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Abstract. The doubly metric dimension of a connected graph G is the minimum cardinality of doubly
resolving sets in it. It is well known that deciding the doubly metric dimension of G is NP-complete. The
corona product G ⊙ H of two vertex-disjoint graphs G and H is defined as the graph obtained from G and
H by taking one copy of G and |V(G)| copies of H, then joining the ith vertex of G to every vertex in the ith
copy of H. In this paper some formulae on the doubly metric dimension of corona product G⊙H of graphs
G and H are established in terms of the order of G with the adjacency dimension of H and the doubly metric
dimension of K1 ⊙ H, respectively. We determine both sharp upper and lower bounds on doubly metric
dimension of corona product graphs with disconnected and connected coronas involved, respectively, and
characterize the corresponding extremal graphs. We also characterize all graphs G of diameter two with
doubly metric dimension two. Furthermore, the exact values are obtained for the doubly metric dimensions
of corona product graphs, being the corona either a path or a cycle.

1. Introduction

Nowadays, both the metric dimension and doubly metric dimension of graphs are highly attracting the
attention of many researchers. The concept of metric dimension of graphs was independently introduced by
Harary et al. [10] and Slater [26]. Since then some related results to this topic are published in [2, 4, 5, 7, 8, 14–
17, 27, 29]. Cáceres et al. [4] introduced the definition of doubly resolving set in order to determine bounds
on the metric dimension of Cartesian product of graphs. For some other results on the doubly resolving set,
please see [6, 12, 21–23]. Readers are referred to recent survey [20] for more information and background
on many of these variants.

Let G = (V(G),E(G)) be a graph with vertex set V(G) and edge set E(G) where |V(G)| will be denoted by
nG in the following. A graph G with nG = 1 is said to be trivial. We denote by Pn, Cn, Nn, Kn, Ks,n−s the path,
the cycle, the empty graph, the complete graph and the complete bipartite graph of order n, respectively.
We also denote G as the complement of G. The distance dG(u, v) between a pair of vertices u and v is the
length of a shortest path between u and v. The diameter of G is diam(G) = max{dG(u, v) : u, v ∈ V(G)}. For
any vertex u ∈ V(G), we denote by NG(u) the set of neighbors of u, whose cardinality is just the degree of u,
written as de1G(u) in the following. Two vertices u, v ∈ V(G) are twins if NG(u) \ {v} = NG(v) \ {u}. A set U
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of G is a twin-set if any two vertices in it are twins in G. If the graph G is clear from the context, we will
drop the subscript G from these notations. A universal vertex is the vertex adjacent to all other vertices. A
pendant vertex u is a vertex with degree de1G(u) = 1. All the pendant vertices of graph G form a set L(G)
with cardinality ℓ(G). A set of vertices S ⊆ V(G) is a dominating set if every vertex in V(G) \ S has a neighbor
in S.

For x, y ∈ V(G), x and y are resolved by v ∈ V(G) if d(v, x) , d(v, y), and they are doubly resolved by
u, v ∈ V(G) if d(x,u) − d(y,u) , d(x, v) − d(y, v). A set W is a resolving set of G if each pair of vertices of G
is resolved by some vertex in W. The minimum cardinality of resolving sets of G, denoted by β(G), is the
metric dimension of G. A set W ⊆ V(G) is a doubly resolving set (a DR, for short) of G, and W doubly resolves G,
if each pair of vertices of G is doubly resolved by some pair of vertices in W. The doubly metric dimension of
G, denoted byψ(G), is the minimum cardinality of DR sets of G. The representation of v ∈ V(G) on an ordered
set W = {u1,u2, . . . ,um} is the vector r(v|W) = (d(v,u1), . . . , d(v,um)). Let−→c be an m-dimensional vector where
each component is a constant c. A set W ⊆ V(G) is a resolving set of a graph G if r(u|W) , r(v|W) for any two
distinct vertices u, v ∈ V(G), and W is a DR set of G if r(u|W)− r(v|W) , −→c for any constant c. Jannesari et al.
[13] introduced the concept of adjacency dimension to study the metric dimension of lexicographic product
of graphs. A set W ⊆ V(G) is an adjacency generator (an AG, for short) of G if there is a vertex ui ∈ W such
that |N(ui)

⋂
{u, v}| = 1 for u, v ∈ V(G) \W. The adjacency dimension of G, denoted by µ(G), is the minimum

cardinality of adjacency generators of G, where the minimum AG is called an adjacency basis of G. Clearly,
β(G) ≥ 1, ψ(G) ≥ 2, µ(G) ≥ 1, with β(G) ≤ ψ(G) and β(G) ≤ µ(G) for any connected graph G.

The corona product G ⊙ H of two vertex-disjoint graphs G and H is defined as the graph obtained from
G and H by taking one copy of G and nG copies of H, then joining the ith vertex of G to every vertex in
the ith copy of H. The join graph G ∨ H is obtained from G and H by adding an edge between each vertex
of G and each vertex of H. Moreover, Wn = K1 ⊙ Cn and Fn = K1 ⊙ Pn are the wheel graph and the fan
graph, respectively. The universal vertex in K1 ⊙ H is called the center of K1 ⊙ H. From the structure of
G ⊙ H, G is called the basis and H is called the corona in it. Let G be a nontrivial connected graph with
V(G) = {u1, . . . ,unG }, H be a graph with p nontrivial connected components and q isolated vertices. Then
H = NnH for p = 0 or H = (

⋃p
r=1 Tr)

⋃
Nq for p ≥ 1 where Tr is a connected component of order nr > 1 in

H. Let Hi = (Vi,Ei) be the ith copy of H with Hi = (
⋃p

r=1 Ti
r)
⋃

Ni
q for p ≥ 1. In Section 2, 3 and 4 (unless

otherwise stated), G is a nontrivial connected graph and H is a (non necessarily connected) nontrivial graph
with p ≥ 1 nontrivial connected components and q ≥ 0 isolated vertices. Moreover, the case p = 1 and q = 0
correspond to the case when H is connected.

Kratica et al. [19] proved that deciding the doubly metric dimension of an arbitrary graph is NP-
complete. The problem of the corona product graphs has been studied in [1, 9, 18, 24, 25, 28], while in this
paper we focus on ψ(G ⊙ H). In Section 2, we provide some basic results. In Section 3, we research the
doubly metric dimension of G ⊙ H with disconnected corona and determine both sharp upper and lower
bounds on ψ(G ⊙H). In Section 4, we study the doubly metric dimension of G ⊙H with connected corona
and determine the exact values of ψ(G ⊙H) for H ∈ {PnH ,CnH }.

2. Preliminaries

In this section, we list or prove some basic results.

Lemma 2.1. ([4, 12]) Let G be a connected graph of order n ≥ 3. Then ψ(G) ≤ n− 1 with equality if and only
if G ∈ {Kn,K1,n−1,K2,n−2,K2 ∨Nn−2}.

Lemma 2.2. ([5]) Let G be a nontrivial connected graph of order n. Then
(i) β(G) = n − 1 if and only if G � Kn.
(ii) β(G) = n − 2 if and only if G ∈ {Ks,n−s,Ks ∨Nn−s,Ks ∨ (K1

⋃
Kn−s−1)} for n ≥ 4, s ≥ 1 and n − s ≥ 2.

Lemma 2.3. ([11]) Let G be a nontrivial connected graph with twins x and y. Then d(x,u) = d(y,u) for
u ∈ V(G) \ {x, y}.

Lemma 2.4. Let G be a nontrivial connected graph with a twin-set U and S be a DR set of G. Then S contains at
least |U| − 1 vertices of U.
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Proof. Assume, to the contrary, that there are two vertices u, v ∈ U \ S. We have d(u, s) = d(v, s) for s ∈ S by
Lemma 2.3. This is a contradiction to the assumption that S is a DR set of G.

Lemma 2.5. Let G be a connected graph with ℓ ≥ 2 universal vertices. If S is an AG of G, then S contains at least
ℓ − 1 universal vertices of G.

Proof. If there are two universal vertices u, v ∈ V(G)\S, then |N(s)
⋂
{u, v}| = 2 for s ∈ S. This is a contradiction

to the definition of AG.

Proposition 2.6. ([13]) Let G be a connected graph with diameter 2. Then β(G) = µ(G).

Lemma 2.7. ([9]) Let G be a nontrivial connected graph and H be a nontrivial graph. Then β(G⊙H) = nGµ(H).
Moreover, β(G ⊙ Ks,n−s) = (n − 2)nG for n − s ≥ s ≥ 2.

Lemma 2.8. ([28]) Let G be a nontrivial connected graph and H be a nontrivial graph. If x, y ∈ Vi, then
dG⊙H(x,w) = dG⊙H(y,w) for w ∈ V(G ⊙H) \ Vi.

Lemma 2.9. ([28]) Let G and H be two vertex-disjoint nontrivial connected graphs, respectively. Then
β(G ⊙H) ≥ nGβ(H).

Lemma 2.10. Let G be a connected graph with δ(G) = 1. If S is a DR set of G, then L(G) ⊆ S.

Proof. To the contrary, assume that there is a vertex ui ∈ L(G) \ S. The vertex ui is adjacent to u j in G, we
have d(ui, s) = d(u j, s)+1 for s ∈ V(G) \ {ui}. That is, d(ui, s)−d(u j, s) = d(ui, t)−d(u j, t) = 1 for s, t ∈ V(G) \ {ui}.
These two vertices ui and u j are not doubly resolved by S, a contradiction. Hence, L(G) ⊆ S.

Lemma 2.11. Let G be a nontrivial connected graph and H be a graph.
(i) dG⊙H(u,w) = dG⊙H(v,w) for u, v ∈ V(Ti

r) and w ∈ V(G ⊙H) \ V(Ti
r).

(ii) If S is a DR set of G ⊙H, then V(Ni
q) ⊆ S and S

⋂
V(Ti

r) , ∅.
(iii) If S ⊆ V(G ⊙ H) with S

⋂
Vk , ∅ where Vk = V(Hk) for 1 ≤ k ≤ nG, then S doubly resolves two distinct

vertices u ∈ Vi
⋃
{ui} and v ∈ V j

⋃
{u j} in G ⊙H.

(iv) If S is a minimum DR set of G ⊙H, then S
⋂

V(G) = ∅.

Proof. (i) Clearly, dG⊙H(u,w) = 1 + dG⊙H(ui,w) = dG⊙H(v,w) for ui ∈ V(G) and w ∈ V(G ⊙H) \ V(Ti
r).

(ii) We have V(Ni
q) ⊆ S by Lemma 2.10. We next prove S

⋂
V(Ti

r) , ∅. Assume, to the contrary, that
S
⋂

V(Ti
r) = ∅. Since nr ≥ 2, there are two vertices u, v ∈ V(Ti

r) \ S. By Lemma 2.8 and (i), we can directly
obtain dG⊙H(u, s) = dG⊙H(v, s) for s ∈ S, a contradiction. Hence, S

⋂
V(Ti

r) , ∅.
(iii) For u ∈ Vi and v ∈ V j, we have dG⊙H(u, s) ≤ 2 < 3 ≤ dG⊙H(v, s) and dG⊙H(u, t) ≥ 3 > 2 ≥ dG⊙H(v, t)

for s ∈ S
⋂

Vi and t ∈ S
⋂

V j. Then, S doubly resolves these two vertices u and v. Similarly, two vertices
s ∈ S

⋂
Vi and t ∈ S

⋂
V j doubly resolve u and v for u = ui and v ∈ V j

⋃
{u j}. By symmetry, the result holds

if u ∈ Vi and v = u j.
(iv) Let Si = S

⋂
Vi and W =

⋃nG
i=1 Si. Then Si , ∅ by (ii). To the contrary, assume that S

⋂
V(G) , ∅.

Then, S \W , ∅. Our aim is to show that W doubly resolves u, v ∈ V(G ⊙H) with the following two cases:
u ∈ Vi

⋃
{ui} and v ∈ V j

⋃
{u j}; u, v ∈ Vi

⋃
{ui}. By (iii), we only consider the case u, v ∈ Vi

⋃
{ui}.

Suppose that u, v ∈ Vi. By Lemma 2.8, there exists a vertex s ∈ Si satisfying dG⊙H(u, s) , dG⊙H(v, s). Then,
two vertices s ∈ Si and t ∈ S j doubly resolve u, v.

Suppose that u = ui and v ∈ Vi. Clearly, dG⊙H(u, t) − dG⊙H(v, t) = −1 for t ∈ S j. If v ∈ Si, then v and
t ∈ S j doubly resolve u and v. If v < Si, then dG⊙H(v, s) ∈ {1, 2} and dG⊙H(u, s) = 1 for s ∈ Si. Assume first
that there exists a vertex s ∈ Si satisfying dG⊙H(v, s) = 1, we derive that s ∈ Si and t ∈ S j doubly resolve u
and v. Now assume that dG⊙H(v, s) = 2 for s ∈ Si. Let r(v|S) = (2, . . . , 2, ℓ1, . . . , ℓ|S|−|Si |) with ℓk = dG⊙H(v, t) for
1 ≤ k ≤ |S| − |Si| and t ∈ S \ Si. Then r(u|S) = (1, . . . , 1, ℓ1 − 1, . . . , ℓ|S|−|Si | − 1) and r(v|S)− r(u|S) =

−→
1 , which is a

contradiction. Thus, W is a DR set of G ⊙H, contradicting the minimality of S.
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3. G ⊙ H with disconnected corona

In this section, we provide some formulae forψ(G⊙H) in terms of nG withµ(H) andψ(K1⊙H), respectively.
We also determine both upper and lower bounds on ψ(G⊙H) and characterize the corresponding extremal
graphs. In this section (unless otherwise stated), G is a nontrivial connected graph and H is a (non
necessarily connected) nontrivial graph with p ≥ 1 nontrivial connected components and q ≥ 0 isolated
vertices. Moreover, the case p = 1 and q = 0 correspond to the case when H is connected.

3.1. General results
We first show the closed formulae for ψ(G ⊙H) in terms of nG and µ(H).

Proposition 3.1. ([9]) Let G be a nontrivial graph. If S is an AG of G, then at most one vertex of G is not
dominated by S.

Theorem 3.2. Let G, H be two nontrivial graphs and let G be connected. Then

ψ(G ⊙H) =

nGµ(H) if there is an adjacency basis of H as a dominating set;
nG(µ(H) + 1) otherwise.

Proof. Suppose that there is an adjacency basis of H that is a dominating set. We haveψ(G⊙H) ≥ β(G⊙H) =
nGµ(H) by Lemma 2.7. Next, we show ψ(G ⊙ H) ≤ nGµ(H). Let Wi be the adjacency basis of Hi that is a
dominating set. Our aim is to show that S =

⋃nG
i=1 Wi doubly resolves u, v ∈ V(G ⊙H). There are two cases:

u ∈ Vi
⋃
{ui} and v ∈ V j

⋃
{u j}; u, v ∈ Vi

⋃
{ui}. We only need to consider the case u, v ∈ Vi

⋃
{ui} by Lemma

2.11 (iii). For u = ui and v ∈ Vi, we have dG⊙H(v, t) − dG⊙H(u, t) = 1 for t ∈ W j and dG⊙H(v, s) − dG⊙H(u, s) = 0
for some s ∈Wi as Wi is a dominating set. For u, v ∈ Vi, we have |NHi (s)

⋂
{u, v}| = 1 for some s ∈Wi. Hence,

dG⊙H(u, s) − dG⊙H(v, s) , dG⊙H(u, t) − dG⊙H(v, t) for s ∈ Wi and t ∈ W j. Therefore, S is a DR set of G ⊙ H,
implying ψ(G ⊙H) = nGµ(H).

Suppose that any adjacency basis of H is not a dominating set. We first show ψ(G ⊙H) ≥ nG(µ(H) + 1).
Let X be a minimum DR set of G ⊙H and Xi = X

⋂
Vi. By Lemma 2.11 (iv), X

⋂
V(G) = ∅. For u, v ∈ Vi \Xi,

there is a vertex s ∈ Xi such that dG⊙H(u, s) , dG⊙H(v, s) by Lemma 2.8. Hence, dG⊙H(u, s) ∈ {1, 2} and
dG⊙H(v, s) ∈ {1, 2} for s ∈ Xi, that is, |NHi (s)

⋂
{u, v}| = 1. Thus, Xi is an AG of Hi.

If Xi is not a dominating set of Hi, then there is a vertex w ∈ Vi such that dG⊙H(w, s) − dG⊙H(ui, s) = 1
for ui ∈ V(G) and s ∈ X, which contradicts that X doubly resolves G ⊙ H. Thus, Xi is a dominating set of
Hi. From the above argument, Xi is an AG of cardinality greater than µ(Hi), that is, µ(Hi) < |Xi|. Hence,
ψ(G ⊙H) = |X| ≥

∑nG
i=1 |Xi| ≥

∑nG
i=1(µ(Hi) + 1) = nG(µ(H) + 1).

Next, we show ψ(G⊙H) ≤ nG(µ(H)+ 1). Let Wi be an adjacency basis of Hi that is not a dominating set.
Then, by Proposition 3.1, there is exactly one vertex w ∈ Vi which is not dominated by Wi. Set Ti =Wi

⋃
{w}

and S =
⋃nG

i=1 Ti. We claim that S doubly resolves u, v ∈ V(G ⊙H) for u, v ∈ Vi
⋃
{ui}. For u, v ∈ Vi, we have

dG⊙H(u, s) − dG⊙H(v, s) , dG⊙H(u, t) − dG⊙H(v, t) for t ∈ W j and s ∈ Wi as |NHi (s)
⋂
{u, v}| = 1. For u ∈ Vi and

v = ui, we have dG⊙H(u, s) = dG⊙H(v, s) for some s ∈ Ti as Ti is a dominating set of Hi and dG⊙H(u, t) , dG⊙H(v, t)
for t ∈ T j. By Lemma 2.11 (iii), S doubly resolves u, v ∈ V(G ⊙H) and ψ(G ⊙H) ≤ nG(µ(H) + 1), ending the
proof.

Corollary 3.3. Let G and H be two vertex-disjoint connected graphs of order nG ≥ 2 and nH ≥ 3, respectively. If H
contains at least two universal vertices, then ψ(G ⊙H) = nGµ(H) = nGβ(H).

Proof. Certainly, each minimum AG of H is a dominating set and ψ(G ⊙H) = nGµ(H) = nGβ(H) by Lemma
2.5, Proposition 2.6 and Theorem 3.2.

Clearly, n− 2 leaves of K1,n−1 form the unique minimum AG of K1,n−1 which is not a dominating set. We
obtain the following result.

Corollary 3.4. Let G be a nontrivial connected graph and K1,n−1 be a graph of order n ≥ 3. Then ψ(G ⊙ H) =
nG(µ(K1,n−1) + 1).
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Next, closed formulae for ψ(G ⊙H) in terms of nG and ψ(K1 ⊙H) are given.

Theorem 3.5. Let G, H be two nontrivial graphs and let G be connected. Then

ψ(G ⊙H) =

nG(ψ(K1 ⊙H) − 1) a minimum DR set of K1 ⊙H contains its center;
nGψ(K1 ⊙H) otherwise.

Proof. Suppose that the center of K1 ⊙H belongs to some minimum DR set of K1 ⊙H. We claim ψ(G ⊙H) ≤
nG(ψ(K1 ⊙ H) − 1). Let Wi be the minimum DR set of K1 ⊙ Hi with the vertex ui ∈ Wi where V(K1) = {ui},
Ti = Wi \ {ui} and S =

∑nG
i=1 Ti. We claim that S doubly resolves u, v ∈ V(G ⊙ H) for u, v ∈ Vi

⋃
{ui}. For

u, v ∈ Vi, we assert that dG⊙H(u, t) = dG⊙H(v, t) for t ∈ T j and dG⊙H(u, s) , dG⊙H(v, s) for some s ∈ Ti. For u ∈ Vi
and v = ui, there is a vertex s ∈ Ti such that dG⊙H(u, s) = dK1⊙Hi (u, s) ≤ 1, otherwise contradicts that Wi doubly
resolves K1 ⊙Hi. Hence, s ∈ Ti and t ∈ T j doubly resolve u and v. Thus, S doubly resolves u, v ∈ V(G ⊙H)
by Lemma 2.11 (iii) and ψ(G ⊙H) ≤ nG(ψ(K1 ⊙H) − 1).

Now we prove that ψ(G⊙H) ≥ nG(ψ(K1 ⊙H)− 1). Let X be a minimum DR set of G⊙H and Xi = X
⋂

Vi.
Next, we prove that Xi

⋃
{ui} is a DR set of K1 ⊙ Hi. For u, v ∈ Vi, there is a vertex s ∈ Xi such that

dK1⊙Hi (u, s) − dK1⊙Hi (v, s) , dK1⊙Hi (u,ui) − dK1⊙Hi (v,ui). For u ∈ Vi and v = ui, there is a vertex s ∈ Xi such that
dK1⊙Hi (u, s) − dK1⊙Hi (v, s) , 1. Thus, s ∈ Xi and ui doubly resolve u and v. Hence, ψ(K1 ⊙ Hi) ≤ |Xi| + 1 and
ψ(G ⊙H) = |X| ≥

∑nG
i=1 |Xi| ≥

∑nG
i=1(ψ(K1 ⊙Hi) − 1) = nG(ψ(K1 ⊙H) − 1).

Suppose that any minimum DR set of K1 ⊙H does not contain its center. Let Wi be a minimum DR set
of K1 ⊙ Hi and S′ =

∑nG
i=1 Wi. We check that S′ doubly resolves u, v ∈ V(G ⊙ H) for u, v ∈ Vi

⋃
{ui}. Clearly,

u, v are doubly resolved by Wi as Wi is a DR set of K1 ⊙ Hi where V(K1) = {ui}. Hence, S′ doubly resolves
G ⊙H by Lemma 2.11 (iii) and ψ(G ⊙H) ≤ nGψ(K1 ⊙H).

We now show thatψ(G⊙H) ≥ nGψ(K1⊙H). Let T be a minimum DR set of G⊙H and Ti = T
⋂

Vi. We claim
that Ti

⋃
{ui} doubly resolves K1 ⊙ Hi. For u, v ∈ Vi, by Lemma 2.8, we have dK1⊙Hi (u,ui) = dK1⊙Hi (v,ui) and

dK1⊙Hi (u, s) , dK1⊙Hi (v, s) for some s ∈ Ti. For u ∈ Vi and v = ui, we assert that dK1⊙Hi (u,ui) − dK1⊙Hi (v,ui) = 1
and dK1⊙Hi (u, s)−dK1⊙Hi (v, s) , 1 for some s ∈ Ti. Hence, Ti

⋃
{ui} doubly resolves K1⊙H. Since any minimum

DR set of K1⊙Hi does not contain the vertex of K1,ψ(K1⊙Hi) < |Ti|+1. Therefore,ψ(G⊙H) = |T| ≥
∑nG

i=1 |Ti| ≥∑nG
i=1 ψ(K1 ⊙Hi) = nGψ(K1 ⊙H), ending the proof.

Since all vertices of NnH form the unique minimum DR set of K1 ⊙ NnH and there are two universal
vertices in K1 ⊙ K1,nH−1, we obtain the following result.

Corollary 3.6. Let G be a nontrivial connected graph and H ∈ {NnH ,K1,nH−1}. Then ψ(G ⊙NnH ) = nGψ(K1 ⊙NnH )
and ψ(G ⊙ K1,nH−1) = nG(ψ(K1 ⊙ K1,nH−1) − 1).

Since 1 ≤ µ(H) ≤ nH − 1 and 2 ≤ ψ(H) ≤ nH − 1 for a graph H, from Theorems 3.2 and 3.5 the following
bounds on ψ(G ⊙H) are derived.

Corollary 3.7. Let G be a nontrivial connected graph and H be a nontrivial graph. Then nG ≤ ψ(G ⊙H) ≤ nGnH.

3.2. Upper and lower bounds on ψ(G ⊙H)
In this subsection, we establish more precise upper and lower bounds on ψ(G⊙H) and characterize the

corresponding extremal graphs. Before presenting the main result, some lemmas are proven. Note that p
and q denote the number of nontrivial connected components and of isolated vertices of H, respectively,
and also that H is disconnected, that is, that p + q ≥ 2, when necessary.

Lemma 3.8. Let G, H be two nontrivial graphs and let G be connected. If there is a nontrivial connected component
Tr in H with ψ(Tr) ≤ nr − 2, then ψ(G ⊙H) ≤ nG(nH − p − 1).

Proof. Note that there is a nontrivial connected component Tr in H and p ≥ 1. Let Bi consist of all isolated
vertices of Hi, Ai consist of all but one vertex in each of the p − 1 nontrivial connected components of
Hi \ Ti

r and Ci be the DR set of Ti
r with nr − 2 vertices. Set x, y ∈ V(Ti

r) \ Ci. The aim is to show that
S =
⋃nG

i=1(Ai
⋃

Bi
⋃

Ci) doubly resolves u, v ∈ V(G ⊙H) for u, v ∈ Vi
⋃
{ui}.
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Suppose that u = ui and v ∈ Vi. Then, we have dG⊙H(u, t) − dG⊙H(v, t) = −1 for t ∈ S
⋂

V j. If v < V(Ti
r),

then dG⊙H(u, v)− dG⊙H(v, v) , dG⊙H(u, t)− dG⊙H(v, t) for v ∈ S or dG⊙H(u, s)− dG⊙H(v, s) , dG⊙H(u, t)− dG⊙H(v, t)
for v < S and s ∈ S

⋂
NHi (v). If v ∈ V(Ti

r)
⋂

Ci, then v and t ∈ S
⋂

V j doubly resolve u and v. Next, we
consider v ∈ {x, y}. Assume, w.l.o.g, that v = x. If NTi

r
(x) = {y}, then x is a pendant vertex of Ti

r. Using
Lemma 2.10, we can derive x ∈ Ci, which yields a contradiction. Therefore, there is a vertex s ∈ NTi

r
(x) \ {y}

such that dTi
r
(x, s) = 1 = dG⊙H(v, s) and dG⊙H(u, s) = 1. This implies that s ∈ NTi

r
(x) \ {y} and t ∈ S

⋂
V j doubly

resolve u and v.
Suppose that u, v ∈ Vi. dG⊙H(u, t) − dG⊙H(v, t) = 0 for t ∈ S

⋂
V j by Lemma 2.8. If u, v ∈ S

⋂
Vi, then u

and v are doubly resolved by themselves. If u ∈ S
⋂

Vi and v < S
⋂

Vi, then u and t ∈ S
⋂

V j doubly resolve
u and v. If u, v < S

⋂
Vi, then u, v ∈ {x, y} or u, v belong to two different nontrivial connected components

of Hi. For u, v ∈ {x, y}, w.l.o.g., assume that there exists a vertex s ∈ (NTi
r
(u) \ {v}) \ (NTi

r
(v) \ {u}) satisfying

dTi
r
(u, s) = 1 = dG⊙H(u, s) and dG⊙H(v, s) = 2. Thus, s ∈ (NTi

r
(u) \ {v}) \ (NTi

r
(v) \ {u}) and t ∈ S

⋂
V j doubly

resolve u and v. We now consider that u, v belong to two different connected components of Hi. Assume,
w.l.o.g., that u ∈ V(Ti

k) and k , r. We assert that s ∈ S
⋂

NTi
k
(u) and t ∈ S

⋂
V j doubly resolve u and v.

Based on the above cases and Lemma 2.11 (iii), S doubly resolves u, v ∈ V(G ⊙ H) and ψ(G ⊙ H) ≤
nG(nH − p − 1).

Lemma 3.9. Let G, H be two nontrivial graphs and let G be connected. If there is a connected component Tr ∈

{K2,nr−2,K2 ∨Nnr−2} of order nr ≥ 4, then ψ(G ⊙H) ≤ nG(nH − p − 1).

Proof. Let Tr � K2,nr−2 with V(Ti
r) = {xi

1, x
i
2, y

i
1, y

i
2, . . . , y

i
nr−2} and E(Ti

r) = {xi
myi

t : 1 ≤ m ≤ 2, 1 ≤ t ≤ nr − 2}.
Set Ai consist of all but one vertex in each of the p − 1 nontrivial connected components of Hi \ Ti

r, Bi be the
set of isolated vertices of Hi and Ci = {xi

2, y
i
2, . . . , y

i
nr−2} be the set of vertices of Ti

r. Our aim is to show that
S =
⋃nG

i=1(Ai
⋃

Bi
⋃

Ci) doubly resolves u, v ∈ V(G ⊙H) for u, v ∈ Vi
⋃
{ui}.

Suppose that u = ui and v ∈ Vi. Then, dG⊙H(u, t) − dG⊙H(v, t) = −1 for t ∈ S
⋂

V j. If v ∈ S
⋂

Vi, then v and
t ∈ S

⋂
V j doubly resolve u and v. If v < S

⋂
Vi, then dG⊙H(v, s) − dG⊙H(u, s) = 0 for s ∈ NHi (v)

⋂
S. Hence,

s ∈ NHi (v)
⋂

S and t ∈ S
⋂

V j doubly resolve u and v.
Suppose that u, v ∈ Vi. If u, v ∈ S

⋂
Vi, then u, v are doubly resolved by themselves. If u < S

⋂
Vi and

v ∈ S
⋂

Vi, then v and t ∈ S
⋂

V j doubly resolve u and v. If u, v < S
⋂

Vi, then s ∈ (NHi (u) \ NHi (v))
⋂

S
and t ∈ S

⋂
V j doubly resolve u and v. There always exists the vertex s ∈ (NHi (u) \ NHi (v))

⋂
S due to the

selection of S.
Consequently, S doubly resolves u, v ∈ V(G ⊙ H) by Lemma 2.11 (iii) and ψ(G ⊙ H) ≤ nG(nH − p − 1).

Analogously, we can also deriveψ(G⊙H) ≤ nG(nH−p−1) for Tr � K2∨Nnr−2 and thus we omit the proof.

Lemma 3.10. Let G, H be two nontrivial graphs and let G be connected. If there is a connected component Tr of
order nr ≥ 3, then ψ(G ⊙H) ≥ nG(p + q + 1).

Proof. Let S be a minimum DR set of G⊙H. By Lemma 2.11 (iv), we obtain S
⋂

V(G) = ∅ and |S
⋂

V(Ti
r)| ≥ 1.

We just need to prove that |S
⋂

V(Ti
r)| ≥ 2 for nr ≥ 3. Assume, to the contrary, that S

⋂
V(Ti

r) = {s}. There
are two vertices u, v ∈ V(Ti

r) \ S as nr ≥ 3. If dG⊙H(u, s) = dG⊙H(v, s), then we have r(u|S) = r(v|S) by
Lemma 2.11 (i), implying that these two vertices u and v are not doubly resolved by S, a contradiction.
If dG⊙H(u, s) , dG⊙H(v, s), then either dG⊙H(u, s) = 2 or dG⊙H(v, s) = 2. W.l.o.g., assume that dG⊙H(u, s) = 2.
It is clear that dG⊙H(ui, s) = 1 and dG⊙H(u, t) = dG⊙H(ui, t) + 1 for ui ∈ V(G) and t ∈ S \ V(Ti

r), that is,
r(u|S) − r(ui|S) =

−→
1 , a contradiction. Thus, |S

⋂
V(Ti

r)| ≥ 2 and |S| ≥ nG(p + q + 1) by Lemma 2.11 (ii). The
result follows.

In the following we show both a sharp upper bound and a lower bound on ψ(G ⊙H).

Theorem 3.11. Let G, H be two nontrivial graphs and let G be connected. Then

nG(p + q) ≤ ψ(G ⊙H) ≤ nG(nH − p)

with left equality if and only if H = pK2
⋃

Nq and right equality if and only if H = NnH for p = 0 or H = (
⋃p

r=1 Tr)
⋃

Nq
for p ≥ 1, where Tr ∈ {Knr ,K1,nr−1} for 1 ≤ r ≤ p.
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Proof. We first show the upper bound. Let Ai consist of all but one vertex in each of the p nontrivial
connected components of Hi, Bi consist of all isolated vertices of Hi. Suppose that p ≥ 1. The goal is to show
that S =

⋃nG
i=1(Ai

⋃
Bi) doubly resolves u, v ∈ V(G ⊙H) for u, v ∈ Vi

⋃
{ui}.

Suppose that u = ui and v ∈ Vi. There exists a vertex t ∈ S
⋂

V j such that dG⊙H(v, t) = dG⊙H(u, t) + 1.
If v ∈ S

⋂
Vi, then v and t ∈ S

⋂
V j doubly resolve u and v. If v < S

⋂
Vi, then v belongs to a nontrivial

connected component of Hi. It is routine to obtain that dG⊙H(v, s) = 1 and dG⊙H(u, s) = 1 for s ∈ S
⋂

NHi (v).
Then, s ∈ S

⋂
NHi (v) and t ∈ S

⋂
V j doubly resolve u and v.

Suppose that u, v ∈ Vi. If u, v ∈ S
⋂

Vi, then u, v are doubly resolved by themselves. If u, v < S
⋂

Vi,
then u and v belong to two different nontrivial connected components of Hi. We get that s ∈ S

⋂
NHi (u)

and t ∈ S
⋂

NHi (v) doubly resolve u and v. If u ∈ S
⋂

Vi and v < S
⋂

Vi, then dG⊙H(u,u) − dG⊙H(v,u) < 0.
Certainly, these two vertices u ∈ S

⋂
Vi and t ∈ S

⋂
V j doubly resolve u and v.

The above cases and Lemma 2.11 (iii) show that S doubly resolves u, v ∈ V(G⊙H) andψ(G⊙H) ≤ nG(nH−p)
for p ≥ 1.

In the following we show the extremal graphs. By Lemmas 2.1, 3.8 and 3.9, we need to prove ψ(G⊙H) =
nG(nH − p) for H = (

⋃p
r=1 Tr)

⋃
Nq, where Tr ∈ {Knr ,K1,nr−1}. It suffices to prove ψ(G ⊙ H) ≥ nG(nH − p). Let

S be a minimum DR set of G ⊙ H. Then we have S
⋂

V(G) = ∅ by Lemma 2.11 (iv). It suffices to show
|Si| = |S

⋂
Vi| ≥ nH − p. To the contrary, assume that |Si| ≤ nH − p − 1. As V(Ni

q) ⊆ Si and Si
⋂

V(Ti
r) , ∅

by Lemma 2.11 (ii), we just need to consider that there are two vertices u, v ∈ V(Ti
r) \ Si. Suppose first that

Ti
r � Knr . We have r(u|S) = r(v|S), which leads to a contradiction. Secondly we suppose that Ti

r � K1,nr−1.
If u is the universal vertex of Ti

r, then dG⊙H(v, s) = 2 for s ∈ Si. Since dG⊙H(ui, s) = 1 for s ∈ Si, we conclude
r(ui|S) − r(v|S) =

−→
−1, a contradiction. If neither u nor v is the universal vertex of Ti

r, then we can directly get
r(u|S) = r(v|S), a contradiction. Hence, |Si| ≥ nH − p and ψ(G ⊙H) = nG(nH − p).

Suppose that p = 0. It is clear that Ai = ∅, and we can also verify that S =
⋃nG

i=1 Bi doubly resolves
u, v ∈ V(G ⊙ H). We have ψ(G ⊙ NnH ) ≥ nGnH by Lemma 2.10, and so ψ(G ⊙ NnH ) = nGnH. Note that
ψ(G ⊙H) ≤ nG(nH − p) for p ≥ 1. Then, ψ(G ⊙H) ≤ nGnH with equality if only if H = NnH .

Next, we show the lower bound. We assert ψ(G ⊙ H) ≥ nG(p + q) by Lemma 2.11 (ii). We now prove
that ψ(G ⊙H) = nG(p + q) for H = pK2

⋃
Nq. As nH − p = p + q, we obtain ψ(G ⊙H) ≤ nG(nH − p) = nG(p + q)

and ψ(G ⊙ H) = nG(p + q). If there is a connected component of order at least 3 in H, then we get
ψ(G⊙H) ≥ nG(p+ q+ 1) by Lemma 3.10. Thus, ψ(G⊙H) = nG(p+ q) if only if H = pK2

⋃
Nq. This completes

the proof.

Since ψ(G ⊙H) ≥ β(G ⊙H), we get the following result by Lemmas 2.2, 2.9, 3.9 and Theorem 3.11.

Remark 3.12. Let G be a nontrivial connected graph. Then
(i) ψ(G ⊙H) = nG(nH − 1) for H ∈ {KnH ,K1,nH−1}, where nH ≥ 2.
(ii) ψ(G ⊙H) = nG(nH − 2) for H ∈ {K2,nH−2,K2 ∨NnH−2}, where nH ≥ 4.

4. G ⊙ H with connected corona

In this section, we characterize all graphs G of diameter 2 with ψ(G) = 2. A sharp lower bound on
G ⊙H with nH ≥ 3 is also studied. Moreover, we give the exact values of ψ(Wn), ψ(Fn), and ψ(G ⊙H) with
H ∈ {Pn,Cn}.

Lemma 4.1. Let G be a graph of order n ≥ 6 and diam(G) = 2. Then ψ(G) ≥ 3.

Proof. Assume, to the contrary, that ψ(G) = 2. Set W = {u, v} be a DR set of G. There are 32 vectors:
{(0, 0), (0, 1), (0, 2), (1, 0), (1, 1), (1, 2), (2, 0), (2, 1), (2, 2)}. Since W is a DR set of G, there are at most 5 different
representations such that r(x|W) − r(y|W) , −→c for x, y ∈ V(G), that is, n ≤ 5, a contradiction. Thus,
ψ(G) ≥ 3.

Proposition 4.2. Let G be a connected graph with diam(G) = 2. Then ψ(G) ≥ 2 with equality if and only if
G ∈ {P3, (K2

⋃
K1) ∨ K1, (K2

⋃
K2) ∨ K1,F4,P5,C5}.
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Proof. We know ψ(G) ≥ 2 by definition. For characterizing the graphs with ψ(G) = 2, it suffices to consider
the graph G of order n ≤ 5 by Lemma 4.1. Through the computer, we find that there are 1, 4 and 14
non-isomorphic connected graphs of order 3, 4 and 5 with diam(G) = 2, respectively. Since n ≤ 5, we can
easily obtain ψ(G) = 2 if and only if G ∈ {P3, (K2

⋃
K1) ∨ K1, (K2

⋃
K2) ∨ K1,F4,P5,C5}.

Theorem 4.3. Let G be a nontrivial connected graph and H be a graph of order nH ≥ 5 and diam(H) = 2. If a
minimum DR set of K1 ⊙H contains its center, then ψ(G ⊙H) = nGψ(H).

Proof. Let W be a minimum DR set of K1 ⊙ H that contains the vertex u of K1. Set W′ = W \ {u}. We claim
that W′ is a DR set of H. Otherwise, there are two vertices x, y ∈ V(H) such that r(x|W′) − r(y|W′) = −→c
where c ∈ {0,±1,±2}. Since nH ≥ 5, we have |W| ≥ 3 by Lemma 4.1 and c ∈ {0,±1}. For c = 0, we have
r(x|W′) = r(y|W′) and r(x|W) = r(y|W) as dK1⊙H(x,u) = dK1⊙H(y,u) which contradicts that W doubly resolves
K1 ⊙ H. For c = 1, we have r(x|W′) =

−→
2 and r(y|W′) =

−→
1 as |W′

| ≥ 2. Thus, r(x|W) − r(u|W) =
−→
1 as

r(u|W′) =
−→
1 , a contradiction. Hence, W′ doubly resolves H.

Let S be a minimum DR set of H with |S| < |W′
|. If there is a vertex x ∈ V(H) with representation

r(x|S) =
−→
2 , then we show that D = S

⋃
{x} doubly resolves K1 ⊙H. Certainly, D doubly resolves a, b ∈ V(H)

as dH(a, b) = dK1⊙H(a, b). We next consider a ∈ V(H) and b = u. Since r(x|S) =
−→
2 , there is no vertex in V(H)\{x}

with representation r(a|S) =
−→
1 . Then, r(u|D)− r(a|D) , −→c for a ∈ V(H) \ {x} and r(u|D)− r(x|D) , −→c as x ∈ D.

If no vertex in H has representation
−→
2 with respect to S, then we prove that D = S

⋃
{u} doubly resolves

K1 ⊙H. Set r(u|D) = (1, . . . , 1, 0). Then r(x|D)− r(u|D) = −→c if and only if r(x|D) = (2, . . . , 2, 1) for x ∈ V(H). As
no vertex in H has representation

−→
2 with respect to S, r(x|D) − r(u|D) , −→c and D doubly resolves K1 ⊙ H.

That is, |S| + 1 < |W′
| + 1 = |W| = ψ(K1 ⊙ H), a contradiction. Hence, W′ is a minimum DR set of H and

ψ(K1 ⊙H) − 1 = ψ(H). Thus, ψ(G ⊙H) = nGψ(H) by Theorem 3.5.

From Lemma 2.10 and Theorem 3.11, the following result is obtained as nG pendant vertices of G ⊙ K1
form a DR set of G ⊙ K1.

Corollary 4.4. Let G and H be two connected graphs of order nG ≥ 2 and nH ≥ 1, respectively. Then ψ(G⊙H) = nG
for nH = 1, nG ≤ ψ(G⊙H) ≤ nG(nH − 1) for nH ≥ 2 with left equality if and only if H = K2 and right equality if and
only if H ∈ {KnH ,K1,nH−1}.

Lemma 4.5. Let G and H be two connected graphs of order nG ≥ 2 and nH ≥ 6, respectively. Then ψ(G⊙H) ≥ 3nG.

Proof. Let S be a minimum DR set of G ⊙H. We have S
⋂

V(G) = ∅ and |S
⋂

Vi| ≥ 2 by Lemma 2.11 (iv) and
the proof of Lemma 3.10. Next, we show |S

⋂
Vi| ≥ 3 for nH ≥ 6. To the contrary, assume that Si = S

⋂
Vi

and |Si| = 2. Let W = Vi \ Si. Then we have |W| = nH − 2 ≥ 4. Note that dG⊙H(a, s) ∈ {1, 2} for a ∈ W and
s ∈ Si. There are at most 22 different representations of vertices in W since dG⊙H(a, t) = dG⊙H(b, t) for a, b ∈W
and t ∈ S \ Si. If there is a vertex b ∈ W with r(b|Si) = (2, 2), then r(b|S) − r(ui|S) =

−→
1 as r(ui|Si) = (1, 1) and

dG⊙H(b, t) − dG⊙H(ui, t) = 1 for t ∈ S \ Si, a contradiction. Thus, we have |W| ≤ 22
− 1 = 3, this contradicts the

fact that |W| ≥ 4. Hence, |Si| ≥ 3 and ψ(G ⊙H) ≥ 3nG.

LetA = {Cn,Pn,W4,F4} for 3 ≤ n ≤ 5 and B consist of all graphs in Fig. 1.
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Figure 1: The set B of graphs

Theorem 4.6. Let G and H be two connected graphs of order nG ≥ 2 and nH ≥ 3, respectively. Thenψ(G⊙H) ≥ 2nG
with equality if and only if H ∈ A

⋃
B.

Proof. By Lemma 3.10, we have ψ(G ⊙ H) ≥ 2nG. For characterizing the graphs with ψ(G ⊙ H) = 2nG, it
suffices to consider the graph H of order 3 ≤ nH ≤ 5 by Lemma 4.5. Through the computer, we find that
there are 2, 6 and 21 non-isomorphic connected graphs of order 3, 4 and 5, respectively. Moreover, it is
routine to verify that ψ(G ⊙H) = 2nG if and only if H ∈ A

⋃
B. Hence, the result follows.

Next, we determine the exact value of ψ(G ⊙ H) in the following where H ∈ {Pn,Cn}. The metric
dimension of wheel graphs was determined by Buczkowski et al. [2], and Cáceres et al. [3] showed
β(Fn) = β(Wn) = ⌊ 2n+2

5 ⌋ for n ≥ 7. We can check that ψ(W3) = ψ(W4) = ψ(W5) = ψ(F3) = ψ(F5) = 3 and
ψ(F4) = 2. Next, we only need to consider n ≥ 6.

Lemma 4.7. Let u be the universal vertex of Wn or Fn, where n ≥ 6. If S is a minimum DR set of Wn or Fn, then
u < S.

Proof. We first consider Wn for n ≥ 6. Assume, to the contrary, that u ∈ S. Then, D = S \ {u} is not a DR set
of Wn. There are two vertices x, y ∈ V(Wn) such that r(x|D) − r(y|D) = −→c . We have |D| ≥ 2 and c ∈ {0,±1}
since n ≥ 6 and diam(Wn) = 2.

Suppose that x , u and y , u. First we have r(x|D) − r(y|D) ,
−→
0 . Otherwise r(x|S) − r(y|S) =

−→
0 as a

contradiction to the fact that S is a doubly resolving set of Wn. Assume, w.l.o.g., that r(x|D) − r(y|D) =
−→
1 .

Obviously, x < D and d(y, s) ≤ 1 for s ∈ D. For y ∈ D, we may assume that r(y|D) = (0, 1, 1) or r(y|D) = (0, 1).
If r(y|D) = (0, 1, 1), then we obtain r(x|D) = (1, 2, 2) and x ∈ NCn (y). It is clear that NCn (y) ⊆ D, we get the
contradiction. If r(y|D) = (0, 1), then r(x|D) = (1, 2). There is a vertex z ∈ NCn (x) \ {y} satisfying r(z|D) = (2, 2).
We can easily acquire r(z|S)− r(u|S) =

−→
1 , which leads to a contradiction. For y < D, we have r(y|D) =

−→
1 and

r(x|D) =
−→
2 . Then, r(x|D) − r(u|D) =

−→
1 as r(u|D) =

−→
1 . Therefore, r(x|S) − r(u|S) =

−→
1 is impossible since S is a

DR set of Wn.
Suppose that x = u and y , u. We have r(x|D) =

−→
1 . If r(x|D) − r(y|D) =

−→
0 , then r(y|D) = (1, 1)

and |S| = 3. As n ≥ 6, there always exists a vertex ui ∈ V(Cn) satisfying r(ui|D) = (2, 2), which implies
that r(ui|S) − r(u|S) =

−→
1 , a contradiction. If r(x|D) − r(y|D) =

−→
1 , then r(y|D) =

−→
0 , it is impossible. If

r(x|D) − r(y|D) =
−→
−1, then r(y|D) =

−→
2 . Hence, r(y|S) − r(x|S) =

−→
1 is a contradiction.

Therefore, u < S. Analogously, we can obtain u < S in Fn and thus we omit the proof.

Let {ui,u j} ⊆ S ⊆ V(Cn) and Q be a ui,u j-path in Cn. If Q contains only two vertices of S, then ui and u j
are neighboring vertices in S and the set of internal vertices of Q is a gap of S. Two gaps of S are neighboring
gaps if they are determined by a vertex in S and its two neighboring vertices in S. Certainly, if |S| = t, then
there are t gaps of S in Cn and the gaps of S can be empty in this definition.
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Lemma 4.8. Let Wn be a wheel graph of n ≥ 6 and S ⊆ V(Cn). Then S is a DR set of Wn if and only if the following
two conditions hold:

(i) Each gap of S consists of at most two vertices.
(ii) The neighboring gaps of a gap with two vertices consist of at most one vertex.

Proof. Let V(Wn) = {u,u1,u2, . . . ,un} and E(Wn) = {uur,urur+1 : 1 ≤ r ≤ n}. We first prove the necessity. Let S
be a DR set of Wn. To the contrary, assume that the gap {ui, . . . ,ui+k} of S consists of at least three vertices.
It is easy to obtain d(ui+1, s) − d(u, s) = 1 for s ∈ S, this leads to a contradiction. Assume that there is a
neighboring gap {ui−1,ui} of a gap {ui+2,ui+3}. These two gaps are determined by ui+1,ui−2,ui+4 ∈ S. Then,
d(ui,ui+1) − d(ui+2,ui+1) = 0 and d(ui, s) − d(ui+2, s) = 0 for s ∈ S \ {ui+1}, a contradiction.

Now we consider the sufficiency. Let S ⊆ V(Cn) and S satisfy (i) and (ii). Our aim is to show that S is a DR
set of Wn. For u,u j ∈ V(Wn), if u j ∈ S, then there always exists a vertex s ∈ S\{u j} such that d(u,u j)−d(u j,u j) ,
d(u, s) − d(u j, s). If u j < S, then u j belongs to a gap with size 1 or a gap with size 2. Let u j−1,u j,u j+1 ∈ V(Cn)
and u j−1,u j+1 ∈ S. As n ≥ 6, d(u, s) − d(u j, s) , d(u,u j−1) − d(u j,u j−1) for some s ∈ S \ {u j−1,u j+1}. Let
u j−1,u j,u j+1,u j+2 ∈ V(Cn) and u j−1,u j+2 ∈ S. Then d(u,u j−1) − d(u j,u j−1) , d(u,u j+2) − d(u j,u j+2).

For ui,u j ∈ V(Cn), if ui,u j ∈ S, then ui and u j are doubly resolved by ui and u j. If ui ∈ S and u j < S, then
d(ui,ui) − d(u j,ui) ≤ −1 and d(ui, s) − d(u j, s) ≥ 0 for some s ∈ S \ {ui}. The vertex s always exists because the
set S satisfies (i) and (ii). We analyze ui,u j < S by the following four cases.

Case 1. ui,u j belong to a same gap of S.
The gap is determined by ui′ ,u j′ ∈ S, where ui′ui,u j′u j ∈ E(Wn). We have d(ui,ui′ ) − d(u j,ui′ ) = −1 , 1 =

d(ui,u j′ ) − d(u j,u j′ ).
Case 2. ui belongs to a gap R with size 1, u j belongs to a gap R∗ with size 1.
Suppose that R and R∗ are neighboring gaps. There are five consecutive vertices ui−1,ui,ui+1,u j,u j+1 ∈

V(Cn) and ui−1,ui+1,u j+1 ∈ S. We have d(ui,ui+1) − d(u j,ui+1) , d(uiui−1) − d(u j,ui−1). Suppose that R and
R∗ are not neighboring gaps. Let ui−1,ui,ui+1,u j−1,u j,u j+1 ∈ V(Cn) and ui−1,ui+1,u j−1,u j+1 ∈ S. We obtain
d(ui,ui−1) − d(u j,ui−1) , d(ui,u j−1) − d(u j,u j−1).

Case 3. ui belongs to a gap R with size 1, u j belongs to a gap R∗ with size 2.
Let ui−1,ui,ui+1,u j−1,u j,u j+1,u j+2 ∈ V(Cn) and ui−1,ui+1,u j−1,u j+2 ∈ S. Suppose that R and R∗ are neighbor-

ing gaps. Assume, w.l.o.g., that ui+1 = u j−1. We have d(ui,ui+1)− d(u j,ui+1) , d(ui,ui−1)− d(u j,ui−1). Suppose
that R and R∗ are not neighboring gaps. It is evident to find that d(ui,ui+1)−d(u j,ui+1) , d(ui,u j−1)−d(u j,u j−1).

Case 4. ui belongs to a gap R with size 2, u j belongs to a gap R∗ with size 2.
These two gaps R and R∗ are not neighboring gaps since S satisfies (ii). Let ui−1,ui,ui+1,ui+2,u j−1,u j,u j+1,u j+2 ∈

V(Cn) and ui−1,ui+2,u j−1,u j+2 ∈ S. We have d(ui,ui−1) − d(u j,ui−1) , d(ui,u j−1) − d(u j,u j−1).
As mentioned above, the set S is a DR set of Wn.

Proposition 4.9. ψ(Wn) = ⌈ 2n
5 ⌉ for n ≥ 6.

Proof. Let V(Wn) = {u,u1,u2, . . . ,un} and E(Wn) = {uur,urur+1 : 1 ≤ r ≤ n}. We first show ψ(Wn) ≤ ⌈ 2n
5 ⌉ by

dividing into the following five cases.
Suppose that n ≡ 0 (mod 5). Let n = 5r with r ≥ 2 and ⌈ 2n

5 ⌉ = 2r. Then we construct S = {u5i+1,u5i+4 : 0 ≤
i ≤ r − 1}, where |S| = 2r and S satisfies (i) and (ii). Therefore, S doubly resolves Wn by Lemma 4.8.

Suppose that n ≡ 1 (mod 5). Let n = 5r + 1 with r ≥ 1 and ⌈ 2n
5 ⌉ = 2r + 1. Set S = {u5i+1,u5i+4 : 0 ≤ i ≤

r − 1}
⋃
{u5r}, where |S| = 2r + 1 and S satisfies (i) and (ii). Hence, S doubly resolves Wn by Lemma 4.8.

Suppose that n ≡ 2 (mod 5). Let n = 5r+ 2 with r ≥ 1 and ⌈ 2n
5 ⌉ = 2r+ 1. We can construct S = {u5i+1,u5i+3 :

0 ≤ i ≤ r − 1}
⋃
{u5r+1}, where |S| = 2r + 1 and S satisfies (i) and (ii). Hence, S doubly resolves Wn by Lemma

4.8.
Suppose that n ≡ 3 (mod 5). Let n = 5r + 3 with r ≥ 1 and ⌈ 2n

5 ⌉ = 2r + 2. Then we construct
S = {u5i+1,u5i+3 : 0 ≤ i ≤ r}, where |S| = 2r + 2 and S satisfies (i) and (ii). Hence, S doubly resolves Wn by
Lemma 4.8.

Suppose that n ≡ 4 (mod 5). Let n = 5r + 4 with r ≥ 1 and ⌈ 2n
5 ⌉ = 2r + 2. Let S = {u5i+1,u5i+3 : 0 ≤ i ≤ r},

where |S| = 2r + 2 and S satisfies (i) and (ii). Then S doubly resolves Wn by Lemma 4.8.
As stated above, ψ(Wn) ≤ ⌈ 2n

5 ⌉. Let S be a minimum DR set of Wn. We show ψ(Wn) ≥ ⌈ 2n
5 ⌉ in the

following.
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Suppose that |S| = 2t. There are at most 2t gaps in Cn. By Lemma 4.8, there are at most t gaps with
two vertices. Thus, the number of vertices in the gaps of S is at most 3t. We have n − 2t ≤ 3t, and so
|S| = 2t ≥ ⌈ 2n

5 ⌉.
Suppose that |S| = 2t + 1. There are at most 2t + 1 gaps in Cn. At most t gaps consist of two vertices by

Lemma 4.8. Hence, the number of vertices in the gaps of S is at most 3t + 1. Then, n − 2t − 1 ≤ 3t + 1 and
|S| = 2t + 1 ≥ ⌈ 2n

5 ⌉.

Proposition 4.10. ψ(Fn) = ⌈ 2n
5 ⌉ for n ≥ 6.

Proof. By the proof of Proposition 4.9, we have constructed the DR set S of Wn that can produce a gap of
S with two vertices in Cn. Deleting the edge between these two vertices of the gap does not change the
distance between any vertices with elements of S. Note that Fn is obtained by deleting an edge of Cn in Wn.
It is simple to get that the set S is also a DR set of Fn. Therefore, ψ(Fn) ≤ ⌈ 2n

5 ⌉.
Let D ⊆ V(Wn) consist of at most ⌈ 2n

5 ⌉ − 1 vertices. It is clear that D is not a DR set of Wn. Let
V(Wn) = {u,u1,u2, . . . ,un} and E(Wn) = {uur,urur+1 : 1 ≤ r ≤ n}. We only need to consider D ⊆ V(Cn) by
Lemma 4.7. Next, according to Lemma 4.8, the following two cases are distinguished.

Suppose that there is a gap of D with at least three vertices. Let {ui−1,ui, . . . ,ui+k} be the gap. Then
r(ui|D) =

−→
2 . Deleting any edge of E(Cn) in Wn can not change the representation of ui. Thus, D is not a DR

set of Fn as r(u|D) =
−→
1 .

Suppose that there are two neighboring gaps of D with two vertices. Let {ui,ui+1} and {ui+3,ui+4} be the
two neighboring gaps, which are determined by ui−1,ui+2,ui+5 ∈ D. If we delete any edge of E(Cn) in Wn,
then it is not difficult to check that ui+1 and ui+3, ui+1 and u, or ui+3 and u are not doubly resolved by D.

From above, we have ψ(Fn) ≥ ⌈ 2n
5 ⌉ and ψ(Fn) = ⌈ 2n

5 ⌉ for n ≥ 6.

Propositions 4.9 and 4.10 can be extended as follows.

Theorem 4.11. Let G be a nontrivial connected graph and H be a path or cycle. Then ψ(G ⊙H) = nG⌈
2nH

5 ⌉.

Proof. By Corollary 4.4, ψ(G ⊙H) = nG⌈
2nH

5 ⌉ holds for nH ≤ 2. Moreover, ψ(G ⊙H) = nG⌈
2nH

5 ⌉ for 3 ≤ nH ≤ 5
follows from Theorem 4.6. Combining Theorem 3.5, Propositions 4.9 and 4.10, we have ψ(G⊙H) = nG⌈

2nH
5 ⌉

for nH ≥ 6, ending the proof.

Note that diam(K1 ⊙H) ≤ 2 for any graph H. From Lemma 2.1 and Proposition 4.2, the following result
holds.

Corollary 4.12. Let G = K1 ⊙ H be a graph of order n ≥ 3. Then 2 ≤ ψ(K1 ⊙ H) ≤ n − 1 with left equality if and
only if H ∈ {N2,K2

⋃
K1,K2

⋃
K2,P4} and right equality if and only if H ∈ {Kn−1,Nn−1,K1,n−2}.
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[17] S. Klavžar, M. Tavakoli, Edge metric dimensions via hierarchical product and integer linear programming, Optim. Lett. 15 (2021)

1993-2003.
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