Filomat 37:13 (2023), 4125–4153 https://doi.org/10.2298/FIL2313125K

Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

Radius of Ma-Minda starlikeness of certain normalised analytic functions

Priya G. Krishnan^a, V. Ravichandran^a, P. Saikrishnan^a

^aDepartment of Mathematics, National Institute of Technology, Tiruchirappalli–620015, Tamil Nadu, India.

Abstract. We find the radius of Ma-Minda starlikeness of normalised analytic functions of the form $g(z) = z(f'(z))^{\alpha}$, $\alpha > 0$ where *f* is in the class CV[A, B] of Janowski convex functions and $g(z) = z(zf'(z)/f(z))^{\alpha}$, $\alpha > 0$ where *f* is in the class CV' defined. As particular cases, we obtain criteria for these functions to belong to certain Ma-Minda classes.

1. Introduction and preliminaries

Let \mathcal{A} be the class of analytic functions defined on the unit disc $\mathbb{D} := \{z \in \mathbb{C} : |z| < 1\}$, normalised by the conditions f(0) = 0 and f'(0) = 1. Let \mathcal{S} be the subclass of \mathcal{A} consisting of functions univalent in \mathbb{D} . A function $f \in \mathcal{A}$ is starlike if f maps \mathbb{D} onto a domain which is starlike with respect to the origin or equivalently if $\operatorname{Re}(zf'(z)/f(z)) > 0$ for all $z \in \mathbb{D}$. Similarly, a function $f \in \mathcal{A}$ is convex if $f(\mathbb{D})$ is convex or equivalently if $\operatorname{Re}(1 + zf''(z)/f'(z)) > 0$ for all $z \in \mathbb{D}$. The class of all starlike functions $f \in \mathcal{A}$ is denoted by \mathcal{ST} and that of all convex functions $f \in \mathcal{A}$ is denoted by \mathcal{CV} . There are several subclasses of starlike and convex functions and they can be unified by using the concept of subordination. For two analytic functions f and g, we say that the function f is subordinate to the function g, written f < g or f(z) < g(z) ($z \in \mathbb{D}$), if there exists a function $w \in \mathcal{B}$ such that $f = g \circ w$, where \mathcal{B} is the class of all analytic functions $w : \mathbb{D} \to \mathbb{D}$ with w(0) = 0. If the function g is univalent, then f < g if and only if f(0) = g(0) and $f(\mathbb{D}) \subset g(\mathbb{D})$. Ma and Minda [14] used subordination to define the classes $\mathcal{ST}(\varphi)$ and $\mathcal{CV}(\varphi)$ as

$$\mathcal{ST}(\varphi) := \left\{ f \in \mathcal{A} : \frac{zf'(z)}{f(z)} < \varphi(z) \right\}$$
(1.1)

and

$$C\mathcal{V}(\varphi) := \left\{ f \in \mathcal{A} : 1 + \frac{zf''(z)}{f'(z)} < \varphi(z) \right\}$$
(1.2)

²⁰²⁰ Mathematics Subject Classification. 30C80; 30C45

Keywords. Univalent functions; starlike functions; convex functions; subordination; Janowski starlike functions; Janowski convex functions; radius of starlikeness.

Received: 14 July 2022; Accepted: 15 September 2022

Communicated by Miodrag Mateljević

The first author is supported by Junior Research Fellowship from University Grants Commission, New Delhi.

Email addresses: reachpriya96@gmail.com (Priya G. Krishnan), vravi68@gmail.com (V. Ravichandran), psai@nitt.edu (P. Saikrishnan)

respectively, where $\varphi : \mathbb{D} \to \mathbb{C}$ is an analytic function with positive real part, $\varphi(\mathbb{D})$ is starlike with respect to $\varphi(0) = 1$ and is symmetric about the real axis and $\varphi'(0) > 0$. For different choices of the function φ in (1.1) and (1.2), different subclasses of the class of starlike and convex functions respectively are obtained. For example, when $\varphi(z) = (1 + Az)/(1 + Bz)$, where $-1 \leq B < A \leq 1$, the classes $ST(\varphi)$ and $CV(\varphi)$ are respectively denoted as ST[A, B] and CV[A, B]. The class ST[A, B] is called the class of Janowski starlike functions [7] and CV[A, B], the class of Janowski convex functions. For $A = 1 - 2\alpha$ ($0 \leq \alpha < 1$) and B = -1, the classes ST[A, B] and CV[A, B] respectively reduces to $ST(\alpha)$, the class of starlike functions of order α and $CV(\alpha)$, the class of convex functions of order α .

In this paper, we are interested in the classes $C_1^{\alpha}[A, B]$ and C_2^{α} respectively defined by

$$C_1^{\alpha}[A, B] := \{ g \in \mathcal{A} : g(z) = z(f'(z))^{\alpha}, f \in C\mathcal{V}[A, B], \alpha > 0 \}$$

and

$$C_2^{\alpha} := \left\{ g \in \mathcal{A} : g(z) = z \left(\frac{zf'(z)}{f(z)} \right)^{\alpha}, f \in C\mathcal{V}', \alpha > 0 \right\},$$

where the class CV' is defined as

$$C\mathcal{V}' := \left\{ f \in \mathcal{A} : \left(1 + \frac{zf''(z)}{f'(z)} - \frac{zf'(z)}{f(z)} \right) < \frac{z}{1-z} \right\}.$$

For small values of α , the functions behave like the identity function and so will belong to the classes of our interest. However, for B = -1, the range of zg'(z)/g(z) is unbounded and hence these classes are not be contained in various subclasses that are obtained for special choices of the function φ . We are particularly interested in the classes $ST_e := ST(e^z)$, $ST_C := ST(1 + (4/3)z + (2/3)z^2)$, $ST_{Ne} := ST(1 + z - (z^3/3))$, $ST_R := ST(1 + (z^2 + kz)/(k^2 - kz))$, $k = 1 + \sqrt{2}$, $ST_{SG} := ST(2/(1 + e^{-z}))$, $ST_{sin} := ST(1 + \sin z)$, $ST_{\mathbb{Q}} := ST(z + \sqrt{1 + z^2})$, $ST_{\varphi} := ST(1 + ze^z)$ and $ST_h := ST(1 + \sinh^{-1}(z))$.

When the inclusion does not hold, we shall be interested in the corresponding radius problem. Recall that for two subclasses \mathcal{F} and \mathcal{G} of \mathcal{A} , the largest number $\mathcal{R} \in (0, 1]$ such that for $0 < r < \mathcal{R}$, $f(rz)/r \in \mathcal{F}$ for every $f \in \mathcal{G}$ is called the \mathcal{F} -radius of the class \mathcal{G} and is denoted by $\mathcal{R}_{\mathcal{F}}(\mathcal{G})$. Radius problems have been explored and studied extensively recently in [1, 8, 12, 13, 15, 19]. In this paper, we find the radii constants for functions in the classes $C_1^{\alpha}[\mathcal{A}, \mathcal{B}]$ and C_2^{α} to belong to various classes like the class of Janowski starlike functions, \mathcal{ST}_e , \mathcal{ST}_C , \mathcal{ST}_{Ne} and so on, by finding the largest positive number \mathcal{R} less than 1 such that the image of the disc $\mathbb{D}_{\mathcal{R}} := \{z \in \mathbb{C} : |z| < \mathcal{R}\}$ under the mapping zg'(z)/g(z) for g in the classes defined, lie inside the image of the corresponding superordinate functions. The radii obtained are sharp. By the Alexander's Theorem [3, Thm 2.12], the class $C_3^{\alpha}[\mathcal{A}, \mathcal{B}]$ defined by

$$C_3^{\alpha}[A,B] := \left\{ g \in \mathcal{A} : g(z) = z \left(\frac{f(z)}{z} \right)^{\alpha}, f \in \mathcal{ST}[A,B], \alpha > 0 \right\}$$

satisfies $C_1^{\alpha}[A, B] = C_3^{\alpha}[A, B]$ and, therefore, the radius results obtained in this paper for the class $C_1^{\alpha}[A, B]$ gives the corresponding results for the class $C_3^{\alpha}[A, B]$.

2. Radius of starlikeness associated with the Janowski starlike functions

In this section, we discuss condition for the classes $C_1^{\alpha}[A, B]$ and C_2^{α} to be contained in the class ST[C, D] of Janowski starlike functions and find the radius of Janowski starlikeness when the condition fails. We shall make use of the following theorem.

Theorem 2.1. For $|B| \le 1$, $A \ne B$ and $|D| \le 1$, $C \ne D$, the class ST[C, D] is contained in the class ST[A, B] if and only if $|AD - BC| \le |A - B| - |C - D|$.

Proof. With the restriction that $-1 \le B < A \le 1$ and $-1 \le D < C \le 1$, this was proved by Silverman and Silvia [21]. The general case follows easily from the proof of Theorem 2.3 of [5]. \Box

We first give a condition for the inclusion $C_1^{\alpha}[A, B] \subset S\mathcal{T}[C, D]$ to hold.

Theorem 2.2. For $-1 \leq D < C \leq 1$, the class $C_1^{\alpha}[A, B]$ is contained in the class ST[C, D], if and only if

 $|BC - D(B + \alpha(A - B))| \leq C - D - \alpha(A - B).$

Proof. Let the function $g \in C_1^{\alpha}[A, B]$. Then a calculation readily shows that

$$\frac{zg'(z)}{g(z)} = 1 - \alpha + \alpha \left(1 + \frac{zf''(z)}{f'(z)}\right).$$

Since $f \in C\mathcal{V}[A, B]$, we get

$$\frac{zg'(z)}{q(z)} < \frac{1 + (B + \alpha(A - B))z}{1 + Bz}$$

or equivalently $q \in ST[B + \alpha(A - B), B]$. Therefore, by Theorem 2.1, the class

$$ST[B + \alpha(A - B), B] \subset ST[C, D]$$

if and only if the inequality

$$|BC - D(B + \alpha(A - B))| \le C - D - \alpha(A - B)$$

holds. \Box

If the condition in Theorem 2.2 does not hold, then the following theorem gives the radius of Janowski starlikeness for the class $C_1^{\alpha}[A, B]$.

Theorem 2.3. Let $\alpha > 0$, $-1 \leq B < A \leq 1$ and $-1 \leq D < C \leq 1$. If the condition in Theorem 2.2 does not hold, then the radius of starlikeness associated with the class ST[C, D] for the class $C_1^{\alpha}[A, B]$ is given by

$$\mathcal{R}_{\mathcal{ST}[C,D]}(C_1^{\alpha}[A,B]) = \frac{C-D}{\alpha(A-B) + |BC-D(B+\alpha(A-B))|}$$

Proof. The function $g \in C_1^{\alpha}[A, B]$ implies that $g \in ST[B + \alpha(A - B), B]$. Define the functions P(z) := (1 + Cz)/(1 + Dz)and $Q(z) := (1 + (B + \alpha(A - B))z)/(1 + Bz)$. We have to determine ρ such that $0 < \rho \leq 1$ and $Q(\rho z) < P(z)$ for $z \in \mathbb{D}$. Define the function $H := P^{-1} \circ Q$. Then we can see that

$$H(z) = \frac{\alpha(A-B)z}{(C-D) + (BC-D(B+\alpha(A-B)))z}$$

For |z| = r, we get

$$|H(z)| = \frac{\alpha(A-B)|z|}{|(C-D) + (BC-D(B+\alpha(A-B)))z|}$$
$$\leq \frac{\alpha(A-B)r}{(C-D) - |BC-D(B+\alpha(A-B))|r}$$

and hence $|H(z)| \leq 1$ for

$$r \leq \frac{C - D}{\alpha(A - B) + |BC - D(B + \alpha(A - B))|} =: \rho.$$

Therefore, the radius of starlikeness associated with the class ST[C, D] for the class $C_1^{\alpha}[A, B]$ is at least ρ . To prove the sharpness, consider the function \tilde{f} from the class CV[A, B] given by

$$\tilde{f}(z) = \begin{cases} \frac{1}{A} \left((1 + Bz)^{\left(\frac{A}{B}\right)} - 1 \right) & \text{if } A \neq 0, B \neq 0 \\ \frac{1}{A} \left(e^{Az} - 1 \right) & \text{if } A \neq 0, B = 0 \\ \frac{\log(1 + Bz)}{B} & \text{if } A = 0, B \neq 0. \end{cases}$$
(2.1)

For the above function \tilde{f} , the corresponding function $\tilde{g} \in C_1^{\alpha}[A, B]$ given by $\tilde{g}(z) = z(\tilde{f}'(z))^{\alpha}$ satisfies

$$\frac{z\tilde{g}'(z)}{\tilde{g}(z)} = 1 + \frac{\alpha(A-B)z}{1+Bz}.$$
(2.2)

Case(i): $BC - D(B + \alpha(A - B)) \ge 0$. *In this case, we have*

$$\rho = \frac{C - D}{\alpha(A - B) + BC - D(B + \alpha(A - B))}$$

and for $z = -\rho$, (2.2) gives

$$\frac{z\tilde{g}'(z)}{\tilde{g}(z)} = \frac{(-\rho)\tilde{g}'(-\rho)}{\tilde{g}(-\rho)} = \frac{1-C}{1-D}$$

thus proving the sharpness for ρ .

Case(ii): $BC - D(B + \alpha(A - B)) \leq 0$. In this case, we have

$$\rho = \frac{C - D}{\alpha(A - B) - BC + D(B + \alpha(A - B))}$$

and for $z = \rho$, (2.2) gives

$$\frac{z\tilde{g}'(z)}{\tilde{g}(z)} = \frac{(\rho)\tilde{g}'(\rho)}{\tilde{g}(\rho)} = \frac{1+C}{1+D},$$

which proves the sharpness for ρ . \Box

For C = 1 and D = -1 in Theorem 2.3, we get the following corollary.

Corollary 2.4. *The radius of starlikeness for the class* $C_1^{\alpha}[A, B]$ *is*

$$\mathcal{R}_{\mathcal{ST}}(C_1^{\alpha}[A,B]) = \frac{2}{\alpha(A-B) + |2B + \alpha(A-B)|}$$

The following theorem gives the inclusion result for the class C_2^{α} .

Theorem 2.5. For $-1 \leq D < C \leq 1$, the class C_2^{α} is contained in the class ST[C, D], if

$$|C + D(\alpha - 1)| \le C - D - \alpha.$$

Proof. Let the function $g \in C_2^{\alpha}$. Then we get

$$\frac{zg'(z)}{g(z)} = 1 + \alpha \left(1 + \frac{zf''(z)}{f'(z)} - \frac{zf'(z)}{f(z)} \right).$$

Since $f \in CV'$, we get

$$\frac{zg'(z)}{g(z)} < \frac{1+(\alpha-1)z}{1-z}$$

or equivalently $g \in ST[\alpha - 1, -1]$. Therefore, by Theorem 2.1, the class $ST[\alpha - 1, -1]$ is contained in the class ST[C, D] if and only if the condition $|C + D(\alpha - 1)| \leq C - D - \alpha$ holds. \Box

It should be noted that the condition $|C + D(\alpha - 1)| \le C - D - \alpha$ holds only for D = -1 and $C \ge \alpha - 1$. The radius of starlikeness associated with the Janowski starlike functions for the class C_2^{α} is given in the following theorem.

Theorem 2.6. Let $\alpha > 0$ and $-1 \leq D < C \leq 1$. If the condition in Theorem 2.5 does not hold, then the radius of starlikeness associated with the class ST[C, D] for the class C_2^{α} is given by

$$\mathcal{R}_{\mathcal{ST}[C,D]}(C_2^{\alpha}) = \frac{C-D}{\alpha + |C+D(\alpha-1)|}$$

Proof. The function $g \in C_2^{\alpha}$ implies that $g \in ST[\alpha - 1, -1]$. Define P(z) := (1 + Cz)/(1 + Dz) and $Q(z) := (1 + (\alpha - 1)z)/(1 - z)$. We have to determine ρ such that $0 < \rho \leq 1$ and $Q(\rho z) < P(z)$ for $z \in \mathbb{D}$. Define the function $H := P^{-1} \circ Q$. Then it can be seen that

$$H(z) = \frac{\alpha z}{(C-D) - (C+D(\alpha-1))z}.$$

Observe that, for |z| = r*,*

$$|H(z)| = \frac{\alpha |z|}{|(C-D) - (C+D(\alpha-1))z|} \leq \frac{\alpha r}{(C-D) - |C+D(\alpha-1)|r}.$$

Therefore, it follows that $|H(z)| \leq 1$ *for*

 $r \leq (C-D)/(\alpha+|C+D(\alpha-1)|) =: \rho.$

Thus, the radius of starlikeness associated with the class ST[C, D] for the class C_2^{α} is at least ρ . To prove the sharpness, consider the function \tilde{f} from the class CV' given by $\tilde{f}(z) = z/(1-z)$. Then for the corresponding function $\tilde{g} \in C_2^{\alpha}$,

$$\frac{z\tilde{g}'(z)}{\tilde{g}(z)} = 1 + \frac{\alpha z}{1-z}.$$
(2.3)

Case(i): $C + D(\alpha - 1) \ge 0$. In this case, $\rho = (C - D)/(\alpha + C + D(\alpha - 1))$ and for $z = \rho$, (2.3) gives

$$\frac{z\tilde{g}'(z)}{\tilde{g}(z)} = \frac{(\rho)\tilde{g}'(\rho)}{\tilde{g}(\rho)} = \frac{1+C}{1+D},$$

thus proving the sharpness for ρ .

Case(ii): $C + D(\alpha - 1) \leq 0$. *Here* $\rho = (C - D)/(\alpha - C - D(\alpha - 1))$ *and for* $z = -\rho$, (2.3) *gives*

$$\frac{z\tilde{g}'(z)}{\tilde{g}(z)} = \frac{(-\rho)\tilde{g}'(-\rho)}{\tilde{g}(-\rho)} = \frac{1-C}{1-D},$$

which proves the sharpness for ρ . \Box

For C = 1 and D = -1 in Theorem 2.6, we get the following corollary.

Corollary 2.7. The radius of starlikeness for the class C_2^{α} is $2/(\alpha + |2 - \alpha|)$.

3. Radius of starlikeness associated with the exponential function

The class $ST_e = ST(e^z)$, which was introduced by Mendiratta et al. [16], consists of all functions $f \in \mathcal{A}$ such that $zf'(z)/f(z) < e^z$ or equivalently $|\log(zf'(z)/f(z))| < 1$. The following lemmas are used to find the radius of starlikeness associated with the exponential function for the classes $C_1^{\alpha}[A, B]$ and C_2^{α} .

Lemma 3.1. [16] For 1/e < a < e, let r_a be given by

$$r_a = \begin{cases} a - \frac{1}{e} & \text{if } \frac{1}{e} < a \leq \frac{e + e^{-1}}{2} \\ e - a & \text{if } \frac{e + e^{-1}}{2} \leq a < e. \end{cases}$$

Then $\{w : |w - a| < r_a\} \subset \Omega_e := \{w : |\log w| < 1\}$, where Ω_e is the image of the unit disc \mathbb{D} under the exponential function.

For $-1 \leq B < A \leq 1$ and $p(z) = 1 + c_1 z + c_2 z^2 + \dots$, we say that $p \in \mathcal{P}[A, B]$ if

$$p(z) < \frac{1+Az}{1+Bz} \quad (z \in \mathbb{D}).$$

Note that $f \in ST[A, B]$ if and only if $zf'(z)/f(z) \in \mathcal{P}[A, B]$.

Lemma 3.2. [18] If $p \in \mathcal{P}[A, B]$, then

$$\left| p(z) - \frac{1 - ABr^2}{1 - B^2 r^2} \right| \le \frac{(A - B)r}{1 - B^2 r^2} \quad (|z| \le r < 1).$$

The above lemmas are used to prove the following inclusion result.

Theorem 3.3. The inclusion $C_1^{\alpha}[A, B] \subset ST_e$ holds if either

1. $(-\alpha B(A - B))/(1 - B^2) \le (e + e^{-1} - 2)/2$ and $(\alpha (A - B))/(1 - B) \le (e - 1)/e$ or 2. $(-\alpha B(A - B))/(1 - B^2) \ge (e + e^{-1} - 2)/2$ and $(\alpha (A - B))/(1 + B) \le e - 1$.

Proof. We have already seen that the function $g \in C_1^{\alpha}[A, B]$ implies that $g \in ST[B + \alpha(A - B), B]$. Therefore by using Lemma 3.2 we get,

$$\left|\frac{zg'(z)}{g(z)} - \frac{1 - (B^2 + \alpha B(A - B))r^2}{1 - B^2 r^2}\right| \le \frac{\alpha (A - B)r}{1 - B^2 r^2} \quad (|z| \le r < 1).$$
(3.1)

The centre and radius of the disc given in (3.1) are

$$c_1(\alpha, A, B)(r) := \frac{1 - (B^2 + \alpha B(A - B))r^2}{1 - B^2 r^2}$$

and

$$a_1(\alpha, A, B)(r) := \frac{\alpha(A-B)r}{1-B^2r^2}$$

respectively. Note that

$$c_1(\alpha, A, B)'(r) = \frac{-2\alpha B(A - B)r}{(1 - B^2 r^2)^2},$$

which shows that $c_1(\alpha, A, B)(r)$ is an increasing function of r if B < 0 and is a decreasing function of r if B > 0. Also it can be seen that $c_1(\alpha, A, B)(r) \ge 1$ if $B \le 0$ and $c_1(\alpha, A, B)(r) \le 1$ if $B \ge 0$.

Now, assume that (1) holds. The inequality $(-\alpha B(A-B))/(1-B^2) \leq (e+e^{-1}-2)/2$ is equivalent to $c_1(\alpha, A, B)(1) \leq (e+e^{-1})/2$. The result follows from Lemma 3.1, since the inequality $a_1(\alpha, A, B)(1) \leq c_1(\alpha, A, B)(1) - 1/e$ follows from $(\alpha(A-B))/(1-B) \leq (e-1)/(e)$.

Assume that $(-\alpha B(A-B))/(1-B^2) \ge (e+e^{-1}-2)/2$ and $(\alpha(A-B))/(1+B) \le e-1$. The first inequality reduces to $c_1(\alpha, A, B)(1) \ge (e+e^{-1})/2$. The result will follow from Lemma 3.1 if $a_1(\alpha, A, B)(1) \le e - c_1(\alpha, A, B)(1)$ which directly follows from the inequality $(\alpha(A-B))/(1+B) \le e-1$.

When the conditions in Theorem 3.3 fail to hold, then we discuss about the radius of starlikeness associated with the exponential function for the class $C_1^{\alpha}[A, B]$ which is stated in the following theorems.

Theorem 3.4. Let $\alpha > 0$, $-1 \leq B \leq 0$ and $B < A \leq 1$. If neither condition (1) nor condition (2) of Theorem 3.3 holds, then the radius of starlikeness associated with the exponential function for the class $C_1^{\alpha}[A, B]$ is given by

$$\mathcal{R}_{\mathcal{ST}_e}(C_1^{\alpha}[A,B]) = \begin{cases} \frac{e-1}{e\alpha(A-B)+(e-1)B} & \text{if } \alpha(A-B) \ge 2|B| \\ \frac{e-1}{\alpha(A-B)-(e-1)B} & \text{if } \alpha(A-B) \le 2|B|. \end{cases}$$

Proof. We prove the theorem by showing that the disc $\mathbb{D}(c_1(\alpha, A, B)(r); a_1(\alpha, A, B)(r))$ given in (3.1) is contained in Ω_e for all $0 < r \leq \mathcal{R}_{ST_e}(C_1^{\alpha}[A, B])$. Let

$$\rho_2 := \frac{e-1}{e\alpha(A-B) + (e-1)B}$$

and

$$\rho_3 := \frac{e-1}{\alpha(A-B) - (e-1)B}.$$

Since $B \leq 0$, the centre $c_1(\alpha, A, B)(r) \geq 1$. We can see that ρ_2 is the root of the polynomial

$$\xi(r) := ((e\alpha - e + 1)B^2 - e\alpha AB)r^2 - (e\alpha(A - B))r + (e - 1))$$

where $\xi(r) = 0$ is equivalent to the equation $a_1(\alpha, A, B)(r) = c_1(\alpha, A, B)(r) - (1/e)$. Note that $\xi(0) = e - 1 > 0$ and $\xi(1) = (e\alpha - e + 1)B^2 - e\alpha AB - e\alpha(A - B) + e - 1 < 0$, since the condition (1) in Theorem 3.3 does not hold. Hence $\rho_2 \in (0, 1)$. Similarly, ρ_3 is the positive root of the polynomial

$$\psi(r) := ((\alpha + e - 1)B^2 - \alpha AB)r^2 + (\alpha(A - B))r + (1 - e),$$

where $\psi(r) = 0$ is equivalent to the equation $a_1(\alpha, A, B)(r) = e - c_1(\alpha, A, B)(r)$. Clearly $\psi(0) = 1 - e < 0$ and since the condition (2) in Theorem 3.3 does not hold, $\psi(1) = (\alpha + e - 1)B^2 - \alpha AB + \alpha(A - B) + 1 - e > 0$ and thus $\rho_3 \in (0, 1)$. The number

$$\rho_1 := \sqrt{\frac{e + e^{-1} - 2}{2\alpha |B|(A - B) + (e + e^{-1} - 2)B^2}}$$

is the positive root of the polynomial

$$\tau(r) := ((e + e^{-1} - 2)B^2 + 2\alpha |B|(A - B))r^2 + 2 - (e + e^{-1}).$$

Observe that $\tau(r) = 0$ is equivalent to the equation $c_1(\alpha, A, B)(r) = (e + e^{-1})/2$. Comparing ρ_2 and ρ_1 , we get $\rho_2 \leq \rho_1$ if and only if $\alpha(A - B) \geq 2|B|$.

Case(i): $\alpha(A - B) \ge 2|B|$. When $\alpha(A - B) \ge 2|B|$, $\rho_2 \le \rho_1$ and since $c_1(\alpha, A, B)(r)$ is an increasing function of r, this implies that $c_1(\alpha, A, B)(\rho_2) \le c_1(\alpha, A, B)(\rho_1) = (e + e^{-1})/2$. Therefore by Lemma 3.1, the radius of starlikeness associated with the exponential function for the class $C_1^{\alpha}[A, B]$ is at least ρ_2 . To prove the sharpness, consider the function \tilde{f} from the class CV[A, B] given by (2.1). For the above function \tilde{f} and the corresponding function $\tilde{g} \in C_1^{\alpha}[A, B]$, we get the expression for $z\tilde{g}'(z)/\tilde{g}(z)$ as in (2.2). Then for $z = -\rho_2$,

$$\left|\log\left(\frac{z\tilde{g}'(z)}{\tilde{g}(z)}\right)\right| = \left|\log\left(\frac{(-\rho_2)\tilde{g}'(-\rho_2)}{\tilde{g}(-\rho_2)}\right)\right| = \left|\log\left(\frac{1}{e}\right)\right| = 1,$$

thus proving the sharpness for ρ_2 .

Case(ii): $\alpha(A-B) \leq 2|B|$. When $\alpha(A-B) \leq 2|B|$, $\rho_1 \leq \rho_2$ and hence $(e+e^{-1})/2 = c_1(\alpha, A, B)(\rho_1) \leq c_1(\alpha, A, B)(\rho_2)$. Hence by Lemma 3.1, the radius of starlikeness associated with the exponential function for the class $C_1^{\alpha}[A, B]$ is at least ρ_3 . To prove the sharpness, consider the function \tilde{f} from the class CV[A, B] given by (2.1). It can be seen that for $z = \rho_3$,

$$\left|\log\left(\frac{z\tilde{g}'(z)}{\tilde{g}(z)}\right)\right| = \left|\log\left(\frac{(\rho_3)\tilde{g}'(\rho_3)}{\tilde{g}(\rho_3)}\right)\right| = \left|\log e\right| = 1,$$

thus proving the sharpness for ρ_3 . \Box

The result in the case when 0 < B < 1 is similar, which we state in the following theorem without proof.

Theorem 3.5. Let $\alpha > 0$, 0 < B < 1 and $B < A \le 1$. If neither condition (1) nor condition (2) of Theorem 3.3 holds, then the radius of starlikeness associated with the exponential function for the class $C_1^{\alpha}[A, B]$ is given by

$$\mathcal{R}_{\mathcal{ST}_e}(C_1^{\alpha}[A,B]) = \frac{e-1}{e\alpha(A-B) + (e-1)B}$$

We now turn our attention to finding the radius of starlikeness associated with the exponential function for the class C_2^{α} , which is stated in the following theorem.

Theorem 3.6. Let $\alpha > 0$. Then the radius of starlikeness associated with the exponential function for the class C_2^{α} is given by

$$\mathcal{R}_{\mathcal{ST}_e}(C_2^\alpha) = \begin{cases} \frac{e-1}{e(\alpha-1)+1} & if \quad \alpha \geq 2\\ \\ \frac{e-1}{\alpha+e-1} & if \quad \alpha \leq 2. \end{cases}$$

Proof. It is already seen that the function $g \in C_2^{\alpha}$ implies that $g \in ST[\alpha - 1, -1]$. Therefore by using Lemma 3.2 we get,

$$\left|\frac{zg'(z)}{g(z)} - \frac{1 + (\alpha - 1)r^2}{1 - r^2}\right| \le \frac{\alpha r}{1 - r^2} \quad (|z| \le r < 1).$$
(3.2)

The centre and radius of the disc given in (3.2) are

$$c_2(\alpha)(r) := \frac{1 + (\alpha - 1)r^2}{1 - r^2},$$

and

$$a_2(\alpha)(r) := \frac{\alpha r}{1 - r^2}$$

respectively. Note that

$$c_2(\alpha)'(r) = \frac{2\alpha r}{(1-r^2)^2},$$

which shows that $c_2(\alpha)(r)$ is an increasing function of r. Also it can be seen that $c_2(\alpha)(r) > 1$.

Our aim is to show that the disc $\mathbb{D}(c_2(\alpha)(r); a_2(\alpha)(r))$ given in (3.2) is contained in Ω_e for all $0 < r \leq \mathcal{R}_{S\mathcal{T}_e}(C_2^{\alpha})$. Let

$$\rho_2:=\frac{e-1}{e(\alpha-1)+1}$$

and

$$\rho_3 := \frac{e-1}{\alpha + e - 1}.$$

Here $c_2(\alpha)(r) > 1$. *For* $\alpha \ge 2$, *it can be seen that* ρ_2 *is the positive root of the polynomial*

$$\xi(r) := (e(\alpha - 1) + 1)r^2 - (e\alpha)r + (e - 1)$$

that is less than 1 and $\xi(r) = 0$ is equivalent to the equation $a_2(\alpha)(r) = c_2(\alpha)(r) - (1/e)$. Similarly, ρ_3 is the positive root of the polynomial

$$\psi(r) := (\alpha + e - 1)r^2 + \alpha r + (1 - e)$$

and is less than 1 since $\alpha > 0$. Also the equation $\psi(r) = 0$ is equivalent to the equation $a_2(\alpha)(r) = e - c_2(\alpha)(r)$. The number

$$\rho_1 := \sqrt{\frac{e + e^{-1} - 2}{2\alpha + e + e^{-1} - 2}}$$

is the positive root of the polynomial

$$\tau(r) := (2\alpha + e + e^{-1} - 2)r^2 + 2 - (e + e^{-1})r^2$$

where $\tau(r) = 0$ is equivalent to the equation $c_2(\alpha)(r) = (e + e^{-1})/2$. Note that $\rho_2 \leq \rho_1$ if and only if $\alpha \geq 2$.

Case(i): $\alpha \ge 2$. When $\alpha \ge 2$, $\rho_2 \le \rho_1$ and since $c_2(\alpha)(r)$ is an increasing function of r, $c_2(\alpha)(\rho_2) \le c_2(\alpha)(\rho_1) = (e + e^{-1})/2$. Therefore by Lemma 3.1, the radius of starlikeness associated with the exponential function for the class C_2^{α} is at least ρ_2 . To prove the sharpness, consider the function \tilde{f} from the class CV' given by $\tilde{f}(z) = z/(1-z)$. Then for the corresponding function $\tilde{g} \in C_2^{\alpha}$ and for $z = -\rho_2$, (2.3) gives

$$\left|\log\left(\frac{z\tilde{g}'(z)}{\tilde{g}(z)}\right)\right| = \left|\log\left(\frac{(-\rho_2)\tilde{g}'(-\rho_2)}{\tilde{g}(-\rho_2)}\right)\right| = \left|\log\left(\frac{1}{e}\right)\right| = 1,$$

thus proving the sharpness for ρ_2 .

Case(ii): $\alpha \leq 2$. In this case, $\rho_1 \leq \rho_2$ and since $c_2(\alpha)(r)$ is an increasing function of r, $(e + e^{-1})/2 = c_2(\alpha)(\rho_1) \leq c_2(\alpha)(\rho_2)$. Therefore by Lemma 3.1, the radius of starlikeness associated with the exponential function for the class C_2^{α} is at least ρ_3 . To prove the sharpness, consider the function $\tilde{f}(z) = z/(1-z)$ from the class CV'. It can be seen that for $z = \rho_3$,

$$\left|\log\left(\frac{z\tilde{g}'(z)}{\tilde{g}(z)}\right)\right| = \left|\log\left(\frac{(\rho_3)\tilde{g}'(\rho_3)}{\tilde{g}(\rho_3)}\right)\right| = \left|\log e\right| = 1.$$

4. Radius of starlikeness associated with the class ST_C

The class $ST_C = ST(\varphi_C)$, where $\varphi_C(z) = 1 + (4/3)z + (2/3)z^2$, was studied by Sharma et al. [20]. The boundary of $\varphi_C(\mathbb{D})$ is a cardiod.

Lemma 4.1. [20] For 1/3 < a < 3, let r_a be given by

$$r_a = \begin{cases} a - \frac{1}{3} & \text{if } \frac{1}{3} < a \leq \frac{5}{3} \\ 3 - a & \text{if } \frac{5}{3} \leq a < 3. \end{cases}$$

Then $\{w : |w - a| < r_a\} \subset \varphi_C(\mathbb{D}) = \Omega_C$, where Ω_C is the region bounded by the cardiod $\{x + iy : (9x^2 + 9y^2 - 18x + 5)^2 - 16(9x^2 + 9y^2 - 6x + 1) = 0\}$.

Theorem 4.2. The inclusion $C_1^{\alpha}[A, B] \subset ST_C$ holds if either

- 1. $(-\alpha B(A B))/(1 B^2) \le 2/3$ and $(\alpha (A B))/(1 B) \le 2/3$ or
- 2. $(-\alpha B(A B))/(1 B^2) \ge 2/3$ and $(\alpha(A B))/(1 + B) \le 2$.

Proof. Assume that (1) holds. The inequality $(-\alpha B(A - B))/(1 - B^2) \le 2/3$ is equivalent to $c_1(\alpha, A, B)(1) \le 5/3$. Since the inequality $a_1(\alpha, A, B)(1) \le c_1(\alpha, A, B)(1) - 1/3$ follows from $(\alpha(A - B))/(1 - B) \le 2/3$, the result follows from Lemma 4.1.

Assume that $(-\alpha B(A - B))/(1 - B^2) \ge 2/3$ and $(\alpha(A - B))/(1 + B) \le 2$. The first inequality reduces to $c_1(\alpha, A, B)(1) \ge 5/3$. The result will follow from Lemma 4.1 if $a_1(\alpha, A, B)(1) \le 3 - c_1(\alpha, A, B)(1)$ which directly follows from the inequality $(\alpha(A - B))/(1 + B) \le 2$.

When the conditions in Theorem 4.2 do not hold, then the results which are stated in the following theorems have a scope of discussion.

Theorem 4.3. Let $\alpha > 0$, $-1 \leq B \leq 0$ and $B < A \leq 1$. If neither condition (1) nor condition (2) of Theorem 4.2 holds, then the radius of starlikeness associated with the cardiod φ_{C} for the class $C_{1}^{\alpha}[A, B]$ is given by

$$\mathcal{R}_{\mathcal{ST}_{\mathcal{C}}}(C_1^{\alpha}[A,B]) = \begin{cases} \frac{2}{3\alpha(A-B)+2B} & \text{if } \alpha(A-B) \ge 2|B| \\ \frac{2}{\alpha(A-B)-2B} & \text{if } \alpha(A-B) \le 2|B|. \end{cases}$$

Proof. The theorem is proved by showing that the disc $\mathbb{D}(c_1(\alpha, A, B)(r); a_1(\alpha, A, B)(r))$ given in (3.1) is contained in Ω_C for all $0 < r \leq \mathcal{R}_{S\mathcal{T}_C}(C_1^{\alpha}[A, B])$. Let

$$\rho_2 := \frac{2}{3\alpha(A-B) + 2B}$$

and

$$\rho_3 := \frac{2}{\alpha(A-B) - 2B}$$

Here the centre $c_1(\alpha, A, B)(r) \ge 1$ *since* $B \le 0$ *. It can be seen that* ρ_2 *is the root of the polynomial*

 $\xi(r) := (2B^2 + 3\alpha B(A - B))r^2 + 3\alpha (A - B)r - 2$

and a simple calculation shows that $\xi(r) = 0$ is equivalent to the equation $a_1(\alpha, A, B)(r) = c_1(\alpha, A, B)(r) - (1/3)$. It can be easily shown that ρ_2 lies between 0 and 1 as $\xi(0) = -2 < 0$ and $\xi(1) = 2B^2 + 3\alpha B(A - B) + 3\alpha (A - B) - 2 > 0$, since the condition (1) in Theorem 4.2 does not hold. Similarly, ρ_3 is the positive root of the polynomial

 $\psi(r) := (2B^2 - \alpha B(A - B))r^2 + \alpha (A - B)r - 2.$

Observe that $\psi(r) = 0$ is equivalent to the equation $a_1(\alpha, A, B)(r) = 3 - c_1(\alpha, A, B)(r)$. Clearly $\psi(0) = -2 < 0$ and since the condition (2) in Theorem 4.2 does not hold, $\psi(1) = 2B^2 - \alpha B(A - B) + \alpha(A - B) - 2 > 0$ which shows that $\rho_3 \in (0, 1)$. The number

$$\rho_1 := \sqrt{\frac{2}{3\alpha|B|(A-B)+2B^2}}$$

is the positive root of the polynomial

$$\tau(r) := (2B^2 + 3\alpha |B|(A - B))r^2 - 2,$$

where $\tau(r) = 0$ is equivalent to the equation $c_1(\alpha, A, B)(r) = 5/3$. It can be seen that $\rho_2 \leq \rho_1$ if and only if $\alpha(A - B) \geq 2|B|$. Therefore we consider the following cases separately.

Case(i): $\alpha(A-B) \ge 2|B|$. When $\alpha(A-B) \ge 2|B|$, $\rho_2 \le \rho_1$ and thus $c_1(\alpha, A, B)(\rho_2) \le c_1(\alpha, A, B)(\rho_1) = 5/3$, due to the increasing nature of $c_1(\alpha, A, B)(r)$. Therefore the radius of starlikeness associated with the cardiod φ_C for the class $C_1^{\alpha}[A, B]$ is at least ρ_2 , by using Lemma 4.1. To prove the sharpness, consider the function \tilde{f} from the class CV[A, B] given by (2.1). For the above function \tilde{f} and the corresponding function $\tilde{g} \in C_1^{\alpha}[A, B]$, we get the expression for $z\tilde{g}'(z)/\tilde{g}(z)$ as in (2.2). Thus for $z = -\rho_2$,

$$\frac{z\tilde{g}'(z)}{\tilde{g}(z)} = \frac{(-\rho_2)\tilde{g}'(-\rho_2)}{\tilde{g}(-\rho_2)} = \frac{1}{3} = \varphi_C(-1),$$

which proves the sharpness for ρ_2 .

Case(ii): $\alpha(A - B) \leq 2|B|$. When $\alpha(A - B) \leq 2|B|$, $\rho_1 \leq \rho_2$, which gives $5/3 = c_1(\alpha, A, B)(\rho_1) \leq c_1(\alpha, A, B)(\rho_2)$. Therefore by Lemma 4.1, the radius of starlikeness associated with the cardiod φ_C for the class $C_1^{\alpha}[A, B]$ is at least ρ_3 . To prove the sharpness, consider the function \tilde{f} from the class CV[A, B] given by (2.1). It can be seen from (2.2) that for $z = \rho_3$,

$$\frac{z\tilde{g}'(z)}{\tilde{g}(z)} = \frac{(\rho_3)\tilde{g}'(\rho_3)}{\tilde{g}(\rho_3)} = 3 = \varphi_C(1),$$

thus proving the sharpness for ρ_3 . \Box

The following theorem is for the case when 0 < B < 1, which we state without proof.

Theorem 4.4. Let $\alpha > 0$, 0 < B < 1 and $B < A \leq 1$. If neither condition (1) nor condition (2) of Theorem 4.2 holds, then the radius of starlikeness associated with the cardiod φ_C for the class $C_1^{\alpha}[A, B]$ is given by

$$\mathcal{R}_{\mathcal{ST}_{\mathcal{C}}}(C_1^{\alpha}[A,B]) = \frac{2}{2B + 3\alpha(A-B)}.$$

The following theorem gives the radius of starlikeness associated with the function φ_C for the class C_2^{α} . **Theorem 4.5.** Let $\alpha > 0$. Then the radius of starlikeness associated with the cardiod φ_C for the class C_2^{α} is given by

$$\mathcal{R}_{\mathcal{ST}_{\mathcal{C}}}(C_{2}^{\alpha}) = \begin{cases} \frac{2}{3\alpha - 2} & \text{if } \alpha \geq 2\\ \frac{2}{\alpha + 2} & \text{if } \alpha \leq 2. \end{cases}$$

Proof. We will show that the disc $\mathbb{D}(c_2(\alpha)(r); a_2(\alpha)(r))$ given in (3.2) is contained in Ω_C for all $0 < r \leq \mathcal{R}_{S\mathcal{T}_C}(C_2^{\alpha})$. *Here* $c_2(\alpha)(r) > 1$. *Let*

$$\rho_2 := \frac{2}{3\alpha - 2}$$

and

$$\rho_3:=\frac{2}{\alpha+2}.$$

It can be seen that ρ_2 is the root of the polynomial

 $\xi(r) := (3\alpha - 2)r^2 - (3\alpha)r + 2$

which lies in the interval (0,1) if $\alpha \ge 2$ and $\xi(r) = 0$ is equivalent to the equation $a_2(\alpha)(r) = c_2(\alpha)(r) - (1/3)$. Also, ρ_3 is the positive root of the polynomial

$$\psi(r) := (\alpha + 2)r^2 + \alpha r - 2$$

and is less than 1 since $\alpha > 0$. Note that the equation $\psi(r) = 0$ is equivalent to the equation $a_2(\alpha)(r) = 3 - c_2(\alpha)(r)$. The number

$$\rho_1 := \sqrt{\frac{2}{3\alpha + 2}}$$

is the positive root of the polynomial

$$\tau(r) := (3\alpha + 2)r^2 - 2$$

where $\tau(r) = 0$ is equivalent to the equation $c_2(\alpha)(r) = 5/3$. A calculation shows that $\rho_2 \leq \rho_1$ if and only if $\alpha \geq 2$, which leads us to consider the following cases.

Case(i): $\alpha \ge 2$. When $\alpha \ge 2$, $\rho_2 \le \rho_1$ and since $c_2(\alpha)(r)$ is increasing in nature, $c_2(\alpha)(\rho_2) \le c_2(\alpha)(\rho_1) = 5/3$. Therefore by Lemma 4.1, the radius of starlikeness associated with the cardiod φ_C for the class C_2^{α} is at least ρ_2 . To prove the sharpness, consider the function \tilde{f} from the class CV' given by $\tilde{f}(z) = z/(1-z)$. Then for the corresponding function $\tilde{g} \in C_2^{\alpha}$, $z\tilde{g}'(z)/\tilde{g}(z)$ is given by (2.3). Hence for $z = -\rho_2$,

$$\frac{z\tilde{g}'(z)}{\tilde{g}(z)} = \frac{(-\rho_2)\tilde{g}'(-\rho_2)}{\tilde{g}(-\rho_2)} = \frac{1}{3} = \varphi_C(-1),$$

thus proving the sharpness for ρ_2 .

Case(ii): $\alpha \leq 2$. *Here* $\rho_1 \leq \rho_2$ *and thus* $5/3 = c_2(\alpha)(\rho_1) \leq c_2(\alpha)(\rho_2)$. *Therefore by Lemma 4.1, the radius of starlikeness associated with the cardiod* φ_C *for the class* C_2^{α} *is at least* ρ_3 *. To prove the sharpness, consider the function* $\tilde{f}(z) = z/(1-z)$ from the class CV'. It can be seen from (2.3) that for $z = \rho_3$,

$$\frac{z\tilde{g}'(z)}{\tilde{g}(z)} = \frac{(\rho_3)\tilde{g}'(\rho_3)}{\tilde{g}(\rho_3)} = 3 = \varphi_{\mathbb{C}}(1).$$

5. Radius of starlikeness associated with the class ST_R

The class $ST_R = ST(\varphi_R)$ of starlike functions associated with the rational function $\varphi_R(z) = 1 + ((z^2 + kz)/k^2 - kz)$ for $k = \sqrt{2} + 1$, was introduced by Kumar and Ravichandran [11].

Lemma 5.1. [11] For $2(\sqrt{2} - 1) < a < 2$, let r_a be given by

$$r_a = \begin{cases} a - 2(\sqrt{2} - 1) & \text{if } 2(\sqrt{2} - 1) < a \le \sqrt{2} \\ 2 - a & \text{if } \sqrt{2} \le a < 2. \end{cases}$$

Then $\{w : |w - a| < r_a\} \subset \varphi_R(\mathbb{D}).$

Theorem 5.2. The inclusion $C_1^{\alpha}[A, B] \subset ST_R$ holds if either

- 1. $(-\alpha B(A B))/(1 B^2) \le \sqrt{2} 1$ and $(\alpha(A B))/(1 B) \le 3 2\sqrt{2}$
- 2. $(-\alpha B(A B))/(1 B^2) \ge \sqrt{2} 1$ and $(\alpha (A B))/(1 + B) \le 1$.

Proof. Assume that $(-\alpha B(A - B))/(1 - B^2) \leq \sqrt{2} - 1$ and $(\alpha(A - B))/(1 - B) \leq 3 - 2\sqrt{2}$. The inequality $(-\alpha B(A - B))/(1 - B^2) \leq \sqrt{2} - 1$ is equivalent to $c_1(\alpha, A, B)(1) \leq \sqrt{2}$. The result follows from Lemma 5.1 since the inequality $a_1(\alpha, A, B)(1) \leq c_1(\alpha, A, B)(1) - 2(\sqrt{2} - 1)$ follows from $(\alpha(A - B))/(1 - B) \leq 3 - 2\sqrt{2}$.

Now assume that (2) holds. The first inequality of (2) reduces to $c_1(\alpha, A, B)(1) \ge \sqrt{2}$. The result will follow from Lemma 5.1 as the condition $a_1(\alpha, A, B)(1) \le 2-c_1(\alpha, A, B)(1)$ directly follows from the inequality $(\alpha(A-B))/(1+B) \le 1$.

When the conditions in Theorem 5.2 do not hold, then we discuss about the radius problem which is stated in the following theorems.

Theorem 5.3. Let $\alpha > 0$, $-1 \leq B \leq 0$ and $B < A \leq 1$. If neither condition (1) nor condition (2) of Theorem 5.2 holds, then the radius of starlikeness associated with the rational function φ_R for the class $C_1^{\alpha}[A, B]$ is given by

$$\mathcal{R}_{\mathcal{ST}_{R}}(C_{1}^{\alpha}[A,B]) = \begin{cases} \frac{3-2\sqrt{2}}{\alpha(A-B) + (3-2\sqrt{2})B} & if \quad \alpha(A-B) \ge (\sqrt{2}-1)|B| \\ \frac{1}{\alpha(A-B) - B} & if \quad \alpha(A-B) \le (\sqrt{2}-1)|B|. \end{cases}$$

Proof. We aim to show that the disc $\mathbb{D}(c_1(\alpha, A, B)(r); a_1(\alpha, A, B)(r))$ given in (3.1) is contained in $\varphi_R(\mathbb{D})$ for all $0 < r \leq \mathcal{R}_{S\mathcal{T}_R}(C_1^{\alpha}[A, B])$. Let

$$\rho_2 := \frac{3 - 2\sqrt{2}}{\alpha(A - B) + (3 - 2\sqrt{2})B}$$

and

$$\rho_3:=\frac{1}{\alpha(A-B)-B}.$$

As we have seen before, the centre $c_1(\alpha, A, B)(r) \ge 1$ since $B \le 0$. The polynomial

$$\xi(r) := ((\alpha + 2\sqrt{2} - 3)B^2 - \alpha AB)r^2 - \alpha(A - B)r + 3 - 2\sqrt{2},$$

satisfies the condition that $\xi(r) = 0$ is equivalent to the equation $a_1(\alpha, A, B)(r) = c_1(\alpha, A, B)(r) - 2(\sqrt{2} - 1)$. Note that $\xi(0) = 3 - 2\sqrt{2} > 0$ and $\xi(1) = (\alpha + 2\sqrt{2} - 3)B^2 - \alpha AB - \alpha(A - B) + 3 - 2\sqrt{2} < 0$, since the condition (1) in Theorem 5.2 does not hold. Hence there exists a root of the polynomial $\xi(r)$ in the interval (0, 1) which is precisely ρ_2 . Now consider the polynomial

$$\psi(r) := ((\alpha + 1)B^2 - \alpha AB)r^2 + (\alpha(A - B))r - 1,$$

which has ρ_3 as its positive root. Observe that $\psi(r) = 0$ is equivalent to the equation $a_1(\alpha, A, B)(r) = 2 - c_1(\alpha, A, B)(r)$. Clearly $\psi(0) = -1 < 0$ and since the condition (2) in Theorem 5.2 does not hold, $\psi(1) = (\alpha+1)B^2 - \alpha AB + \alpha(A-B) - 1 > 0$ and thus $\rho_3 \in (0, 1)$. Let

$$\rho_1 := \sqrt{\frac{\sqrt{2} - 1}{\alpha |B|(A - B) + (\sqrt{2} - 1)B^2}}$$

Then it can be seen that ρ_1 is the positive root of the polynomial

$$\tau(r) := (\alpha |B|(A - B) + (\sqrt{2} - 1)B^2)r^2 + 1 - \sqrt{2}$$

and $\tau(r) = 0$ is equivalent to the equation $c_1(\alpha, A, B)(r) = \sqrt{2}$. A comparison on ρ_2 and ρ_1 shows that $\rho_2 \leq \rho_1$ if and only if $\alpha(A - B) \geq (\sqrt{2} - 1)|B|$.

Case(i): $\alpha(A - B) \ge (\sqrt{2} - 1)|B|$. In this case, since $\rho_2 \le \rho_1$ and since $c_1(\alpha, A, B)(r)$ is an increasing function of r, we get $c_1(\alpha, A, B)(\rho_2) \le c_1(\alpha, A, B)(\rho_1) = \sqrt{2}$. Therefore by Lemma 5.1, the radius of starlikeness associated with the rational function φ_R for the class $C_1^{\alpha}[A, B]$ is at least ρ_2 . To prove the sharpness, consider the function \tilde{f} from the class CV[A, B] given by (2.1). For the above function \tilde{f} , the corresponding function $\tilde{g} \in C_1^{\alpha}[A, B]$ and for $z = -\rho_2$, (2.2) gives

$$\frac{z\tilde{g}'(z)}{\tilde{g}(z)} = \frac{(-\rho_2)\tilde{g}'(-\rho_2)}{\tilde{g}(-\rho_2)} = 2(\sqrt{2}-1) = \varphi_R(-1),$$

thus proving the sharpness for ρ_2 .

Case(ii): $\alpha(A - B) \leq (\sqrt{2} - 1)|B|$. When $\alpha(A - B) \leq (\sqrt{2} - 1)|B|$, $\rho_1 \leq \rho_2$ and hence $\sqrt{2} = c_1(\alpha, A, B)(\rho_1) \leq c_1(\alpha, A, B)(\rho_2)$. Therefore Lemma 5.1 shows that the radius of starlikeness associated with the rational function φ_R for the class $C_1^{\alpha}[A, B]$ is at least ρ_3 . To prove the sharpness, the function \tilde{f} from the class CV[A, B] given by (2.1) is considered. From (2.2) it follows that for $z = \rho_3$,

$$\frac{z\tilde{g}'(z)}{\tilde{g}(z)} = \frac{(\rho_3)\tilde{g}'(\rho_3)}{\tilde{g}(\rho_3)} = 2 = \varphi_R(1),$$

which proves the sharpness for ρ_3 . \Box

The case when 0 < B < 1 has a similar proof, hence we state the result in the following theorem without proof.

Theorem 5.4. Let $\alpha > 0$, 0 < B < 1 and $B < A \leq 1$. If neither condition (1) nor condition (2) of Theorem 5.2 holds, then the radius of starlikeness associated with the rational function φ_R for the class $C_1^{\alpha}[A, B]$ is given by

$$\mathcal{R}_{\mathcal{ST}_R}(C_1^{\alpha}[A,B]) = \frac{3-2\sqrt{2}}{\alpha(A-B)+(3-2\sqrt{2})B}.$$

Our next theorem gives the radius of starlikeness associated with the function φ_R for the class C_2^{α} .

Theorem 5.5. Let $\alpha > 0$. Then the radius of starlikeness associated with the rational function φ_R for the class C_2^{α} is given by

$$\mathcal{R}_{\mathcal{ST}_{\mathcal{R}}}(C_2^{\alpha}) = \begin{cases} \frac{3-2\sqrt{2}}{\alpha-(3-2\sqrt{2})} & \text{if} \quad \alpha \ge \sqrt{2}-1\\ \frac{1}{\alpha+1} & \text{if} \quad \alpha \le \sqrt{2}-1. \end{cases}$$

Proof. The theorem is proved by showing that the disc $\mathbb{D}(c_2(\alpha)(r); a_2(\alpha)(r))$ given in (3.2) is contained in $\varphi_R(\mathbb{D})$ for all $0 < r \leq \mathcal{R}_{S\mathcal{T}_R}(C_2^{\alpha})$. Here $c_2(\alpha)(r) > 1$. Consider the polynomial

$$\xi(r) := (\alpha + 2\sqrt{2} - 3)r^2 - \alpha r + 3 - 2\sqrt{2}$$

Then, for $\alpha \ge \sqrt{2} - 1$, ρ_2 is the positive root of $\xi(r)$ that is less than 1, where

$$\rho_2 := \frac{3 - 2\sqrt{2}}{\alpha - (3 - 2\sqrt{2})}.$$

Note that $\xi(r) = 0$ is equivalent to the equation $a_2(\alpha)(r) = c_2(\alpha)(r) - (2(\sqrt{2}-1))$. Let

$$\rho_3 := \frac{1}{\alpha + 1}.$$

Then, ρ_3 *is the positive root of the polynomial*

$$\psi(r) := (\alpha + 1)r^2 + \alpha r - 1$$

and is less than 1 since $\alpha > 0$. Also the equation $\psi(r) = 0$ is equivalent to the equation $a_2(\alpha)(r) = 2 - c_2(\alpha)(r)$. The number

$$\rho_1 := \sqrt{\frac{\sqrt{2} - 1}{\alpha + \sqrt{2} - 1}}$$

is the positive root of the polynomial

$$\tau(r) := (\alpha + \sqrt{2} - 1)r^2 + 1 - \sqrt{2}$$

where $\tau(r) = 0$ is equivalent to the equation $c_2(\alpha)(r) = \sqrt{2}$. Note that $\rho_2 \leq \rho_1$ if and only if $\alpha \geq \sqrt{2} - 1$.

Case(i): $\alpha \ge \sqrt{2} - 1$. In this case, $\rho_2 \le \rho_1$ and thus $c_2(\alpha)(\rho_2) \le c_2(\alpha)(\rho_1) = \sqrt{2}$, since $c_2(\alpha)(r)$ is an increasing function of r. Therefore by Lemma 5.1, the radius of starlikeness associated with the rational function φ_R for the class C_2^{α} is at least ρ_2 . To prove the sharpness, consider the function \tilde{f} from the class CV' given by $\tilde{f}(z) = z/(1-z)$. Then for the corresponding function $\tilde{g} \in C_2^{\alpha}$ and for $z = -\rho_2$, (2.3) shows that

$$\frac{z\tilde{g}'(z)}{\tilde{g}(z)} = \frac{(-\rho_2)\tilde{g}'(-\rho_2)}{\tilde{g}(-\rho_2)} = 2(\sqrt{2}-1) = \varphi_R(-1),$$

thus proving the sharpness for ρ_2 .

Case(ii): $\alpha \leq \sqrt{2} - 1$. In this case, $\sqrt{2} = c_2(\alpha)(\rho_1) \leq c_2(\alpha)(\rho_2)$ since $\rho_1 \leq \rho_2$ and $c_2(\alpha)(r)$ is an increasing function of r. Therefore by Lemma 5.1, the radius of starlikeness associated with the rational function φ_R for the class C_2^{α} is at least ρ_3 . To prove the sharpness, consider the function $\tilde{f}(z) = z/(1-z)$ from the class CV'. Then, (2.3) shows that for $z = \rho_3$,

$$\frac{z\tilde{g}'(z)}{\tilde{g}(z)} = \frac{(\rho_3)\tilde{g}'(\rho_3)}{\tilde{g}(\rho_3)} = 2 = \varphi_R(1).$$

6. Radius of starlikeness associated with the class ST_{Ne}

The class of starlike functions associated with a nephroid domain, given by $ST_{Ne} = ST(\varphi_{Ne})$ where $\varphi_{Ne}(z) = 1 + z - (z^3/3)$ was studied by Wani and Swaminathan [23]. The function φ_{Ne} maps the unit circle onto a 2-cusped curve,

$$\left((u-1)^2 + v^2 - \frac{4}{9}\right)^3 - \frac{4v^2}{3} = 0.$$

The radius problems for the functions associated with the nephroid domain was discussed by Wani and Swaminathan [22] and proved the following lemma.

Lemma 6.1. [22] For 1/3 < *a* < 5/3, let *r_a* be given by

$$r_a = \begin{cases} a - \frac{1}{3} & \text{if } \frac{1}{3} < a \le 1\\ \frac{5}{3} - a & \text{if } 1 \le a < \frac{5}{3}. \end{cases}$$

Then $\{w : |w-a| < r_a\} \subset \varphi_{Ne}(\mathbb{D}) = \Omega_{Ne}$, where Ω_{Ne} is the region bounded by the nephroid φ_{Ne} , that is

$$\Omega_{Ne} := \left\{ \left((u-1)^2 + v^2 - \frac{4}{9} \right)^3 - \frac{4v^2}{3} < 0 \right\}$$

Theorem 6.2. The inclusion $C_1^{\alpha}[A, B] \subset ST_{Ne}$ holds if either

1. $B \ge 0$ and $(\alpha(A - B))/(1 - B) \le 2/3$

or

2. $B \le 0$ and $(\alpha(A - B))/(1 + B) \le 2/3$.

Proof. Assume that (1) holds. The inequality $B \ge 0$ is equivalent to $c_1(\alpha, A, B)(1) \le 1$. The result follows from Lemma 6.1, since the inequality $a_1(\alpha, A, B)(1) \le c_1(\alpha, A, B)(1) - (1/3)$ follows from $(\alpha(A - B))/(1 - B) \le 2/3$.

Now assume that $B \le 0$ and $(\alpha(A - B))/(1 + B) \le 2/3$. The first inequality reduces to $c_1(\alpha, A, B)(1) \ge 1$. As the condition $a_1(\alpha, A, B)(1) \le (5/3) - c_1(\alpha, A, B)(1)$ directly follows from the inequality $(\alpha(A - B))/(1 + B) \le 2/3$, the result follows from Lemma 6.1.

Our next theorem gives the radius of starlikeness associated with the function φ_{Ne} for the class $C_1^{\alpha}[A, B]$, when the conditions in Theorem 6.2 do not hold.

Theorem 6.3. Let $\alpha > 0$ and $-1 \leq B < A \leq 1$. If neither condition (1) nor condition (2) of Theorem 6.2 holds, then the radius of starlikeness associated with the nephroid φ_{Ne} for the class $C_1^{\alpha}[A, B]$ is given by

$$\mathcal{R}_{\mathcal{ST}_{Ne}}(C_1^{\alpha}[A,B]) = \frac{2}{3\alpha(A-B) + 2|B|}$$

Proof. Proving the containment of the disc $\mathbb{D}(c_1(\alpha, A, B)(r); a_1(\alpha, A, B)(r))$ given in (3.1) in $\varphi_{Ne}(\mathbb{D})$ for all $0 < r \leq \mathcal{R}_{S\mathcal{T}_{Ne}}(C_1^{\alpha}[A, B])$ gives the required result. We prove the theorem by considering the cases $B \ge 0$ and $B \le 0$ separately. Let

$$\rho_2 := \frac{2}{3\alpha(A-B) + 2B}$$

and

$$\rho_3:=\frac{2}{3\alpha(A-B)-2B}.$$

Consider the case when $B \ge 0$. *Then the centre* $c_1(\alpha, A, B)(r) \le 1$ *and* $\rho_2 = 2/(3\alpha(A - B) + 2|B|)$. *We can see that* ρ_2 *is the root of the polynomial*

$$\xi(r) := (2B^2 + 3B\alpha(A - B))r^2 + 3\alpha(A - B)r - 2,$$

where $\xi(r) = 0$ is equivalent to the equation $a_1(\alpha, A, B)(r) = c_1(\alpha, A, B)(r) - (1/3)$. Here $\xi(0) = -2 < 0$ and $\xi(1) = 2B^2 + 3B\alpha(A - B) + 3\alpha(A - B) - 2 > 0$, since the condition (1) in Theorem 6.2 does not hold, which shows that $\rho_2 \in (0, 1)$. Therefore by Lemma 6.1, the radius of starlikeness associated with the nephroid φ_{Ne} is at least ρ_2 . To prove the sharpness, consider the function \tilde{f} from the class CV[A, B] given by (2.1) and the corresponding function $\tilde{g} \in C_1^{\alpha}[A, B]$. Then for $z = -\rho_2$, (2.2) shows that

$$\frac{z\tilde{g}'(z)}{\tilde{g}(z)} = \frac{(-\rho_2)\tilde{g}'(-\rho_2)}{\tilde{g}(-\rho_2)} = \frac{1}{3} = \varphi_{Ne}(-1),$$

thus proving the sharpness for ρ_2 .

Similarly, consider the case when $B \le 0$. This implies that the centre $c_1(\alpha, A, B)(r) \ge 1$ and we can see that $\rho_3 = 2/(3\alpha(A - B) + 2|B|)$. Note that ρ_3 is the positive root of the polynomial

$$\psi(r) := (2B^2 - 3B\alpha(A - B))r^2 + 3\alpha(A - B)r - 2,$$

where $\psi(r) = 0$ is equivalent to the equation $a_1(\alpha, A, B)(r) = (5/3) - c_1(\alpha, A, B)(r)$. Clearly $\rho_3 \in (0, 1)$ as $\psi(0) = -2 < 0$ and $\psi(1) = 2B^2 - 3B\alpha(A - B) + 3\alpha(A - B) - 2 > 0$, since the condition (2) in Theorem 6.2 does not hold. Hence by Lemma 6.1, the radius of starlikeness associated with the nephroid φ_{Ne} for the class $C_1^{\alpha}[A, B]$ is at least ρ_3 . To prove the sharpness, consider the function \tilde{f} from the class CV[A, B] given by (2.1). By using (2.2) it can be seen that for $z = \rho_3$,

$$\frac{z\tilde{g}'(z)}{\tilde{g}(z)} = \frac{(\rho_3)\tilde{g}'(\rho_3)}{\tilde{g}(\rho_3)} = \frac{5}{3} = \varphi_{Ne}(1),$$

which proves the sharpness for ρ_3 . \Box

The radius of starlikeness associated with the function φ_{Ne} for the class C_2^{α} is stated in the following theorem.

Theorem 6.4. Let $\alpha > 0$. Then the radius of starlikeness associated with the nephroid φ_{Ne} for the class C_2^{α} is given by

$$\mathcal{R}_{\mathcal{ST}_{Ne}}(C_2^{\alpha})=\frac{2}{3\alpha+2}.$$

Proof. Our aim is to show that the disc $\mathbb{D}(c_2(\alpha)(r); a_2(\alpha)(r))$ given in (3.2) is contained in $\varphi_{Ne}(\mathbb{D})$ for all $0 < r \leq \mathcal{R}_{ST_{Ne}}(C_2^{\alpha})$. Here $c_2(\alpha)(r) > 1$. Let

$$\rho_3:=\frac{2}{3\alpha+2}.$$

Consider the polynomial

$$\psi(r) := (3\alpha + 2)r^2 + 3\alpha r - 2.$$

Then ρ_3 is the positive root of the polynomial $\psi(r)$ and is less than 1 since $\alpha > 0$ and $\psi(r) = 0$ is equivalent to the equation $a_2(\alpha)(r) = (5/3) - c_2(\alpha)(r)$. Therefore by Lemma 6.1, the radius of starlikeness associated with the nephroid φ_{Ne} for the class C_2^{α} is at least ρ_3 . To prove the sharpness, consider the function \tilde{f} from the class CV' given by $\tilde{f}(z) = z/(1-z)$ and the corresponding function $\tilde{g} \in C_2^{\alpha}$. Then for $z = \rho_3$, by (2.3),

$$\frac{z\tilde{g}'(z)}{\tilde{g}(z)} = \frac{(\rho_3)\tilde{g}'(\rho_3)}{\tilde{g}(\rho_3)} = \frac{5}{3} = \varphi_{Ne}(1)$$

thus proving the sharpness for ρ_3 . \Box

7. Radius of starlikeness associated with the class $\mathcal{ST}_{(\!($

Raina and Sokól [17] considered the class $ST_{\mathbb{C}} = ST(\varphi_{\mathbb{C}})$, where $\varphi_{\mathbb{C}}(z) = z + \sqrt{1+z^2}$ and proved that $f \in ST_{\mathbb{C}}$ if and only if $zf'(z)/f(z) \in \Omega_{\mathbb{C}} := \{w \in \mathbb{C} : |w^2 - 1| < 2|w|\}$ which is the interior of a lune. The following lemma due to Gandhi and Ravichandran [4] is used to find the radius of starlikeness associated with the function $\varphi_{\mathbb{C}}$ for the classes $C_1^{\alpha}[A, B]$ and C_2^{α} .

Lemma 7.1. [4] For $\sqrt{2} - 1 < a \le \sqrt{2} + 1$, let r_a be given by

$$r_a = 1 - |\sqrt{2} - a|$$

Then $\{w : |w - a| < r_a\} \subset \Omega_{\mathcal{C}} := \{w : |w^2 - 1| < 2|w|\}.$

Theorem 7.2. The inclusion $C_1^{\alpha}[A, B] \subset ST_{\mathcal{C}}$ holds if either

- 1. $(-\alpha B(A B))/(1 B^2) \le \sqrt{2} 1$ and $(\alpha(A B))/(1 B) \le 2 \sqrt{2}$
- 2. $(-\alpha B(A B))/(1 B^2) \ge \sqrt{2} 1$ and $(\alpha (A B))/(1 + B) \le \sqrt{2}$.

Proof. Assume that (1) holds. The inequality $(-\alpha B(A - B))/(1 - B^2) \le \sqrt{2} - 1$ is equivalent to $c_1(\alpha, A, B)(1) \le \sqrt{2}$. The result follows from Lemma 7.1, since the inequality $a_1(\alpha, A, B)(1) \le c_1(\alpha, A, B)(1) - (\sqrt{2} - 1)$ follows from $(\alpha(A - B))/(1 - B) \le 2 - \sqrt{2}$.

Now assume that $(-\alpha B(A - B))/(1 - B^2) \ge \sqrt{2} - 1$ and $(\alpha(A - B))/(1 + B) \le \sqrt{2}$. The first inequality reduces to $c_1(\alpha, A, B)(1) \ge \sqrt{2}$. The result will follow from Lemma 7.1 as the condition $a_1(\alpha, A, B)(1) \le \sqrt{2} + 1 - c_1(\alpha, A, B)(1)$ directly follows from the inequality $(\alpha(A - B))/(1 + B) \le \sqrt{2}$.

The results stated in the next two theorems are discussed when the conditions in Theorem 7.2 do not hold.

Theorem 7.3. Let $\alpha > 0$, $-1 \leq B \leq 0$ and $B < A \leq 1$. If neither condition (1) nor condition (2) of Theorem 7.2 holds, then the radius of starlikeness associated with the lune $\varphi_{\mathbb{C}}$ for the class $C_1^{\alpha}[A, B]$ is given by

$$\mathcal{R}_{\mathcal{ST}_{\mathcal{C}}}\left(C_{1}^{\alpha}[A,B]\right) = \begin{cases} \frac{2-\sqrt{2}}{\alpha(A-B)+(2-\sqrt{2})B} & \text{if } \alpha(A-B) \ge 2|B|\\ \frac{\sqrt{2}}{\alpha(A-B)-\sqrt{2}B} & \text{if } \alpha(A-B) \le 2|B|. \end{cases}$$

Proof. We aim to show that the disc $\mathbb{D}(c_1(\alpha, A, B)(r); a_1(\alpha, A, B)(r))$ given in (3.1) is contained in $\Omega_{\mathfrak{C}}$ for all $0 < r \leq \mathcal{R}_{S\mathcal{T}_{\mathfrak{C}}}(C_1^{\alpha}[A, B])$. Let

$$\rho_2 := \frac{2 - \sqrt{2}}{\alpha (A - B) + (2 - \sqrt{2})B}$$

and

$$\rho_3 := \frac{\sqrt{2}}{\alpha(A-B) - \sqrt{2}B}$$

The centre $c_1(\alpha, A, B)(r) \ge 1$ *since* $B \le 0$ *. We can see that* ρ_2 *is the root of the polynomial*

$$\xi(r) := ((2 - \sqrt{2})B^2 + \alpha B(A - B))r^2 + \alpha (A - B)r - 2 + \sqrt{2},$$

where $\xi(r) = 0$ is equivalent to the equation $a_1(\alpha, A, B)(r) = c_1(\alpha, A, B)(r) - (\sqrt{2} - 1)$. Note that $\rho_2 \in (0, 1)$ as $\xi(0) = -2 + \sqrt{2} < 0$ and $\xi(1) = (2 - \sqrt{2})B^2 + \alpha B(A - B) + \alpha(A - B) - 2 + \sqrt{2} > 0$, since the condition (1) in Theorem 7.2 does not hold. Similarly, ρ_3 is the positive root of the polynomial

$$\psi(r) := ((\sqrt{2})B^2 - \alpha B(A - B))r^2 + (\alpha(A - B))r - \sqrt{2},$$

where $\psi(r) = 0$ is equivalent to the equation $a_1(\alpha, A, B)(r) = \sqrt{2} + 1 - c_1(\alpha, A, B)(r)$. Clearly $\psi(0) = -\sqrt{2} < 0$ and the condition (2) in Theorem 7.2 does not hold implies that $\psi(1) = (\sqrt{2})B^2 - \alpha B(A - B) + \alpha(A - B) - \sqrt{2} > 0$. Hence $\rho_3 \in (0, 1)$. Let

$$\rho_1 := \sqrt{\frac{\sqrt{2} - 1}{\alpha |B|(A - B) + (\sqrt{2} - 1)B^2}}$$

Then ρ_1 *is the positive root of the polynomial*

$$\tau(r) := (\alpha |B|(A - B) + (\sqrt{2} - 1)B^2)r^2 + 1 - \sqrt{2}$$

Observe that $\tau(r) = 0$ is equivalent to the equation $c_1(\alpha, A, B)(r) = \sqrt{2}$. A readily calculation shows that $\rho_2 \leq \rho_1$ if and only if $\alpha(A - B) \geq 2|B|$.

Case(i): $\alpha(A - B) \ge 2|B|$. In this case, $\rho_2 \le \rho_1$ and since $c_1(\alpha, A, B)(r)$ is an increasing function of r, we get $c_1(\alpha, A, B)(\rho_2) \le c_1(\alpha, A, B)(\rho_1) = \sqrt{2}$. Therefore by Lemma 7.1, the radius of starlikeness associated with the lune $\varphi_{\mathfrak{C}}$ for the class $C_1^{\alpha}[A, B]$ is at least ρ_2 . To prove the sharpness, consider the function \tilde{f} from the class CV[A, B] given by (2.1) and the corresponding function $\tilde{g} \in C_1^{\alpha}[A, B]$. Then for $z = -\rho_2$, by (2.2) we get

$$\frac{z\tilde{g}'(z)}{\tilde{g}(z)} = \frac{(-\rho_2)\tilde{g}'(-\rho_2)}{\tilde{g}(-\rho_2)} = \sqrt{2} - 1 = \varphi_{\mathcal{C}}(-1),$$

thus proving the sharpness for ρ_2 .

Case(ii): $\alpha(A - B) \leq 2|B|$. When $\alpha(A - B) \leq 2|B|$, $\rho_1 \leq \rho_2$ and hence $\sqrt{2} = c_1(\alpha, A, B)(\rho_1) \leq c_1(\alpha, A, B)(\rho_2)$. Therefore by Lemma 7.1, the radius of starlikeness associated with the lune $\varphi_{\mathfrak{C}}$ for the class $C_1^{\alpha}[A, B]$ is at least ρ_3 . To prove the sharpness, we consider the function \tilde{f} from the class CV[A, B] given by (2.1). It can be seen that for $z = \rho_3$, by using (2.2) we get

$$\frac{z\tilde{g}'(z)}{\tilde{g}(z)} = \frac{(\rho_3)\tilde{g}'(\rho_3)}{\tilde{g}(\rho_3)} = 1 + \sqrt{2} = \varphi_{\mathfrak{C}}(1),$$

thus proving the sharpness for ρ_3 . \Box

The following theorem gives the radius result when 0 < B < 1, which we state without proof.

Theorem 7.4. Let $\alpha > 0$, 0 < B < 1 and $B < A \leq 1$. If neither condition (1) nor condition (2) of Theorem 7.2 holds, then the radius of starlikeness associated with the lune $\varphi_{\mathbb{C}}$ for the class $C_1^{\alpha}[A, B]$ is given by

$$\mathcal{R}_{\mathcal{ST}_{\mathcal{C}}}\left(C_{1}^{\alpha}[A,B]\right) = \frac{2-\sqrt{2}}{\alpha(A-B)+(2-\sqrt{2})B}.$$

Our next theorem gives the radius of starlikeness associated with the function $\varphi_{\mathbb{C}}$ for the class C_2^{α} .

Theorem 7.5. Let $\alpha > 0$. Then the radius of starlikeness associated with the lune φ_{α} for the class C_2^{α} is given by

$$\mathcal{R}_{\mathcal{ST}_{\widetilde{\mathbb{C}}}}(C_{2}^{\alpha}) = \begin{cases} \frac{2-\sqrt{2}}{\alpha-(2-\sqrt{2})} & \text{if } \alpha \geq 2\\ \frac{\sqrt{2}}{\alpha+\sqrt{2}} & \text{if } \alpha \leq 2. \end{cases}$$

Proof. Our aim is to show that the disc $\mathbb{D}(c_2(\alpha)(r); a_2(\alpha)(r))$ given in (3.2) is contained in $\Omega_{\mathfrak{C}}$ for all $0 < r \leq \mathcal{R}_{ST_{\mathfrak{C}}}(C_2^{\alpha})$. We have $c_2(\alpha)(r) > 1$. Let

$$\rho_2 := \frac{2 - \sqrt{2}}{\alpha - (2 - \sqrt{2})} \quad and \quad \rho_3 := \frac{\sqrt{2}}{\alpha + \sqrt{2}}$$

For $\alpha \ge 2$, it can be seen that ρ_2 is the positive root of the polynomial

$$\xi(r) := (\alpha + \sqrt{2} - 2)r^2 - \alpha r + 2 - \sqrt{2}$$

that is less than 1 and $\xi(r) = 0$ is equivalent to the equation $a_2(\alpha)(r) = c_2(\alpha)(r) - (\sqrt{2} - 1)$. In a similar manner, we can see that ρ_3 is the positive root of the polynomial

$$\psi(r) := (\alpha + \sqrt{2})r^2 + \alpha r - \sqrt{2}$$

and is less than 1 since $\alpha > 0$. Also the equation $\psi(r) = 0$ is equivalent to the equation $a_2(\alpha)(r) = \sqrt{2} + 1 - c_2(\alpha)(r)$. The number

$$\rho_1 := \sqrt{\frac{\sqrt{2} - 1}{\alpha + \sqrt{2} - 1}}$$

is the positive root of the polynomial

$$\tau(r) := (\alpha + \sqrt{2} - 1)r^2 + 1 - \sqrt{2}$$

where $\tau(r) = 0$ is equivalent to the equation $c_2(\alpha)(r) = \sqrt{2}$. Note that $\rho_2 \leq \rho_1$ if and only if $\alpha \geq 2$.

Case(i): $\alpha \ge 2$. When $\alpha \ge 2$, $\rho_2 \le \rho_1$ and since $c_2(\alpha)(r)$ is an increasing function of r, $c_2(\alpha)(\rho_2) \le c_2(\alpha)(\rho_1) = \sqrt{2}$. Therefore by Lemma 7.1, the radius of starlikeness associated with the lune $\varphi_{\mathfrak{C}}$ for the class C_2^{α} is at least ρ_2 . To prove the sharpness, consider the function \tilde{f} from the class CV' given by $\tilde{f}(z) = z/(1-z)$. Then for the corresponding function $\tilde{g} \in C_{\alpha}^{\alpha}$, for $z = -\rho_2$, (2.3) shows that

$$\frac{z\tilde{g}'(z)}{\tilde{g}(z)} = \frac{(-\rho_2)\tilde{g}'(-\rho_2)}{\tilde{g}(-\rho_2)} = \sqrt{2} - 1 = \varphi_{\mathfrak{C}} \ (-1),$$

thus proving the sharpness for ρ_2 .

Case(ii): $\alpha \leq 2$. In this case, $\rho_1 \leq \rho_2$ and since $c_2(\alpha)(r)$ is an increasing function of r, $\sqrt{2} = c_2(\alpha)(\rho_1) \leq c_2(\alpha)(\rho_2)$. Therefore by Lemma 7.1, the radius of starlikeness associated with the lune $\varphi_{\mathbb{C}}$ for the class C_2^{α} is at least ρ_3 . To prove the sharpness, consider the function $\tilde{f}(z) = z/(1-z)$ from the class CV'. From (2.3) it can be seen that, for $z = \rho_3$,

$$\frac{z\tilde{g}'(z)}{\tilde{g}(z)} = \frac{(\rho_3)\tilde{g}'(\rho_3)}{\tilde{g}(\rho_3)} = 1 + \sqrt{2} = \varphi_{\mathfrak{C}}(1).$$

8. Radius of starlikeness associated with the class ST_{φ}

Kumar and Kamaljeet [10] defined the class $ST_{\varphi} = ST(\varphi_{\varphi})$, where $\varphi_{\varphi}(z) = 1 + ze^{z}$. The boundary of $\varphi_{\varphi}(\mathbb{D})$ is a cardiod. The following lemma is due to them.

Lemma 8.1. [10] For 1 - (1/e) < a < 1 + e, let r_a be given by

$$r_a = \begin{cases} (a-1) + \frac{1}{e} & \text{if } 1 - \frac{1}{e} < a \le 1 + \frac{e-e^{-1}}{2} \\ e - (a-1) & \text{if } 1 + \frac{e-e^{-1}}{2} \le a < 1 + e. \end{cases}$$

Then $\{w : |w - a| < r_a\} \subset \varphi_{\wp}(\mathbb{D}).$

Theorem 8.2. The inclusion $C_1^{\alpha}[A, B] \subset ST_{\wp}$ holds if either

- 1. $(-\alpha B(A B))/(1 B^2) \le (e e^{-1})/2$ and $(\alpha (A B))/(1 B) \le 1/e$ or
- 2. $(-\alpha B(A B))/(1 B^2) \ge (e e^{-1})/2$ and $(\alpha(A B))/(1 + B) \le e$.

Proof. Assume that $(-\alpha B(A - B))/(1 - B^2) \leq (e - e^{-1})/2$ and $(\alpha(A - B))/(1 - B) \leq 1/e$. The first inequality is equivalent to $c_1(\alpha, A, B)(1) \leq 1 + (e - e^{-1})/2$. The required result follows from Lemma 8.1 as the inequality $a_1(\alpha, A, B)(1) \leq c_1(\alpha, A, B)(1) - 1 + 1/e$ is obtained directly from $(\alpha(A - B))/(1 - B) \leq 1/e$.

Assume that $(-\alpha B(A - B))/(1 - B^2) \ge (e - e^{-1})/2$ and $(\alpha(A - B))/(1 + B) \le e$. The first inequality reduces to $c_1(\alpha, A, B)(1) \ge 1 + (e - e^{-1})/2$. As the condition $a_1(\alpha, A, B)(1) \le e - (c_1(\alpha, A, B)(1) - 1)$ is obtained from the inequality $(\alpha(A - B))/(1 + B) \le e$, the result follows from Lemma 8.1.

When the conditions in Theorem 8.2 do not hold, then we discuss about the radius problem which is stated in the next two theorems.

Theorem 8.3. Let $\alpha > 0$, $-1 \leq B \leq 0$ and $B < A \leq 1$. If neither condition (1) nor condition (2) of Theorem 8.2 holds, then the radius of starlikeness associated with the cardiod φ_{φ} for the class $C_1^{\alpha}[A, B]$ is given by

$$\mathcal{R}_{\mathcal{ST}_{\varphi}}(C_1^{\alpha}[A,B]) = \begin{cases} \frac{1}{e\alpha(A-B)+B} & \text{if} \quad \alpha(A-B)(e-e^{-1}) \ge 2|B|\\ \frac{e}{\alpha(A-B)-eB} & \text{if} \quad \alpha(A-B)(e-e^{-1}) \le 2|B|. \end{cases}$$

Proof. We prove the theorem by showing that the disc $\mathbb{D}(c_1(\alpha, A, B)(r); a_1(\alpha, A, B)(r))$ given in (3.1) is contained in $\varphi_{\varphi}(\mathbb{D})$ for all $0 < r \leq \mathcal{R}_{ST_{\alpha}}(C_1^{\alpha}[A, B])$. Since $B \leq 0$, the centre $c_1(\alpha, A, B)(r) \geq 1$. Consider the polynomial

$$\xi(r) := (B^2 + e\alpha B(A - B))r^2 + e\alpha (A - B)r - 1.$$

Then we can see that ρ_2 is the root of the polynomial $\xi(r)$, where

$$\rho_2 := \frac{1}{e\alpha(A-B) + B}$$

and note that $\xi(r) = 0$ is equivalent to the equation $a_1(\alpha, A, B)(r) = c_1(\alpha, A, B)(r) - 1 + (1/e)$. As $\xi(0) = -1 < 0$ and $\xi(1) = B^2 + e\alpha B(A - B) + e\alpha(A - B) - 1 > 0$, since the condition (1) in Theorem 8.2 does not hold, we get $\rho_2 \in (0, 1)$. Similarly, let

$$\rho_3 := \frac{e}{\alpha(A-B) - eB}.$$

Then ρ_3 *is the positive root of the polynomial*

$$\psi(r) := (eB^2 - \alpha B(A - B))r^2 + \alpha (A - B)r - e_A$$

where $\psi(r) = 0$ is equivalent to the equation $a_1(\alpha, A, B)(r) = e - (c_1(\alpha, A, B)(r) - 1)$. Clearly $\psi(0) = -e < 0$ and since the condition (2) in Theorem 8.2 does not hold, $\psi(1) = eB^2 - \alpha B(A - B) + \alpha(A - B) - e > 0$ and thus $\rho_3 \in (0, 1)$. The number

$$\rho_1 := \sqrt{\frac{e - e^{-1}}{2\alpha |B|(A - B) + (e - e^{-1})B^2}}$$

is the positive root of the polynomial

$$\tau(r) := ((e - e^{-1})B^2 + 2\alpha |B|(A - B))r^2 - e + e^{-1}.$$

Observe that $\tau(r) = 0$ is equivalent to the equation $c_1(\alpha, A, B)(r) = 1 + (e - e^{-1})/2$. Comparing ρ_2 and ρ_1 , we get the relation that $\rho_2 \leq \rho_1$ if and only if $\alpha(A - B)(e - e^{-1}) \geq 2|B|$.

Case(i): $\alpha(A - B)(e - e^{-1}) \ge 2|B|$. *Here* $c_1(\alpha, A, B)(\rho_2) \le c_1(\alpha, A, B)(\rho_1) = 1 + (e - e^{-1})/2$ as $\rho_2 \le \rho_1$. *Therefore* by Lemma 8.1, the radius of starlikeness associated with the cardiod φ_{φ} for the class $C_1^{\alpha}[A, B]$ is at least ρ_2 . To prove the sharpness, consider the function \tilde{f} from the class CV[A, B] given by (2.1) and the corresponding function $\tilde{g} \in C_1^{\alpha}[A, B]$. Then for $z = -\rho_2$, by using (2.2), we get

$$\frac{z\tilde{g}'(z)}{\tilde{g}(z)} = \frac{(-\rho_2)\tilde{g}'(-\rho_2)}{\tilde{g}(-\rho_2)} = 1 - e^{-1} = \varphi_{\wp}(-1),$$

thus proving the sharpness for ρ_2 .

Case(ii): $\alpha(A-B)(e-e^{-1}) \leq 2|B|$. In this case, $\rho_1 \leq \rho_2$ and hence $1+(e-e^{-1})/2 = c_1(\alpha, A, B)(\rho_1) \leq c_1(\alpha, A, B)(\rho_2)$. Therfore, Lemma 8.1 guarantees that the radius of starlikeness associated with the cardiod φ_{φ} for the class $C_1^{\alpha}[A, B]$ is at least ρ_3 . The function \tilde{f} from the class CV[A, B] given by (2.1) is considered to prove the sharpness. It can be seen from (2.2) that for $z = \rho_3$,

$$\frac{z\tilde{g}'(z)}{\tilde{g}(z)} = \frac{(\rho_3)\tilde{g}'(\rho_3)}{\tilde{g}(\rho_3)} = 1 + e = \varphi_{\wp}(1),$$

thus proving the sharpness for ρ_3 . \Box

The result in the case when 0 < B < 1 is similar, which we state in the following theorem without proof.

Theorem 8.4. Let $\alpha > 0$, 0 < B < 1 and $B < A \leq 1$. If neither condition (1) nor condition (2) of Theorem 8.2 holds, then the radius of starlikeness associated with the cardiod φ_{φ} for the class $C_1^{\alpha}[A, B]$ is given by

$$\mathcal{R}_{\mathcal{ST}_{\varphi}}(C_1^{\alpha}[A,B]) = \frac{1}{e\alpha(A-B)+B}.$$

The following theorem gives the radius of starlikeness associated with function φ_{φ} for the class C_2^{α} .

Theorem 8.5. Let $\alpha > 0$. Then the radius of starlikeness associated with the cardiod φ_{φ} for the class C_2^{α} is given by

$$\mathcal{R}_{\mathcal{ST}_{\varphi}}(C_{2}^{\alpha}) = \begin{cases} \frac{1}{e\alpha - 1} & \text{if} \quad \alpha \geq \frac{2}{e - e^{-1}} \\ \frac{e}{\alpha + e} & \text{if} \quad \alpha \leq \frac{2}{e - e^{-1}}. \end{cases}$$

Proof. Our aim is to show that the disc $\mathbb{D}(c_2(\alpha)(r); a_2(\alpha)(r))$ given in (3.2) is contained in $\varphi_{\wp}(\mathbb{D})$ for all $0 < r \leq \mathcal{R}_{S\mathcal{T}_{\wp}}(C_2^{\alpha})$. Let

$$\rho_2 := \frac{1}{e\alpha - 1}$$

and

$$\rho_3 := \frac{e}{\alpha + e}.$$

Here $c_2(\alpha)(r) > 1$. *It can be seen that for* $\alpha \ge 2/(e - e^{-1})$ *,* ρ_2 *is the positive root of the polynomial*

$$\xi(r) := (e\alpha - 1)r^2 - e\alpha r + 1$$

that is less than 1 and $\xi(r) = 0$ is equivalent to the equation $a_2(\alpha)(r) = c_2(\alpha)(r) - 1 + (1/e)$. Similarly, ρ_3 is the positive root of the polynomial

$$\psi(r) := (\alpha + e)r^2 + \alpha r - e$$

and is less than 1 since $\alpha > 0$. Also the equation $\psi(r) = 0$ is equivalent to the equation $a_2(\alpha)(r) = e - (c_2(\alpha)(r) - 1)$. The number

$$\rho_1 := \sqrt{\frac{e - e^{-1}}{2\alpha + e - e^{-1}}}$$

is the positive root of the polynomial

$$\tau(r) := (2\alpha + e - e^{-1})r^2 - e + e^{-1}$$

where $\tau(r) = 0$ is equivalent to the equation $c_2(\alpha)(r) = 1 + (e - e^{-1})/2$. Comparing ρ_1 and ρ_2 , we get that $\rho_2 \leq \rho_1$ if and only if $\alpha \geq 2/(e - e^{-1})$. Therefore we consider the following cases.

Case(i): $\alpha \ge 2/(e - e^{-1})$. When $\alpha \ge 2/(e - e^{-1})$, $\rho_2 \le \rho_1$ and since $c_2(\alpha)(r)$ is an increasing function of r, $c_2(\alpha)(\rho_2) \le c_2(\alpha)(\rho_1) = 1 + (e - e^{-1})/2$. Therefore by Lemma 8.1, the radius of starlikeness associated with the cardiod φ_{φ} for the class C_2^{α} is at least ρ_2 . To prove the sharpness, consider the function \tilde{f} from the class CV' given by $\tilde{f}(z) = z/(1-z)$ and the corresponding function $\tilde{g} \in C_2^{\alpha}$. Then by (2.3) we can see that, for $z = -\rho_2$,

$$\frac{z\tilde{g}'(z)}{\tilde{g}(z)} = \frac{(-\rho_2)\tilde{g}'(-\rho_2)}{\tilde{g}(-\rho_2)} = 1 - e^{-1} = \varphi_{\wp}(-1),$$

thus proving the sharpness for ρ_2 .

Case(ii): $\alpha \leq 2/(e - e^{-1})$. When $\alpha \leq 2/(e - e^{-1})$, $\rho_1 \leq \rho_2$ and since $c_2(\alpha)(r)$ is an increasing function of r, $1 + (e - e^{-1})/2 = c_2(\alpha)(\rho_1) \leq c_2(\alpha)(\rho_2)$. Therefore by Lemma 8.1, the radius of starlikeness associated with the cardioid φ_{\wp} for the class C_2^{α} is at least ρ_3 . To prove the sharpness, consider the function $\tilde{f}(z) = z/(1-z)$ from the class CV'. Then for $z = \rho_3$, (2.3) shows that

$$\frac{z\tilde{g}'(z)}{\tilde{g}(z)} = \frac{(\rho_3)\tilde{g}'(\rho_3)}{\tilde{g}(\rho_3)} = 1 + e = \varphi_{\wp}(1).$$

9. Radius of starlikeness associated with the class ST_{SG}

The class $ST_{SG} = ST(\varphi_{SG})$ where $\varphi_{SG}(z) = 2/(1 + e^{-z})$ was introduced by Goel and Kumar [6]. The boundary of $\varphi_{SG}(\mathbb{D})$ is a modified sigmoid. They proved the following lemma.

Lemma 9.1. [6] For 2/(1 + e) < a < 2e/(1 + e), let r_a be given by

$$r_a = \frac{e-1}{e+1} - |a-1|.$$

Then $\{w : |w - a| < r_a\} \subset \varphi_{SG}(\mathbb{D}) = \Delta_{SG} := \{w : |\log w/(2 - w)| < 1\}.$

Theorem 9.2. The inclusion $C_1^{\alpha}[A, B] \subset ST_{SG}$ holds if either

- 1. $B \ge 0$ and $(\alpha(A B))/(1 B) \le (e 1)/(e + 1)$ or
- 2. $B \leq 0$ and $(\alpha(A B))/(1 + B) \leq (e 1)/(e + 1)$.

Proof. Assume that $B \ge 0$ and $(\alpha(A-B))/(1-B) \le (e-1)/(e+1)$. The inequality $B \ge 0$ is equivalent to $c_1(\alpha, A, B)(1) \le 1$. Since the inequality $a_1(\alpha, A, B)(1) \le c_1(\alpha, A, B)(1)+(e-1)/(e+1)-1$ follows from $(\alpha(A-B))/(1-B) \le (e-1)/(e+1)$, the result follows from Lemma 9.1.

Now assume that $B \le 0$ and $(\alpha(A-B))/(1+B) \le (e-1)/(e+1)$. The first inequality reduces to $c_1(\alpha, A, B)(1) \ge 1$. The result will follow from Lemma 9.1 if $a_1(\alpha, A, B)(1) \le (e-1)/(e+1) + 1 - c_1(\alpha, A, B)(1)$ which directly follows from the inequality $(\alpha(A-B))/(1+B) \le (e-1)/(e+1)$.

When the conditions in Theorem 9.2 do not hold, then we have the result giving the radius of starlikeness associated with the function φ_{SG} for the class $C_1^{\alpha}[A, B]$, which is stated in the following theorem.

Theorem 9.3. Let $\alpha > 0$ and $-1 \leq B < A \leq 1$. If neither condition (1) nor condition (2) of Theorem 9.2 holds, then the radius of starlikeness associated with the modified sigmoid function φ_{SG} for the class $C_1^{\alpha}[A, B]$ is given by

$$\mathcal{R}_{\mathcal{ST}_{SG}}(C_1^{\alpha}[A,B]) = \frac{e-1}{(e+1)\alpha(A-B) + (e-1)|B|}$$

Proof. Consider the disc $\mathbb{D}(c_1(\alpha, A, B)(r); a_1(\alpha, A, B)(r))$ given in (3.1). We prove the theorem by proving the containment of this disc in Δ_{SG} for all $0 < r \leq \mathcal{R}_{S\mathcal{T}_{SG}}(C_1^{\alpha}[A, B])$. Consider the case when $B \ge 0$. Then the centre $c_1(\alpha, A, B)(r) \le 1$. Let

$$\rho_2 := \frac{e-1}{(e+1)\alpha(A-B) + (e-1)B}.$$

Note that $\rho_2 = (e-1)/((e+1)\alpha(A-B) + (e-1)|B|)$ and ρ_2 is the root of the polynomial

$$\xi(r) := ((e-1)B^2 + (e+1)B\alpha(A-B))r^2 + (e+1)\alpha(A-B)r + 1 - e,$$

where $\xi(r) = 0$ is equivalent to the equation $a_1(\alpha, A, B)(r) = c_1(\alpha, A, B)(r) + (e - 1)/(e + 1) - 1$. As $\xi(0) = 1 - e < 0$ and $\xi(1) = (e - 1)B^2 + (e + 1)B\alpha(A - B) + (e + 1)\alpha(A - B) + 1 - e > 0$, since the condition (1) in Theorem 9.2 does not hold, the belongingness of ρ_2 in the interval (0, 1) is guaranteed. Therefore by Lemma 9.1, the radius of starlikeness associated with the modified sigmoid function φ_{SG} is at least ρ_2 . To prove the sharpness, consider the function \tilde{f} from the class CV[A, B] given by (2.1). For the above function \tilde{f} and the corresponding function $\tilde{g} \in C_1^{\alpha}[A, B]$, by using (2.2), for $z = -\rho_2$, we get

$$\frac{z\tilde{g}'(z)}{\tilde{g}(z)} = \frac{(-\rho_2)\tilde{g}'(-\rho_2)}{\tilde{g}(-\rho_2)} = \frac{2}{1+e} = \varphi_{SG}(-1),$$

thus proving the sharpness for ρ_2 .

Similarly, when $B \leq 0$, the centre $c_1(\alpha, A, B)(r) \geq 1$. Note that ρ_3 is the positive root of the polynomial

$$\psi(r) := ((e-1)B^2 - (e+1)B\alpha(A-B))r^2 + (e+1)\alpha(A-B)r + 1 - e,$$

where

$$\rho_3 := \frac{e-1}{(e+1)\alpha(A-B) - (e-1)B}$$

Observe that $\rho_3 = (e-1)/((e+1)\alpha(A-B) + (e-1)|B|)$ and $\psi(r) = 0$ is equivalent to the equation $a_1(\alpha, A, B)(r) = (e-1)/(e+1) + 1 - c_1(\alpha, A, B)(r)$. Clearly $\psi(0) = 1 - e < 0$ and since the condition (2) in Theorem 9.2 does not hold, $\psi(1) = (e-1)B^2 - (e+1)B\alpha(A-B) + (e+1)\alpha(A-B) + 1 - e > 0$ and thus $\rho_3 \in (0, 1)$. Hence by Lemma 9.1, the radius of starlikeness associated with the modified sigmoid function φ_{SG} for the class $C_1^{\alpha}[A, B]$ is at least ρ_3 . To prove the sharpness, consider the function \tilde{f} from the class CV[A, B] given by (2.1). It can be seen from (2.2) that for $z = \rho_3$,

$$\frac{z\tilde{g}'(z)}{\tilde{g}(z)} = \frac{(\rho_3)\tilde{g}'(\rho_3)}{\tilde{g}(\rho_3)} = \frac{2e}{e+1} = \varphi_{SG}(1),$$

thus proving the sharpness for ρ_3 .

The following theorem gives the radius result associated with the function φ_{SG} corresponding to the class C_2^{α} .

Theorem 9.4. Let $\alpha > 0$. Then the radius of starlikeness associated with the modified sigmoid function φ_{SG} for the class C_2^{α} is given by

$$\mathcal{R}_{\mathcal{ST}_{SG}}(C_2^{\alpha}) = \frac{e-1}{(e+1)\alpha + (e-1)}.$$

Proof. Our aim is to show that the disc $\mathbb{D}(c_2(\alpha)(r); a_2(\alpha)(r))$ given in (3.2) is contained in Δ_{SG} for all $0 < r \leq \mathcal{R}_{S\mathcal{T}_{SG}}(C_2^{\alpha})$. Let

$$\rho_3 := \frac{e-1}{(e+1)\alpha + (e-1)}.$$

Here $c_2(\alpha)(r) > 1$. *It can be seen that* ρ_3 *is the positive root of the polynomial*

$$\psi(r) := ((e+1)\alpha + e - 1)r^2 + (e+1)\alpha r + 1 - e$$

and is less than 1 since $\alpha > 0$ and $\psi(r) = 0$ is equivalent to the equation $a_2(\alpha)(r) = (e - 1)/(e + 1) + 1 - c_2(\alpha)(r)$. Therefore by Lemma 9.1, the radius of starlikeness associated with the modified sigmoid function φ_{SG} for the class C_2^{α} is at least ρ_3 . To prove the sharpness, consider the function \tilde{f} from the class CV' given by $\tilde{f}(z) = z/(1-z)$. Then for the corresponding function $\tilde{g} \in C_2^{\alpha}$, for $z = \rho_3$, (2.3) shows that

$$\frac{z\tilde{g}'(z)}{\tilde{g}(z)}=\frac{(\rho_3)\tilde{g}'(\rho_3)}{\tilde{g}(\rho_3)}=\frac{2e}{e+1}=\varphi_{SG}(1),$$

thus proving the sharpness for ρ_3 . \Box

10. Radius of starlikeness associated with the class ST_{sin}

Cho et al. [2] introduced the class $ST_{sin} = ST(\varphi_{sin})$, where $\varphi_{sin}(z) = 1 + \sin z$ and proved the following lemma.

Lemma 10.1. [2] For $1 - \sin 1 < a < 1 + \sin 1$, let r_a be given by

 $r_a = \sin 1 - |a - 1|.$

Then $\{w : |w - a| < r_a\} \subset \varphi_{\sin}(\mathbb{D}).$

Theorem 10.2. The inclusion $C_1^{\alpha}[A, B] \subset ST_{sin}$ holds if either

1. $B \ge 0$ and $(\alpha(A - B))/(1 - B) \le \sin 1$

2. $B \le 0$ and $(\alpha(A - B))/(1 + B) \le \sin 1$.

Proof. Assume that (1) holds. The inequality $B \ge 0$ is equivalent to $c_1(\alpha, A, B)(1) \le 1$. The condition $a_1(\alpha, A, B)(1) \le c_1(\alpha, A, B)(1) + (\sin 1) - 1$ follows from $(\alpha(A - B))/(1 - B) \le \sin 1$ and hence by Lemma 10.1, the result follows.

Similarly, if $B \le 0$ and $(\alpha(A - B))/(1 + B) \le \sin 1$, then the first inequality reduces to $c_1(\alpha, A, B)(1) \ge 1$ and the condition $a_1(\alpha, A, B)(1) \le (\sin 1) + 1 - c_1(\alpha, A, B)(1)$ directly follows from the inequality $(\alpha(A - B))/(1 + B) \le \sin 1$. Therefore, the result follows from Lemma 10.1.

or

Our next theorem gives the radius of starlikeness associated with the function φ_{sin} for the class $C_1^{\alpha}[A, B]$, when the conditions in Theorem 10.2 do not hold.

Theorem 10.3. Let $\alpha > 0$ and $-1 \leq B < A \leq 1$. If neither condition (1) nor condition (2) of Theorem 10.2 holds, then the radius of starlikeness associated with the function φ_{sin} for the class $C_1^{\alpha}[A, B]$ is given by

$$\mathcal{R}_{\mathcal{ST}_{\sin}}(C_1^{\alpha}[A,B]) = \frac{\sin 1}{\alpha(A-B) + (\sin 1)|B|}$$

Proof. By proving that the disc $\mathbb{D}(c_1(\alpha, A, B)(r); a_1(\alpha, A, B)(r))$ given in (3.1) is contained in $\varphi_{sin}(\mathbb{D})$ for all $0 < r \leq \mathcal{R}_{S\mathcal{T}_{sin}}(C_1^{\alpha}[A, B])$, the required result will follow. Let

$$\rho_2 := \frac{\sin 1}{\alpha (A - B) + (\sin 1)B}$$

and

$$\rho_3 := \frac{\sin 1}{\alpha (A - B) - (\sin 1)B}$$

If $B \ge 0$, the centre $c_1(\alpha, A, B)(r) \le 1$ and $\rho_2 = (\sin 1)/(\alpha(A - B) + (\sin 1)|B|)$. We can see that ρ_2 is the root of the polynomial

$$\xi(r) := ((\sin 1)B^2 + \alpha B(A - B))r^2 + \alpha (A - B)r - \sin 1,$$

where $\xi(r) = 0$ is equivalent to the equation $a_1(\alpha, A, B)(r) = c_1(\alpha, A, B)(r) + (\sin 1) - 1$. Note that $\xi(0) = -\sin 1 < 0$ and $\xi(1) = (\sin 1)B^2 + \alpha B(A - B) + \alpha(A - B) - \sin 1 > 0$, since the condition (1) in Theorem 10.2 does not hold. Hence $\rho_2 \in (0, 1)$. Therefore by Lemma 10.1, the radius of starlikeness associated with the function φ_{\sin} is at least ρ_2 . Now consider the function \tilde{f} from the class CV[A, B] given by (2.1) and the corresponding function $\tilde{g} \in C_1^{\alpha}[A, B]$. Then, for $z = -\rho_2$, by using (2.2), we get

$$\frac{z\tilde{g}'(z)}{\tilde{g}(z)} = \frac{(-\rho_2)\tilde{g}'(-\rho_2)}{\tilde{g}(-\rho_2)} = 1 - \sin 1 = \varphi_{\sin}(-1),$$

which proves the sharpness for ρ_2 .

Similarly, if $B \le 0$, the centre $c_1(\alpha, A, B)(r) \ge 1$ and $\rho_3 = (\sin 1)/(\alpha(A - B) + (\sin 1)|B|)$. Note that ρ_3 is the positive root of the polynomial

$$\psi(r) := ((\sin 1)B^2 - \alpha B(A - B))r^2 + \alpha (A - B)r - \sin 1,$$

where $\psi(r) = 0$ is equivalent to the equation $a_1(\alpha, A, B)(r) = (\sin 1) + 1 - c_1(\alpha, A, B)(r)$. Clearly $\psi(0) = -\sin 1 < 0$ and since the condition (2) in Theorem 10.2 does not hold, $\psi(1) = (\sin 1)B^2 - \alpha B(A - B) + \alpha(A - B) - \sin 1 > 0$ and thus $\rho_3 \in (0, 1)$. Hence by Lemma 10.1, the radius of starlikeness associated with the function φ_{\sin} for the class $C_1^{\alpha}[A, B]$ is at least ρ_3 . The sharpness can be proved by considering the function \tilde{f} from the class CV[A, B] given by (2.1). Then if \tilde{g} is the corresponding function in $C_1^{\alpha}[A, B]$, by using (2.2), for $z = \rho_3$, we get

$$\frac{z\tilde{g}'(z)}{\tilde{g}(z)} = \frac{(\rho_3)\tilde{g}'(\rho_3)}{\tilde{g}(\rho_3)} = 1 + \sin 1 = \varphi_{\sin}(1),$$

thus proving the sharpness for ρ_3 . \Box

We now turn our attention to finding the radius of starlikeness associated with the function φ_{sin} for the class C_2^{α} which is stated in the following theorem.

Theorem 10.4. Let $\alpha > 0$. Then the radius of starlikeness associated with the function φ_{\sin} for the class C_2^{α} is given by

$$\mathcal{R}_{\mathcal{ST}_{\sin}}(C_2^{\alpha}) = \frac{\sin 1}{\alpha + \sin 1}$$

Proof. Our aim is to show that the disc $\mathbb{D}(c_2(\alpha)(r); a_2(\alpha)(r))$ given in (3.2) is contained in $\varphi_{\sin}(\mathbb{D})$ for all $0 < r \leq \mathcal{R}_{S\mathcal{T}_{\sin}}(C_2^{\alpha})$. Here $c_2(\alpha)(r) > 1$. Consider the polynomial

$$\psi(r) := (\alpha + \sin 1)r^2 + \alpha r - \sin 1$$

and let

$$\rho_3 := \frac{\sin 1}{\alpha + \sin 1}$$

It can be seen that ρ_3 is the positive root of the polynomial $\psi(r)$ and is less than 1 since $\alpha > 0$ and $\psi(r) = 0$ is equivalent to the equation $a_2(\alpha)(r) = (\sin 1) + 1 - c_2(\alpha)(r)$. Therefore by Lemma 10.1, the radius of starlikeness associated with the function φ_{\sin} for the class C_2^{α} is at least ρ_3 . Considering the function \tilde{f} from the class CV' given by $\tilde{f}(z) = z/(1-z)$ and the corresponding function $\tilde{g} \in C_2^{\alpha}$, by using (2.3), for $z = \rho_3$, we get

$$\frac{z\tilde{g}'(z)}{\tilde{g}(z)} = \frac{(\rho_3)\tilde{g}'(\rho_3)}{\tilde{g}(\rho_3)} = 1 + \sin 1 = \varphi_{\sin}(1),$$

which proves the sharpness for ρ_3 . \Box

11. Radius of starlikeness associated with the class ST_h

Kumar and Arora [9] defined the class $ST_h = ST(\varphi_h)$ where $\varphi_h(z) = 1 + \sinh^{-1}(z)$. The boundary of $\varphi_h(\mathbb{D})$ is petal shaped. The following lemma is due to them.

Lemma 11.1. [9] For $1 - \sinh^{-1}(1) < a < 1 + \sinh^{-1}(1)$, let r_a be given by

$$r_a = \begin{cases} a - (1 - \sinh^{-1}(1)) & \text{if} \quad 1 - \sinh^{-1}(1) < a \le 1 \\ 1 + \sinh^{-1}(1) - a & \text{if} \quad 1 \le a < 1 + \sinh^{-1}(1). \end{cases}$$

Then $\{w : |w - a| < r_a\} \subset \varphi_h(\mathbb{D}) = \Omega_h := \{w \in \mathbb{C} : |\sinh(w - 1)| < 1\}.$

Theorem 11.2. The inclusion $C_1^{\alpha}[A, B] \subset ST_h$ holds if either

- 1. $B \ge 0$ and $(\alpha(A B))/(1 B) \le \sinh^{-1}(1)$
- 2. $B \leq 0$ and $(\alpha(A B))/(1 + B) \leq \sinh^{-1}(1)$.

Proof. Assume that $B \ge 0$ and $(\alpha(A-B))/(1-B) \le \sinh^{-1}(1)$. The inequality $B \ge 0$ is equivalent to $c_1(\alpha, A, B)(1) \le 1$. The result follows from Lemma 11.1, since the inequality $a_1(\alpha, A, B)(1) \le c_1(\alpha, A, B)(1) + (\sinh^{-1}(1)) - 1$ follows from $(\alpha(A-B))/(1-B) \le \sinh^{-1}(1)$.

If $B \leq 0$ and $(\alpha(A-B))/(1+B) \leq \sinh^{-1}(1)$, then it can be seen that the first inequality reduces to $c_1(\alpha, A, B)(1) \geq 1$. The result will follow from Lemma 11.1 if $a_1(\alpha, A, B)(1) \leq 1 + (\sinh^{-1}(1)) - c_1(\alpha, A, B)(1)$ which directly follows from the inequality $(\alpha(A-B))/(1+B) \leq \sinh^{-1}(1)$.

or

The result stated in the following theorem can be discussed if the conditions in Theorem 11.2 do not hold.

Theorem 11.3. Let $\alpha > 0$ and $-1 \leq B < A \leq 1$. If neither condition (1) nor condition (2) of Theorem 11.2 holds, then the radius of starlikeness associated with the function φ_h for the class $C_1^{\alpha}[A, B]$ is given by

$$\mathcal{R}_{\mathcal{ST}_h}(C_1^{\alpha}[A,B]) = \frac{\sinh^{-1}(1)}{\alpha(A-B) + (\sinh^{-1}(1))|B|}.$$

Proof. We aim to show that the disc $\mathbb{D}(c_1(\alpha, A, B)(r); a_1(\alpha, A, B)(r))$ given in (3.1) is contained in Ω_h for all $0 < r \leq \mathcal{R}_{S\mathcal{T}_h}(C_1^{\alpha}[A, B])$. Let

$$\rho_2 := \frac{\sinh^{-1}(1)}{\alpha(A - B) + (\sinh^{-1}(1))B}$$

and

$$\rho_3 := \frac{\sinh^{-1}(1)}{\alpha(A-B) - (\sinh^{-1}(1))B}$$

Consider the case when $B \ge 0$. In this case, the centre $c_1(\alpha, A, B)(r) \le 1$ and note that $\rho_2 = (\sinh^{-1}(1))/(\alpha(A - B) + (\sinh^{-1}(1))|B|)$. We can see that ρ_2 is the root of the polynomial

$$\xi(r) := ((\sinh^{-1}(1))B^2 + \alpha B(A - B))r^2 + \alpha (A - B)r - \sinh^{-1}(1),$$

where $\xi(r) = 0$ is equivalent to the equation $a_1(\alpha, A, B)(r) = c_1(\alpha, A, B)(r) + (\sinh^{-1}(1)) - 1$. Observe that $\xi(0) = -\sinh^{-1}(1) < 0$ and $\xi(1) = (\sinh^{-1}(1))B^2 + \alpha B(A - B) + \alpha(A - B) - \sinh^{-1}(1) > 0$, since the condition (1) in Theorem 11.2 does not hold. Hence $\rho_2 \in (0, 1)$. Therefore by Lemma 11.1, the radius of starlikeness associated with the function φ_h is at least ρ_2 . To prove the sharpness, consider the function \tilde{f} from the class CV[A, B] given by (2.1) and the corresponding function $\tilde{g} \in C_1^{\alpha}[A, B]$. Then for $z = -\rho_2$, by using (2.2) we get

$$\frac{z\tilde{g}'(z)}{\tilde{g}(z)} = \frac{(-\rho_2)\tilde{g}'(-\rho_2)}{\tilde{g}(-\rho_2)} = 1 - \sinh^{-1}(1) = \varphi_h(-1),$$

thus proving the sharpness for ρ_2 .

Similarly, considering the case when $B \le 0$, we get that the centre $c_1(\alpha, A, B)(r) \ge 1$ and $\rho_3 = (\sinh^{-1}(1))/(\alpha(A - B) + (\sinh^{-1}(1))|B|)$. Consider the polynomial

$$\psi(r) := ((\sinh^{-1}(1))B^2 - \alpha B(A - B))r^2 + \alpha (A - B)r - \sinh^{-1}(1)$$

and note that ρ_3 is the positive root of the polynomial $\psi(r)$. A calculation readily shows that $\psi(r) = 0$ is equivalent to the equation $a_1(\alpha, A, B)(r) = 1 + (\sinh^{-1}(1)) - c_1(\alpha, A, B)(r)$. Clearly $\psi(0) = -\sinh^{-1}(1) < 0$ and since the condition (2) in Theorem 11.2 does not hold, $\psi(1) = (\sinh^{-1}(1))B^2 - \alpha B(A - B) + \alpha(A - B) - \sinh^{-1}(1) > 0$ and thus $\rho_3 \in (0, 1)$. Hence by Lemma 11.1, the radius of starlikeness associated with the function φ_h for the class $C_1^{\alpha}[A, B]$ is at least ρ_3 . Now consider the function \tilde{f} from the class CV[A, B] given by (2.1). It can be seen from (2.2) that for $z = \rho_3$,

$$\frac{z\tilde{g}'(z)}{\tilde{g}(z)} = \frac{(\rho_3)\tilde{g}'(\rho_3)}{\tilde{g}(\rho_3)} = 1 + \sinh^{-1}(1) = \varphi_h(1),$$

which proves the sharpness for ρ_3 .

The radius of starlikeness associated with the function φ_h for the class C_2^{α} is discussed in the following theorem.

Theorem 11.4. Let $\alpha > 0$. Then the radius of starlikeness associated with the function φ_h for the class C_2^{α} is given by

$$\mathcal{R}_{\mathcal{ST}_h}(C_2^{\alpha}) = \frac{\sinh^{-1}(1)}{\alpha + \sinh^{-1}(1)}.$$

Proof. We prove the theorem by showing that the disc $\mathbb{D}(c_2(\alpha)(r); a_2(\alpha)(r))$ given in (3.2) is contained in Ω_h for all $0 < r \leq \mathcal{R}_{S\mathcal{T}_h}(C_2^{\alpha})$. Here the centre of the disc $c_2(\alpha)(r) > 1$. Let

$$\rho_3 := \frac{\sinh^{-1}(1)}{\alpha + \sinh^{-1}(1)}.$$

Then ρ_3 *is the positive root of the polynomial*

$$\psi(r) := (\alpha + \sinh^{-1}(1))r^2 + \alpha r - \sinh^{-1}(1)$$

and since $\alpha > 0$, ρ_3 is less than 1. Also $\psi(r) = 0$ is equivalent to the equation $a_2(\alpha)(r) = 1 + (\sinh^{-1}(1)) - c_2(\alpha)(r)$. Therefore by Lemma 11.1, the radius of starlikeness associated with the function φ_h for the class C_2^{α} is at least ρ_3 . Considering the function \tilde{f} from the class CV' given by $\tilde{f}(z) = z/(1-z)$ and the corresponding function $\tilde{g} \in C_2^{\alpha}$, (2.3) shows that for $z = \rho_3$,

$$\frac{z\tilde{g}'(z)}{\tilde{g}(z)} = \frac{(\rho_3)\tilde{g}'(\rho_3)}{\tilde{g}(\rho_3)} = 1 + \sinh^{-1}(1) = \varphi_h(1),$$

thus proving the sharpness for ρ_3 . \Box

References

- R. M. Ali, N. K. Jain and V. Ravichandran, Radii of starlikeness associated with the lemniscate of Bernoulli and the left-half plane, Appl. Math. Comput. 218 (2012), no. 11, 6557–6565.
- [2] N. E. Cho, V. Kumar, S. S. Kumar and V. Ravichandran, Radius problems for starlike functions associated with the sine function, Bull. Iranian Math. Soc. 45 (2019), no. 1, 213–232.
- [3] P. L. Duren, Univalent functions, Grundlehren der mathematischen Wissenschaften, 259, Springer-Verlag, New York, 1983.
- [4] S. Gandhi and V. Ravichandran, Starlike functions associated with a lune, Asian-Eur. J. Math. 10 (2017), no. 4, 1750064, 12 pp.
- [5] A. Gangadharan, V. Ravichandran and T. N. Shanmugam, Radii of convexity and strong starlikeness for some classes of analytic functions, J. Math. Anal. Appl. 211 (1997), no. 1, 301–313.
- [6] P. Goel and S. Sivaprasad Kumar, Certain class of starlike functions associated with modified sigmoid function, Bull. Malays. Math. Sci. Soc. 43 (2020), no. 1, 957–991.
- [7] W. Janowski, Some extremal problems for certain families of analytic functions. I, Ann. Polon. Math. 28 (1973), 297–326.
- [8] R. Kanaga and V. Ravichandran, Starlikeness for certain close-to-star functions, Hacet. J. Math. Stat. 50 (2021), no. 2, 414–432.
- [9] S. S. Kumar and K. Arora, Starlike Functions associated with a Petal Shaped Domain, arXiv: 2011.10072 (2020), 15 pages.
- [10] S. S. Kumar and G. Kamaljeet, A cardioid domain and starlike functions, Anal. Math. Phys. 11 (2021), no. 2, Paper No. 54, 34 pp.

- [11] S. Kumar and V. Ravichandran, A subclass of starlike functions associated with a rational function, Southeast Asian Bull. Math. 40 (2016), no. 2, 199–212.
- [12] A. Lecko, V. Ravichandran and A. Sebastian, Starlikeness of certain non-univalent functions, Anal. Math. Phys. 11 (2021), no. 4, Paper No. 163, 23 pp.
- [13] S. K. Lee, K. Khatter and V. Ravichandran, Radius of starlikeness for classes of analytic functions, Bull. Malays. Math. Sci. Soc. 43 (2020), no. 6, 4469–4493.
- [14] W. C. Ma and D. Minda, A unified treatment of some special classes of univalent functions, in *Proceedings of the Conference on Complex Analysis (Tianjin, 1992)*, 157–169, Conf. Proc. Lecture Notes Anal., I, Int. Press, Cambridge, MA.
- [15] S. Madhumitha and V. Ravichandran, Radius of starlikeness of certain analytic functions, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM 115 (2021), no. 4, Paper No. 184, 18 pp.
- [16] R. Mendiratta, S. Nagpal and V. Ravichandran, On a subclass of strongly starlike functions associated with exponential function, Bull. Malays. Math. Sci. Soc. 38 (2015), no. 1, 365–386.
- [17] R. K. Raina and J. Sokół, Some properties related to a certain class of starlike functions, C. R. Math. Acad. Sci. Paris 353 (2015), no. 11, 973–978.
- [18] V. Ravichandran, F. Rønning and T. N. Shanmugam, Radius of convexity and radius of starlikeness for some classes of analytic functions, Complex Variables Theory Appl. 33 (1997), no. 1-4, 265–280.
- [19] A. Sebastian and V. Ravichandran, Radius of starlikeness of certain analytic functions, Math. Slovaca 71 (2021), no. 1, 83–104.
- [20] K. Sharma, N. K. Jain and V. Ravichandran, Starlike functions associated with a cardioid, Afr. Mat. 27 (2016), no. 5-6, 923–939.
- [21] H. Silverman and E. M. Silvia, Subclasses of starlike functions subordinate to convex functions, Canad. J. Math. 37 (1985), no. 1, 48–61.
- [22] L. A. Wani and A. Swaminathan, Radius problems for functions associated with a nephroid domain, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM 114 (2020), no. 4, Paper No. 178, 20 pp.
- [23] L. A. Wani and A. Swaminathan, Starlike and convex functions associated with a nephroid domain, Bull. Malays. Math. Sci. Soc. 44 (2021), no. 1, 79–104.