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Complete convergence for weighted sums of widely negative
dependent random variables under the sub-linear expectations

Chang Liua, Qing Yina

aCollege of Mathematics and Information Science, Henan Normal University, Henan Province, 453007, China

Abstract. In the paper, the complete convergence for weighted sums of arrays of rowwise widely negative
dependent random variables under the sub-linear expectations is established. The main result partially
extend some known results both in the classical probability space and sub-linear expectation space. In
addition, it weaken their conditions.

1. Introduction

The classical complete convergence, which is one of the fundamental limit theorems in probability
theory, plays a major role in the development of probability theory and its applications. The initial concept
of complete convergence of sequence of random variables was introduced by Hsu and Robbins [7]. After
that, a great deal of domestic and foreign scholars had shown in-depth and extended researches on it, such
as Wang and Hu [18], Bai et al. [3] and Hu et al. [8]. It is well known that the analysis of weighted sums
was also important in the statistic, such as jackknife estimate, nonparametric regression function estimate
and so on. Many authors studied the complete convergence for the weighted sums of random variables,
we can refer to An and Yuan [2], Ahmed et al. [1] and Liang [10].

However, in practice, many problems such as uncertainties in statistics, measures of risks, superhedging
in finance and non-linear stochastic calculus can not be resolved by the classical probability theories.
Motivated by this phenomena, the general sub-linear expectations and related non-additive probabilities
generated by them were considered. The general framework of the sub-linear expectation was introduced
by Peng [14–17] in a general function space by relaxing the linear property of the classical expectation to the
sub-additivity and positive homogeneity (cf. Definition 2.1 below). Under Peng’s framework, many limit
theorems have been established recently, for example, Liu and zhang [12] studied the law of the iterated
logarithm for linear processes generated by a sequence of stationary independent random variables, Li [9]
obtained the central limit theorem for m-dependent sequences, Guo and Li [6] showed the laws of large
numbers for pseduo-independent random variables, Zhang [19] revealed the Donsker’s invariance principle
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and Chung’s law of the iterated logarithm, Chen and Xiong [5] acquired the large deviation principle
for diffusion processes, Zhong and Wu [24] gained the complete convergence and complete moment
convergence for extended negatively dependent random variables, Zhang [20] received the self-normalized
moderate deviation and laws of the iterated logarithm under G-expectation and so on. Besides these, many
important and fundamental inequalities serve as tools in the probability theory such as Rosenthal type
inequality, Fuk and Nagave type inequalities, Kolmogorov type exponential inequalities, Lévy maximal
inequality in Zhang [22] and Zhang [23] and so on. In this paper, we study the complete convergence
for weighted sums of widely negative dependent random variables under association assumptions by
combining the properties of sublinear expectations and using local Lipschitz function. We can extend
some known complete convergence conclusions in the traditional probability space to the case of sub-linear
expectation space is of great significance in the theory and application.

This paper proceeds as follows. In Section 2, we recall some basic notions and definitions under sub-
linear expectations which will be used in this article. In Section 3, we state the main results of this article. In
Section 4, we give some useful lemmas and the proof of the complete convergence which is the main result
in this paper. Throughout this paper, the symbol C denotes a positive constant which may take different
values whenever it appears in different expressions and the symbol c′n denotes the derivative with respect
to n .Let I(A) denote the indicator function of the event A and log x = max log {x, e}. Denote x∨ y = max(x, y)
for x, y ∈ R.

2. Basic Settings

We use the framework and notations of Peng [17]. Let (Ω,F ) be a given measurable space. LetH be a
linear space of real functions defined on (Ω,F ), such that if X1,X2, . . . ,Xn ∈ H , then φ(X1,X2, . . . ,Xn) ∈ H
for each φ ∈ Cl,Lip(Rn) denotes the linear space of local Lipschitz continuous functions φ satisfying

|φ(x) − φ(y)| ≤ c(1 + |x|m + |y|m)|x − y|, for all x, y ∈ Rn,

for some c > 0 and m ∈ N depending on φ. H contains all IA where A ∈ F . We also denote φ ∈ Cb,Lip(Rn)
as the linear space of bounded Lipschitz continuous functions φ satisfying

|φ(x) − φ(y)| ≤ c|x − y|,

for all x, y ∈ Rn and some c > 0.

Definition 2.1. A function Ê : H → [−∞,∞] is said to be a sub-linear expection if it satisfies for any
X,Y ∈ H ,

(a) Monotonicity: X ≥ Y implies Ê[X] ≥ Ê[Y];

(b) Constant preserving: Ê[c] = c, ∀c ∈ R;

(c) Sub-additivity: Ê[X + Y] ≤ Ê[X] + Ê[Y];

(d) Positive homogeneity: Ê[λX] = λÊ[X], ∀λ ≥ 0.

The triple (Ω,H , Ê) is called a sub-linear expectation space. Give a sub-linear expectation Ê, let us denote
conjugate expectation Ê of Ê by

Ê[X] := −Ê[−X], ∀X ∈ H .

Next, we introduce the capacities corresponding to the sub-linear expectations. Let G ⊂ F .

Definition 2.2. ([22]) A functionV : G → [0, 1] is called a capacity if
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(i) V(Ø) = 0,V(Ω) = 1;

(ii) V(A) ≤ V(B), ∀A ⊂ B, A,B ∈ G.

It is called to be sub-additive if V(A
⋃

B) ≤ V(A) +V(B) for all A,B ∈ G with A
⋃

B ∈ G. A pair (V,V)
of capacity were generated by a pair (Ê, Ê) of expectation denoted by:

V(A) := inf{Ê[ξ] : IA ≤ ξ, ξ ∈ H}, V(A) := 1 −V(Ac), for all A ∈ F ,

where Ac is the complement set of A. Then

V(A) := Ê[IA], V(A) := Ê[IA], if IA ∈ H .

Ê[ f ] ≤ V(A) ≤ Ê[1], Ê[ f ] ≤ V(A) ≤ Ê[1], if f ≤ IA ≤ 1, f , 1 ∈ H .
(2.1)

This impliesV is sub-additive fromV(A∪ B) := Ê[IA∪B] ≤ Ê[IA + IB] ≤ Ê[IA] + Ê[IB] = V(A) +V(B) and
Markov’s inequality: ∀X ∈ H ,

V(|X| ≥ x) ≤ Ê[|X|p]/xp, for all x > 0, p > 0

from I(|X| ≥ x) ≤ |X|p/xp
∈ H . By Lemma 2.2 in Lin and Feng [11], we have Jensen’s inequality: Let f (x) be

a convex function on R. Suppose that Ê and Ê[ f (X)] exist, then f (Ê[X]) ≤ Ê[ f (X)].

In addition, a pair (CV,CV) of the Choquet integrals/expectations denoted by

CV[X] =
∫
∞

0
V(X ≥ t)dt +

∫ 0

−∞

[V(X ≥ t) − 1]dt

with V being replaced byV andV, respectively.

If lim
c→∞
Ê[(|X| − c)+] = 0 or Ê is countably sub-additive, then Ê(|X|) ≤ CV(|X|)(cf. Zhang [22, Lemma 4.5

(iii)]).

Definition 2.3. ([21])

(I) A sub-linear expectation Ê : H → R is called to be countably sub-linear if it satisfies

(i) Countably sub-additivity: Ê[X] ≤
∑
∞

n=1 Ê[Xn], whenever X ≤
∑
∞

n=1 Xn,X,Xn ∈ H and X ≥
0,Xn ≥ 0,n = 1, 2, . . ..
It is called continuous if it satisfies:

(ii) Continuity from below: Ê[Xn] ↑ Ê[X] if 0 ≤ Xn ↑ X, where Xn,X ∈ H .

(iii) Continuity from above: Ê[Xn] ↓ Ê[X] if 0 ≤ Xn ↓ X, where Xn,X ∈ H .

(II) A functionV : F → [0, 1] is called to be countably sub-additive if

V

 ∞⋃
n=1

An

 ≤ ∞∑
n=1

V(An), for all An ∈ F .

(III) A capacityV : F → [0, 1] is called a continuous capacity if it satisfies

(i) Continuity from below: V(An) ↑ V(A) if An ↑ A, where An,A ∈ F .

(ii) Continuity from above: V(An) ↓ V(A) if An ↓ A, where An,A ∈ F .
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BecauseVmay be not countably sub-additive in general, we define an outer capacityV∗ by

V∗(A) = inf

 ∞∑
n=1

V(An) : A ⊂
∞⋃

n=1

An

 , V∗(A) = 1 −V∗(Ac), A ∈ F .

Then it can be shown that V∗(A) is a countably sub-additive capacity with V∗(A) ≤ V(A) and if V is
countably sub-additive, thenV∗ ≡ V(cf. Zhang [21]).

Definition 2.4. ([13]) Let X1,X2, . . . ,Xn+1 be real measurable random variables of (Ω,F ). Xn+1 is called
widely negative dependent of (X1,X2, . . . ,Xn) under Ê, if for every nonnegative measurable function φi(·)
with the same monotonicity onR and Ê[φi(Xi)] < ∞, i = 1, . . . ,n+1, there exists a positive finite real number
1(n + 1) such that

Ê

n+1∏
i=1

φi(Xi)

 ≤ 1(n + 1)Ê

 n∏
i=1

φi(Xi)

 Ê [
φn+1(Xn+1)

]
.

{Xi}
∞

i=1 is said to be a sequence of widely negative dependent random variables, if for any n ≥ 1,Xn+1 is
widely negative dependent of (X1,X2, . . . ,Xn).

{Xnk, 1 ≤ k ≤ kn,n ≥ 1} is said to be an array of rowwise widely negative dependent random variables,
if for any n ≥ 1, {Xnk, 1 ≤ k ≤ kn} is a sequence of widely negative dependent random variables.

Remark 2.1. For a sequence of widely negative dependent random variables {Xi}
∞

i=1, we have

Ê

 n∏
i=1

φi(Xi)

 ≤ 1̃(n)
n∏

i=1

Ê
[
φi(Xi)

]
, where 1̃(n) :=

n∏
i=1

1(i),

for any n ≥ 1 and every nonnegative measurable function φi(·) with the same monotonicity on R and Êφi(Xi) <
∞, i = 1, . . . ,n. Without loss of generality, we will assume that 1(n) ≥ 1 for any n ≥ 1 in the sequel. If {Xi}

∞

i=1 is a
sequence of extend negatively dependent random variables, then 1̃(n) = K, where K ≥ 1 is a dominating constant by
Definition 2.1 in [24], if {Xi}

∞

i=1 is a sequence of negatively dependent random variables, then 1̃(n) = 1 by Definition
2.3 in [22].

3. Preliminaries

Before proving the main results, we state the following several useful lemmas.

Lemma 3.1. ([11, Lemma 2.6]) Suppose that {Xi}
∞

i=1 is a sequence of widely negative dependent random variables
under Ê, and {ψi(x)}∞i=1 is a sequence of measurable function with the same monotonicity. Then {ψi(Xi)}∞i=1 is also a
sequence of widely negative dependent random variables.

Lemma 3.2. Let {Xn,n ≥ 1} be an sequence of widely negative dependent random variables such that Ê[Xn] ≤ 0 and
Ê[X2

n] < ∞. Then for all x, y and r > 0,

V

 n∑
k=1

Xk ≥ x

 ≤ n∑
k=1

V
(
|Xk| ≥

2x
r

)
+ C1̃(n)x−rBr/2

n , (3.1)

where Bn =
∑n

k=1 Ê[X2
k ].

Proof. Let Yk = Xk ∧ y, Tn =
∑n

k=1 Yk. Then Xk − Yk = (Xk − y)+ ≥ 0 and Ê[Yk] ≤ Ê[Xk] ≤ 0. Note that
φ(x) := et(x∨y) is a bounded non-decreasing function and belongs to Cl,Lip(R) since 0 ≤ φ

′

(x) ≤ tety if t ≥ 0.
Then by the definition of widely negative dependent and Markov inequality, we have for any t > 0,

V(Sn ≥ x) ≤ V(Tn , Sn) +V(Tn ≥ x)
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≤

n∑
k=1

V(|Xk| > y) + e−txÊ[etTn ]

≤

n∑
k=1

V(|Xk| > y) + 1̃(n)e−tx
n∏

k=1

Ê[etYk ]. (3.2)

Note that the function h(x) = (etx
− 1 − tx)/xp is increasing for all x > 0, with t > 0, 0 < p ≤ 2. Therefore

Ê[etYk ] ≤ tÊ[Yk] + 1 +
ety
− ty − 1

y2 Ê[|Yk|
2]

≤ 1 +
ety
− ty − 1

y2 Ê[|Xk|
2]

≤ exp
{

ety
− ty − 1

y2 Ê[|Xk|
2]
}
. (3.3)

Choosing t = 1
y ln(1 + xy

Bn
) yields

V

 n∑
k=1

Xk ≥ x


≤

n∑
k=1

V(|Xk| ≥ y) + 1̃(n) exp
{

x
y
−

x
y

ln
(
1 +

xy
Bn

)}
.

Let y = 2x/r, we get

V

 n∑
k=1

Xk ≥ x

 ≤ n∑
k=1

V
(
|Xk| ≥

2x
r

)
+ C1̃(n)x−rBr/2

n . (3.4)

So the proof of Lemma 3.2 is completed.

Lemma 3.3. ([21, Lemma 3.6])

(i) If Ê is continuous from below, then it is countably sub-additive. Similarly, if V is continuous from below, then
it is countably sub-additive.

(ii) SetH = {A : IA ∈ H}, then V is a countably sub-additive capacity inH if Ê is countably sub-additive inH ,
and (V,V) is a pair of continuous capacities inH if Ê is continuous inH .

4. Main results

4.1. A general theorem

The following Theorem 4.1 is our main result, which can induce some known results.

Theorem 4.1. Let {Xni, 1 ≤ i ≤ n,n ≥ 1} be an array of rowwise widely negative dependent random variables in
(Ω,H , Ê), there exists a random variable X ∈ H and a constant C satisfying

1
n

n∑
i=1

Ê[ f (Xni)] ≤ CÊ[ f (X)], (4.1)
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for all 1 ≤ i ≤ n, n ≥ 1 and for any 0 < f ∈ Cl,Lip(R). Suppose that for r, p > 0, Ê[|X|p] ∨ CV[|X|p] < ∞ and for
p ≥ 1, Ê[Xni] = Ê[−Xni] = 0. Assume that {ani, 1 ≤ i ≤ n,n ≥ 1} is an array of real numbers, {bn,n ≥ 1} and
{cn,n ≥ 1} be two sequences of positive constants, the following conditions hold:

c−p
n n max

1≤i≤n
|ani| = o(1),

bnn = O
(
c′ncp−1

n

)
,

bnn max
1≤i≤n

|ani|
r = O

(
c′ncp−1

n

)
,

∞∑
j=k

θ j
(
bnc−r

n n max
1≤i≤n

|ani|
r
) ∣∣∣∣∣

n=θ j
= O

(
(cθk )′(cθk )p−r−1

)
for any θ > 1,

∞∑
n=1

bnc−r
n 1̃(n)n

r
2 max

1≤i≤n
|ani|

r < ∞ for p ≥ 2

and
∞∑

n=1

bnc−
rp
2

n 1̃(n)n
r
2 max

1≤i≤n
|ani|

r < ∞ for 0 ≤ p < 2.

Then for any ε > 0, we have

∞∑
n=1

bnV

 n∑
i=1

aniXni > εcn

 < ∞ (4.2)

and

∞∑
n=1

bnV

− n∑
i=1

aniXni > εcn

 < ∞. (4.3)

Remark 4.1. Theorem 4.1 can be applied many random sequences in the sub-linear expectation space, such as
extended negatively dependent sequence, negatively dependent sequence, independent and identically distributed
sequence, widely acceptable sequence, strictly stationary independent sequence, extended independence and so on.

Corollary 4.1. Let {Xni, 1 ≤ i ≤ n,n ≥ 1} be an array of rowwise widely negative dependent random variables in
(Ω,H , Ê). Suppose that Ê is continuous from below, for r, p > 0, CV[|X|p] < ∞ and for p ≥ 1, Ê[Xni] = Ê[−Xni] = 0,
dominated condition (4.1) and the six conditions in Theorem 4.1 remain unchanged. Then for any ε > 0, we have

∞∑
n=1

bnV
∗

 n∑
i=1

aniXni > εcn

 < ∞ (4.4)

and

∞∑
n=1

bnV
∗

− n∑
i=1

aniXni > εcn

 < ∞. (4.5)

The following is the sufficient part of the Hsu-Robbins-Erdös strong law generalized to the weighted
sums in the sub-linear expectation space.
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Corollary 4.2. Let {Xni, 1 ≤ i ≤ n,n ≥ 1} be an array of rowwise independent and dominated condition (4.1) random
variables in (Ω,H , Ê) with Ê[Xni] = Ê[−Xni] = 0 and Ê[|X|2] ∨ CV[|X|2] < ∞. Let {ani, 1 ≤ i ≤ n,n ≥ 1} is an
array of real numbers satisfying max

1≤i≤n
|ani|

r
≤ C for some r > 2. Then for all ε > 0,

∞∑
n=1

V


∣∣∣∣∣∣∣

n∑
i=1

aniXni

∣∣∣∣∣∣∣ > εn

 < ∞. (4.6)

Remark 4.2. The sufficient part of Hsu-Robbins-Erdös strong law in the classical probability space is that: Let
{Xn,n ≥ 1} be a sequence of i.i.d random variables with zero mean and EX2

1 < ∞ , then

n∑
i=1

P


∣∣∣∣∣∣∣

n∑
i=1

Xi

∣∣∣∣∣∣∣ > εn

 < ∞. (4.7)

It is obvious that the dominated condition (4.1) is weaker than identically distributed and we extend the conclusion to
weighted sums under the sub-linear expectation, so it is a useful supplement for (4.7).

The next one is Baum-Katz type complete convergence, we expand it from the classical probability space
to sub-linear expectation space and optimize the conclusions by Theorem 4.1.

Corollary 4.3. Let α > 1/2, αp > 1 and {Xni, 1 ≤ i ≤ n,n ≥ 1} be an array of rowwise widely negative dependent
random variables in (Ω,H , Ê) with Ê[Xni] = Ê[−Xni] = 0 when p ≥ 1 and dominated condition (4.1). Assume
that 1̃(n) is regularly varying function with index αt for some t > 0 and for some r > max{(αp + αt − 1)/(α −
1
2 ), 2(αp+αt−1)/(αp−1)}, Ê[|X|p]∨CV[|X|p] < ∞. Let {ani, 1 ≤ i ≤ n,n ≥ 1} is an array of real numbers satisfying
max
1≤i≤n

|ani| = O(log−1 n). Then for any ε > 0,

∞∑
n=1

nαp−2V

 n∑
i=1

aniXni > εnα
 < ∞. (4.8)

Remark 4.3. Let α > 1/2, αp > 1 and {Xni, 1 ≤ i ≤ n,n ≥ 1} be an array of rowwise widely negative dependent
random variables in (Ω,H , Ê). Assume that 1̃(n) is regularly varying function with index αt for some t > 0. Let
{ani, 1 ≤ i ≤ n,n ≥ 1} is an array of real numbers satisfying

∑n
i=1 |ani|

r = O(n), where r > max{p, (αp + αt − 1)/(α −
1
2 ), 2(αp+αt− 1)/(αp− 1)} and Ê[|X|p]∨CV[|X|p] < ∞. Moreover, we assume that Ê[Xni] = Ê[−Xni] = 0 and there
exist a random variable X ∈ H and a constant C, satisfying

Ê[ f (Xni)] ≤ CÊ[ f (X)], (4.9)

for all 1 ≤ i ≤ n, n ≥ 1 and for any 0 < f ∈ Cl,Lip(R). Then for any ε > 0, we have

∞∑
n=1

nαp−2V

 n∑
i=1

aniXni > εnα
 < ∞. (4.10)

Lu and Meng [13] proved the above conclusion (4.10). By comparing with the result in Lu and Meng [13], it is clear
that if X dominates the sequence {Xni, 1 ≤ i ≤ n,n ≥ 1} in the condition (4.9), then it also dominates the sequence in
the condition (4.1), so we weaken the dominated condition for X.

Corollary 4.4. Let 1 < α < 2, α < p and {Xni, 1 ≤ i ≤ n,n ≥ 1} be an array of rowwise negative dependent
random variables in(Ω,H , Ê) with Ê[Xni] = Ê[−Xni] = 0 and the dominated condition (4.1). Assume that
Ê[|X|p] ∨ CV[|X|p] < ∞ and {ani, 1 ≤ i ≤ n,n ≥ 1} is an array of real numbers satisfying

max
1≤i≤n

|ani|
r = O

(
np/α−1(log n)1−r

)
,

where r > max{2, p, 2(p − α)/(2 − α)}. Then for any ε > 0,
∞∑

n=1

1
n
V

 n∑
i=1

aniXni > εn
1
α (log n)

1
p

 < ∞. (4.11)
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Remark 4.4. Let 1 < α < 2, α < p, {X,Xn,n ≥ 1} be a sequence of identically distributed negatively orthant
dependent random variables with EX = 0 and E|X|p < ∞. Let {ani, 1 ≤ i ≤ n,n ≥ 1} be an array of constants
satisfying

∑n
i=1 |ani|

α = O(n). Then for any ε > 0,

∞∑
n=1

1
n
P

max
1≤k≤n

∣∣∣∣∣∣∣
k∑

i=1

aniXi

∣∣∣∣∣∣∣ > εn
1
α (log n)

1
p

 < ∞. (4.12)

Chen and Sung [4] have shown the above complete conclusion in the classical probability space, it is obvious that
if 1̃(n) = 1 and P = {P}, Corollary 4.4 is an interesting supplement for Theorem 1.1 in Chen and Sung [4] in the
sub-linear expectation space because the two {ani, 1 ≤ i ≤ n,n ≥ 1} controls don’t contain each other and the condition
(4.1) is weaker than identically distributed.

5. proofs of main results

Proof. [Proof of Theorem 4.1] We only need to prove (4.2), because of considering {−Xni, 1 ≤ i ≤ n,n ≥ 1}
instead of {Xni, 1 ≤ i ≤ n,n ≥ 1} in (4.2), we get (4.3). For fixed n ≥ 1, denote for 1 ≤ i ≤ n that

Yni = XniI(|Xni| ≤ cn) + cnI(Xni > cn) − cnI(Xni < −cn).

Note that for all ε > 0  n∑
i=1

aniXni > εcn

 ⊂ n⋃
i=1

{|Xni| > cn} ∪

 n∑
i=1

aniYni > εcn

 ,
which yields

∞∑
n=1

bnV

( n∑
i=1

aniXni > εcn

)

≤

∞∑
n=1

bn

n∑
i=1

V(|Xni| > cn) +
∞∑

n=1

bnV

( n∑
i=1

aniYni > εcn

)

=

∞∑
n=1

bn

n∑
i=1

V(|Xni| > cn)

+

∞∑
n=1

bnV

( n∑
i=1

ani(Yni − Ê[Yni]) > εcn −

n∑
i=1

aniÊ[Yni]
)

:= I + J.

We note that (4.1) does not imply
∑n

i=1V( f (Xni) ∈ A) ≤ CnV( f (X) ∈ A). Hence, to deal withV( f (Xni) ∈ A), we
need to convertV to Ê via (2.1). It is easy to see that in the classical probability space,EI(|X| ≤ a) = P(|X| ≤ a),
however, it is false since indicator function I(|X| ≤ a) < Cl,Lip(R) but Ê is defined through functions in Cl,Lip.
We need to modify the indicator function by functions in Cl,Lip. To this end, we define the function 1(x) ∈ Cl,Lip
as follows.

For 0 < µ < 1, let 1(x) ∈ Cl,Lip(R), 0 ≤ 1(x) ≤ 1 for all x, 1(x) = 1 if |x| ≤ µ, 1(x) = 0 if |x| > 1 and 1(x) is not
non-increasing function when x > 0. Then

I(|x| ≤ µ) ≤ 1(x) ≤ I(|x| ≤ 1), I(|x| > 1) ≤ 1 − 1(x) ≤ I(|x| > µ). (5.1)

For any m > 0, by Cr-inequality, (5.1) and the definition of Yni, we have

|Yni|
m
≤ C|Xni|

mI(|Xni| ≤ cn) + Ccm
n I(|Xni| > cn)

≤ C|Xni|
m1

(µXni

cn

)
+ Ccm

n

(
1 − 1

(Xni

cn

))
,
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whence

1
n

n∑
i=1

Ê[|Yni|
m] ≤ CÊ

[
|X|m1

(µX
cn

)]
+ Ccm

n Ê
[(

1 − 1
( X

cn

)]
≤ CÊ

[
|X|m1

(µX
cn

)]
+ Ccm

nV(|X| > µcn) (5.2)

from (4.1) and (5.1). Let 1 j(x) ∈ Cl.Lip(R), j ≥ 1 such that 0 ≤ 1 j(x) ≤ 1 for all x and 1 j

(
x
b j

)
= 1, if b j−1 < |x| ≤ b j,

1 j

(
x
b j

)
= 0, if |x| ≤ µb j−1 or |x| > (1 + µ)b j. Here we let b0 = 1. Then

1 j

(
X
b j

)
≤ I(µb j−1 < |X| ≤ (1 + µ)b j), |X|m1

( X
bk

)
≤

k∑
j=1

|X|m1 j

(X
b j

)
. (5.3)

Firstly, we will show that

c−1
n

∣∣∣∣∣∣ n∑
i=1

aniÊ[Yni]

∣∣∣∣∣∣→ 0 as n→∞. (5.4)

For the case of 0 < p < 1, by Markov inequality and (5.2) with m = 1, thus

c−1
n

∣∣∣∣∣∣∣
n∑

i=1

aniÊ[Yni]

∣∣∣∣∣∣∣
≤ c−1

n max
1≤i≤n

|ani|

n∑
i=1

Ê[|Yni|]

≤ Cc−1
n n max

1≤i≤n
|ani|Ê

[
|X|1

(
µX
cn

)]
+ Cc−1

n n max
1≤i≤n

|ani|cnV(|X| > µcn)

≤ Cc−p
n n max

1≤i≤n
|ani|Ê[|X|p]→ 0.

For the case of p ≥ 1, by Ê[Xni] = 0, (5.1) and condition (4.1), thus

c−1
n

∣∣∣∣∣∣ n∑
i=1

aniÊ[Yni]

∣∣∣∣∣∣ ≤ c−1
n max

1≤i≤n
|ani|

n∑
i=1

∣∣∣Ê[Xni] − Ê[Yni]
∣∣∣

≤ c−1
n max

1≤i≤n
|ani|

n∑
i=1

Ê[|Xni − Yni|]

≤ c−1
n max

1≤i≤n
|ani|

n∑
i=1

Ê[|Xni|I(|Xni| > cn)]

≤ c−1
n max

1≤i≤n
|ani|

n∑
i=1

Ê
[
|Xni|

(
1 − 1

(Xni

cn

))]
≤ Cc−1

n n max
1≤i≤n

|ani|Ê
[
|X|

(
1 − 1

( X
cn

))]
≤ Cc−p

n n max
1≤i≤n

|ani|Ê[|X|p]→ 0.

So, when p > 0, for any ε > 0 and for all n large enough, we have

c−1
n

∣∣∣∣∣∣ n∑
i=1

aniÊ[Yni]

∣∣∣∣∣∣ ≤ ε2 . (5.5)
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For the term I, we get

I ≤
∞∑

n=1

bn

n∑
i=1

Ê
[(

1 − 1
(Xni

cn

))]
≤ C

∞∑
n=1

bnnÊ
[(

1 − 1
( X

cn

))]
≤ C

∞∑
n=1

bnnV(|X| > µcn)

≤ C
∞∑

n=1

c′ncp−1
n V(|X| > µcn)

≤ CCV[|X|p] < ∞.

By Lemma 3.1, {ani(Yni − Ê[Yni]), 1 ≤ i ≤ n,n ≥ 1} is also an array of widely negative dependent random
variables by the fact that fc(x) = xI(|x| ≤ c) + cI(x > c) − cI(x < −c) ∈ Cl,Lip(R) for any c > 0 and fc(x) being
non-decreasing. Then by Lemma 3.2, we have

J ≤
∞∑

n=1

bnV

 n∑
i=1

ani

(
Yni − Ê[Yni]

)
>
ε
2

cn


≤

∞∑
n=1

bn

n∑
i=1

V
(∣∣∣∣ani

(
Yni − Ê[Yni]

) ∣∣∣∣ > εcn

r

)

+ C
∞∑

n=1

bn1̃(n)c−r
n

 n∑
i=1

Ê
[(

ani

(
Yni − Ê[Yni]

))2
]

r
2

:= J1 + J2.

By Markov inequality, Cr-inequality and (5.2) with m = r, we get

J1 ≤ C
∞∑

n=1

bnc−r
n max

1≤i≤n
|ani|

r
n∑

i=1

Ê
[∣∣∣∣Yni − Ê[Yni]

∣∣∣∣r]
≤ C

∞∑
n=1
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1≤i≤n
|ani|
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n∑
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≤ C
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rÊ

[
|X|r1

(
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)]
+ C

∞∑
n=1

bnn max
1≤i≤n

|ani|
rV(|X| > µcn)

:= J11 + J12.

By the proof of term I, it is easy to get that J12 < ∞. As for term J11, via (5.3),

J11 ≤

∞∑
j=1

θ j∑
n=θ j−1

bnc−r
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1≤i≤n
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[
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( X
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n=θ j
Ê

[
|X|r1

(
X
cθ j

)]

≤ C
∞∑
j=1

θ j
(
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n n max
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r
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n=θ j
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[
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(
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≤ C
∞∑

k=1

∞∑
j=k

θ j
(
bnc−r

n n max
1≤i≤n

|ani|
r
) ∣∣∣∣∣

n=θ j
(cθk )rV(|X| > µcθk−1 )

≤ C
∞∑

k=1

(cθk )′(cθk )p−1V
(
|X| > µcθk−1

)
≤ CCV[|X|p] < ∞.

Lastly, we consider J2, for the case of p ≥ 2, by condition (4.1)

J2 ≤ C
∞∑

n=1

bnc−r
n 1̃(n) max

1≤i≤n
|ani|

r

 n∑
i=1

Ê
[
Y2

ni

]
r
2

≤ C
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n=1

bnc−r
n n

r
2 1̃(n) max

1≤i≤n
|ani|

r
(
Ê[|X|2]

) r
2

≤ C
∞∑

n=1

bnc−r
n 1̃(n)n

r
2 max

1≤i≤n
|ani|

r < ∞.

for the case of 0 < p < 2, by Markov inequality and (5.2) with m = 2, we have

J2 ≤ C
∞∑

n=1

bnc−r
n n

r
2 1̃(n) max

1≤i≤n
|ani|

r
(
c2−p

n Ê[|X|p]
) r

2

≤ C
∞∑

n=1

bnc−
pr
2

n n
r
2 1̃(n) max

1≤i≤n
|ani|

r < ∞.

The proof of Theorem (4.1) is completed.

Proof. [Proof of Corollary 4.1] In view of Definition 2.1, we know that Ê have the sub-additivity, by (i) in
Lemma 3.3 and Ê is continuous from below, Ê is countably sub-additive, therefore Ê[|X|p] ≤ CV[|X|p]. By
(ii) in Lemma 3.3, we get V is countably sub-additive, employ the definition of V∗, we get V ≡ V∗. So we
need only to prove

∞∑
n=1

bnV

 n∑
i=1

aniXni > εcn

 < ∞.
By Theorem 4.1, the proof of Corollary 4.1 is completed.

Proof. [Proof of Corollary 4.2] It is easy for us to confirm the conditions in Theorem 4.1 with 1̃(n) = 1,
bn = 1, cn = n, so the proof of Corollary 4.2 is obmited.

Proof. [Proof of Corollary 4.3] We only need to check the conditions in Theorem 4.1. Let bn = nαp−2, cn = nα,
it is easy to find that

c−p
n n max

1≤i≤n
|ani| ≤ Cn−αp+1(log n)−1 = o(1),

bnn = nαp−1 = O
(
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)
,
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(
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)
,

∞∑
j=k

θ j
(
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1≤i≤n

|ani|
r
) ∣∣∣∣∣

n=θ j
≤ C

∞∑
j=k

θ j(αp−αr) j−r
≤ Cθαk(p−r)k−r+1

≤ θαk(p−r) = O
(
(cθk )′(cθk )p−r−1

)
,
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∞∑
n=1
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r
≤ C
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nαp−αr−2+ r
2 (log n)−r1̃(n), for p ≥ 2,

since r > (αp+αt−1)/(α− 1
2 ), then the function xαp−αr−2+ r

2 (log x)−r1̃(x) corresponding to nαp−αr−2+ r
2 (log n)−r1̃(n)

is regularly varying at infinity with index αp − αr − 2 + r
2 + αt < −1. Since the index is less than -1, so we

can get
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2 (log x)−r1̃(x) corresponding to nαp− αpr
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r < ∞, for 0 ≤ p < 2.

Therefore, based on the above tests, the proof of Corollary 4.3 is completed.

Proof. [Proof of Corollary 4.4] As the similar proof as Corollary 4.3, we shall check the conditions in
Theorem 4.1, we know that for negative dependent sequence, 1̃(n) = 1. Let bn = n−1, cn = n1/α(log n)1/p, then
it is easy to check that
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α−1) 1
r
(
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)
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,
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and
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n−
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Hence, based on the above inequalities, the desired results can be obtained.
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