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Abstract. The disease in prey causes the indirect effect on the disease transmission of prey-predator
interactions; this phenomenon of predator-dependent disease transmission scenario can arise as a conse-
quence of anti-predator defence behaviour, debilitating the immune system of the prey. This concept is
implemented in the proposed nonlinear mathematical prey-predator model, where an infectious disease
infects only prey populations. The interaction between the susceptible prey and predator is assumed to
be governed by Crowley-Martin type functional response and Holling I type functional response for the
predation of infected prey. The susceptible prey becomes infected when contact occurs with the infected
prey. The existence, uniqueness, boundedness, and feasibility and stability conditions of the fixed points of
the system are analyzed. Hopf bifurcation analysis for the system is perceived and presented through bifur-
cation diagrams for different parameter values. Lastly, numerical exercises and graphical demonstrations
are given to help our investigative findings.

1. Introduction

Many researchers contribute a lot of things in the field of prey-predator interaction due to disease
transmission. The epidemiology problem has been painting attention to many scholars and experts ([1]-[41],
[42]). Although a rich literature on eco-epidemiological models, predator-dependent disease transmission
has rarely been considered in eco-epidemiological models. Mathematically, we consider a classical prey-
predator model in which the prey population is subjected to an infectious disease. The predator can
consume both infected and healthy prey (without becoming infected); however, the attack rates on infected
and healthy prey are different. The disease transmission coefficient is considered as a function of the total
amount of predator(s) density. Various mechanisms can allow for predator-dependent disease transmission.
For instance, this can be a consequence of anti-predator behaviour. For example, in the presence of predators,
a freshwater snail spends a long time hiding inside its shell. This makes it more vulnerable to parasites
since the organism cannot expel the blood necessary for proper immune system functioning. Another
widespread mechanism causing an increase in the transmission rate is a result of the grouping of prey in
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the presence of predators through the formation of fish schools, avian flocks, herds of herbivores, etc.. A
dense ’packing’ of individuals in groups would signify a larger transmission rate due to increased contacts.
As a result, the prey population can become more vulnerable to a disease in the presence of predators, so
the transmission rate of disease becomes a function of the total amount of the predator. Let us assume, for
the sake of simplicity, that the incidence rate (i.e., the number of infected individuals per unit of time) can
be described via a classical mass action relation, λIS, in an S− I model, where S is the number of susceptible
and I is the number of infected individuals in the prey population. In this case, the transmission coefficient
λ can be a function of the number of predators P in the ecosystem, i.e., λ(P). We call this phenomenon
predator-dependent disease transmission, and, as is further shown, this can play a crucial role in shaping
predator-prey-disease interactions.

In the recent era, some renowned authors ([43] − [49], [55], [61] − [69], [71] − [73]) studied functional
responses to understand the importance of interaction between the prey and predator in the eco-system.
They used some functional responses such as Cowley-Martin type functional response to make the model
system more realistic and controllable in the eco-system. Ghanbari et al. [50] used Atangana-Baleanu
fractional response to understand the nature of the three-species predator-prey model. A comparative
study of explosive predator and mutualistic prey is done by Batabyal et al. [52]. The main aim of eco-
epidemiological system is to eradicate the disease transmission in the system and many research papers are
studied how the eco-epidemiological system can be made disease-free by regulating the system parameters.
In this context we like to mention that Packer et al. [53] suggested that predation actually helps to reduce
the infection load in prey population. They placed several experimental observations also to support their
claim. Sih et al. [54] reviewed predator-removal experiments where they removed the predator population
from the system and observed its effect on the prey population that are infected by some transmissible
disease.

Depend on the above literature’s, we discuss the role of predation on both susceptible and infected
prey species for controlling the disease transmission. Our model uses the disease transmission term in the
healthy and infected prey population, focusing on the effects of predation rate and infection rate to get the
impact of disease in our system. Our analytical and numerical studies suggest that along with the infection
rate, predation rate also plays a vital role in controlling the system’s dynamics. We recognised two exciting
cases: the disease can be abolished from prey species by regulating the predation on healthy prey. On the
other hand, the system will be disease-free with appropriate control on predation of infected prey. The
paper is organized as follows: Section 2 outlines the mathematical model with some basic assumptions. In
Section 3: we discuss the positivity and boundedness of the prey-predator system. Section 4: we study
the stability of equilibrium points. Section 5: Hopf bifurcation and permanence and impermanence of the
system. The permanence of the prey-predator system is carried out in Section 6. Section 7: Numerical
results and discussion. At the end of the paper, we conclude with the findings of this study and future
directions for further development in Section 8.

2. Modelling of Disease Transmission Framework

In this work on the prey-predator system, the infected prey’s disease spread model has been projected
and deliberate. Here, S(t), I(t) and P(t) denote the numbers of Susceptible Prey (SP), Infected Prey (IP), and
Predator populations, respectively. Moreover, all parameters of our given mathematical model are positive.
We impose the following assumptions to formulate the mathematical model.

(A1) It is assumed that a parasite is infectious, and it spreads among prey only.
(A2) In the absence of disease, the prey population grows according to a logistic curve with growth rate

r (r > 0) and carrying capacity k (k > 0).
(A3) In the presence of disease, the prey follows the susceptible-infected cycle only.
(A4) Infected prey populations do not recover from the disease while the infected prey is removed by

death with a constant positive death rate δ1.
(A5) Here, the disease in the prey population is transmitted from susceptible to infected prey population

governed by a modified incidence function of the form (λ0 + aP) SI
S+I , i.e., we assume predator dependent

disease transmission.



D. Ghosh et al. / Filomat 37:13 (2023), 4297–4315 4299

(A6) Disease does not spread from the infected prey to predator by feeding or other way.
(A7) Predators consume both susceptible and infected prey populations. We also consider that the

predator is a specialist, i.e., the prey population constitutes its only food source.
(A8) We have considered Cowley-Martin type functional response for the predation of susceptible prey

population. The Crowley-Martin response function is of the form: α1SP
(1+bS)(1+cP) , which was first proposed

by [46]. Here α1, b and c positive parameters describe the effects of capture rate, handling time, and the
magnitude of interference among predators on the feeding rate, respectively. This is a function of the
biomass of both prey and predator due to predator interference. If the prey biomass is high, then also
the predator feeding rate can decrease by higher predator biomass. Therefore, the effects of predator
interference on feeding rate remain essential all the time whether an individual predator is handling or
searching for prey at a given instant.

(A9) The interaction between infected prey and predator is assumed to be governed by Holling type I
functional response. Here the predator functional response on infected prey population is given by βIP.

(A10) Predator is reduced by death with a constant positive death rate δ2.
Based on the above ideas, we consider the following prey-predator model with nonlinear disease

transmission rate
dS
dt = rS(1 − S+I

k ) − (λ0 + aP) SI
S+I −

α1SP
(1+bS)(1+cP)

dI
dt = (λ0 + aP) SI

S+I − β1IP − δ1I
dP
dt =

α2SP
(1+bS)(1+cP) + β2IP − δ2P

(1)

with initial conditions

S(0) = S0 > 0, I(0) = I0 > 0 and P(0) = P0 > 0. (2)

where λ0 be the disease transmission rate in the absence of a predator; a describes the effect of the
presence of predator; b is the positive constant describing the handling time of the predator to consume the
susceptible prey; c be a non-negative constant describing the magnitude of interference among predators;
α1 the predation rate on susceptible prey; α2 the growth rate of a predator due to susceptible prey; β1 the
predation rate on infected prey; β2 the growth rate of a predator due to infected prey.

3. Positivity and Boundedness

Theorem 1. Entire solution of system (1) with initial conditions (2) exists in the interval [0,∞), for all t ≥ 0.

Proof. Since the right-hand side of the system (1) is completely continuous and locally Lipschitzian on C,
the solution (S(t), I(t),P(t)) of (1) with initial conditions (2) exists and is unique on [0, ζ),where 0 < ζ < +∞.

From system (1) with initial conditions (2) , we have

S(t) = S0e
∫ t

0

{
r(1−(S(ξ)+I(ξ))/k)−(λ0+aP(ξ)) I(ξ)

S(ξ)+I(ξ)−
a1P(ξ)

(1+bS(ξ))(1+cP(ξ))

}
dξ
> 0

I(t) = I0e
∫ t

0

{
(λ0+aP(ξ)) S(ξ)

S(ξ)+I(ξ)−β1P(ξ)−δ1

}
dξ > 0

P(t) = P0e
∫ t

0

{ a2S(ξ)
(1+bS(ξ))(1+cP(ξ))+β2I(ξ)−δ2

}
dξ > 0

which completes the proof.

Theorem 2. The solutions of the given mathematical model (1) are entirely bounded.

Proof. From the first equation of model (1), we have

dS
dt
= rS(t)

(
1 −

S(t) + I(t)
k

)
− (λ0 + aP(t))

S(t)I(t)
S(t) + I(t)

−
α1S(t)P(t)

(1 + bS(t))(1 + cP(t))

dS
dt
≤ rS(t)

(
1 −

S(t)
k

)
.
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This gives, S(t) ≤ kc1ert

c1ert+1 or, S(t) ≤ kc1
c1+e−rt ,where c1 is an arbitrary constant. Again since r is a positive quantity

then S(t) ≤ k as t→∞.
Now, we perform a function like as W(t) = S(t) + I(t) + P(t)
Differentiating both sides with respect to t, we have

dW(t)
dt

=
dS(t)

dt
+

dI(t)
dt
+

dP(t)
dt

dW(t)
dt

= rS(t)
(
1 −

S(t) + I(t)
k

)
− (λ0 + aP(t))

S(t)I(t)
S(t) + I(t)

−
α1S(t)P(t)

(1 + bS(t))(1 + cP(t))

+(λ0 + aP(t))
S(t)I(t)

S(t) + I(t)
− β1I(t)P(t) − δ1I(t) +

α2S(t)P(t)
(1 + bS(t))(1 + cP(t))

+ β2I(t)P(t) − δ2P(t)

= rS(t) − (δ1I(t) + δ2P(t)) − I(t)P(t)
(
β1 − β2

)
−

rS(t) (S(t) + I(t))
k

−
S(t)P(t) (α1 − α2)

(1 + bS(t))(1 + cP(t))

Since, I(t)P(t)
(
β1 − β2

)
> 0 if β1 > β2 , rS(t)

(
S(t)+I(t)

k

)
> 0, and lastly S(t)P(t)

(1+bS(t))(1+cP(t)) (α1 − α2) > 0 if α1 > α2, we
have

dW(t)
dt

≤ 2rS(t) − (rS(t) + δ1I(t) + δ2P(t)) (3)

Assuming η = min {r, δ1, δ2} , then from the relation (3), we have

dW(t)
dt
+ ηW ≤ 2rk (4)

Using the theory of differential inequality, we have

0 <W(t) ≤W(0)e−ηt +
2rk
η

(1 − e−ηt)

and for t → ∞, we have 0 < W ≤
2rk
η . Therefore, all the solutions of the system (S(t), I(t),P(t)) enters in

Ω = {(S(t), I(t),P(t)) ∈ R3
+ : 0 < W ≤ 2rk

η } or approaches it asymptotically. Hence, it is a positively invariant
set of system.
Thus, in Ω the system (1) is well-posed eco-epidemiologically and mathematically.
Hence, it is sufficient to study the dynamics of the system (1) in Ω.

4. Equilibrium points: their existence and stability

In this section, we will study the existence and stability behaviour of the system (1). The equilibrium
points of the model system (1) are: (I) The trivial equilibrium point E0 = (0, 0, 0) , (II) The infection and
predator-free Axial equilibrium point E1 = (k, 0, 0) , (III) The predator-free equilibrium point (i) E2 =

(
S, I, 0

)
,

where S = δ1k(r−λ0+δ1)
rλ0

, I = k(λ0−δ1)(r−λ0+δ1)
rλ0

, (ii) The infection-free equilibrium point E2 =
(
S, 0,P

)
, was P =

(α2−bδ2)S−δ2

cδ2(1+bS) and S is the positive root of the following cubic equation.

K0S3 + 3K1S2 + 3K2S + K3 = 0

where K0 = rbcα2 , K1 =
1
3 rcα2 (1 − bk), K2 =

1
3 [α1k (α2 − bδ2) − rckα2], K3 = −α1kδ2.

The above equation has exactly one positive root if G + 4H3 > 0, where G = K2
0K3 − 3K0K1K2 + 2K3

3 and
H = K0K2 − K2

1.

Using Cardan’s method, we obtain the root as 1
A (J − K1) where J denotes the real value of

[
1
2

(
−G +

√

G2 + 4H3
)] 1

3 ,
and (IV) Interior equilibrium point E∗ = (S∗, I∗,P∗) .
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4.1. Existence of interior equilibrium E∗ (S∗, I∗,P∗)
This section will analyze the existence of the non-trivial interior equilibrium of the model system (1).

At an interior equilibrium, the followings hold:

S > 0, I > 0,P > 0 and
dS
dt
=

dI
dt
=

dP
dt
= 0. (5)

Now, solving the equations of (5) at the equilibrium point we get,

r
(
1 −

S + I
k

)
− (λ0 + aP)

I
S + I

−
α1P

(1 + bS) (1 + cP)
= 0

(λ0 + aP)
S

S + I
− β1P − δ1 = 0

α2S
(1 + bS) (1 + cP)

+ β2I − δ2 = 0,

and (S∗, I∗,P∗) be the positive root of the above three equations.

4.2. Local stability analysis
In this section, we shall study the local stability analysis of the system (1) at various equilibrium points.

4.2.1. Trivial equilibrium
Now, the variational matrix of system (1) at E0(0, 0, 0) is given by

V(E0) =

 r 0 0
0 −δ1 0
0 0 −δ2


Therefore, eigenvalues of the characteristic equation of V(E0) are λ1 = r > 0, λ2 = −δ1 < 0, λ3 = −δ2 < 0.
This implies E0 is always unstable since one eigenvalue is positive and the other two are negative.

4.2.2. Axial equilibrium
The variational matrix of system (1) at E1(k, 0, 0) is given by,

V(E1) =

 −r −r − λ0 −
α1k

1+bk
0 λ0 − δ1 0
0 0 α2k

1+bk − δ2


Therefore, eigenvalues of the characteristic equation of V(E1) are λ1 = −r < 0, λ2 = λ0 − δ1, λ3 =

α2k
1+bk − δ2.

Hence, all the eigenvalues will be negative if λ2 < 0, i.e., λ0 < δ1 and λ3 < 0, i.e., α2k < δ2 (1 + bk). Thus E1
is locally asymptotically stable if λ0 < δ1 and α2k < δ2 (1 + bk).

4.2.3. Planar equilibrium
The variational matrix of system (1) at E2(S, I, 0) is given by,

V(E2) =

 m1 m2 m3
m4 m5 m6
0 0 m7


where m1 = r− 2rS

k −
rI
k −λ0

I
2

(S+I)2 , m2 = −
rS
k −λ0

S
2

(S+I)2 ,m3 = −
aSI
S+I
−
α1S

1+bS
, m4 = λ0

I
2

(S+I)2 ,m5 = λ0
S

2

(S+I)2 −δ1,m6 =

a SI
S+I
− β1I, and m7 =

α2S
1+bS
+ β2I − δ2.
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Therefore, the characteristic equation of V(E2) is (m7 − λ)
{
λ2 + A11λ + A12

}
= 0, where A11 = − (m1 +m5)

and A12 = m1m5 −m2m4.

Hence, the one eigenvalue of the above characteristic equation is m7, which is negative as δ2 >
α2S

1+bS
+ β2I

and the other two eigenvalues should be negative if A11 > 0 and A12 > 0.

Hence, E2 is locally asymptotically stable if A11 > 0, A12 > 0 and δ2 >
α2S

1+bS
+ β2I.

Here, the variational matrix of system (1) at E3

(
S, 0,P

)
is given by,

V(E3) =

 p1 p2 p3
0 p4 0
p5 p6 p7


where p1 = r − 2rS

k −
α1P

(1+cP)(1+bS)2 , p2 = −
rS
k −

(
λ0 + aP

)
, p3 = −

α1S

(1+bS)(1+cP)2 , p4 =
(
λ0 + aP

)
− β1P − δ1,

p5 =
α2P

(1+cP)(1+bS)2 , p6 = β2P and p7 =
α2S

(1+bS)(1+cP)2 − δ2.

Now, the characteristic equation for V(E3) is
(
p4 − λ

) {
λ2 + B11λ + B12

}
= 0, where B11 = −

(
p1 + p7

)
and

B12 = p1p7 − p3p5.
Hence, the one eigenvalue of the above characteristic equation is p4, which is negative as δ1 > λ0+

(
a − β1

)
P

and the other two eigenvalues should be negative if B11 > 0 and B12 > 0.
So, the predator-free equilibrium point E3(S, 0,P) is locally asymptotically stable if δ1 > λ0 +

(
a − β1

)
P,

B11 > 0 and B12 > 0 , otherwise the system (1) will be unstable.

4.2.4. Interior equilibrium
Now, the variational matrix of system (1) at E∗(S∗, I∗,P∗) is given by,

V(E∗) =

 a11 a12 a13
a21 a22 a23
a31 a32 a33


where a11 = r− 2rS∗

k −
rI∗
k −(λ0 + aP∗) I∗2

(S∗+I∗)2−
α1P∗

(1+cP∗)(1+bS∗)2 , a12 = −
rS∗
k +(λ0 + aP∗) S∗2

(S∗+I∗)2 , a13 = −
(

aI∗
S∗+I∗ +

α1

(1+bS∗)(1+cP∗)2

)
S∗,

a21 = (λ0 + aP∗) I∗2

(S∗+I∗)2 , a22 = (λ0 + aP∗) S∗2

(S∗+I∗)2 − β1P∗ − δ1, a23 =
aS∗I∗
S∗+I∗ − β1I∗, a31 =

α2P∗

(1+cP∗)(1+bS∗)2 , a32 = β2P∗ and

a33 =
α2S∗

(1+bS∗)(1+cP∗)2 + β2I∗ − δ2.

Therefore, the characteristic equation of V(E∗) is given by,

η3 + B1η
2 + B2η + B3 = 0 (6)

where, B1 = −(a11 + a22 + a33), B2 = − (a12a21 + a13a31 + a23a32 − a11a22 − a11a33 − a22a33) and B3 = −(a11a22a33 +
a12a23a31 + a13a21a32 − a13a31a22 − a12a21a33 − a11a23a32).

Hence, by the Routh-Hurwitz criterion, it follows that all eigenvalues of the characteristic equation (6)
have negative real parts if and only if

B1 > 0, B3 > 0 and B1B2 − B3 > 0. (7)

Therefore, the system (1) shows local asymptotic stability at E∗ when conditions (7) are satisfied. Thus, from
the previous discussions, we come to the following result:

Theorem 3. The equilibrium point E0 is always unstable.

Theorem 4. The equilibrium point E1 is locally asymptotically stable if λ0 < δ1 and α2k < δ2 (1 + bk).

Theorem 5. The equilibrium point E2 is locally asymptotically stable if A11 > 0, A12 > 0 and δ2 >
α2S

1+bS
+ β2I .

Theorem 6. The equilibrium point E3 is locally asymptotically stable if B11 > 0, B12 > 0 and δ1 > λ0 +
(
a − β1

)
P.

Theorem 7. The equilibrium point E∗ is locally asymptotically stable if B1 > 0, B3 > 0 and B1B2 − B3 > 0.
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4.3. Global stability analysis

In this section, we shall study the global stability behaviour of the system (1) at the interior equilibrium
E∗(S∗, I∗,P∗). Let us define,

L =
(
S − S∗ − S∗ ln

S
S∗

)
+Q

(
I − I∗ − I∗ ln

I
I∗

)
+ R

(
P − P∗ − P∗ ln

P
P∗

)
(8)

where Q and R are positive constants.
Here L(S, I,P) ≥ 0 since θ − 1 ≥ lnθ for θ > 0 and L(S∗, I∗,P∗) = 0. Differentiating L along with the

solutions of system (1) with respect to time parameter t, we get

dL
dt
=

(S − S∗

S

) dS
dt
+Q

( I − I∗

I

) dI
dt
+ R

(P − P∗

P

) dP
dt

=

[
r(1 −

S + I
k

) − (λ0 + aP)
I

S + I
−

α1P
(1 + bS)(1 + cP)

]
(S − S∗)

+Q
[
(λ0 + aP)

S
S + I

− β1P − δ1

]
(I − I∗) + R

[
α2S

(1 + bS)(1 + cP)
+ β2I − δ2

]
(P − P∗)

After some simplifications we get,

dL
dt
= − (S − S∗)

[ r
k
{(S + I) − (S∗ + I∗)} + {(λ0 + aP)

I
S + I

− (λ0 + aP∗)
I∗

S∗ + I∗
}

+a1

(
P

(1 + bS)(1 + cP)
−

P∗

(1 + bS∗)(1 + cP∗)

)]
−Q (I − I∗)

[
β1 (P − P∗) + {(λ0 + aP)

S
S + I

− (λ0 + aP∗)
S∗

S∗ + I∗
}

]
−R (P − P∗)

[
cbS (S∗P − S∗P∗) − c (SP∗ − S∗P) − (S − S∗)

(1 + bS)(1 + cP)(1 + bS∗)(1 + cP∗)
− β2 (I − I∗)

]

Now, we see that dL
dt is negative definite in the region:

G = {(S, I,P) : S > S∗, I > I∗ and P > P∗ or S < S∗, I < I∗ and P < P∗} and consequently L is a Lyapunov func-
tion with respect to all solutions in G. Summarizing the above discussions we come to the following
result:

Theorem 8. If E∗ is locally asymptotically stable then E∗is globally asymptotically stable in G = {(S, I,P) : S > S∗, I > I∗ and P > P∗ or S < S∗, I < I∗ and P < P∗} .

5. Hopf bifurcation at E∗(S∗, I∗,P∗)

The characteristic equation of system (1) at E∗(S∗, I∗,P∗) is given by

η3 + B1(r)η2 + B2(r)η + B3(r) = 0 (9)
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where, B1(r) = (δ1 + δ2) − r −
(
β2 − (λ0 + aP∗) − r

k

)
I∗ −

(
α2

1+bS∗ −
2r
k + λ0 + aP∗

)
S∗ +

(
α1

(1+bS∗)2 + β1

)
P∗,

B2(r) =
(
r −

2rS∗

k
−

( r
k
− λ0 − aP∗

)
I∗ −

α1P∗

(1 + bS∗)2

) (
(λ0 + aP∗) S∗ − β1P∗ − δ1

)
+

(
aI∗ +

α1

1 + bS∗

)
α2P∗S∗

(1 + bS∗)2 +

(
r −

2rS∗

k
−

( r
k
− (λ0 + aP∗)

)
I∗ −

α1P∗

(1 + bS∗)2

) (
α2S∗

1 + bS∗
+ β2I∗ − δ2

)
+

( r
k
+ λ0 + aP∗

)
(λ0 + aP∗) S∗I∗ +

(
(λ0 + aP∗) S∗ − β1P∗ − δ1

) ( α2S∗

1 + bS∗
+ β2I∗ − δ2

)
−

((
aS∗ − β1

)
β2P∗I∗

)
,

B3(r) =
(
r − r

2S∗ + I∗

k
− (λ0 + aP∗) I∗ −

α1P∗

(1 + bS∗)2

)
(
(
(λ0 + aP∗) S∗ − β1P∗ − δ1

) ( α2S∗

1 + bS∗
+ β2I∗ − δ2

)
−

(
aS∗ − β1

)
β2I∗P∗)

+
( r

k
+ λ0 + aP∗

)
(λ0 + aP∗)

(
α2S∗

1 + bS∗
+ β2I∗ − δ2

)
S∗I∗ −

( r
k
+ λ0 + aP∗

) (
aS∗ − β1

)
α2

(1 + bS∗)2 S∗I∗P∗

+
(
aI∗ +

α1

1 + bS∗

)
α2P∗

(1 + bS∗)2

(
(λ0 + aP∗) S∗ − β1P∗ − δ1

)
S∗ −

(
aI∗ +

α1

1 + bS∗

)
(λ0 + aP∗) β2S∗I∗P∗.

To check out the instability of the system (1), let us consider r as the bifurcation parameter. For this purpose,
let us first state the following theorem:

Theorem 9. (Hopf Bifurcation Theorem) If B1(r), B2(r), B3(r) are smooth functions of r in an open interval about r0
∈ R such that the characteristic equation (9) has

(i) a pair of complex eigenvalues η = κ(r)± iϱ(r) (with κ(r), ϱ(r) ∈ R) so that they become purely
imaginary at r = r0 and

(
dκ
dr

)
r=r0
, 0,

(ii) the other eigenvalue is negative at r = r0, then a Hopf bifurcation occurs around E∗ at r = r0
(i.e., a stability change of E∗ accompanied by the creation of a limit cycle at r = r0).

Theorem 10. The system (1) possesses a Hopf bifurcation around E∗when a passes through r0 provided B1(r0),B2(r0) >
0 and B1(r0)B2(r0) = B3(r0).

Proof. For r = r0, the characteristic equation of the prey-predator system (1) at E∗ becomes (η+B1)(η2+B2) = 0,
providing roots η1 = i

√
B2, η2 = −i

√
B2, and η3 = −B1. Thus, there exists a pair of purely imaginary

eigenvalues and a strictly negative eigenvalue. Additionally, B1(r), B2(r), B3(r) are smooth functions of r.
Therefore, for r in a neighbourhood of r0, the roots have the form η1(r) = ξ1(r) + iξ2(r), η2(r) = ξ1(r) − iξ2(r),
η3 = −ξ3(r), where ξi(r), i = 1, 2, 3 are real.
Next, we shall verify the transversality condition

d
dr

(Re(ηi(r)))|r=r0 , 0, i = 1, 2.

Putting the value η(r) = ξ1(r) + iξ2(r) into the characteristic equation (9), we have

(ξ1 + iξ2)3 + B1(ξ1 + iξ2)2 + B2(ξ1 + iξ2) + B3 = 0 (10)

Now, differentiating both sides of equation (10) with respect to r, we get(
3(ξ1 + iξ2)2 + 2B1(ξ1 + iξ2) + B2

) ( ·
ξ1 + i

·

ξ2

)
+
·

B1(ξ1 + iξ2)2 +
·

B2(ξ1 + iξ2) +
·

B3 = 0 (11)

Comparing the real and imaginary parts of both sides of (11) we get,

D1
·

ξ1 −D2
·

ξ2 +D3 = 0 (12)
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and

D2
·

ξ1 +D1
·

ξ2 +D4 = 0, (13)

where D1 = 3(ξ2
1 − ξ

2
2) + 2B1ξ1 + B2, D2 = 6ξ1ξ2 + 2B1ξ2, D3 =

·

B1(ξ2
1 − ξ

2
2) +

·

B2ξ1 +
·

B3, D4 = 2
·

B1ξ1ξ2 +
·

B2ξ2.
Solving (12) and (13) we get,

·

ξ1 = −
D2D4 +D1D3

D2
1 +D2

2

(14)

Now, D3 =
·

B1(ξ2
1 − ξ

2
2) +

·

B2ξ1 +
·

B3 ,
·

B1(ξ2
1 − ξ

2
2) +

·

B2ξ1 +
·

B1B2 +
·

B2B1
At r = r0,

(i) For ξ1 = 0, ξ2 =
√

B2, we have D1 = −2B2 , D2 = 2B1
√

B2, D3 , B1
·

B2, D4 =
.

B2
√

B2, hence

D2D4 +D1D3 , 2B1
·

B2B2 − 2B1
·

B2B2 = 0. So, D2D4 +D1D3 , 0 at r = r0, when ξ1 = 0, ξ2 =
√

B2.

(ii) For ξ1 = 0, ξ2 = −
√

B2, we have D1 = −2B2, D2 = −2B1
√

B2, D3 , B1
·

B2, D4 =
·

−B2
√

B2, therefore

D2D4 +D1D3 , 2B1
·

B2B2 − 2B1
·

B2B2 = 0. So, D2D4 +D1D3 , 0 at r = r0, when ξ1 = 0, ξ2 = −
√

B2.
Therefore, d

dr (Re(ηi(r)))|r=r0 = −
D2D4+D1D3

D2
1+D2

2
|r=r0 , 0

and ξ3(r0) = −B1(r0) < 0.
Hence by Theorem (9), the result follows.

6. Permanence of the system

To prove the permanence of the system (1), we shall use the average Liapunov function.

Theorem 11. Suppose that the system (1) satisfies the following conditions: (i) λ0 > δ1 and α2k
1+bk > δ2, (ii)

α2S
1+bS
+ β2I > δ2, (iii)

(
λ0 + aP

)
> β1P + δ1. Then the system (1) is permanent.

Proof. Let us consider the average Lyapunov function in the form 𭟋 (S, I,P) = Sγ1 Iγ2 Pγ3 where each γi (i = 1,
2, 3) is assumed to be positive. In the interior of R3

+,we have
.
𭟋

𭟋
= ϕ (S, I,P) = γ1

[
r(1 −

S + I
k

) − (λ0 + aP)
I

S + I
−

α1P
(1 + bS)(1 + cP)

]
+γ2

[
(λ0 + aP)

S
S + I

− β1P − δ1

]
+ γ3

[
α2S

(1 + bS)(1 + cP)
+ β2I − δ2

]
.

To prove the permanence of the system, we shall have to show that ϕ (S, I,P) > 0 for all boundary equilibria
of the system. The values of ϕ (S, I,P) at the boundary equilibria E0, E1, E2 and E3 are the following:

E0 : rγ1 − δ1γ2 − δ2γ3,

E1 : (λ0 − δ1)γ2 +
(
α2k

1+bk − δ2

)
γ3,

E2 :
(
α2S

1+bS
+ β2I − δ2

)
γ3,

and E3 :
((
λ0 + aP

)
− β1P − δ1

)
γ3.

Now, ϕ (0, 0, 0) > 0 is automatically satisfied for some γi (i = 1, 2, 3). Also, if the inequalities (i)-(iii) hold,
ϕ is positive at E1, E2 and E3. Therefore, the system (1) is permanent. Hence the theorem.

Remark 1. The conditions (i) E1 : λ0 − δ1 > 0 and α2k
1+bk − δ2 > 0, (ii) E2 : α2S

1+bS
+ β2I − δ2 > 0, (iii) E3

:
(
λ0 + aP

)
− β1P − δ1 > 0, guarantee that the boundary equilibrium points E1, E2 and E3 are unstable.
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7. Numerical Example

It is quite challenging to have the numerical value of the system’s parameters based on real-world
observations. On the other hand, it is necessary to have some idea regarding the sensitivity of the parameters
in connection with the observed natural system. Therefore, the major results described by the simulations
presented should be considered from a qualitative rather than a quantitative point of view with some
hypothetical data. However, numerous scenarios covering the breath of the biological feasible parameter
space were conducted. The results are shown above to display the breadth of dynamical results collected
from all tested scenarios. MATLAB and Mathematica software are used for simulation experiments for the
sole purpose of solving the system numerically to obtain the results after numerical simulations.

Table 1: Parameter values and initial densities
Parameter Value Parameter/Population Value

r 2 β1 0.5
k 5.5 β2 0.4
λ0 0.5 δ1 0.1
a 0.6 δ2 0.5
α1 0.5 S(0) 1.0
α2 0.4 I(0) 1.0
b 0.1 P(0) 2.0
c 0.1
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Fig 1: Phase portrait for different value of (a) r = 1.0, (b) r = 1.5, (c) r = 2.0, (d) r = 2.3 using other parameters and initial value from
Table 1.

The Phase portrait in (S, I,P)-view of the model system (1) at different values of r is presented in the
Fig 1. The stable limit cycle in SIP-view of the model system (1) at r = 1.0 and r = 1.5 are presented in the
Fig 1(a) and Fig 1(b) respectively. Similarly Fig 1(c) and Fig 1(d) represents the stable focus in SIP-view for
r = 2.0 and r = 2.3, respectively.
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Fig 2: Bifurcation diagram of the system (1) for r in 1 ≤ r ≤ 3 for the data given in Table 1 to SP, IP and Predator.

Fig 2 represents the bifurcation diagrams generated for the successive of the population densities S, I,
and P in the ranges [0.0, 4.0], [0.0, 1.5], and [0.0, 5.0] respectively as a function of intrinsic growth rate r in the
range 1 ≤ r ≤ 3 and parameter values are given in the Table 1. It is observed that, when r increases the then
all population densities are tends to stable system. In our model system (1) we consider r as a bifurcation
parameter.
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Fig 3: Phase portrait for different value of (a) k = 4.5, (b) k = 5.5, (c) k = 6.5, (d) k = 7.5 and other fixed inputs given in Table 1.

The Phase portrait in (S, I,P)-view of the system (1) at different values of k is presented in the Fig 3. The
stable focus in SIP-view of the model (1) at k = 4.5 be presented in the Fig 3(a). Similarly Fig 3(b), Fig 3(c)
and Fig 3(d) represents the stable limit cycle in SIP-view for k = 5.5 , k = 6.5 and k = 7.5, respectively.
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Fig 4: Bifurcation diagram of the model (1) for k in 4 ≤ k ≤ 10 for the parameters given in Table 1 to SP, IP and Predator.

The bifurcation diagrams generated for the successive of the population densities S, I, and P in the
ranges [0.0, 8.0], [0.0, 6.0], and [0.0, 10.0] respectively as a function of environmental carrying capacity k in
the range 4 ≤ k ≤ 10 (see Fig 4.) and parameter values are given in the Table 1. It is observed that, when k
increases the then all of the population densities are tends to form a limit cycle system.
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Fig 5: Phase portrait for different value of (a) λ0 = 0.4, (b) λ0 = 0.5, (c) λ0 = 0.6 and (d) λ0= 0.7, and taking other as fixed input from
Table 1.

The Phase portrait in (S, I,P)-view of the system (1) at different values of λ0 is presented in the Fig 5.
The stable focus in SIP-view of the model system (1) at λ0 = 0.4 be presented in the Fig 5(a). Similarly Fig
5(b), Fig 5(c) and Fig 5(d) represents the stable limit cycle in SIP-view for λ0 = 0.5, λ0 = 0.6 and λ0 = 0.7,
respectively.
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Fig 6: Bifurcation diagram of the system (1) for λ0 in the range 0 ≤ λ0 ≤ 1.5 with respect to SP, IP and Predator for the input data given
in Table 1.

Fig 6 represents the bifurcation diagrams generated for the successive of the population densities SP, IP,
and Predator in the ranges [0.0, 3.0], [0.0, 3.0], and [0.0, 4.0], respectively as a function of disease transmission
rate in the absence of predator λ0 in the range 0 ≤ λ0 ≤ 1.5 and parameter values are given in the Table 1. It
is observed that, when λ0 increases the then all of the population densities are tends to limit cycle system.
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Fig 7: Phase portrait for different value of a for (a) a = 0.5, (b) a = 0.6, (c) a = 0.7, (d) a = 0.8 and keeping other input fixed as given in
Table 1.

The Phase portrait in (S, I,P)-view of the model (1) at different values of a is presented in the Fig 7. The
stable focus in SIP-view of the system (1) at a = 0.5 be presented in the Fig 7(a). Similarly Fig 7(b), Fig 7(c)
and Fig 7(d) represents the stable limit cycle in SIP-view for a = 0.6, a = 0.7 and a = 0.8, respectively.
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Fig 8: Bifurcation diagram of the model (1) for a in the range 0 ≤ a ≤ 1 to SP, IP and Predator for the parameters given in Table 1.

The bifurcation diagrams generated for the successive of the population densities S, I, and P in the
ranges [0.0, 5.0], [0.0, 1.5], and [0.0, 5.0], respectively as a function of effect of the presence of predator a in
the range 0 ≤ a ≤ 1 (see Fig 8.) and parameter values are given in the Table 1. It is observed that, when a
increases the then all population densities are tends to form a limit cycle system.
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Fig 9: Phase portrait in 3D view for different value of α1 and keeping other parameters and initial value from Table 1: For (a) α1 =0.4,
(b) α1 = 0.5, (c) α1 = 0.6 and (d) α1 = 0.7.

The Phase portrait in (S, I,P)-view of the model system (1) at different values of α1 is presented in the
Fig 9. The stable focus in SIP-view of the model (1) at α1 = 0.4 be presented in the Fig 9(a). Similarly Fig
9(b), Fig 9(c) and Fig 9(d) represents the stable limit cycle in SIP-view for α1 = 0.5, α1 = 0.6 and α1 = 0.7,
respectively.
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Fig 10: Bifurcation diagram of the model system (1), as a function of α1 is plotted in the range 0 ≤ α1 ≤ 1 for the parameters given in
Table 1 with respect to Susceptible prey (SP), Infected prey (IP) and Predator.

Fig 10 represents the bifurcation diagrams generated for the successive of the population densities
S, I, and P in the ranges [0.0, 2.5], [0.0, 1.0], and [0.0, 10.0] respectively as a function of predation rate on
susceptible prey α1 in the range 0 ≤ α1 ≤ 1 and parameter values are given in the Table 1. It is observed
that, when α1 increases the then all of the population densities are tends to form a limit cycle system.
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Fig 11: Phase portrait in 3D view for different value of β1 and keeping other parameters and initial value from Table 1: For (a) β1 = 0.3,
(b) β1 = 0.4, (c) β1 = 0.5 and (d) β1 = 0.6.

The Phase portrait in (S, I,P)-view of the model (1) at different values of β1 is presented in the Fig 11.
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The stable limit cycle in SIP-view of the model (1) at β1 = 0.3, β1 = 0.4 and β1 = 0.5 are presented in the Fig
11(a), Fig 11(b) and Fig 11(c), respectively. Similarly Fig 11(d) represents the stable focus in SIP-view for
β1 = 0.6.

Fig 12: Bifurcation diagram of the model system (1), as a function of β1 is plotted in the range 0.1 ≤ β1 ≤ 1 for the parameters given in
Table 1 with respect to Susceptible prey (SP), Infected prey (IP) and Predator.

Fig 12 represents the bifurcation diagrams generated for the successive of the population densities S, I,
and P in the ranges [0.0, 6.0], [0.0, 3.0], and [0.0, 8.0], respectively as a function of transmission coefficient
from infected prey to predator β1 in the range 0.1 ≤ β1 ≤ 1 and other parameter values are given in the Table
1. It is observed that, when β1 increases the then all of the population densities are tends to stable system.

8. Conclusion

In this manuscript, a prey-predator model is presented incorporating an infectious disease on prey,
and it is transmitted only in the prey population by nonlinear disease transmission rate as a function of
a predator. We also consider Cowley-Martin and Holling type I functional responses for susceptible and
infected prey predation, respectively. The mode of disease spread follows a simple mass-action law.

Our theoretical investigation using a relatively simple eco-epidemiological model (1) demonstrates
that a predator-dependent transmission rate may have an essential role in shaping prey-predator disease
interactions. Firstly, a predator-dependent disease transmission rate can enhance the transmission of the
disease (e.g. Fig 7 and Fig 8). Second, a predator-dependent disease transmission rate can promote the
survival of a (specialist) predator (e.g. Fig 5,Fig 6,Fig 7 and Fig 8), which is otherwise impossible. Presence
of predators creates a special environment with high contamination properties which can guarantee their
own survival. Finally, the effects of a predator on the transmission rate will destabilise in eco-systems with
high carrying capacity levels k .

Other very vital parameters are the predation parameters α1 and β1, which cannot be ignored in our
presented system. We observed that the predation rate on healthy prey α1 has saved the predator from
extinction. It is observed that the system becomes disease-free by increasing the predation rate β1 and the
predation of infected. We have observed from the system that susceptible prey can be saved from extinction,
and the disease does not propagate in healthy prey populations by predating infected prey.

This mathematical model method and the present paper’s results may enhance the research methodology
of pattern formation in prey-predator systems. To conclude on this point, that predator-dependent disease
transmission is more appropriate to describe the contact process.
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Further studies are necessary to analyze the behaviour of eco-epidemic models with more realistic fea-
tures. Finally, the model of this present paper initiates the possibility of future work: (i) Some work should
be done on recovering prey population’s case, considering the healthy prey population, (ii) Alternative food
sources of a predator can be an essential phenomenon, (iii) Some can consider the case when the contact
of the prey population can infect the predator population, (iv) One can be using the concept of a stochastic
model to express the eco-system, (v) Model with time delay is an important characteristic to be considered.
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over effects of predator exposure on pathogen transmission potential. Proceedings of the Royal Society B: Biological Sciences,
282(1821), 20152430.

[33] Moustafa, M., Mohd, M.H., Ismail, A.I. and Abdullah, F.A. (2020). Dynamical analysis of a fractional-order eco-epidemiological
model with disease in prey population. Advances in Difference Equations, 2020(1), doi=10.1186/s13662-020-2522-5.

[34] Greenhalgh, D., Khan, Q.J.A. and Al-Kharousi, F.A. (2020). Eco-epidemiological model with fatal disease in the prey. Nonlinear
Analysis: Real World Applications, 53, doi=10.1016/j.nonrwa.2019.103072.

[35] Al Themairi, A. and Alqudah, M.A. (2020). Predator-prey model of Holling-type II with harvesting and predator in disease,
Italian Journal of Pure and Applied Mathematics, 43, 744-753.

[36] Cojocaru, M.G. and Migot, T. and Jaber, A. (2020). Controlling infection in predator-prey systems with transmission dynamics,
Infectious Disease Modelling, 5, 1-11.

[37] Greenhalgh, D., Khan, Q.J.A. and Pettigrew, J.S. (2017). An eco-epidemiological predator-prey model where predators distinguish
between susceptible and infected prey. Mathematical Methods in the Applied Sciences, 40(1), 146-166.

[38] Khan, Q.J.A., Al-Lawatia, M. and Al-Kharousi, F.A. (2016). Predator-prey harvesting model with fatal disease in prey. Mathe-
matical Methods in the Applied Sciences, 39(10), 2647-2658.

[39] Zhang, Q., Jiang, D., Liu, Z. and O’Regan, D. (2014). The long time behavior of a predator-prey model with disease in the prey
by stochastic perturbation. Applied Mathematics and Computation, 245, 305-320.

[40] Trisdiani, P.I., Trisilowati and Suryanto, A. (2014). Dynamics of harvested predator-prey system with disease in predator and
prey in refuge. International Journal of Ecological Economics and Statistics, 33(2), 47-57.

[41] Wuhaib, S.A. and Abu Hasan, Y. (2012). A prey predator model with vulnerable infected prey. Applied Mathematical Sciences,
6(105-108), 5333-5348.

[42] Duro, A., Piccione, V., Ragusa, M.A. and Veneziano, V. (2014). New Enviromentally Sensitive Patch Index - ESPI - for MEDALUS
protocol. AIP Conference Proceedings, 1637, 305–312.

[43] Upadhyay, R.K. and Naji, R.K., (2009). Dynamics of a three species food chain model with Crowley-Martin type functional
response. Chaos, Solitons and Fractals, 42(3), 1337-1346.

[44] Upadhyay, R.K., Raw, S.N. and Rai, V. (2010). Dynamical complexities in a tri-trophic hybrid food chain model with holling type
II and Crowley-Martin functional responses. Nonlinear Analysis: Modelling and Control, 15(3), 361-375.

[45] Shi, X., Zhou, X. and Song, X. (2011). Analysis of a stage-structured predator-prey model with Crowley-Martin function. Journal
of Applied Mathematics and Computing, 36(1-2), 459-472.

[46] Bazykin, A. D. (1988). Nonlinear Dynamics of Interacting Populations. World Scientific, Singapore.
[47] Liu, X.Q., Zhong, S.M., Tian, B.D. and Zheng, F.X. (2013). Asymptotic properties of a stochastic predator-prey model with

Crowley-Martin functional response. Journal of Applied Mathematics and Computing, 43(1-2), 479-490.
[48] Yin, H., Xiao, X., Wen, X. and Liu, K. (2014). Pattern analysis of a modified Leslie-Gower predator-prey model with Crowley-

Martin functional response and diffusion. Computers and Mathematics with Applications, 67(8), 1607-1621.
[49] Meng, X.Y., Huo, H.F., Xiang, H. and Yin, Q.Y. (2014). Stability in a predator-prey model with Crowley-Martin function and stage

structure for prey. Applied Mathematics and Computation, 232, 810-819.
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