cos2 θ)V1.

Also, conversely, it can be directly verified.

Using (1), (13) and (21), for V1,V2 ∈ Γ(Dθ) we have

1B1 (ζV1, ζV2) = cos2 θ1B1 (V1,V2) (22)
1B1 (ηV1, ηV2) = sin2 θ1B1 (V1,V2). (23)

When semi-slant function θ, locally we can write an orthonormal frame {X1, J1X1, ...,Xk, J1Xk, X̄1, secθζX̄1,
cscθηX̄1, ..., X̄s, secθζX̄s, cscθηX̄s, X̂1, J1X̂1, ..., X̂t, J1X̂t} of TB1 such that {X1, J1X1, ...,Xk, J1Xk} is an orthonor-
mal frame of D⊤, {X̄1, secθζX̄1, ..., X̄s, secθζX̄s} an orthonormal frame of Dθ, {cscθηX̄1, ..., cscθηX̄s} an or-
thonormal frame of ηDθ, and {X̂1, J1X̂1, ..., X̂t, J1X̂t} an orthonormal frame of ν.

Lemma 3.4. Let φ be a PSSR map from a Kaehler manifold (B1, 1B1 , J1) to a Riemannian manifold (B2, 1B2 ) with
semi-slant function θ. If η is parallel, then V1 ∈ Γ(Dθ) we get:

TζV1ζV1 = − cos2 θTV1 V1. (24)

Proof. Assume that η is parallel. Then, for V1,V2 ∈ Γ(Dθ) we obtain

TV1ζV2 = η̄TV1 V2.
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By replacing V1 and V2 we get
TV2ζV1 = η̄TV2 V1.

So,
TV2ζV1 = TV1ζV2.

If we write ζV1 instead of V2 and using (21), then the proof is completed.

The proof of the following Theorem is the same with Theorem 49 in [45].
Theorem 3.5. Let φ be a PSSR map from a Kaehler manifold (B1, 1B1 , J1) to a Riemannian manifold (B2, 1B2 ). Then,
the distribution D⊤ is integrable if and only if for V1,V2 ∈ Γ(D⊤) we get

η(∇̂V1 V2 − ∇̂V2 V1) = 0.

Theorem 3.6. Let φ be a PSSR map from a Kaehler manifold (B1, 1B1 , J1) to a Riemannian manifold (B2, 1B2 ) such
that D⊤ is integrable. Then, φ is harmonic if and only if trace(∇φ∗) = 0 on Dθ and H̄ = 0, here H̄ = 0 denotes the
mean curvature vector field of Γ(ran1eφ∗).

Proof. Using (4), we get trace(∇φ∗)|(kerφ∗) ∈ Γ(ran1eφ∗) and trace(∇φ∗)|(kerφ∗)⊥ ∈ Γ(ran1eφ∗)⊥ so that

trace(∇φ∗) = 0⇔ trace(∇φ∗)|(kerφ∗) = 0, trace(∇φ∗)|(kerφ∗)⊥ = 0.

Since D⊤ is invariant under J1, locally we can write an orthonormal frame {X1, J1X1, ...,Xp, J1Xp} of D⊤. Using
the integrability of D⊤,

(∇φ∗)(J1X j, J1X j) = −φ∗∇J1X j J1X j = −φ∗ J1(∇X j J1X j + [J1X j,X j])
= φ∗∇X j X j = −(∇φ∗)(X j,X j), 1 ≤ j ≤ p.

So,
trace(∇φ∗)|(kerφ∗) = 0⇔ trace(∇φ∗)|Dθ = 0.

Furthermore, it is easy to get that

trace(∇φ∗)|(kerφ∗)⊥ = kH̄, k = dim(kerφ∗)⊥

so that
trace(∇φ∗)|(kerφ∗)⊥ = 0⇔ H̄ = 0.

Thus, we have the result.

Using (24), we have:

Corollary 3.7. Let φ be a PSSR map from a Kaehler manifold (B1, 1B1 , J1) to a Riemannian manifold (B2, 1B2 ) such
that D⊤ is integrable and the semi-slant function θ. Assume that the tensor η is parallel. Then, φ is harmonic if and
only if H̄ = 0.

Theorem 3.8. Let φ be a PSSR map from a Kaehler manifold (B1, 1B1 , J1) to a Riemannian manifold (B2, 1B2 ) with
the semi-slant function θ. Then, D⊤ defines a totally geodesic foliation on B1 if and only if

1B1 (∇̂U1 J1U2, ζ̄Y) = 1B2 ((∇φ∗)(U1, J1U2), φ∗η̄Y) (25)

and

− cos2 θ1B1 (∇̂U1 U2,U3) = 1B2 ((∇φ∗)(U1,U2), φ∗ηζU3) + 1B1 (TU1 J1U2, ηU3) (26)

for U1,U2 ∈ Γ(D⊤),U3 ∈ Γ(Dθ) and Y ∈ Γ(kerφ∗)⊥.
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Proof. For any U1,U2 ∈ Γ(D⊤) and Y ∈ Γ(kerφ∗)⊥,we get:

1B1 (∇U1 U2,Y) = 1B1 (∇U1 J1U2, J1Y)
= 1B1 (∇U1 J1U2, ζ̄Y) + 1B1 (∇U1 J1U2, η̄Y)
= 1B1 (∇̂U1 J1U2, ζ̄Y) − 1B2 ((∇φ∗)(U1, J1U2), φ∗η̄Y). (27)

Moreover, for all U1,U2 ∈ Γ(D⊤) and U3 ∈ Γ(Dθ) we obtain:

1B1 (∇U1 U2,U3) = 1B1 (∇U1 J1U2, J1U3)
= cos2 θ1B1 (∇̂U1 U2,U3) + 1B2 ((∇φ∗)(U1,U2), φ∗ηζU3)
+ 1B1 (TU1 J1U2, ηU3). (28)

So the proof comes from (27) and (28).

Theorem 3.9. Let φ be a PSSR map from a Kaehler manifold (B1, 1B1 , J1) to a Riemannian manifold (B2, 1B2 ) with
the semi-slant function θ. Then, Dθ defines a totally geodesic foliation on B1 if and only if

sin2 θ1B1 ([U1,Y],U2) = sin 2θY(θ)1B1 (U1,U2)
+ 1B1 (AYηζU1,U2) − 1B1 (AYηU1, ζU2)
− 1B2 (φ∗h∇YηU1, φ∗ηU2) (29)

and

1B1 (TU1ηζU2,U3) = 1B1 (TU1ηU2, J1U3) (30)

for U1,U2 ∈ Γ(Dθ),U3 ∈ Γ(D⊤) and Y ∈ Γ(kerφ∗)⊥.

Proof. For any U1,U2 ∈ Γ(Dθ) and Y ∈ Γ(kerφ∗)⊥,we obtain:

1B1 (∇U1 U2,Y) = −1B1 ([U1,Y],U2) − 1B1 (∇YζU1, J1U2)
− 1B1 (∇YηU1, J1U2).

From (21), we have

sin2 θ1B1 (∇U1 U2,Y) = − sin2 θ1B1 ([U1,Y],U2) + sin 2θY(θ)1B1 (U1,U2)
+ 1B1 (AYηζU1,U2) − 1B1 (AYηU1, ζU2)
− 1B2 (φ∗h∇YηU1, φ∗ηU2). (31)

Additionally, for all U1,U2 ∈ Γ(Dθ) and U3 ∈ Γ(D⊤), we get:

1B1 (∇U1 U2,U3) = 1B1 (∇U1 J1U2, J1U3).

By using (9),(13) and (21), we arrive at

sin2 θ1B1 (∇U1 U2,U3) = −1B1 (TU1ηζU2,U3) + 1B1 (TU1ηU2, J1U3). (32)

Thus, the proof comes from (31) and (32).

Theorem 3.10. Let φ be a PSSR map from a Kaehler manifold (B1, 1B1 , J1) to a Riemannian manifold (B2, 1B2 ) with
the semi-slant function θ. Then, the space kerφ∗ defines a totally geodesic foliation on B1 if and only if

1B1 (AY J1Q2U1, J1U2) = − sin2 θ1B1 ([U1,Y],U2) + cos2 θ1B1 (v∇YQ2U1,U2)
+ sin 2θY(θ)1B1 (Q1U1,U2) + 1B1 (AYηζQ1U1,U2)
− 1B1 (AYηQ1U1, J1U2) − 1B1 (h∇YηQ1U1, J1U2)
− 1B1 (v∇Y J1Q2U1, J1U2). (33)
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for U1,U2 ∈ Γ(kerφ∗) and Y ∈ Γ(kerφ∗)⊥.

Proof. For any U1,U2 ∈ Γ(kerφ∗) and Y ∈ (kerφ∗)⊥, from (1),(2) and (12), we get

1B1 (∇U1 U2,Y) = −1B1 ([U1,Y],U2) − 1B1 (∇Y J1Q1U1, J1U2)
− 1B1 (∇Y J1Q2U1, J1U2).

By using (13) and (21), we have

1B1 (∇U1 U2,Y) = −1B1 ([U1,Y],U2) − cos2 θ1B1 (∇YQ1U1,U2)
+ sin 2θY(θ)1B1 (Q1U1,U2) + 1B1 (∇YηζQ1U1,U2)
− 1B1 (∇YηQ1U1, J1U2) − 1B1 (∇Y J1Q2U1, J1U2).

By using (10) and (11), we obtain

sin2 θ1B1 (∇U1 U2,Y) = − sin2 θ1B1 ([U1,Y],U2) + cos2 θ1B1 (v∇YQ2U1,U2)
+ sin 2θY(θ)1B1 (Q1U1,U2) + 1B1 (AYηζQ1U1,U2)
− 1B1 (AYηQ1U1, J1U2) − 1B1 (h∇YηQ1U1, J1U2)
− 1B1 (AY J1Q2U1, J1U2) − 1B1 (v∇Y J1Q2U1, J1U2).

Theorem 3.11. Let φ be a PSSR map from a Kaehler manifold (B1, 1B1 , J1) to a Riemannian manifold (B2, 1B2 ) with
the semi-slant function θ. Then, the space (kerφ∗)⊥ defines a totally geodesic foliation on B1 if and only if

v∇U1 ζ̄U2 = −AU1 η̄U2 (34)

and

1B2 (∇U1φ∗(ηV2), φ∗η̄U2) = 1B2 (∇U1φ∗(ηζV2), φ∗U2)
− 1B1 (AU1ηV2, ζ̄U2). (35)

for V2 ∈ Γ(Dθ),V1 ∈ Γ(D⊤) and U1,U2 ∈ Γ(kerφ∗)⊥.

Proof. For any V1 ∈ Γ(D⊤) and U1,U2 ∈ Γ(kerφ∗)⊥, from (1), (2), (10), (11) and (14), we get

1B1 (∇U1 U2,V1) = 1B1 (v∇U1 ζ̄U2 +AU1 η̄U2, J1V1). (36)

Also, for V2 ∈ Γ(Dθ), by using (21) we have

sin2 θ1B1 (∇U1 U2,V2) = 1B1 (h∇U1ηζV2,U2) − 1B1 (h∇U1ηV2, η̄U2)
− 1B1 (AU1ηV2, ζ̄U2).

By using (3)and (4) we obtain

sin2 θ1B1 (∇U1 U2,V2) = 1B2 (∇U1φ∗(ηζV2), φ∗U2) − 1B2 (∇U1φ∗(ηV2), φ∗η̄U2)
− 1B1 (AU1ηV2, ζ̄U2). (37)

So, (36) and (37) complete proof.

4. Chen-Ricci inequality

Let (B1, 1B1 , J1) be a Kaehler manifold. The Riemannian-Christoffel curvature tensor of a complex space
form B1(ν) of constant holomorphic sectional curvature ν satisfies

RB1 (Y1,Y2,Y3,Y4) =
ν
4
{1B1 (Y1,Y4)1B1 (Y2,Y3) − 1B1 (Y1,Y3)1B1 (Y2,Y4)

+ 1B1 (Y1, J1Y3)1B1 (J2Y2,Y4) − 1B1 (Y2, J1Y3)1B1 (J1Y1,Y4)
+ 21B1 (Y1, J1Y2)1B1 (J1Y3,Y4)} (38)
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for all vector fields Y1,Y2,Y3,Y4 ∈ Γ(TB1)([58]).

Let (Bb1
1 (ν), 1B1 , J1) be a complex space form, (B2, 1B2 ) a Riemannian manifold and φ : B1(ν) → B2 be

a PSSR map with (ran1eφ∗)⊥ = {0} and dim(kerφ∗) = p = 2k1 + 2k2. For every q ∈ B1, we consider
{X1,X2 = J1X1, ...,X2k1−1,X2k1 = J1X2k1−1,X2k1+1,X2k1+2 = secθζX2k1+1...,X2k1+2k2−1,Xp = secθζX2k1+2k2−1} and
{Xp+1,Xp+2, ...,Xb1 } two orthonormal bases of (kerφ∗) and (kerφ∗)⊥, respectively. One can get easily,

12
B1

(J1Xk,Xk+1) =
{

1, f or k ∈ {1, 2, ..., 2k1 − 1};
cos2 θ, f or k ∈ {2k1 + 1, ..., 2k1 + 2k2 − 1}.

Then
p∑

k,s=1

12
B1

(J1Xk,Xk+1) = 2(k1 + k2 cos2 θ). (39)

Let’s denote T αks by

T
α
ks = 1B1 (TXk Xs,Xα) (40)

where 1 ≤ k, s ≤ p and p + 1 ≤ α ≤ b1.

Now, for kerφ∗ using (1.27) of [22] and (38) , since φ is a PSSR map with (ran1eφ∗)⊥ = {0} then, for each
unit vector F1 ∈ Γ(kerφ∗) we arrive at

Rickerφ∗ (F1) =
ν
4

[p + 2 + 3 cos2 θ]

− p11(TF1 F1,H) +
p∑

k=1

11(TXk F1,TF1 Xk), (41)

hereH is the mean curvature vector field of the fiber.

From here, we get:

Theorem 4.1. Let φ : (B1(ν), 1B1 )→ (B2, 1B2 ) be a PSSR map with (ran1eφ∗)⊥ = {0}. Then, we have

Rickerφ∗ (F1) ≥
ν
4

[p + 2 + 3 cos2 θ] − p1B1 (TF1 F1,H). (42)

For a unit vertical vector F1 ∈ Γ(kerφ∗), the equality status of the inequality satisfies if and only if every fibre is totally
geodesic.

By polarization, using (41), we obtain:

Theorem 4.2. Let φ : (B1(ν), 1B1 ) → (B2, 1B2 ) be a PSSR map with (ran1eφ∗)⊥ = {0}. Then, the Ricci tensor Skerφ∗

on kerφ∗ satisfies

Skerφ∗ (F1,F2) ≥
ν
4

[p + 2 + 3 cos2 θ]1B1 (F1,F2) − p1B1 (TF1 F2,H). (43)

For F1,F2 ∈ Γ(kerφ∗), the equality status of the inequality satisfies if and only if every fibre is totally geodesic.
Similarly, for kerφ∗ using (1.27) of [22] and (38), we obtain

2ρkerφ∗ =
ν
4

[p(p − 1) + 6(k1 + k2 cos2 θ)]

− p2
∥H∥

2 +

p∑
k,s=1

11(TXk Xs,TXk Xs), (44)
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here ρkerφ∗ =
∑

1≤k<s≤p Rkerφ∗ (Xk,Xs,Xs,Xk).
Therefore, we can state the following result.

Theorem 4.3. Let φ : (B1(ν), 1B1 )→ (B2, 1B2 ) be a PSSR map with (ran1eφ∗)⊥ = {0}. Then, we have

2ρkerφ∗ ≥
ν
4

[p(p − 1) + 6(k1 + k2 cos2 θ)] − p2
∥H∥

2 (45)

the equality status of the inequality satisfies if and only if every fibre is totally geodesic.

Now, we give Chen-Ricci inequality on kerφ∗ for a PSSR map with (ran1eφ∗)⊥ = {0}.

By using (7), (40) and (44), we arrive at

2ρkerφ∗ =
ν
4

[p(p − 1) + 6(k1 + k2 cos2 θ)]

− p2
∥H∥

2 +

b1∑
α=p+1

p∑
k,s=1

(T αks)
2. (46)

From [21], we know that

b1∑
α=p+1

p∑
k,s=1

(T αks)
2 =

1
2

p2
∥H∥

2 +
1
2

b1∑
α=p+1

[
T
α
11 − T

α
22 − ... − T

α
pp

]2
+ 2

b1∑
α=p+1

p∑
s=2

(T α1s)
2

−2
b1∑

α=p+1

p∑
2≤k<s≤p

[
T
α
kkT

α
ss −
(
T
α
ks

)2]
. (47)

If we put (47) in (46), we obtain

2ρkerφ∗ =
ν
4

[p(p − 1) + 6(k1 + k2 cos2 θ)]

−
1
2

p2
∥H∥

2 +
1
2

b1∑
α=p+1

[
T
α
11 − T

α
22 − ... − T

α
pp

]2
+2

b1∑
α=p+1

p∑
s=2

(T α1s)
2
− 2

b1∑
α=p+1

p∑
2≤k<s≤p

[
T
α
kkT

α
ss −
(
T
α
ks

)2]
.

From here, we get

2ρkerφ∗ ≥
ν
4

[p(p − 1) + 6(k1 + k2 cos2 θ)]

−
1
2

p2
∥H∥

2
− 2

b1∑
α=p+1

p∑
2≤k<s≤p

[
T
α
kkT

α
ss −
(
T
α
ks

)2]
. (48)

On the other hand, using (1.27) of [22], taking U =W = Xk,V = F = Xs and from (40), we have

2
∑

2≤k<s≤p

RB1 (Xk,Xs,Xs,Xk) = 2
∑

2≤k<s≤p

Rkerφ∗ (Xk,Xs,Xs,Xk)

+2
b1∑

α=p+1

p∑
2≤k<s≤p

[
T
α
kkT

α
ss −
(
T
α
ks

)2]
.
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From the last equality, (48) can be written as

2ρkerφ∗ ≥
ν
4

[p(p − 1) + 6(k1 + k2 cos2 θ)] −
1
2

p2
∥H∥

2

+2
∑

2≤k<s≤p

Rkerφ∗ (Xk,Xs,Xs,Xk) − 2
∑

2≤k<s≤p

RB1 (Xk,Xs,Xs,Xk). (49)

Also, using the equality

2ρkerφ∗ = 2
∑

2≤k<s≤p

Rkerφ∗ (Xk,Xs,Xs,Xk) + 2
p∑

s=1

Rkerφ∗ (X1,Xs,Xs,X1).

If we put the last equality in (49), then we have

2Rickerφ∗ (X1) ≥
ν
4

[p(p − 1) + 6(k1 + k2 cos2 θ)]

−
1
2

p2
∥H∥

2
− 2

∑
2≤k<s≤p

RB1 (Xk,Xs,Xs,Xk).

Since B1 is a complex space form, curvature tensor RB1 of B1 provides equation (38), therefore we acquire

Rickerφ∗ (X1) ≥
ν
4

(p − 1) +
3ν
4

(1 + cos2 θ) −
1
4

p2
∥H∥

2.

Thus, we can give the following result:

Theorem 4.4. Let φ : B1(ν) → B2 be a PSSR map from a complex space form (B1(ν), 1B1 ) onto a Riemannian
manifold (B2, 1B2 ) with (ran1eφ∗)⊥ = {0}. Then we have

Rickerφ∗ (X1) ≥
ν
4

(p − 1) +
3ν
4

(1 + cos2 θ) −
1
4

p2
∥H∥

2.

The equality status of the inequality satisfies if and only if

T
α
11 = T

α
22 + ... + T

α
pp

T
α
1s = 0, s = 2, ..., p.

Corollary 4.5. Let φ : B1(ν) → B2 be a PSSR map from a complex space form (B1(ν), 1B1 ) onto a Riemannian
manifold (B2, 1B2 ) with (ran1eφ∗)⊥ = {0} and the semi-slant function θ = π2 . Then we get

Rickerφ∗ (X1) ≥
ν
4

(p + 2) −
1
4

p2
∥H∥

2.

The equality status of the inequality satisfies if and only if

T
α
11 = T

α
22 + ... + T

α
pp

T
α
1s = 0, s = 2, ..., p.

Corollary 4.6. Let φ : B1(ν) → B2 be a PSSR map from a complex space form (B1(ν), 1B1 ) onto a Riemannian
manifold (B2, 1B2 ) with (ran1eφ∗)⊥ = {0} and the semi-slant function θ = 0. Then we obtain

Rickerφ∗ (X1) ≥
ν
4

(p + 5) −
1
4

p2
∥H∥

2.

The equality status of the inequality satisfies if and only if

T
α
11 = T

α
22 + ... + T

α
pp

T
α
1s = 0, s = 2, ..., p.
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5. Casorati curvatures

The following lemma plays a key role in the proof of our theorem:
Lemma 5.1. Let W = {(y1, y2, ..., ym) ∈ Rm : y1 + y2 + ... + ym = z} be a hyperplane of Rm, and 1 : Rm

→ R a
quadratic form given by

1(y1, y2, ..., ym) = cΣm−1
k=1 (yk)2 + d(ym)2

− 2Σ1≤k<s≤mykys, c > 0, d > 0.

Then the constrained extremum problem min(y1,y2,...,ym)∈W1 has the following solution:

y1 = y2 = ... = ym−1 =
z

c + 1
, ym =

z
d + 1

=
z(m − 1)
(c + 1)d

= (c −m + 2)
z

c + 1
,

provided that d = m−1
c−m+2 [49].

Let φ be a PSSR map from a complex space form (Bb1
1 (ν), J1, 1B1 ) to a Riemannian manifold (Bb2

2 , 1B2 ) with
(ran1eφ∗)⊥ = {0}. Suppose {X1, ...,Xp} is an orthonormal basis of the vertical space kerφ∗q, for q ∈ B1, and
{Xp+1, ...,Xb1 } be an orthonormal basis of the horizontal space (kerφ∗q)⊥.
We defined the scalar curvature τkerφ∗ on the vertical space kerφ∗q by

τkerφ∗ = Σ
p
k,s=11B1 (Rkerφ∗ (Xk,Xs)Xs,Xk)

and the normalized scalar curvature κkerφ∗ of kerφ∗q as

κkerφ∗ =
2τkerφ∗

p(p − 1)
.

Then, we can write

Tβks = 1B1 (T(Xk,Xs),Xβ), k, s = 1, ..., p, β = p + 1, ..., b2,

∥T∥2 = Σ
p
k,s=11B1 (T(Xk,Xs),T(Xk,Xs)),

traceT = Σ
p
k=1T(Xk,Xk), ∥traceT∥2 = 1B1 (traceT, traceT)

and the squared norm of T over the manifold B1, denoted by Ckerφ∗ , is called the vertical Casorati curvatures
of the vertical space (kerφ∗)q. Thus, we get

C
kerφ∗ =

1
p
∥T∥2 =

1
p
Σb1
β=p+1Σ

p
k,s=1(Tβks)

2.

Now, assume that Lkerφ∗ is a t−dimensional subspace (kerφ∗)q, 2 ≤ t and let {X1,X2, ...,Xt} be an orthonormal
basis of Lkerφ∗ . Then the Casorati curvature Ckerφ∗ (Lkerφ∗ ) of Lkerφ∗ defined as

C
kerφ∗ (Lkerφ∗ ) =

1
t
∥T∥2 =

1
t
Σb1
β=p+1Σ

t
k,s=1(Tβks)

2.

The normalized σkerφ∗− Casorati curvatures σkerφ∗
C

(p − 1) and σ̄kerφ∗
C

(p − 1) of kerφ∗)q are given by

[σkerφ∗
C

(p − 1)]q =
1
2C

kerφ∗
q +

p+1
2p in f {Ckerφ∗ (Lkerφ∗ ) : Lkerφ∗ a hyperplane of (kerφ∗)q}, and

[σ̄kerφ∗
C

(p − 1)]q = 2Ckerφ∗
q −

2p−1
2p in f {Ckerφ∗ (Lkerφ∗ ) : Lkerφ∗ a hyperplane of (kerφ∗)q}.

Theorem 5.2. Let φ be a PSSR map from a complex space form (Bb1
1 (ν), J1, 1B1 ) to a Riemannian manifold (Bb2

2 , 1B2 )

with (ran1eφ∗)⊥ = {0} and 3 ≤ p. Then the normalized σ− Casorati curvatures σkerφ∗
C

and σ̄kerφ∗
C

on (kerφ∗)q satisfy

(i) κkerφ∗ ≤ σkerφ∗
C

(p − 1) +
ν
4
+

3ν
2p(p − 1)

(k1 + k2 cos2 θ), (50)
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(ii) κkerφ∗ ≤ σ̄kerφ∗
C

(p − 1) +
ν
4
+

3ν
2p(p − 1)

(k1 + k2 cos2 θ). (51)

Furthermore, the equality case holds in any inequalities at a point q ∈ B1 if and only if with respect to suitable
orthonormal basis {X1, ...,Xp} on Γ(kerφ∗)q and {Xp+1, ...,Xb1 } on Γ((kerφ∗)q)⊥), the components of T satisfy

Tβ11 = Tβ22 = ... = Tβp−1p−1 =
1
2

Tβpp, β ∈ {p + 1, p + 2, ..., b1},

Tβks = 0, k, s ∈ {1, , ..., p}(k , s), β ∈ {p + 1, p + 2, ..., b1}.

Proof. Using (1.27) of [22] and (38) we have

2τkerφ∗ =
ν
4

(p2
− p) +

3ν
2

(k1 + k2 cos2 θ)

− pCkerφ∗ + ∥traceT∥2. (52)

Now we define a function Qkerφ∗ associated with the following quadratic polynomial with respect to the
components of T :

Q
kerφ∗ =

1
2

[(p2
− p)Ckerφ∗ + (p2

− 1)Ckerφ∗ (Lkerφ∗ )]

− 2τkerφ∗ +
ν
4

(p2
− p) +

3ν
2

(k1 + k2 cos2 θ).

Without loos of generality, by supposing that the hyperplane Lkerφ∗ is spanned by {X1, ...,Xp−1}, one can
produce

Q
kerφ∗ = Σb1

β=p+1Σ
p−1
k=1[p(Tβkk)2 + (p + 1)(Tβkp)2]

+ Σb1
β=p+1[2(p + 1)Σp−1

1=k<s(T
β
ks)

2

− 2Σp
1=k<sT

β
kkTβss +

p − 1
2

(Tβpp)2]. (53)

Using (53), we obtain the critical points

Tc = (Tp+1
11 ,T

p+1
12 , ...,T

p+1
pp , ...,T

b1
11, ...,T

b1
pp)

of Qkerφ∗ are solutions of the next system of equations:

∂Qkerφ∗

∂Tβkk

= 2(r + 1)Tβkk − 2Σp
t=1Tβtt = 0

∂Qkerφ∗

∂Tβpp
= (r − 1)Tβpp − 2Σp−1

t=1 Tβtt = 0
∂Qkerφ∗

∂Tβks

= 4(r + 1)Tβks = 0
∂Qkerφ∗

∂Tβkp

= 2(r + 1)Tβkp = 0,

(54)

here k, s ∈ {1, 2, ..., p − 1}, k , s and β ∈ {p + 1, ..., b1}. Frankly (54) is a system consisting only in linear
homogeneous equations and it is easy to checky that every solution Tc has Tβks = 0 for k , s, and the
determinant corresponding to the first two series of linear homogeneous equations in (54) has vanishes.
Furthermore, the Hessian matrix of Qkerφ∗ is defined as

H(Qkerφ∗ ) =

 H1 0 0
0 H2 0
0 0 H3

 ,
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here

H1 =


2p −2 ... −2 −2
−2 2p ... −2 −2
... ... ... ... ...
−2 −2 ... 2p −2
−2 −2 ... −2 p − 1

 ,
denotes the zero matrix of suitable dimensions and the matrices H2, H3 are ones having the following
diagonal forms

H2 = dia1(4(p + 1), 4(p + 1), ..., 4(p + 1)),
H3 = dia1(2(p + 1), 2(p + 1), ..., 2(p + 1)).

Then a standard computation shows that the eigenvalues ofH(Qkerφ∗ ) are

ξ11 = 0, ξ22 = p + 3, ξ33 = ... = ξpp = 2(p + 1), ξks = 4(p + 1),
ξkb1 = 2(p + 1), ∀k, s ∈ {1, 2, ..., p − 1}, k , s.

Also it follows that Qkerφ∗ is parabolic and achieves a global minimum value Qkerφ∗ (c) for Tc
− the solution of

(54). However we obtain Qkerφ∗ (c) = 0 and we get Qkerφ∗ ≥ 0. Thus,

2τkerφ∗ ≤
1
2

[(p2
− p)Ckerφ∗ + (p2

− 1)Ckerφ∗ (Lkerφ∗ )]

+
ν
4

(p2
− p) +

3ν
2

(k1 + k2 cos2 θ) (55)

and using (55) we obtain

κkerφ∗ ≤ [
1
2
C

kerφ∗ +
p + 1

2p
C

kerφ∗ (Lkerφ∗ )]

+
ν
4
+

3ν
2p(p − 1)

(k1 + k2 cos2 θ) (56)

for all hyperplane Lkerφ∗ of B1. Now, taking the infimum in (56) over every hyperplane Lkerφ∗ ,we get (i)

κkerφ∗ ≤ σkerφ∗
C

(p − 1) +
ν
4

+
3ν

2p(p − 1)
(k1 + k2 cos2 θ) (57)

Besides, simply we can check that the equality sign holds in the (57) if and only if

Tβks = 0, ∀k, s ∈ {1, 2, ..., p}, k , s, β ∈ {p + 1, ..., b1},

and

Tβpp = 2Tβ11 = ... = 2Tβp−1 p−1, ∀k, s ∈ {p + 1, p + 2, ..., b1}.

In a similar way we have (ii).

Using the Theorem 5.2, we obtain the following results:

Corollary 5.3. Let φ be a PSSR map from a complex space form (Bb1
1 (ν), J1, 1B1 ) to a Riemannian manifold (Bb2

2 , 1B2 )

with (ran1eφ∗)⊥ = {0}, the semi-slant function θ = π2 and 3 ≤ p. Then the normalized σ− Casorati curvatures σkerφ∗
C

and σ̄kerφ∗
C

on (kerφ∗)q satisfy

(i) κkerφ∗ ≤ σkerφ∗
C

(p − 1) +
ν
4
+

3k1ν
2p(p − 1)

, (58)
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(ii) κkerφ∗ ≤ σ̄kerφ∗
C

(p − 1) +
ν
4
+

3k1ν
2p(p − 1)

. (59)

Furthermore, the equality case holds in any inequalities at a point q ∈ B1 if and only if with respect to suitable
orthonormal basis {X1, ...,Xp} on Γ(kerφ∗)q and {Xp+1, ...,Xb1 } on Γ((kerφ∗)q)⊥), the components of T satisfy

Tβ11 = Tβ22 = ... = Tβp−1p−1 =
1
2

Tβpp, β ∈ {p + 1, p + 2, ..., b1},

Tβks = 0, k, s ∈ {1, , ..., p}(k , s), β ∈ {p + 1, p + 2, ..., b1}.

Corollary 5.4. Let φ be a PSSR map with (ran1eφ∗)⊥ = {0} from a complex space form (Bb1
1 (ν), 1B1 ) to a Riemannian

manifold (Bb2
2 , 1B2 ) with the semi-slant function θ = 0 and 3 ≤ p. Then the normalized σ− Casorati curvatures σkerφ∗

C

and σ̄kerφ∗
C

on (kerφ∗)q satisfy

(i) κkerφ∗ ≤ σkerφ∗
C

(p − 1) +
(p + 2)ν
4(p − 1)

,

(ii) κkerφ∗ ≤ σ̄kerφ∗
C

(p − 1) +
(p + 2)ν
4(p − 1)

.

Furthermore, the equality case holds in any inequalities at a point q ∈ B1 if and only if with respect to suitable
orthonormal basis {X1, ...,Xp} on Γ(kerφ∗)q and {Xp+1, ...,Xb1 } on Γ((kerφ∗)q)⊥), the components of T satisfy

Tβ11 = Tβ22 = ... = Tβp−1p−1 =
1
2

Tβpp, β ∈ {p + 1, p + 2, ..., b1},

Tβks = 0, k, s ∈ {1, , ..., p}(k , s), β ∈ {p + 1, p + 2, ..., b1}.
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