Radius of Ma-Minda starlikeness of certain normalised analytic functions

Priya G. Krishnan ${ }^{\text {a }}$, V. Ravichandran ${ }^{\text {a }}$, P. Saikrishnan ${ }^{\text {a }}$
${ }^{a}$ Department of Mathematics, National Institute of Technology, Tiruchirappalli-620015, Tamil Nadu, India.

Abstract

We find the radius of Ma-Minda starlikeness of normalised analytic functions of the form $g(z)=z\left(f^{\prime}(z)\right)^{\alpha}, \alpha>0$ where f is in the class $C \mathcal{V}[A, B]$ of Janowski convex functions and $g(z)=z\left(z f^{\prime}(z) / f(z)\right)^{\alpha}$, $\alpha>0$ where f is in the class $C V^{\prime}$ defined. As particular cases, we obtain criteria for these functions to belong to certain Ma-Minda classes.

1. Introduction and preliminaries

Let \mathcal{A} be the class of analytic functions defined on the unit disc $\mathbb{D}:=\{z \in \mathbb{C}:|z|<1\}$, normalised by the conditions $f(0)=0$ and $f^{\prime}(0)=1$. Let \mathcal{S} be the subclass of \mathcal{A} consisting of functions univalent in \mathbb{D}. A function $f \in \mathcal{A}$ is starlike if f maps \mathbb{D} onto a domain which is starlike with respect to the origin or equivalently if $\operatorname{Re}\left(z f^{\prime}(z) / f(z)\right)>0$ for all $z \in \mathbb{D}$. Similarly, a function $f \in \mathcal{A}$ is convex if $f(\mathbb{D})$ is convex or equivalently if $\operatorname{Re}\left(1+z f^{\prime \prime}(z) / f^{\prime}(z)\right)>0$ for all $z \in \mathbb{D}$. The class of all starlike functions $f \in \mathcal{A}$ is denoted by $\mathcal{S T}$ and that of all convex functions $f \in \mathcal{A}$ is denoted by $\mathcal{C V}$. There are several subclasses of starlike and convex functions and they can be unified by using the concept of subordination. For two analytic functions f and g, we say that the function f is subordinate to the function g, written $f<g$ or $f(z)<g(z)(z \in \mathbb{D})$, if there exists a function $w \in \mathcal{B}$ such that $f=g \circ w$, where \mathcal{B} is the class of all analytic functions $w: \mathbb{D} \rightarrow \mathbb{D}$ with $w(0)=0$. If the function g is univalent, then $f<g$ if and only if $f(0)=g(0)$ and $f(\mathbb{D}) \subset g(\mathbb{D})$. Ma and Minda [14] used subordination to define the classes $\mathcal{S T}(\varphi)$ and $C \mathcal{V}(\varphi)$ as

$$
\begin{equation*}
\mathcal{S T}(\varphi):=\left\{f \in \mathcal{A}: \frac{z f^{\prime}(z)}{f(z)}<\varphi(z)\right\} \tag{1.1}
\end{equation*}
$$

and

$$
\begin{equation*}
C \mathcal{V}(\varphi):=\left\{f \in \mathcal{A}: 1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}<\varphi(z)\right\} \tag{1.2}
\end{equation*}
$$

[^0]respectively, where $\varphi: \mathbb{D} \rightarrow \mathbb{C}$ is an analytic function with positive real part, $\varphi(\mathbb{D})$ is starlike with respect to $\varphi(0)=1$ and is symmetric about the real axis and $\varphi^{\prime}(0)>0$. For different choices of the function φ in (1.1) and (1.2), different subclasses of the class of starlike and convex functions respectively are obtained. For example, when $\varphi(z)=(1+A z) /(1+B z)$, where $-1 \leqslant B<A \leqslant 1$, the classes $\mathcal{S T}(\varphi)$ and $C \mathcal{V}(\varphi)$ are respectively denoted as $\mathcal{S T}[A, B]$ and $C \mathcal{V}[A, B]$. The class $\mathcal{S T}[A, B]$ is called the class of Janowski starlike functions [7] and $C \mathcal{V}[A, B]$, the class of Janowski convex functions. For $A=1-2 \alpha \quad(0 \leqslant \alpha<1)$ and $B=-1$, the classes $\mathcal{S T}[A, B]$ and $C \mathcal{V}[A, B]$ respectively reduces to $\mathcal{S T}(\alpha)$, the class of starlike functions of order α and $C \mathcal{V}(\alpha)$, the class of convex functions of order α.

In this paper, we are interested in the classes $C_{1}^{\alpha}[A, B]$ and C_{2}^{α} respectively defined by

$$
\mathcal{C}_{1}^{\alpha}[A, B]:=\left\{g \in \mathcal{A}: g(z)=z\left(f^{\prime}(z)\right)^{\alpha}, f \in C \mathcal{V}[A, B], \alpha>0\right\}
$$

and

$$
C_{2}^{\alpha}:=\left\{g \in \mathcal{A}: g(z)=z\left(\frac{z f^{\prime}(z)}{f(z)}\right)^{\alpha}, f \in C \mathcal{V}^{\prime}, \alpha>0\right\}
$$

where the class $C V^{\prime}$ is defined as

$$
C V^{\prime}:=\left\{f \in \mathcal{A}:\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}-\frac{z f^{\prime}(z)}{f(z)}\right)<\frac{z}{1-z}\right\}
$$

For small values of α, the functions behave like the identity function and so will belong to the classes of our interest. However, for $B=-1$, the range of $z g^{\prime}(z) / g(z)$ is unbounded and hence these classes are not be contained in various subclasses that are obtained for special choices of the function φ. We are particularly interested in the classes $\mathcal{S T}_{e}:=\mathcal{S T}\left(e^{z}\right), \mathcal{S T}_{C}:=\mathcal{S T}\left(1+(4 / 3) z+(2 / 3) z^{2}\right), \mathcal{S T}_{N e}:=\mathcal{S T}\left(1+z-\left(z^{3} / 3\right)\right)$, $\mathcal{S T}_{R}:=\mathcal{S T}\left(1+\left(z^{2}+k z\right) /\left(k^{2}-k z\right)\right), k=1+\sqrt{2}^{2} \mathcal{S T}_{S G}:=\mathcal{S T}\left(2 /\left(1+e^{-z}\right)\right), \mathcal{S T}_{\text {sin }}:=\boldsymbol{S T}(1+\sin z), \mathcal{S T}_{\mathbb{Q}}:=$ $\mathcal{S T}\left(z+\sqrt{1+z^{2}}\right), \mathcal{S T}_{\wp}:=\mathcal{S T}\left(1+z \mathcal{e}^{z}\right)$ and $\mathcal{S T}_{h}:=\mathcal{S T}\left(1+\sinh ^{-1}(z)\right)$.

When the inclusion does not hold, we shall be interested in the corresponding radius problem. Recall that for two subclasses \mathcal{F} and \mathcal{G} of \mathcal{A}, the largest number $\mathcal{R} \in(0,1]$ such that for $0<r<\mathcal{R}, f(r z) / r \in \mathcal{F}$ for every $f \in \mathcal{G}$ is called the \mathcal{F}-radius of the class \mathcal{G} and is denoted by $\mathcal{R}_{\mathcal{F}}(\mathcal{G})$. Radius problems have been explored and studied extensively recently in $[1,8,12,13,15,19]$. In this paper, we find the radii constants for functions in the classes $C_{1}^{\alpha}[A, B]$ and C_{2}^{α} to belong to various classes like the class of Janowski starlike functions, $\mathcal{S T}_{e}, \mathcal{S T}{ }_{C}, \mathcal{S T}{ }_{N e}$ and so on, by finding the largest positive number \mathcal{R} less than 1 such that the image of the disc $\mathbb{D}_{\mathcal{R}}:=\{z \in \mathbb{C}:|z|<\mathcal{R}\}$ under the mapping $z g^{\prime}(z) / g(z)$ for g in the classes defined, lie inside the image of the corresponding superordinate functions. The radii obtained are sharp. By the Alexander's Theorem [3, Thm 2.12], the class $C_{3}^{\alpha}[A, B]$ defined by

$$
C_{3}^{\alpha}[A, B]:=\left\{g \in \mathcal{A}: g(z)=z\left(\frac{f(z)}{z}\right)^{\alpha}, f \in \mathcal{S T}[A, B], \alpha>0\right\}
$$

satisfies $C_{1}^{\alpha}[A, B]=C_{3}^{\alpha}[A, B]$ and, therefore, the radius results obtained in this paper for the class $C_{1}^{\alpha}[A, B]$ gives the corresponding results for the class $C_{3}^{\alpha}[A, B]$.

2. Radius of starlikeness associated with the Janowski starlike functions

In this section, we discuss condition for the classes $C_{1}^{\alpha}[A, B]$ and C_{2}^{α} to be contained in the class $\mathcal{S T}[C, D]$ of Janowski starlike functions and find the radius of Janowski starlikeness when the condition fails. We shall make use of the following theorem.

Theorem 2.1. For $|B| \leqslant 1, A \neq B$ and $|D| \leqslant 1, C \neq D$, the class $\mathcal{S T}[C, D]$ is contained in the class $\mathcal{S T}[A, B]$ if and only if $|A D-B C| \leqslant|A-B|-|C-D|$.

Proof. With the restriction that $-1 \leqslant B<A \leqslant 1$ and $-1 \leqslant D<C \leqslant 1$, this was proved by Silverman and Silvia [21]. The general case follows easily from the proof of Theorem 2.3 of [5].

We first give a condition for the inclusion $C_{1}^{\alpha}[A, B] \subset \mathcal{S T}[C, D]$ to hold.
Theorem 2.2. For $-1 \leqslant D<C \leqslant 1$, the class $C_{1}^{\alpha}[A, B]$ is contained in the class $\mathcal{S T}[C, D]$, if and only if

$$
|B C-D(B+\alpha(A-B))| \leqslant C-D-\alpha(A-B)
$$

Proof. Let the function $g \in C_{1}^{\alpha}[A, B]$. Then a calculation readily shows that

$$
\frac{z g^{\prime}(z)}{g(z)}=1-\alpha+\alpha\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)
$$

Since $f \in C \mathcal{V}[A, B]$, we get

$$
\frac{z g^{\prime}(z)}{g(z)}<\frac{1+(B+\alpha(A-B)) z}{1+B z}
$$

or equivalently $g \in \mathcal{S T}[B+\alpha(A-B), B]$. Therefore, by Theorem 2.1, the class

$$
\mathcal{S T}[B+\alpha(A-B), B] \subset \mathcal{S T}[C, D]
$$

if and only if the inequality

$$
|B C-D(B+\alpha(A-B))| \leqslant C-D-\alpha(A-B)
$$

holds.
If the condition in Theorem 2.2 does not hold, then the following theorem gives the radius of Janowski starlikeness for the class $C_{1}^{\alpha}[A, B]$.

Theorem 2.3. Let $\alpha>0,-1 \leqslant B<A \leqslant 1$ and $-1 \leqslant D<C \leqslant 1$. If the condition in Theorem 2.2 does not hold, then the radius of starlikeness associated with the class $\mathcal{S T}[C, D]$ for the class $C_{1}^{\alpha}[A, B]$ is given by

$$
\mathcal{R}_{\mathcal{S T}[C, D]}\left(C_{1}^{\alpha}[A, B]\right)=\frac{C-D}{\alpha(A-B)+|B C-D(B+\alpha(A-B))|}
$$

Proof. The function $g \in C_{1}^{\alpha}[A, B]$ implies that $g \in \mathcal{S T}[B+\alpha(A-B), B]$. Define the functions $P(z):=(1+C z) /(1+D z)$ and $Q(z):=(1+(B+\alpha(A-B)) z) /(1+B z)$. We have to determine ρ such that $0<\rho \leqslant 1$ and $Q(\rho z)<P(z)$ for $z \in \mathbb{D}$. Define the function $H:=P^{-1} \circ Q$. Then we can see that

$$
H(z)=\frac{\alpha(A-B) z}{(C-D)+(B C-D(B+\alpha(A-B))) z}
$$

For $|z|=r$, we get

$$
\begin{aligned}
|H(z)| & =\frac{\alpha(A-B)|z|}{|(C-D)+(B C-D(B+\alpha(A-B))) z|} \\
& \leqslant \frac{\alpha(A-B) r}{(C-D)-|B C-D(B+\alpha(A-B))| r}
\end{aligned}
$$

and hence $|H(z)| \leqslant 1$ for

$$
r \leqslant \frac{C-D}{\alpha(A-B)+|B C-D(B+\alpha(A-B))|}=: \rho .
$$

Therefore, the radius of starlikeness associated with the class $\mathcal{S T}[C, D]$ for the class $C_{1}^{\alpha}[A, B]$ is at least ρ. To prove the sharpness, consider the function \tilde{f} from the class $C \mathcal{V}[A, B]$ given by

$$
\tilde{f}(z)= \begin{cases}\frac{1}{A}\left((1+B z)^{\left(\frac{A}{B}\right)}-1\right) & \text { if } A \neq 0, B \neq 0 \tag{2.1}\\ \frac{1}{A}\left(e^{A z}-1\right) & \text { if } A \neq 0, B=0 \\ \frac{\log (1+B z)}{B} & \text { if } A=0, B \neq 0\end{cases}
$$

For the above function \tilde{f}, the corresponding function $\tilde{g} \in C_{1}^{\alpha}[A, B]$ given by $\tilde{g}(z)=z\left(\tilde{f}^{\prime}(z)\right)^{\alpha}$ satisfies

$$
\begin{equation*}
\frac{z \tilde{g}^{\prime}(z)}{\tilde{g}(z)}=1+\frac{\alpha(A-B) z}{1+B z} . \tag{2.2}
\end{equation*}
$$

Case($i): B C-D(B+\alpha(A-B)) \geqslant 0$. In this case, we have

$$
\rho=\frac{C-D}{\alpha(A-B)+B C-D(B+\alpha(A-B))}
$$

and for $z=-\rho$, (2.2) gives

$$
\frac{z \tilde{g}^{\prime}(z)}{\tilde{g}(z)}=\frac{(-\rho) \tilde{g}^{\prime}(-\rho)}{\tilde{g}(-\rho)}=\frac{1-C}{1-D^{\prime}}
$$

thus proving the sharpness for ρ.
Case(ii): $B C-D(B+\alpha(A-B)) \leqslant 0$. In this case, we have

$$
\rho=\frac{C-D}{\alpha(A-B)-B C+D(B+\alpha(A-B))}
$$

and for $z=\rho,(2.2)$ gives

$$
\frac{z \tilde{g}^{\prime}(z)}{\tilde{g}(z)}=\frac{(\rho) \tilde{g}^{\prime}(\rho)}{\tilde{g}(\rho)}=\frac{1+C}{1+D}
$$

which proves the sharpness for ρ.
For $C=1$ and $D=-1$ in Theorem 2.3, we get the following corollary.
Corollary 2.4. The radius of starlikeness for the class $C_{1}^{\alpha}[A, B]$ is

$$
\mathcal{R}_{\mathcal{S T}}\left(C_{1}^{\alpha}[A, B]\right)=\frac{2}{\alpha(A-B)+|2 B+\alpha(A-B)|}
$$

The following theorem gives the inclusion result for the class C_{2}^{α}.
Theorem 2.5. For $-1 \leqslant D<C \leqslant 1$, the class C_{2}^{α} is contained in the class $\mathcal{S T}$ [C, D], if

$$
|C+D(\alpha-1)| \leqslant C-D-\alpha
$$

Proof. Let the function $g \in C_{2}^{\alpha}$. Then we get

$$
\frac{z g^{\prime}(z)}{g(z)}=1+\alpha\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}-\frac{z f^{\prime}(z)}{f(z)}\right)
$$

Since $f \in C V^{\prime}$, we get

$$
\frac{z g^{\prime}(z)}{g(z)}<\frac{1+(\alpha-1) z}{1-z}
$$

or equivalently $g \in \mathcal{S T}[\alpha-1,-1]$. Therefore, by Theorem 2.1, the class $\mathcal{S T}[\alpha-1,-1]$ is contained in the class $\mathcal{S T}[C, D]$ if and only if the condition $|C+D(\alpha-1)| \leqslant C-D-\alpha$ holds.

It should be noted that the condition $|C+D(\alpha-1)| \leqslant C-D-\alpha$ holds only for $D=-1$ and $C \geqslant \alpha-1$. The radius of starlikeness associated with the Janowski starlike functions for the class C_{2}^{α} is given in the following theorem.

Theorem 2.6. Let $\alpha>0$ and $-1 \leqslant D<C \leqslant 1$. If the condition in Theorem 2.5 does not hold, then the radius of starlikeness associated with the class $\mathcal{S T}[C, D]$ for the class C_{2}^{α} is given by

$$
\mathcal{R}_{\mathcal{S T}[C, D]}\left(C_{2}^{\alpha}\right)=\frac{C-D}{\alpha+|C+D(\alpha-1)|}
$$

Proof. The function $g \in C_{2}^{\alpha}$ implies that $g \in \mathcal{S T}[\alpha-1,-1]$. Define $P(z):=(1+C z) /(1+D z)$ and $Q(z):=$ $(1+(\alpha-1) z) /(1-z)$. We have to determine ρ such that $0<\rho \leqslant 1$ and $Q(\rho z)<P(z)$ for $z \in \mathbb{D}$. Define the function $H:=P^{-1} \circ Q$. Then it can be seen that

$$
H(z)=\frac{\alpha z}{(C-D)-(C+D(\alpha-1)) z}
$$

Observe that, for $|z|=r$,

$$
\begin{aligned}
|H(z)| & =\frac{\alpha|z|}{|(C-D)-(C+D(\alpha-1)) z|} \\
& \leqslant \frac{\alpha r}{(C-D)-|C+D(\alpha-1)| r} .
\end{aligned}
$$

Therefore, it follows that $|H(z)| \leqslant 1$ for

$$
r \leqslant(C-D) /(\alpha+|C+D(\alpha-1)|)=: \rho .
$$

Thus, the radius of starlikeness associated with the class $\mathcal{S T}[C, D]$ for the class C_{2}^{α} is at least ρ. To prove the sharpness, consider the function \tilde{f} from the class $C V^{\prime}$ given by $\tilde{f}(z)=z /(1-z)$. Then for the corresponding function $\tilde{g} \in C_{2}^{\alpha}$,

$$
\begin{equation*}
\frac{z \tilde{g}^{\prime}(z)}{\tilde{g}(z)}=1+\frac{\alpha z}{1-z} \tag{2.3}
\end{equation*}
$$

Case($i): C+D(\alpha-1) \geqslant 0$. In this case, $\rho=(C-D) /(\alpha+C+D(\alpha-1))$ and for $z=\rho$, (2.3) gives

$$
\frac{z \tilde{g}^{\prime}(z)}{\tilde{g}(z)}=\frac{(\rho) \tilde{g}^{\prime}(\rho)}{\tilde{g}(\rho)}=\frac{1+C}{1+D^{\prime}}
$$

thus proving the sharpness for ρ.
Case(ii): $C+D(\alpha-1) \leqslant 0$. Here $\rho=(C-D) /(\alpha-C-D(\alpha-1))$ and for $z=-\rho$, (2.3) gives

$$
\frac{z \tilde{g}^{\prime}(z)}{\tilde{g}(z)}=\frac{(-\rho) \tilde{g}^{\prime}(-\rho)}{\tilde{g}(-\rho)}=\frac{1-C}{1-D^{\prime}}
$$

which proves the sharpness for ρ.
For $C=1$ and $D=-1$ in Theorem 2.6, we get the following corollary.
Corollary 2.7. The radius of starlikeness for the class C_{2}^{α} is $2 /(\alpha+|2-\alpha|)$.

3. Radius of starlikeness associated with the exponential function

The class $\mathcal{S T}_{e}=\mathcal{S T}\left(e^{z}\right)$, which was introduced by Mendiratta et al. [16], consists of all functions $f \in \mathcal{A}$ such that $z f^{\prime}(z) / f(z)<e^{z}$ or equivalently $\left|\log \left(z f^{\prime}(z) / f(z)\right)\right|<1$. The following lemmas are used to find the radius of starlikeness associated with the exponential function for the classes $C_{1}^{\alpha}[A, B]$ and C_{2}^{α}.

Lemma 3.1. [16] For $1 / e<a<e$, let r_{a} be given by

$$
r_{a}= \begin{cases}a-\frac{1}{e} & \text { if } \frac{1}{e}<a \leqslant \frac{e+e^{-1}}{2} \\ e-a & \text { if } \frac{e+e^{-1}}{2} \leqslant a<e\end{cases}
$$

Then $\left\{w:|w-a|<r_{a}\right\} \subset \Omega_{e}:=\{w:|\log w|<1\}$, where Ω_{e} is the image of the unit disc \mathbb{D} under the exponential function.

For $-1 \leqslant B<A \leqslant 1$ and $p(z)=1+c_{1} z+c_{2} z^{2}+\ldots$, we say that $p \in \mathcal{P}[A, B]$ if

$$
p(z)<\frac{1+A z}{1+B z} \quad(z \in \mathbb{D})
$$

Note that $f \in \mathcal{S T}[A, B]$ if and only if $z f^{\prime}(z) / f(z) \in \mathcal{P}[A, B]$.
Lemma 3.2. [18] If $p \in \mathcal{P}[A, B]$, then

$$
\left|p(z)-\frac{1-A B r^{2}}{1-B^{2} r^{2}}\right| \leqslant \frac{(A-B) r}{1-B^{2} r^{2}} \quad(|z| \leqslant r<1)
$$

The above lemmas are used to prove the following inclusion result.
Theorem 3.3. The inclusion $C_{1}^{\alpha}[A, B] \subset \mathcal{S T}$ e holds if either

1. $(-\alpha B(A-B)) /\left(1-B^{2}\right) \leqslant\left(e+e^{-1}-2\right) / 2$ and $(\alpha(A-B)) /(1-B) \leqslant(e-1) / e$ or
2. $(-\alpha B(A-B)) /\left(1-B^{2}\right) \geqslant\left(e+e^{-1}-2\right) / 2$ and $(\alpha(A-B)) /(1+B) \leqslant e-1$.

Proof. We have already seen that the function $g \in C_{1}^{\alpha}[A, B]$ implies that $g \in \mathcal{S T}[B+\alpha(A-B), B]$. Therefore by using Lemma 3.2 we get,

$$
\begin{equation*}
\left|\frac{z g^{\prime}(z)}{g(z)}-\frac{1-\left(B^{2}+\alpha B(A-B)\right) r^{2}}{1-B^{2} r^{2}}\right| \leqslant \frac{\alpha(A-B) r}{1-B^{2} r^{2}} \quad(|z| \leqslant r<1) \tag{3.1}
\end{equation*}
$$

The centre and radius of the disc given in (3.1) are

$$
c_{1}(\alpha, A, B)(r):=\frac{1-\left(B^{2}+\alpha B(A-B)\right) r^{2}}{1-B^{2} r^{2}}
$$

and

$$
a_{1}(\alpha, A, B)(r):=\frac{\alpha(A-B) r}{1-B^{2} r^{2}}
$$

respectively. Note that

$$
c_{1}(\alpha, A, B)^{\prime}(r)=\frac{-2 \alpha B(A-B) r}{\left(1-B^{2} r^{2}\right)^{2}}
$$

which shows that $c_{1}(\alpha, A, B)(r)$ is an increasing function of r if $B<0$ and is a decreasing function of r if $B>0$. Also it can be seen that $c_{1}(\alpha, A, B)(r) \geqslant 1$ if $B \leqslant 0$ and $c_{1}(\alpha, A, B)(r) \leqslant 1$ if $B \geqslant 0$.

Now, assume that (1) holds. The inequality $(-\alpha B(A-B)) /\left(1-B^{2}\right) \leqslant\left(e+e^{-1}-2\right) / 2$ is equivalent to $c_{1}(\alpha, A, B)(1) \leqslant$ $\left(e+e^{-1}\right) / 2$. The result follows from Lemma 3.1, since the inequality $a_{1}(\alpha, A, B)(1) \leqslant c_{1}(\alpha, A, B)(1)-1 /$ e follows from $(\alpha(A-B)) /(1-B) \leqslant(e-1) /(e)$.

Assume that $(-\alpha B(A-B)) /\left(1-B^{2}\right) \geqslant\left(e+e^{-1}-2\right) / 2$ and $(\alpha(A-B)) /(1+B) \leqslant e-1$. The first inequality reduces to $c_{1}(\alpha, A, B)(1) \geqslant\left(e+e^{-1}\right) / 2$. The result will follow from Lemma 3.1 if $a_{1}(\alpha, A, B)(1) \leqslant e-c_{1}(\alpha, A, B)(1)$ which directly follows from the inequality $(\alpha(A-B)) /(1+B) \leqslant e-1$.

When the conditions in Theorem 3.3 fail to hold, then we discuss about the radius of starlikeness associated with the exponential function for the class $C_{1}^{\alpha}[A, B]$ which is stated in the following theorems.

Theorem 3.4. Let $\alpha>0,-1 \leqslant B \leqslant 0$ and $B<A \leqslant 1$. If neither condition (1) nor condition (2) of Theorem 3.3 holds, then the radius of starlikeness associated with the exponential function for the class $C_{1}^{\alpha}[A, B]$ is given by

$$
\mathcal{R}_{\mathcal{S T}_{e}}\left(C_{1}^{\alpha}[A, B]\right)= \begin{cases}\frac{e-1}{e \alpha(A-B)+(e-1) B} & \text { if } \alpha(A-B) \geqslant 2|B| \\ \frac{e-1}{\alpha(A-B)-(e-1) B} & \text { if } \quad \alpha(A-B) \leqslant 2|B|\end{cases}
$$

Proof. We prove the theorem by showing that the disc $\mathbb{D}\left(c_{1}(\alpha, A, B)(r) ; a_{1}(\alpha, A, B)(r)\right)$ given in (3.1) is contained in Ω_{e} for all $0<r \leqslant \mathcal{R}_{\mathcal{S}_{e}}\left(C_{1}^{\alpha}[A, B]\right)$. Let

$$
\rho_{2}:=\frac{e-1}{e \alpha(A-B)+(e-1) B}
$$

and

$$
\rho_{3}:=\frac{e-1}{\alpha(A-B)-(e-1) B} .
$$

Since $B \leqslant 0$, the centre $c_{1}(\alpha, A, B)(r) \geqslant 1$. We can see that ρ_{2} is the root of the polynomial

$$
\xi(r):=\left((e \alpha-e+1) B^{2}-e \alpha A B\right) r^{2}-(e \alpha(A-B)) r+(e-1)
$$

where $\xi(r)=0$ is equivalent to the equation $a_{1}(\alpha, A, B)(r)=c_{1}(\alpha, A, B)(r)-(1 / e)$. Note that $\xi(0)=e-1>0$ and $\xi(1)=(e \alpha-e+1) B^{2}-e \alpha A B-e \alpha(A-B)+e-1<0$, since the condition (1) in Theorem 3.3 does not hold. Hence $\rho_{2} \in(0,1)$. Similarly, ρ_{3} is the positive root of the polynomial

$$
\psi(r):=\left((\alpha+e-1) B^{2}-\alpha A B\right) r^{2}+(\alpha(A-B)) r+(1-e)
$$

where $\psi(r)=0$ is equivalent to the equation $a_{1}(\alpha, A, B)(r)=e-c_{1}(\alpha, A, B)(r)$. Clearly $\psi(0)=1-e<0$ and since the condition (2) in Theorem 3.3 does not hold, $\psi(1)=(\alpha+e-1) B^{2}-\alpha A B+\alpha(A-B)+1-e>0$ and thus $\rho_{3} \in(0,1)$. The number

$$
\rho_{1}:=\sqrt{\frac{e+e^{-1}-2}{2 \alpha|B|(A-B)+\left(e+e^{-1}-2\right) B^{2}}}
$$

is the positive root of the polynomial

$$
\tau(r):=\left(\left(e+e^{-1}-2\right) B^{2}+2 \alpha|B|(A-B)\right) r^{2}+2-\left(e+e^{-1}\right) .
$$

Observe that $\tau(r)=0$ is equivalent to the equation $c_{1}(\alpha, A, B)(r)=\left(e+e^{-1}\right) / 2$. Comparing ρ_{2} and ρ_{1}, we get $\rho_{2} \leqslant \rho_{1}$ if and only if $\alpha(A-B) \geqslant 2|B|$.

Case $(i): \alpha(A-B) \geqslant 2|B|$. When $\alpha(A-B) \geqslant 2|B|, \rho_{2} \leqslant \rho_{1}$ and since $c_{1}(\alpha, A, B)(r)$ is an increasing function of r, this implies that $c_{1}(\alpha, A, B)\left(\rho_{2}\right) \leqslant c_{1}(\alpha, A, B)\left(\rho_{1}\right)=\left(e+e^{-1}\right) / 2$. Therefore by Lemma 3.1, the radius of starlikeness associated with the exponential function for the class $C_{1}^{\alpha}[A, B]$ is at least ρ_{2}. To prove the sharpness, consider the function \tilde{f} from the class $C \mathcal{V}[A, B]$ given by (2.1). For the above function \tilde{f} and the corresponding function $\tilde{g} \in C_{1}^{\alpha}[A, B]$, we get the expression for $z \tilde{g}^{\prime}(z) / \tilde{g}(z)$ as in (2.2). Then for $z=-\rho_{2}$,

$$
\left|\log \left(\frac{z \tilde{g}^{\prime}(z)}{\tilde{g}(z)}\right)\right|=\left|\log \left(\frac{\left(-\rho_{2}\right) \tilde{g}^{\prime}\left(-\rho_{2}\right)}{\tilde{g}\left(-\rho_{2}\right)}\right)\right|=\left|\log \left(\frac{1}{e}\right)\right|=1,
$$

thus proving the sharpness for ρ_{2}.

Case(ii): $\alpha(A-B) \leqslant 2|B|$. When $\alpha(A-B) \leqslant 2|B|, \rho_{1} \leqslant \rho_{2}$ and hence $\left(e+e^{-1}\right) / 2=c_{1}(\alpha, A, B)\left(\rho_{1}\right) \leqslant c_{1}(\alpha, A, B)\left(\rho_{2}\right)$. Hence by Lemma 3.1, the radius of starlikeness associated with the exponential function for the class $C_{1}^{\alpha}[A, B]$ is at least ρ_{3}. To prove the sharpness, consider the function \tilde{f} from the class $C \mathcal{V}[A, B]$ given by (2.1). It can be seen that for $z=\rho_{3}$,

$$
\left|\log \left(\frac{z \tilde{g}^{\prime}(z)}{\tilde{g}(z)}\right)\right|=\left|\log \left(\frac{\left(\rho_{3}\right) \tilde{g}^{\prime}\left(\rho_{3}\right)}{\tilde{g}\left(\rho_{3}\right)}\right)\right|=|\log e|=1,
$$

thus proving the sharpness for ρ_{3}.
The result in the case when $0<B<1$ is similar, which we state in the following theorem without proof.
Theorem 3.5. Let $\alpha>0,0<B<1$ and $B<A \leqslant 1$. If neither condition (1) nor condition (2) of Theorem 3.3 holds, then the radius of starlikeness associated with the exponential function for the class $C_{1}^{\alpha}[A, B]$ is given by

$$
\mathcal{R}_{\mathcal{S T}_{e}}\left(C_{1}^{\alpha}[A, B]\right)=\frac{e-1}{e \alpha(A-B)+(e-1) B}
$$

We now turn our attention to finding the radius of starlikeness associated with the exponential function for the class C_{2}^{α}, which is stated in the following theorem.

Theorem 3.6. Let $\alpha>0$. Then the radius of starlikeness associated with the exponential function for the class C_{2}^{α} is given by

$$
\mathcal{R}_{\mathcal{S T}_{e}}\left(C_{2}^{\alpha}\right)= \begin{cases}\frac{e-1}{e(\alpha-1)+1} & \text { if } \alpha \geqslant 2 \\ \frac{e-1}{\alpha+e-1} & \text { if } \alpha \leqslant 2\end{cases}
$$

Proof. It is already seen that the function $g \in C_{2}^{\alpha}$ implies that $g \in \mathcal{S T}[\alpha-1,-1]$. Therefore by using Lemma 3.2 we get,

$$
\begin{equation*}
\left|\frac{z g^{\prime}(z)}{g(z)}-\frac{1+(\alpha-1) r^{2}}{1-r^{2}}\right| \leqslant \frac{\alpha r}{1-r^{2}} \quad(|z| \leqslant r<1) \tag{3.2}
\end{equation*}
$$

The centre and radius of the disc given in (3.2) are

$$
c_{2}(\alpha)(r):=\frac{1+(\alpha-1) r^{2}}{1-r^{2}}
$$

and

$$
a_{2}(\alpha)(r):=\frac{\alpha r}{1-r^{2}}
$$

respectively. Note that

$$
c_{2}(\alpha)^{\prime}(r)=\frac{2 \alpha r}{\left(1-r^{2}\right)^{2}},
$$

which shows that $c_{2}(\alpha)(r)$ is an increasing function of r. Also it can be seen that $c_{2}(\alpha)(r)>1$.
Our aim is to show that the disc $\mathbb{D}\left(c_{2}(\alpha)(r) ; a_{2}(\alpha)(r)\right)$ given in (3.2) is contained in Ω_{e} for all $0<r \leqslant \mathcal{R}_{\mathcal{S T}_{e}}\left(C_{2}^{\alpha}\right)$. Let

$$
\rho_{2}:=\frac{e-1}{e(\alpha-1)+1}
$$

and

$$
\rho_{3}:=\frac{e-1}{\alpha+e-1} .
$$

Here $c_{2}(\alpha)(r)>1$. For $\alpha \geqslant 2$, it can be seen that ρ_{2} is the positive root of the polynomial

$$
\xi(r):=(e(\alpha-1)+1) r^{2}-(e \alpha) r+(e-1)
$$

that is less than 1 and $\xi(r)=0$ is equivalent to the equation $a_{2}(\alpha)(r)=c_{2}(\alpha)(r)-(1 / e)$. Similarly, ρ_{3} is the positive root of the polynomial

$$
\psi(r):=(\alpha+e-1) r^{2}+\alpha r+(1-e)
$$

and is less than 1 since $\alpha>0$. Also the equation $\psi(r)=0$ is equivalent to the equation $a_{2}(\alpha)(r)=e-c_{2}(\alpha)(r)$. The number

$$
\rho_{1}:=\sqrt{\frac{e+e^{-1}-2}{2 \alpha+e+e^{-1}-2}}
$$

is the positive root of the polynomial

$$
\tau(r):=\left(2 \alpha+e+e^{-1}-2\right) r^{2}+2-\left(e+e^{-1}\right)
$$

where $\tau(r)=0$ is equivalent to the equation $c_{2}(\alpha)(r)=\left(e+e^{-1}\right) / 2$. Note that $\rho_{2} \leqslant \rho_{1}$ if and only if $\alpha \geqslant 2$.
Case($i)$: $\alpha \geqslant 2$. When $\alpha \geqslant 2, \rho_{2} \leqslant \rho_{1}$ and since $c_{2}(\alpha)(r)$ is an increasing function of $r, c_{2}(\alpha)\left(\rho_{2}\right) \leqslant c_{2}(\alpha)\left(\rho_{1}\right)=$ $\left(e+e^{-1}\right) / 2$. Therefore by Lemma 3.1, the radius of starlikeness associated with the exponential function for the class C_{2}^{α} is at least ρ_{2}. To prove the sharpness, consider the function \tilde{f} from the class $C V^{\prime}$ given by $\tilde{f}(z)=z /(1-z)$. Then for the corresponding function $\tilde{g} \in C_{2}^{\alpha}$ and for $z=-\rho_{2}$, (2.3) gives

$$
\left|\log \left(\frac{z \tilde{g}^{\prime}(z)}{\tilde{g}(z)}\right)\right|=\left|\log \left(\frac{\left(-\rho_{2}\right) \tilde{g}^{\prime}\left(-\rho_{2}\right)}{\tilde{g}\left(-\rho_{2}\right)}\right)\right|=\left|\log \left(\frac{1}{e}\right)\right|=1,
$$

thus proving the sharpness for ρ_{2}.
Case(ii): $\alpha \leqslant 2$. In this case, $\rho_{1} \leqslant \rho_{2}$ and since $c_{2}(\alpha)(r)$ is an increasing function of $r,\left(e+e^{-1}\right) / 2=c_{2}(\alpha)\left(\rho_{1}\right) \leqslant$ $c_{2}(\alpha)\left(\rho_{2}\right)$. Therefore by Lemma 3.1, the radius of starlikeness associated with the exponential function for the class C_{2}^{α} is at least ρ_{3}. To prove the sharpness, consider the function $\tilde{f}(z)=z /(1-z)$ from the class $C \mathcal{V}^{\prime}$. It can be seen that for $z=\rho_{3}$,

$$
\left|\log \left(\frac{z \tilde{g}^{\prime}(z)}{\tilde{g}(z)}\right)\right|=\left|\log \left(\frac{\left(\rho_{3}\right) \tilde{g}^{\prime}\left(\rho_{3}\right)}{\tilde{g}\left(\rho_{3}\right)}\right)\right|=|\log e|=1 .
$$

4. Radius of starlikeness associated with the class $\boldsymbol{S T}_{C}$

The class $\mathcal{S T}_{C}=\mathcal{S T}\left(\varphi_{C}\right)$, where $\varphi_{C}(z)=1+(4 / 3) z+(2 / 3) z^{2}$, was studied by Sharma et al. [20]. The boundary of $\varphi_{C}(\mathbb{D})$ is a cardiod.
Lemma 4.1. [20] For $1 / 3<a<3$, let r_{a} be given by

$$
r_{a}= \begin{cases}a-\frac{1}{3} & \text { if } \frac{1}{3}<a \leqslant \frac{5}{3} \\ 3-a & \text { if } \frac{5}{3} \leqslant a<3\end{cases}
$$

Then $\left\{w:|w-a|<r_{a}\right\} \subset \varphi_{C}(\mathbb{D})=\Omega_{C}$, where Ω_{C} is the region bounded by the cardiod $\left\{x+i y:\left(9 x^{2}+9 y^{2}-\right.\right.$ $\left.18 x+5)^{2}-16\left(9 x^{2}+9 y^{2}-6 x+1\right)=0\right\}$.

Theorem 4.2. The inclusion $C_{1}^{\alpha}[A, B] \subset \mathcal{S T}$ cholds if either

1. $(-\alpha B(A-B)) /\left(1-B^{2}\right) \leqslant 2 / 3$ and $(\alpha(A-B)) /(1-B) \leqslant 2 / 3$
or
2. $(-\alpha B(A-B)) /\left(1-B^{2}\right) \geqslant 2 / 3$ and $(\alpha(A-B)) /(1+B) \leqslant 2$.

Proof. Assume that (1) holds. The inequality $(-\alpha B(A-B)) /\left(1-B^{2}\right) \leqslant 2 / 3$ is equivalent to $c_{1}(\alpha, A, B)(1) \leqslant 5 / 3$. Since the inequality $a_{1}(\alpha, A, B)(1) \leqslant c_{1}(\alpha, A, B)(1)-1 / 3$ follows from $(\alpha(A-B)) /(1-B) \leqslant 2 / 3$, the result follows from Lemma 4.1.

Assume that $(-\alpha B(A-B)) /\left(1-B^{2}\right) \geqslant 2 / 3$ and $(\alpha(A-B)) /(1+B) \leqslant 2$. The first inequality reduces to $c_{1}(\alpha, A, B)(1) \geqslant 5 / 3$. The result will follow from Lemma 4.1 if $a_{1}(\alpha, A, B)(1) \leqslant 3-c_{1}(\alpha, A, B)(1)$ which directly follows from the inequality $(\alpha(A-B)) /(1+B) \leqslant 2$.

When the conditions in Theorem 4.2 do not hold, then the results which are stated in the following theorems have a scope of discussion.

Theorem 4.3. Let $\alpha>0,-1 \leqslant B \leqslant 0$ and $B<A \leqslant 1$. If neither condition (1) nor condition (2) of Theorem 4.2 holds, then the radius of starlikeness associated with the cardiod φ_{C} for the class $C_{1}^{\alpha}[A, B]$ is given by

$$
\mathcal{R}_{\mathcal{S} \mathcal{T}_{C}}\left(C_{1}^{\alpha}[A, B]\right)=\left\{\begin{array}{lll}
\frac{2}{3 \alpha(A-B)+2 B} & \text { if } & \alpha(A-B) \geqslant 2|B| \\
\frac{2}{\alpha(A-B)-2 B} & \text { if } & \alpha(A-B) \leqslant 2|B|
\end{array}\right.
$$

Proof. The theorem is proved by showing that the disc $\mathbb{D}\left(c_{1}(\alpha, A, B)(r) ; a_{1}(\alpha, A, B)(r)\right)$ given in (3.1) is contained in Ω_{C} for all $0<r \leqslant \mathcal{R}_{\mathcal{S T}_{c}}\left(C_{1}^{\alpha}[A, B]\right)$. Let

$$
\rho_{2}:=\frac{2}{3 \alpha(A-B)+2 B}
$$

and

$$
\rho_{3}:=\frac{2}{\alpha(A-B)-2 B}
$$

Here the centre $c_{1}(\alpha, A, B)(r) \geqslant 1$ since $B \leqslant 0$. It can be seen that ρ_{2} is the root of the polynomial

$$
\xi(r):=\left(2 B^{2}+3 \alpha B(A-B)\right) r^{2}+3 \alpha(A-B) r-2
$$

and a simple calculation shows that $\xi(r)=0$ is equivalent to the equation $a_{1}(\alpha, A, B)(r)=c_{1}(\alpha, A, B)(r)-(1 / 3)$. It can be easily shown that ρ_{2} lies between 0 and 1 as $\xi(0)=-2<0$ and $\xi(1)=2 B^{2}+3 \alpha B(A-B)+3 \alpha(A-B)-2>0$, since the condition (1) in Theorem 4.2 does not hold. Similarly, ρ_{3} is the positive root of the polynomial

$$
\psi(r):=\left(2 B^{2}-\alpha B(A-B)\right) r^{2}+\alpha(A-B) r-2
$$

Observe that $\psi(r)=0$ is equivalent to the equation $a_{1}(\alpha, A, B)(r)=3-c_{1}(\alpha, A, B)(r)$. Clearly $\psi(0)=-2<0$ and since the condition (2) in Theorem 4.2 does not hold, $\psi(1)=2 B^{2}-\alpha B(A-B)+\alpha(A-B)-2>0$ which shows that $\rho_{3} \in(0,1)$. The number

$$
\rho_{1}:=\sqrt{\frac{2}{3 \alpha|B|(A-B)+2 B^{2}}}
$$

is the positive root of the polynomial

$$
\tau(r):=\left(2 B^{2}+3 \alpha|B|(A-B)\right) r^{2}-2
$$

where $\tau(r)=0$ is equivalent to the equation $c_{1}(\alpha, A, B)(r)=5 / 3$. It can be seen that $\rho_{2} \leqslant \rho_{1}$ if and only if $\alpha(A-B) \geqslant 2|B|$. Therefore we consider the following cases separately.

Case($i): \alpha(A-B) \geqslant 2|B|$. When $\alpha(A-B) \geqslant 2|B|, \rho_{2} \leqslant \rho_{1}$ and thus $c_{1}(\alpha, A, B)\left(\rho_{2}\right) \leqslant c_{1}(\alpha, A, B)\left(\rho_{1}\right)=5 / 3$, due to the increasing nature of $c_{1}(\alpha, A, B)(r)$. Therefore the radius of starlikeness associated with the cardiod φ_{C} for the class $C_{1}^{\alpha}[A, B]$ is at least ρ_{2}, by using Lemma 4.1. To prove the sharpness, consider the function \tilde{f} from the class $C \mathcal{V}[A, B]$ given by (2.1). For the above function \tilde{f} and the corresponding function $\tilde{g} \in C_{1}^{\alpha}[A, B]$, we get the expression for $z \tilde{g}^{\prime}(z) / \tilde{g}(z)$ as in (2.2). Thus for $z=-\rho_{2}$,

$$
\frac{z \tilde{g}^{\prime}(z)}{\tilde{g}(z)}=\frac{\left(-\rho_{2}\right) \tilde{g}^{\prime}\left(-\rho_{2}\right)}{\tilde{g}\left(-\rho_{2}\right)}=\frac{1}{3}=\varphi_{C}(-1)
$$

which proves the sharpness for ρ_{2}.
Case(ii): $\alpha(A-B) \leqslant 2|B|$. When $\alpha(A-B) \leqslant 2|B|, \rho_{1} \leqslant \rho_{2}$, which gives $5 / 3=c_{1}(\alpha, A, B)\left(\rho_{1}\right) \leqslant c_{1}(\alpha, A, B)\left(\rho_{2}\right)$. Therefore by Lemma 4.1, the radius of starlikeness associated with the cardiod φ_{C} for the class $C_{1}^{\alpha}[A, B]$ is at least ρ_{3}. To prove the sharpness, consider the function \tilde{f} from the class $C \mathcal{V}[A, B]$ given by (2.1). It can be seen from (2.2) that for $z=\rho_{3}$,

$$
\frac{z \tilde{g}^{\prime}(z)}{\tilde{g}(z)}=\frac{\left(\rho_{3}\right) \tilde{g}^{\prime}\left(\rho_{3}\right)}{\tilde{g}\left(\rho_{3}\right)}=3=\varphi_{C}(1)
$$

thus proving the sharpness for ρ_{3}.
The following theorem is for the case when $0<B<1$, which we state without proof.
Theorem 4.4. Let $\alpha>0,0<B<1$ and $B<A \leqslant 1$. If neither condition (1) nor condition (2) of Theorem 4.2 holds, then the radius of starlikeness associated with the cardiod φ_{C} for the class $C_{1}^{\alpha}[A, B]$ is given by

$$
\mathcal{R}_{\mathcal{S T}_{C}}\left(C_{1}^{\alpha}[A, B]\right)=\frac{2}{2 B+3 \alpha(A-B)}
$$

The following theorem gives the radius of starlikeness associated with the function φ_{C} for the class C_{2}^{α}.
Theorem 4.5. Let $\alpha>0$. Then the radius of starlikeness associated with the cardiod φ_{C} for the class C_{2}^{α} is given by

$$
\mathcal{R}_{\mathcal{S T}_{C}}\left(C_{2}^{\alpha}\right)=\left\{\begin{array}{lll}
\frac{2}{3 \alpha-2} & \text { if } & \alpha \geqslant 2 \\
\frac{2}{\alpha+2} & \text { if } & \alpha \leqslant 2
\end{array}\right.
$$

Proof. We will show that the disc $\mathbb{D}\left(c_{2}(\alpha)(r) ; a_{2}(\alpha)(r)\right)$ given in (3.2) is contained in Ω_{C} for all $0<r \leqslant \mathcal{R}_{\mathcal{S} \mathcal{T}_{C}}\left(C_{2}^{\alpha}\right)$. Here $c_{2}(\alpha)(r)>1$. Let

$$
\rho_{2}:=\frac{2}{3 \alpha-2}
$$

and

$$
\rho_{3}:=\frac{2}{\alpha+2}
$$

It can be seen that ρ_{2} is the root of the polynomial

$$
\xi(r):=(3 \alpha-2) r^{2}-(3 \alpha) r+2
$$

which lies in the interval $(0,1)$ if $\alpha \geqslant 2$ and $\xi(r)=0$ is equivalent to the equation $a_{2}(\alpha)(r)=c_{2}(\alpha)(r)-(1 / 3)$. Also, ρ_{3} is the positive root of the polynomial

$$
\psi(r):=(\alpha+2) r^{2}+\alpha r-2
$$

and is less than 1 since $\alpha>0$. Note that the equation $\psi(r)=0$ is equivalent to the equation $a_{2}(\alpha)(r)=3-c_{2}(\alpha)(r)$. The number

$$
\rho_{1}:=\sqrt{\frac{2}{3 \alpha+2}}
$$

is the positive root of the polynomial

$$
\tau(r):=(3 \alpha+2) r^{2}-2
$$

where $\tau(r)=0$ is equivalent to the equation $c_{2}(\alpha)(r)=5 / 3$. A calculation shows that $\rho_{2} \leqslant \rho_{1}$ if and only if $\alpha \geqslant 2$, which leads us to consider the following cases.

Case($i)$: $\alpha \geqslant 2$. When $\alpha \geqslant 2, \rho_{2} \leqslant \rho_{1}$ and since $c_{2}(\alpha)(r)$ is increasing in nature, $c_{2}(\alpha)\left(\rho_{2}\right) \leqslant c_{2}(\alpha)\left(\rho_{1}\right)=5 / 3$. Therefore by Lemma 4.1, the radius of starlikeness associated with the cardiod φ_{C} for the class C_{2}^{α} is at least ρ_{2}. To prove the sharpness, consider the function \tilde{f} from the class $C V^{\prime}$ given by $\tilde{f}(z)=z /(1-z)$. Then for the corresponding function $\tilde{g} \in C_{2}^{\alpha}, z \tilde{g}^{\prime}(z) / \tilde{g}(z)$ is given by (2.3). Hence for $z=-\rho_{2}$,

$$
\frac{z \tilde{g}^{\prime}(z)}{\tilde{g}(z)}=\frac{\left(-\rho_{2}\right) \tilde{g}^{\prime}\left(-\rho_{2}\right)}{\tilde{g}\left(-\rho_{2}\right)}=\frac{1}{3}=\varphi_{C}(-1)
$$

thus proving the sharpness for ρ_{2}.
Case(ii): $\alpha \leqslant 2$. Here $\rho_{1} \leqslant \rho_{2}$ and thus $5 / 3=c_{2}(\alpha)\left(\rho_{1}\right) \leqslant c_{2}(\alpha)\left(\rho_{2}\right)$. Therefore by Lemma 4.1, the radius of starlikeness associated with the cardiod φ_{C} for the class C_{2}^{α} is at least ρ_{3}. To prove the sharpness, consider the function $\tilde{f}(z)=z /(1-z)$ from the class $C V^{\prime}$. It can be seen from (2.3) that for $z=\rho_{3}$,

$$
\frac{z \tilde{g}^{\prime}(z)}{\tilde{g}(z)}=\frac{\left(\rho_{3}\right) \tilde{g}^{\prime}\left(\rho_{3}\right)}{\tilde{g}\left(\rho_{3}\right)}=3=\varphi_{C}(1)
$$

5. Radius of starlikeness associated with the class $\mathcal{S T}_{R}$

The class $\mathcal{S T} \mathcal{T}_{R}=\mathcal{S T}\left(\varphi_{R}\right)$ of starlike functions associated with the rational function $\varphi_{R}(z)=1+\left(\left(z^{2}+\right.\right.$ $k z) / k^{2}-k z$) for $k=\sqrt{2}+1$, was introduced by Kumar and Ravichandran [11].
Lemma 5.1. [11] For $2(\sqrt{2}-1)<a<2$, let r_{a} be given by

$$
r_{a}= \begin{cases}a-2(\sqrt{2}-1) & \text { if } 2(\sqrt{2}-1)<a \leqslant \sqrt{2} \\ 2-a & \text { if } \sqrt{2} \leqslant a<2 .\end{cases}
$$

Then $\left\{w:|w-a|<r_{a}\right\} \subset \varphi_{R}(\mathbb{D})$.
Theorem 5.2. The inclusion $\mathcal{C}_{1}^{\alpha}[A, B] \subset \mathcal{S} \mathcal{T}_{R}$ holds if either

1. $(-\alpha B(A-B)) /\left(1-B^{2}\right) \leqslant \sqrt{2}-1$ and $(\alpha(A-B)) /(1-B) \leqslant 3-2 \sqrt{2}$ or
2. $(-\alpha B(A-B)) /\left(1-B^{2}\right) \geqslant \sqrt{2}-1$ and $(\alpha(A-B)) /(1+B) \leqslant 1$.

Proof. Assume that $(-\alpha B(A-B)) /\left(1-B^{2}\right) \leqslant \sqrt{2}-1$ and $(\alpha(A-B)) /(1-B) \leqslant 3-2 \sqrt{2}$. The inequality $(-\alpha B(A-B)) /\left(1-B^{2}\right) \leqslant \sqrt{2}-1$ is equivalent to $c_{1}(\alpha, A, B)(1) \leqslant \sqrt{2}$. The result follows from Lemma 5.1 since the inequality $a_{1}(\alpha, A, B)(1) \leqslant c_{1}(\alpha, A, B)(1)-2(\sqrt{2}-1)$ follows from $(\alpha(A-B)) /(1-B) \leqslant 3-2 \sqrt{2}$.

Now assume that (2) holds. The first inequality of (2) reduces to $\mathcal{c}_{1}(\alpha, A, B)(1) \geqslant \sqrt{2}$. The result will follow from Lemma 5.1 as the condition $a_{1}(\alpha, A, B)(1) \leqslant 2-c_{1}(\alpha, A, B)(1)$ directly follows from the inequality $(\alpha(A-B)) /(1+B) \leqslant 1$.

When the conditions in Theorem 5.2 do not hold, then we discuss about the radius problem which is stated in the following theorems.

Theorem 5.3. Let $\alpha>0,-1 \leqslant B \leqslant 0$ and $B<A \leqslant 1$. If neither condition (1) nor condition (2) of Theorem 5.2 holds, then the radius of starlikeness associated with the rational function φ_{R} for the class $C_{1}^{\alpha}[A, B]$ is given by

$$
\mathcal{R}_{\mathcal{S T}_{R}}\left(C_{1}^{\alpha}[A, B]\right)= \begin{cases}\frac{3-2 \sqrt{2}}{\alpha(A-B)+(3-2 \sqrt{2}) B} & \text { if } \alpha(A-B) \geqslant(\sqrt{2}-1)|B| \\ \frac{1}{\alpha(A-B)-B} & \text { if } \quad \alpha(A-B) \leqslant(\sqrt{2}-1)|B| .\end{cases}
$$

Proof. We aim to show that the disc $\mathbb{D}\left(c_{1}(\alpha, A, B)(r) ; a_{1}(\alpha, A, B)(r)\right)$ given in (3.1) is contained in $\varphi_{R}(\mathbb{D})$ for all $0<r \leqslant \mathcal{R}_{\mathcal{S T}_{R}}\left(C_{1}^{\alpha}[A, B]\right)$. Let

$$
\rho_{2}:=\frac{3-2 \sqrt{2}}{\alpha(A-B)+(3-2 \sqrt{2}) B}
$$

and

$$
\rho_{3}:=\frac{1}{\alpha(A-B)-B}
$$

As we have seen before, the centre $c_{1}(\alpha, A, B)(r) \geqslant 1$ since $B \leqslant 0$. The polynomial

$$
\xi(r):=\left((\alpha+2 \sqrt{2}-3) B^{2}-\alpha A B\right) r^{2}-\alpha(A-B) r+3-2 \sqrt{2}
$$

satiffies the condition that $\xi(r)=0$ is equivalent to the equation $a_{1}(\alpha, A, B)(r)=c_{1}(\alpha, A, B)(r)-2(\sqrt{2}-1)$. Note that $\xi(0)=3-2 \sqrt{2}>0$ and $\xi(1)=(\alpha+2 \sqrt{2}-3) B^{2}-\alpha A B-\alpha(A-B)+3-2 \sqrt{2}<0$, since the condition (1) in Theorem 5.2 does not hold. Hence there exists a root of the polynomial $\xi(r)$ in the interval $(0,1)$ which is precisely ρ_{2}. Now consider the polynomial

$$
\psi(r):=\left((\alpha+1) B^{2}-\alpha A B\right) r^{2}+(\alpha(A-B)) r-1
$$

which has ρ_{3} as its positive root. Observe that $\psi(r)=0$ is equivalent to the equation $a_{1}(\alpha, A, B)(r)=2-c_{1}(\alpha, A, B)(r)$. Clearly $\psi(0)=-1<0$ and since the condition (2) in Theorem 5.2 does not hold, $\psi(1)=(\alpha+1) B^{2}-\alpha A B+\alpha(A-B)-1>$ 0 and thus $\rho_{3} \in(0,1)$. Let

$$
\rho_{1}:=\sqrt{\frac{\sqrt{2}-1}{\alpha|B|(A-B)+(\sqrt{2}-1) B^{2}}} .
$$

Then it can be seen that ρ_{1} is the positive root of the polynomial

$$
\tau(r):=\left(\alpha|B|(A-B)+(\sqrt{2}-1) B^{2}\right) r^{2}+1-\sqrt{2}
$$

and $\tau(r)=0$ is equivalent to the equation $c_{1}(\alpha, A, B)(r)=\sqrt{2}$. A comparison on ρ_{2} and ρ_{1} shows that $\rho_{2} \leqslant \rho_{1}$ if and only if $\alpha(A-B) \geqslant(\sqrt{2}-1)|B|$.

Case($i): \alpha(A-B) \geqslant(\sqrt{2}-1)|B|$. In this case, since $\rho_{2} \leqslant \rho_{1}$ and since $c_{1}(\alpha, A, B)(r)$ is an increasing function of r, we get $c_{1}(\alpha, A, B)\left(\rho_{2}\right) \leqslant c_{1}(\alpha, A, B)\left(\rho_{1}\right)=\sqrt{2}$. Therefore by Lemma 5.1, the radius of starlikeness associated with the rational function φ_{R} for the class $C_{1}^{\alpha}[A, B]$ is at least ρ_{2}. To prove the sharpness, consider the function \tilde{f} from the class $C \mathcal{V}[A, B]$ given by (2.1). For the above function \tilde{f}, the corresponding function $\tilde{g} \in C_{1}^{\alpha}[A, B]$ and for $z=-\rho_{2}$, (2.2) gives

$$
\frac{z \tilde{g}^{\prime}(z)}{\tilde{g}(z)}=\frac{\left(-\rho_{2}\right) \tilde{g}^{\prime}\left(-\rho_{2}\right)}{\tilde{g}\left(-\rho_{2}\right)}=2(\sqrt{2}-1)=\varphi_{R}(-1)
$$

thus proving the sharpness for ρ_{2}.
Case(ii): $\alpha(A-B) \leqslant(\sqrt{2}-1)|B|$. When $\alpha(A-B) \leqslant(\sqrt{2}-1)|B|, \rho_{1} \leqslant \rho_{2}$ and hence $\sqrt{2}=c_{1}(\alpha, A, B)\left(\rho_{1}\right) \leqslant$ $c_{1}(\alpha, A, B)\left(\rho_{2}\right)$. Therefore Lemma 5.1 shows that the radius of starlikeness associated with the rational function φ_{R} for the class $C_{1}^{\alpha}[A, B]$ is at least ρ_{3}. To prove the sharpness, the function \tilde{f} from the class $C \mathcal{V}[A, B]$ given by (2.1) is considered. From (2.2) it follows that for $z=\rho_{3}$,

$$
\frac{z \tilde{g}^{\prime}(z)}{\tilde{g}(z)}=\frac{\left(\rho_{3}\right) \tilde{g}^{\prime}\left(\rho_{3}\right)}{\tilde{g}\left(\rho_{3}\right)}=2=\varphi_{R}(1)
$$

which proves the sharpness for ρ_{3}.
The case when $0<B<1$ has a similar proof, hence we state the result in the following theorem without proof.
Theorem 5.4. Let $\alpha>0,0<B<1$ and $B<A \leqslant 1$. If neither condition (1) nor condition (2) of Theorem 5.2 holds, then the radius of starlikeness associated with the rational function φ_{R} for the class $C_{1}^{\alpha}[A, B]$ is given by

$$
\mathcal{R}_{\mathcal{S T}_{R}}\left(C_{1}^{\alpha}[A, B]\right)=\frac{3-2 \sqrt{2}}{\alpha(A-B)+(3-2 \sqrt{2}) B}
$$

Our next theorem gives the radius of starlikeness associated with the function φ_{R} for the class C_{2}^{α}.
Theorem 5.5. Let $\alpha>0$. Then the radius of starlikeness associated with the rational function φ_{R} for the class C_{2}^{α} is given by

$$
\mathcal{R}_{\mathcal{S} \mathcal{T}_{R}}\left(C_{2}^{\alpha}\right)= \begin{cases}\frac{3-2 \sqrt{2}}{\alpha-(3-2 \sqrt{2})} & \text { if } \alpha \geqslant \sqrt{2}-1 \\ \frac{1}{\alpha+1} & \text { if } \alpha \leqslant \sqrt{2}-1\end{cases}
$$

Proof. The theorem is proved by showing that the disc $\mathbb{D}\left(c_{2}(\alpha)(r) ; a_{2}(\alpha)(r)\right)$ given in (3.2) is contained in $\varphi_{R}(\mathbb{D})$ for all $0<r \leqslant \mathcal{R}_{\mathcal{S T}_{R}}\left(\mathcal{C}_{2}^{\alpha}\right)$. Here $c_{2}(\alpha)(r)>1$. Consider the polynomial

$$
\xi(r):=(\alpha+2 \sqrt{2}-3) r^{2}-\alpha r+3-2 \sqrt{2} .
$$

Then, for $\alpha \geqslant \sqrt{2}-1, \rho_{2}$ is the positive root of $\xi(r)$ that is less than 1, where

$$
\rho_{2}:=\frac{3-2 \sqrt{2}}{\alpha-(3-2 \sqrt{2})} .
$$

Note that $\xi(r)=0$ is equivalent to the equation $a_{2}(\alpha)(r)=c_{2}(\alpha)(r)-(2(\sqrt{2}-1))$. Let

$$
\rho_{3}:=\frac{1}{\alpha+1}
$$

Then, ρ_{3} is the positive root of the polynomial

$$
\psi(r):=(\alpha+1) r^{2}+\alpha r-1
$$

and is less than 1 since $\alpha>0$. Also the equation $\psi(r)=0$ is equivalent to the equation $a_{2}(\alpha)(r)=2-c_{2}(\alpha)(r)$. The number

$$
\rho_{1}:=\sqrt{\frac{\sqrt{2}-1}{\alpha+\sqrt{2}-1}}
$$

is the positive root of the polynomial

$$
\tau(r):=(\alpha+\sqrt{2}-1) r^{2}+1-\sqrt{2}
$$

where $\tau(r)=0$ is equivalent to the equation $c_{2}(\alpha)(r)=\sqrt{2}$. Note that $\rho_{2} \leqslant \rho_{1}$ if and only if $\alpha \geqslant \sqrt{2}-1$.
Case $(i): \alpha \geqslant \sqrt{2}-1$. In this case, $\rho_{2} \leqslant \rho_{1}$ and thus $c_{2}(\alpha)\left(\rho_{2}\right) \leqslant c_{2}(\alpha)\left(\rho_{1}\right)=\sqrt{2}$, since $c_{2}(\alpha)(r)$ is an increasing function of r. Therefore by Lemma 5.1, the radius of starlikeness associated with the rational function φ_{R} for the class C_{2}^{α} is at least ρ_{2}. To prove the sharpness, consider the function \tilde{f} from the class $C \mathcal{V}^{\prime}$ given by $\tilde{f}(z)=z /(1-z)$. Then for the corresponding function $\tilde{g} \in C_{2}^{\alpha}$ and for $z=-\rho_{2}$, (2.3) shows that

$$
\frac{z \tilde{g}^{\prime}(z)}{\tilde{g}(z)}=\frac{\left(-\rho_{2}\right) \tilde{g}^{\prime}\left(-\rho_{2}\right)}{\tilde{g}\left(-\rho_{2}\right)}=2(\sqrt{2}-1)=\varphi_{R}(-1),
$$

thus proving the sharpness for ρ_{2}.
Case(ii): $\alpha \leqslant \sqrt{2}-1$. In this case, $\sqrt{2}=c_{2}(\alpha)\left(\rho_{1}\right) \leqslant c_{2}(\alpha)\left(\rho_{2}\right)$ since $\rho_{1} \leqslant \rho_{2}$ and $c_{2}(\alpha)(r)$ is an increasing function of r. Therefore by Lemma 5.1, the radius of starlikeness associated with the rational function φ_{R} for the class C_{2}^{α} is at least ρ_{3}. To prove the sharpness, consider the function $\tilde{f}(z)=z /(1-z)$ from the class $C V^{\prime}$. Then, (2.3) shows that for $z=\rho_{3}$,

$$
\frac{z \tilde{g}^{\prime}(z)}{\tilde{g}(z)}=\frac{\left(\rho_{3}\right) \tilde{g}^{\prime}\left(\rho_{3}\right)}{\tilde{g}\left(\rho_{3}\right)}=2=\varphi_{R}(1) .
$$

6. Radius of starlikeness associated with the class $\boldsymbol{S T}_{\mathrm{Ne}}$

The class of starlike functions associated with a nephroid domain, given by $\mathcal{S T}{ }_{N e}=\mathcal{S T}\left(\varphi_{N e}\right)$ where $\varphi_{N e}(z)=1+z-\left(z^{3} / 3\right)$ was studied by Wani and Swaminathan [23]. The function $\varphi_{N e}$ maps the unit circle onto a 2 -cusped curve,

$$
\left((u-1)^{2}+v^{2}-\frac{4}{9}\right)^{3}-\frac{4 v^{2}}{3}=0 .
$$

The radius problems for the functions associated with the nephroid domain was discussed by Wani and Swaminathan [22] and proved the following lemma.

Lemma 6.1. [22] For $1 / 3<a<5 / 3$, let r_{a} be given by

$$
r_{a}= \begin{cases}a-\frac{1}{3} & \text { if } \frac{1}{3}<a \leqslant 1 \\ \frac{5}{3}-a & \text { if } 1 \leqslant a<\frac{5}{3}\end{cases}
$$

Then $\left\{w:|w-a|<r_{a}\right\} \subset \varphi_{N e}(\mathbb{D})=\Omega_{N e}$, where $\Omega_{N e}$ is the region bounded by the nephroid $\varphi_{N e}$, that is

$$
\Omega_{N e}:=\left\{\left((u-1)^{2}+v^{2}-\frac{4}{9}\right)^{3}-\frac{4 v^{2}}{3}<0\right\} .
$$

Theorem 6.2. The inclusion $C_{1}^{\alpha}[A, B] \subset \mathcal{S} \mathcal{T}_{N e}$ holds if either

1. $B \geqslant 0$ and $(\alpha(A-B)) /(1-B) \leqslant 2 / 3$
or
2. $B \leqslant 0$ and $(\alpha(A-B)) /(1+B) \leqslant 2 / 3$.

Proof. Assume that (1) holds. The inequality $B \geqslant 0$ is equivalent to $c_{1}(\alpha, A, B)(1) \leqslant 1$. The result follows from Lemma 6.1, since the inequality $a_{1}(\alpha, A, B)(1) \leqslant c_{1}(\alpha, A, B)(1)-(1 / 3)$ follows from $(\alpha(A-B)) /(1-B) \leqslant 2 / 3$.

Now assume that $B \leqslant 0$ and $(\alpha(A-B)) /(1+B) \leqslant 2 / 3$. The first inequality reduces to $c_{1}(\alpha, A, B)(1) \geqslant 1$. As the condition $a_{1}(\alpha, A, B)(1) \leqslant(5 / 3)-c_{1}(\alpha, A, B)(1)$ directly follows from the inequality $(\alpha(A-B)) /(1+B) \leqslant 2 / 3$, the result follows from Lemma 6.1.

Our next theorem gives the radius of starlikeness associated with the function $\varphi_{N e}$ for the class $C_{1}^{\alpha}[A, B]$, when the conditions in Theorem 6.2 do not hold.

Theorem 6.3. Let $\alpha>0$ and $-1 \leqslant B<A \leqslant 1$. If neither condition (1) nor condition (2) of Theorem 6.2 holds, then the radius of starlikeness associated with the nephroid $\varphi_{N e}$ for the class $C_{1}^{\alpha}[A, B]$ is given by

$$
\mathcal{R}_{\mathcal{S T}_{\mathrm{Ne}}}\left(C_{1}^{\alpha}[A, B]\right)=\frac{2}{3 \alpha(A-B)+2|B|}
$$

Proof. Proving the containment of the disc $\mathbb{D}\left(c_{1}(\alpha, A, B)(r) ; a_{1}(\alpha, A, B)(r)\right)$ given in (3.1) in $\varphi_{N e}(\mathbb{D})$ for all $0<r \leqslant$ $\mathcal{R}_{\mathcal{S T}_{N e}}\left(C_{1}^{\alpha}[A, B]\right)$ gives the required result. We prove the theorem by considering the cases $B \geqslant 0$ and $B \leqslant 0$ separately. Let

$$
\rho_{2}:=\frac{2}{3 \alpha(A-B)+2 B}
$$

and

$$
\rho_{3}:=\frac{2}{3 \alpha(A-B)-2 B} .
$$

Consider the case when $B \geqslant 0$. Then the centre $c_{1}(\alpha, A, B)(r) \leqslant 1$ and $\rho_{2}=2 /(3 \alpha(A-B)+2|B|)$. We can see that ρ_{2} is the root of the polynomial

$$
\xi(r):=\left(2 B^{2}+3 B \alpha(A-B)\right) r^{2}+3 \alpha(A-B) r-2,
$$

where $\xi(r)=0$ is equivalent to the equation $a_{1}(\alpha, A, B)(r)=c_{1}(\alpha, A, B)(r)-(1 / 3)$. Here $\xi(0)=-2<0$ and $\xi(1)=2 B^{2}+3 B \alpha(A-B)+3 \alpha(A-B)-2>0$, since the condition (1) in Theorem 6.2 does not hold, which shows that $\rho_{2} \in(0,1)$. Therefore by Lemma 6.1, the radius of starlikeness associated with the nephroid $\varphi_{N e}$ is at least ρ_{2}. To prove the sharpness, consider the function \tilde{f} from the class $C \mathcal{V}[A, B]$ given by (2.1) and the corresponding function $\tilde{g} \in C_{1}^{\alpha}[A, B]$. Then for $z=-\rho_{2}$, (2.2) shows that

$$
\frac{z \tilde{g}^{\prime}(z)}{\tilde{g}(z)}=\frac{\left(-\rho_{2}\right) \tilde{g}^{\prime}\left(-\rho_{2}\right)}{\tilde{g}\left(-\rho_{2}\right)}=\frac{1}{3}=\varphi_{N e}(-1)
$$

thus proving the sharpness for ρ_{2}.
Similarly, consider the case when $B \leqslant 0$. This implies that the centre $c_{1}(\alpha, A, B)(r) \geqslant 1$ and we can see that $\rho_{3}=2 /(3 \alpha(A-B)+2|B|)$. Note that ρ_{3} is the positive root of the polynomial

$$
\psi(r):=\left(2 B^{2}-3 B \alpha(A-B)\right) r^{2}+3 \alpha(A-B) r-2
$$

where $\psi(r)=0$ is equivalent to the equation $a_{1}(\alpha, A, B)(r)=(5 / 3)-c_{1}(\alpha, A, B)(r)$. Clearly $\rho_{3} \in(0,1)$ as $\psi(0)=-2<0$ and $\psi(1)=2 B^{2}-3 B \alpha(A-B)+3 \alpha(A-B)-2>0$, since the condition (2) in Theorem 6.2 does not hold. Hence by Lemma 6.1, the radius of starlikeness associated with the nephroid $\varphi_{N e}$ for the class $C_{1}^{\alpha}[A, B]$ is at least ρ_{3}. To prove the sharpness, consider the function \tilde{f} from the class $C \mathcal{V}[A, B]$ given by (2.1). By using (2.2) it can be seen that for $z=\rho_{3}$,

$$
\frac{z \tilde{g}^{\prime}(z)}{\tilde{g}(z)}=\frac{\left(\rho_{3}\right) \tilde{g}^{\prime}\left(\rho_{3}\right)}{\tilde{g}\left(\rho_{3}\right)}=\frac{5}{3}=\varphi_{N e}(1)
$$

which proves the sharpness for ρ_{3}.

The radius of starlikeness associated with the function $\varphi_{N e}$ for the class C_{2}^{α} is stated in the following theorem.

Theorem 6.4. Let $\alpha>0$. Then the radius of starlikeness associated with the nephroid $\varphi_{N e}$ for the class C_{2}^{α} is given by

$$
\mathcal{R}_{\mathcal{S T} \mathcal{T}_{\mathrm{Ne}}}\left(C_{2}^{\alpha}\right)=\frac{2}{3 \alpha+2}
$$

Proof. Our aim is to show that the disc $\mathbb{D}\left(c_{2}(\alpha)(r) ; a_{2}(\alpha)(r)\right)$ given in (3.2) is contained in $\varphi_{N e}(\mathbb{D})$ for all $0<r \leqslant$ $\mathcal{R}_{\mathcal{S T}_{\text {Ne }}}\left(C_{2}^{\alpha}\right)$. Here $c_{2}(\alpha)(r)>1$. Let

$$
\rho_{3}:=\frac{2}{3 \alpha+2}
$$

Consider the polynomial

$$
\psi(r):=(3 \alpha+2) r^{2}+3 \alpha r-2
$$

Then ρ_{3} is the positive root of the polynomial $\psi(r)$ and is less than 1 since $\alpha>0$ and $\psi(r)=0$ is equivalent to the equation $a_{2}(\alpha)(r)=(5 / 3)-c_{2}(\alpha)(r)$. Therefore by Lemma 6.1, the radius of starlikeness associated with the nephroid $\varphi_{N e}$ for the class C_{2}^{α} is at least ρ_{3}. To prove the sharpness, consider the function \tilde{f} from the class $C V^{\prime}$ given by $\tilde{f}(z)=z /(1-z)$ and the corresponding function $\tilde{g} \in C_{2}^{\alpha}$. Then for $z=\rho_{3}$, by (2.3),

$$
\frac{z \tilde{g}^{\prime}(z)}{\tilde{g}(z)}=\frac{\left(\rho_{3}\right) \tilde{g}^{\prime}\left(\rho_{3}\right)}{\tilde{g}\left(\rho_{3}\right)}=\frac{5}{3}=\varphi_{N e}(1)
$$

thus proving the sharpness for ρ_{3}.

7. Radius of starlikeness associated with the class $\boldsymbol{S T}_{\mathbb{C}}$

Raina and Sokól [17] considered the class $\mathcal{S T}_{\mathbb{C}}=\mathcal{S T}\left(\varphi_{\mathbb{C}}\right)$, where $\varphi_{\mathbb{C}}(z)=z+\sqrt{1+z^{2}}$ and proved that $f \in \mathcal{S \mathcal { T } _ { \mathbb { C } }}$ if and only if $z f^{\prime}(z) / f(z) \in \Omega_{\mathbb{C}}:=\left\{w \in \mathbb{C}:\left|w^{2}-1\right|<2|w|\right\}$ which is the interior of a lune. The following lemma due to Gandhi and Ravichandran [4] is used to find the radius of starlikeness associated with the function $\varphi_{\mathbb{C}}$ for the classes $C_{1}^{\alpha}[A, B]$ and C_{2}^{α}.
Lemma 7.1. [4] For $\sqrt{2}-1<a \leqslant \sqrt{2}+1$, let r_{a} be given by

$$
r_{a}=1-|\sqrt{2}-a|
$$

Then $\left\{w:|w-a|<r_{a}\right\} \subset \Omega_{\mathbb{C}}:=\left\{w:\left|w^{2}-1\right|<2|w|\right\}$.
Theorem 7.2. The inclusion $\mathcal{C}_{1}^{\alpha}[A, B] \subset \mathcal{S T}_{\mathbb{Q}}$ holds if either

1. $(-\alpha B(A-B)) /\left(1-B^{2}\right) \leqslant \sqrt{2}-1$ and $(\alpha(A-B)) /(1-B) \leqslant 2-\sqrt{2}$
or
2. $(-\alpha B(A-B)) /\left(1-B^{2}\right) \geqslant \sqrt{2}-1$ and $(\alpha(A-B)) /(1+B) \leqslant \sqrt{2}$.

Proof. Assume that (1) holds. The inequality $(-\alpha B(A-B)) /\left(1-B^{2}\right) \leqslant \sqrt{2}-1$ is equivalent to $c_{1}(\alpha, A, B)(1) \leqslant \sqrt{2}$. The result follows from Lemma 7.1, since the inequality $a_{1}(\alpha, A, B)(1) \leqslant c_{1}(\alpha, A, B)(1)-(\sqrt{2}-1)$ follows from $(\alpha(A-B)) /(1-B) \leqslant 2-\sqrt{2}$.

Now assume that $(-\alpha B(A-B)) /\left(1-B^{2}\right) \geqslant \sqrt{2}-1$ and $(\alpha(A-B)) /(1+B) \leqslant \sqrt{2}$. The first inequality reduces to $c_{1}(\alpha, A, B)(1) \geqslant \sqrt{2}$. The result will follow from Lemma 7.1 as the condition $a_{1}(\alpha, A, B)(1) \leqslant \sqrt{2}+1-c_{1}(\alpha, A, B)(1)$ directly follows from the inequality $(\alpha(A-B)) /(1+B) \leqslant \sqrt{2}$.

The results stated in the next two theorems are discussed when the conditions in Theorem 7.2 do not hold.

Theorem 7.3. Let $\alpha>0,-1 \leqslant B \leqslant 0$ and $B<A \leqslant 1$. If neither condition (1) nor condition (2) of Theorem 7.2 holds, then the radius of starlikeness associated with the lune $\varphi_{\mathbb{C}}$ for the class $C_{1}^{\alpha}[A, B]$ is given by

$$
\mathcal{R}_{\mathcal{S T}_{\mathbb{C}}}\left(C_{1}^{\alpha}[A, B]\right)= \begin{cases}\frac{2-\sqrt{2}}{\alpha(A-B)+(2-\sqrt{2}) B} & \text { if } \alpha(A-B) \geqslant 2|B| \\ \frac{\sqrt{2}}{\alpha(A-B)-\sqrt{2} B} & \text { if } \alpha(A-B) \leqslant 2|B|\end{cases}
$$

Proof. We aim to show that the disc $\mathbb{D}\left(c_{1}(\alpha, A, B)(r) ; a_{1}(\alpha, A, B)(r)\right)$ given in (3.1) is contained in $\Omega_{\mathbb{Q}}$ for all $0<r \leqslant \mathcal{R}_{\mathcal{S T}}^{\mathbb{Q}}$ ($\left.C_{1}^{\alpha}[A, B]\right)$. Let

$$
\rho_{2}:=\frac{2-\sqrt{2}}{\alpha(A-B)+(2-\sqrt{2}) B}
$$

and

$$
\rho_{3}:=\frac{\sqrt{2}}{\alpha(A-B)-\sqrt{2} B} .
$$

The centre $c_{1}(\alpha, A, B)(r) \geqslant 1$ since $B \leqslant 0$. We can see that ρ_{2} is the root of the polynomial

$$
\xi(r):=\left((2-\sqrt{2}) B^{2}+\alpha B(A-B)\right) r^{2}+\alpha(A-B) r-2+\sqrt{2}
$$

where $\xi(r)=0$ is equivalent to the equation $a_{1}(\alpha, A, B)(r)=c_{1}(\alpha, A, B)(r)-(\sqrt{2}-1)$. Note that $\rho_{2} \in(0,1)$ as $\xi(0)=-2+\sqrt{2}<0$ and $\xi(1)=(2-\sqrt{2}) B^{2}+\alpha B(A-B)+\alpha(A-B)-2+\sqrt{2}>0$, since the condition (1) in Theorem 7.2 does not hold. Similarly, ρ_{3} is the positive root of the polynomial

$$
\psi(r):=\left((\sqrt{2}) B^{2}-\alpha B(A-B)\right) r^{2}+(\alpha(A-B)) r-\sqrt{2}
$$

where $\psi(r)=0$ is equivalent to the equation $a_{1}(\alpha, A, B)(r)=\sqrt{2}+1-c_{1}(\alpha, A, B)(r)$. Clearly $\psi(0)=-\sqrt{2}<0$ and the condition (2) in Theorem 7.2 does not hold implies that $\psi(1)=(\sqrt{2}) B^{2}-\alpha B(A-B)+\alpha(A-B)-\sqrt{2}>0$. Hence $\rho_{3} \in(0,1)$. Let

$$
\rho_{1}:=\sqrt{\frac{\sqrt{2}-1}{\alpha|B|(A-B)+(\sqrt{2}-1) B^{2}}} .
$$

Then ρ_{1} is the positive root of the polynomial

$$
\tau(r):=\left(\alpha|B|(A-B)+(\sqrt{2}-1) B^{2}\right) r^{2}+1-\sqrt{2} .
$$

Observe that $\tau(r)=0$ is equivalent to the equation $c_{1}(\alpha, A, B)(r)=\sqrt{2}$. A readily calculation shows that $\rho_{2} \leqslant \rho_{1}$ if and only if $\alpha(A-B) \geqslant 2|B|$.

Case(i): $\alpha(A-B) \geqslant 2|B|$. In this case, $\rho_{2} \leqslant \rho_{1}$ and since $c_{1}(\alpha, A, B)(r)$ is an increasing function of r, we get $c_{1}(\alpha, A, B)\left(\rho_{2}\right) \leqslant c_{1}(\alpha, A, B)\left(\rho_{1}\right)=\sqrt{2}$. Therefore by Lemma 7.1, the radius of starlikeness associated with the lune $\varphi_{\mathbb{C}}$ for the class $C_{1}^{\alpha}[A, B]$ is at least ρ_{2}. To prove the sharpness, consider the function \tilde{f} from the class $C \mathcal{V}[A, B]$ given by (2.1) and the corresponding function $\tilde{g} \in C_{1}^{\alpha}[A, B]$. Then for $z=-\rho_{2}$, by (2.2) we get

$$
\frac{z \tilde{g}^{\prime}(z)}{\tilde{g}(z)}=\frac{\left(-\rho_{2}\right) \tilde{g}^{\prime}\left(-\rho_{2}\right)}{\tilde{g}\left(-\rho_{2}\right)}=\sqrt{2}-1=\varphi_{\mathbb{Q}}(-1),
$$

thus proving the sharpness for ρ_{2}.
Case(ii): $\alpha(A-B) \leqslant 2|B|$. When $\alpha(A-B) \leqslant 2|B|, \rho_{1} \leqslant \rho_{2}$ and hence $\sqrt{2}=c_{1}(\alpha, A, B)\left(\rho_{1}\right) \leqslant c_{1}(\alpha, A, B)\left(\rho_{2}\right)$. Therefore by Lemma 7.1, the radius of starlikeness associated with the lune $\varphi_{\mathbb{C}}$ for the class $C_{1}^{\alpha}[A, B]$ is at least ρ_{3}. To prove the sharpness, we consider the function \tilde{f} from the class $C \mathcal{V}[A, B]$ given by (2.1). It can be seen that for $z=\rho_{3}$, by using (2.2) we get

$$
\frac{z \tilde{g}^{\prime}(z)}{\tilde{g}(z)}=\frac{\left(\rho_{3}\right) \tilde{g}^{\prime}\left(\rho_{3}\right)}{\tilde{g}\left(\rho_{3}\right)}=1+\sqrt{2}=\varphi_{\mathbb{C}}(1)
$$

thus proving the sharpness for ρ_{3}.
The following theorem gives the radius result when $0<B<1$, which we state without proof.
Theorem 7.4. Let $\alpha>0,0<B<1$ and $B<A \leqslant 1$. If neither condition (1) nor condition (2) of Theorem 7.2 holds, then the radius of starlikeness associated with the lune $\varphi_{\mathbb{Q}}$ for the class $C_{1}^{\alpha}[A, B]$ is given by

$$
\mathcal{R}_{\mathcal{S T}}^{\mathbb{C}} \text { }\left(C_{1}^{\alpha}[A, B]\right)=\frac{2-\sqrt{2}}{\alpha(A-B)+(2-\sqrt{2}) B}
$$

Our next theorem gives the radius of starlikeness associated with the function $\varphi_{\mathbb{Q}}$ for the class C_{2}^{α}.
Theorem 7.5. Let $\alpha>0$. Then the radius of starlikeness associated with the lune $\varphi_{\mathbb{Q}}$ for the class C_{2}^{α} is given by

$$
\mathcal{R}_{\mathcal{S T}}^{\mathbb{C}} \text { }\left(C_{2}^{\alpha}\right)= \begin{cases}\frac{2-\sqrt{2}}{\alpha-(2-\sqrt{2})} & \text { if } \alpha \geqslant 2 \\ \frac{\sqrt{2}}{\alpha+\sqrt{2}} & \text { if } \alpha \leqslant 2\end{cases}
$$

Proof. Our aim is to show that the disc $\mathbb{D}\left(c_{2}(\alpha)(r) ; a_{2}(\alpha)(r)\right)$ given in (3.2) is contained in $\Omega_{\mathbb{Q}}$ for all $0<r \leqslant$ $\mathcal{R}_{\mathcal{S T}}^{\mathbb{C}}\left(C_{2}^{\alpha}\right)$. We have $c_{2}(\alpha)(r)>1$. Let

$$
\rho_{2}:=\frac{2-\sqrt{2}}{\alpha-(2-\sqrt{2})} \quad \text { and } \quad \rho_{3}:=\frac{\sqrt{2}}{\alpha+\sqrt{2}}
$$

For $\alpha \geqslant 2$, it can be seen that ρ_{2} is the positive root of the polynomial

$$
\xi(r):=(\alpha+\sqrt{2}-2) r^{2}-\alpha r+2-\sqrt{2}
$$

that is less than 1 and $\xi(r)=0$ is equivalent to the equation $a_{2}(\alpha)(r)=c_{2}(\alpha)(r)-(\sqrt{2}-1)$. In a similar manner, we can see that ρ_{3} is the positive root of the polynomial

$$
\psi(r):=(\alpha+\sqrt{2}) r^{2}+\alpha r-\sqrt{2}
$$

and is less than 1 since $\alpha>0$. Also the equation $\psi(r)=0$ is equivalent to the equation $a_{2}(\alpha)(r)=\sqrt{2}+1-c_{2}(\alpha)(r)$. The number

$$
\rho_{1}:=\sqrt{\frac{\sqrt{2}-1}{\alpha+\sqrt{2}-1}}
$$

is the positive root of the polynomial

$$
\tau(r):=(\alpha+\sqrt{2}-1) r^{2}+1-\sqrt{2}
$$

where $\tau(r)=0$ is equivalent to the equation $c_{2}(\alpha)(r)=\sqrt{2}$. Note that $\rho_{2} \leqslant \rho_{1}$ if and only if $\alpha \geqslant 2$.
Case(i): $\alpha \geqslant 2$. When $\alpha \geqslant 2, \rho_{2} \leqslant \rho_{1}$ and since $c_{2}(\alpha)(r)$ is an increasing function of $r, c_{2}(\alpha)\left(\rho_{2}\right) \leqslant c_{2}(\alpha)\left(\rho_{1}\right)=\sqrt{2}$. Therefore by Lemma 7.1, the radius of starlikeness associated with the lune $\varphi_{\mathbb{Q}}$ for the class C_{2}^{α} is at least ρ_{2}. To prove the sharpness, consider the function \tilde{f} from the class $C \mathcal{V}^{\prime}$ given by $\tilde{f}(z)=z /(1-z)$. Then for the corresponding function $\tilde{g} \in C_{2}^{\alpha}$, for $z=-\rho_{2}$, (2.3) shows that

$$
\frac{z \tilde{g}^{\prime}(z)}{\tilde{g}(z)}=\frac{\left(-\rho_{2}\right) \tilde{g}^{\prime}\left(-\rho_{2}\right)}{\tilde{g}\left(-\rho_{2}\right)}=\sqrt{2}-1=\varphi_{\mathbb{Q}}(-1),
$$

thus proving the sharpness for ρ_{2}.
Case(ii): $\alpha \leqslant 2$. In this case, $\rho_{1} \leqslant \rho_{2}$ and since $c_{2}(\alpha)(r)$ is an increasing function of $r, \sqrt{2}=c_{2}(\alpha)\left(\rho_{1}\right) \leqslant c_{2}(\alpha)\left(\rho_{2}\right)$. Therefore by Lemma 7.1, the radius of starlikeness associated with the lune $\varphi_{\mathbb{C}}$ for the class C_{2}^{α} is at least ρ_{3}. To prove the sharpness, consider the function $\tilde{f}(z)=z /(1-z)$ from the class $C \mathcal{V}^{\prime}$. From (2.3) it can be seen that, for $z=\rho_{3}$,

$$
\frac{z \tilde{g}^{\prime}(z)}{\tilde{g}(z)}=\frac{\left(\rho_{3}\right) \tilde{g}^{\prime}\left(\rho_{3}\right)}{\tilde{g}\left(\rho_{3}\right)}=1+\sqrt{2}=\varphi_{\mathbb{C}}(1)
$$

8. Radius of starlikeness associated with the class $\boldsymbol{S T}_{\wp}$

Kumar and Kamaljeet [10] defined the class $\mathcal{S T} \mathcal{T}_{\wp}=\mathcal{S T}\left(\varphi_{\wp}\right)$, where $\varphi_{\wp}(z)=1+z e^{z}$. The boundary of $\varphi_{\wp}(\mathbb{D})$ is a cardiod. The following lemma is due to them.

Lemma 8.1. [10] For $1-(1 / e)<a<1+e$, let r_{a} be given by

$$
r_{a}= \begin{cases}(a-1)+\frac{1}{e} & \text { if } 1-\frac{1}{e}<a \leqslant 1+\frac{e-e^{-1}}{2} \\ e-(a-1) & \text { if } 1+\frac{e-e^{-1}}{2} \leqslant a<1+e .\end{cases}
$$

Then $\left\{w:|w-a|<r_{a}\right\} \subset \varphi_{\wp}(\mathbb{D})$.
Theorem 8.2. The inclusion $\mathcal{C}_{1}^{\alpha}[A, B] \subset \mathcal{S T} \mathcal{T}_{\rho}$ holds if either

1. $(-\alpha B(A-B)) /\left(1-B^{2}\right) \leqslant\left(e-e^{-1}\right) / 2$ and $(\alpha(A-B)) /(1-B) \leqslant 1 / e$
or
2. $(-\alpha B(A-B)) /\left(1-B^{2}\right) \geqslant\left(e-e^{-1}\right) / 2$ and $(\alpha(A-B)) /(1+B) \leqslant e$.

Proof. Assume that $(-\alpha B(A-B)) /\left(1-B^{2}\right) \leqslant\left(e-e^{-1}\right) / 2$ and $(\alpha(A-B)) /(1-B) \leqslant 1 / e$. The first inequality is equivalent to $c_{1}(\alpha, A, B)(1) \leqslant 1+\left(e-e^{-1}\right) / 2$. The required result follows from Lemma 8.1 as the inequality $a_{1}(\alpha, A, B)(1) \leqslant c_{1}(\alpha, A, B)(1)-1+1 / e$ is obtained directly from $(\alpha(A-B)) /(1-B) \leqslant 1 / e$.

Assume that $(-\alpha B(A-B)) /\left(1-B^{2}\right) \geqslant\left(e-e^{-1}\right) / 2$ and $(\alpha(A-B)) /(1+B) \leqslant e$. The first inequality reduces to $c_{1}(\alpha, A, B)(1) \geqslant 1+\left(e-e^{-1}\right) / 2$. As the condition $a_{1}(\alpha, A, B)(1) \leqslant e-\left(c_{1}(\alpha, A, B)(1)-1\right)$ is obtained from the inequality $(\alpha(A-B)) /(1+B) \leqslant e$, the result follows from Lemma 8.1.

When the conditions in Theorem 8.2 do not hold, then we discuss about the radius problem which is stated in the next two theorems.

Theorem 8.3. Let $\alpha>0,-1 \leqslant B \leqslant 0$ and $B<A \leqslant 1$. If neither condition (1) nor condition (2) of Theorem 8.2 holds, then the radius of starlikeness associated with the cardiod φ_{\wp} for the class $C_{1}^{\alpha}[A, B]$ is given by

$$
\mathcal{R}_{\mathcal{S T}_{\varphi}}\left(C_{1}^{\alpha}[A, B]\right)= \begin{cases}\frac{1}{e \alpha(A-B)+B} & \text { if } \alpha(A-B)\left(e-e^{-1}\right) \geqslant 2|B| \\ \frac{e}{\alpha(A-B)-e B} & \text { if } \quad \alpha(A-B)\left(e-e^{-1}\right) \leqslant 2|B| .\end{cases}
$$

Proof. We prove the theorem by showing that the disc $\mathbb{D}\left(c_{1}(\alpha, A, B)(r) ; a_{1}(\alpha, A, B)(r)\right)$ given in (3.1) is contained in $\varphi_{\wp}(\mathbb{D})$ for all $0<r \leqslant \mathcal{R}_{\mathcal{S} \mathcal{T}_{\rho}}\left(C_{1}^{\alpha}[A, B]\right)$. Since $B \leqslant 0$, the centre $c_{1}(\alpha, A, B)(r) \geqslant 1$. Consider the polynomial

$$
\xi(r):=\left(B^{2}+e \alpha B(A-B)\right) r^{2}+e \alpha(A-B) r-1 .
$$

Then we can see that ρ_{2} is the root of the polynomial $\xi(r)$, where

$$
\rho_{2}:=\frac{1}{e \alpha(A-B)+B}
$$

and note that $\xi(r)=0$ is equivalent to the equation $a_{1}(\alpha, A, B)(r)=c_{1}(\alpha, A, B)(r)-1+(1 / e)$. As $\xi(0)=-1<0$ and $\xi(1)=B^{2}+e \alpha B(A-B)+e \alpha(A-B)-1>0$, since the condition (1) in Theorem 8.2 does not hold, we get $\rho_{2} \in(0,1)$. Similarly, let

$$
\rho_{3}:=\frac{e}{\alpha(A-B)-e B} .
$$

Then ρ_{3} is the positive root of the polynomial

$$
\psi(r):=\left(e B^{2}-\alpha B(A-B)\right) r^{2}+\alpha(A-B) r-e,
$$

where $\psi(r)=0$ is equivalent to the equation $a_{1}(\alpha, A, B)(r)=e-\left(c_{1}(\alpha, A, B)(r)-1\right)$. Clearly $\psi(0)=-e<0$ and since the condition (2) in Theorem 8.2 does not hold, $\psi(1)=e B^{2}-\alpha B(A-B)+\alpha(A-B)-e>0$ and thus $\rho_{3} \in(0,1)$. The number

$$
\rho_{1}:=\sqrt{\frac{e-e^{-1}}{2 \alpha|B|(A-B)+\left(e-e^{-1}\right) B^{2}}}
$$

is the positive root of the polynomial

$$
\tau(r):=\left(\left(e-e^{-1}\right) B^{2}+2 \alpha|B|(A-B)\right) r^{2}-e+e^{-1} .
$$

Observe that $\tau(r)=0$ is equivalent to the equation $c_{1}(\alpha, A, B)(r)=1+\left(e-e^{-1}\right) / 2$. Comparing ρ_{2} and ρ_{1}, we get the relation that $\rho_{2} \leqslant \rho_{1}$ if and only if $\alpha(A-B)\left(e-e^{-1}\right) \geqslant 2|B|$.

Case($i): \alpha(A-B)\left(e-e^{-1}\right) \geqslant 2|B|$. Here $c_{1}(\alpha, A, B)\left(\rho_{2}\right) \leqslant c_{1}(\alpha, A, B)\left(\rho_{1}\right)=1+\left(e-e^{-1}\right) / 2$ as $\rho_{2} \leqslant \rho_{1}$. Therefore by Lemma 8.1, the radius of starlikeness associated with the cardiod φ_{\wp} for the class $C_{1}^{\alpha}[A, B]$ is at least ρ_{2}. To prove the sharpness, consider the function \tilde{f} from the class $C \mathcal{V}[A, B]$ given by (2.1) and the corresponding function $\tilde{g} \in C_{1}^{\alpha}[A, B]$. Then for $z=-\rho_{2}$, by using (2.2), we get

$$
\frac{z \tilde{g}^{\prime}(z)}{\tilde{g}(z)}=\frac{\left(-\rho_{2}\right) \tilde{g}^{\prime}\left(-\rho_{2}\right)}{\tilde{g}\left(-\rho_{2}\right)}=1-e^{-1}=\varphi_{\wp}(-1)
$$

thus proving the sharpness for ρ_{2}.
Case(ii): $\alpha(A-B)\left(e-e^{-1}\right) \leqslant 2|B|$. In this case, $\rho_{1} \leqslant \rho_{2}$ and hence $1+\left(e-e^{-1}\right) / 2=c_{1}(\alpha, A, B)\left(\rho_{1}\right) \leqslant c_{1}(\alpha, A, B)\left(\rho_{2}\right)$. Therfore, Lemma 8.1 guarantees that the radius of starlikeness associated with the cardiod φ_{\wp} for the class $C_{1}^{\alpha}[A, B]$ is at least ρ_{3}. The function \tilde{f} from the class $C \mathcal{V}[A, B]$ given by (2.1) is considered to prove the sharpness. It can be seen from (2.2) that for $z=\rho_{3}$,

$$
\frac{z \tilde{g}^{\prime}(z)}{\tilde{g}(z)}=\frac{\left(\rho_{3}\right) \tilde{g}^{\prime}\left(\rho_{3}\right)}{\tilde{g}\left(\rho_{3}\right)}=1+e=\varphi_{\wp}(1)
$$

thus proving the sharpness for ρ_{3}.
The result in the case when $0<B<1$ is similar, which we state in the following theorem without proof.

Theorem 8.4. Let $\alpha>0,0<B<1$ and $B<A \leqslant 1$. If neither condition (1) nor condition (2) of Theorem 8.2 holds, then the radius of starlikeness associated with the cardiod φ_{\wp} for the class $C_{1}^{\alpha}[A, B]$ is given by

$$
\mathcal{R}_{\mathcal{S T}_{\varphi}}\left(C_{1}^{\alpha}[A, B]\right)=\frac{1}{e \alpha(A-B)+B}
$$

The following theorem gives the radius of starlikeness associated with function φ_{\wp} for the class C_{2}^{α}.
Theorem 8.5. Let $\alpha>0$. Then the radius of starlikeness associated with the cardiod φ_{\wp} for the class C_{2}^{α} is given by

$$
\mathcal{R}_{\mathcal{S T}_{\varphi}}\left(C_{2}^{\alpha}\right)=\left\{\begin{array}{lll}
\frac{1}{e \alpha-1} & \text { if } & \alpha \geqslant \frac{2}{e-e^{-1}} \\
\frac{e}{\alpha+e} & \text { if } & \alpha \leqslant \frac{2}{e-e^{-1}}
\end{array}\right.
$$

Proof. Our aim is to show that the disc $\mathbb{D}\left(c_{2}(\alpha)(r) ; a_{2}(\alpha)(r)\right)$ given in (3.2) is contained in $\varphi_{\wp}(\mathbb{D})$ for all $0<r \leqslant$ $\mathcal{R}_{\mathcal{S T}_{\rho}}\left(C_{2}^{\alpha}\right)$. Let

$$
\rho_{2}:=\frac{1}{e \alpha-1}
$$

and

$$
\rho_{3}:=\frac{e}{\alpha+e} .
$$

Here $c_{2}(\alpha)(r)>1$. It can be seen that for $\alpha \geqslant 2 /\left(e-e^{-1}\right), \rho_{2}$ is the positive root of the polynomial

$$
\xi(r):=(e \alpha-1) r^{2}-e \alpha r+1
$$

that is less than 1 and $\xi(r)=0$ is equivalent to the equation $a_{2}(\alpha)(r)=c_{2}(\alpha)(r)-1+(1 / e)$. Similarly, ρ_{3} is the positive root of the polynomial

$$
\psi(r):=(\alpha+e) r^{2}+\alpha r-e
$$

and is less than 1 since $\alpha>0$. Also the equation $\psi(r)=0$ is equivalent to the equation $a_{2}(\alpha)(r)=e-\left(c_{2}(\alpha)(r)-1\right)$. The number

$$
\rho_{1}:=\sqrt{\frac{e-e^{-1}}{2 \alpha+e-e^{-1}}}
$$

is the positive root of the polynomial

$$
\tau(r):=\left(2 \alpha+e-e^{-1}\right) r^{2}-e+e^{-1}
$$

where $\tau(r)=0$ is equivalent to the equation $c_{2}(\alpha)(r)=1+\left(e-e^{-1}\right) / 2$. Comparing ρ_{1} and ρ_{2}, we get that $\rho_{2} \leqslant \rho_{1}$ if and only if $\alpha \geqslant 2 /\left(e-e^{-1}\right)$. Therefore we consider the following cases.

Case($i): \alpha \geqslant 2 /\left(e-e^{-1}\right)$. When $\alpha \geqslant 2 /\left(e-e^{-1}\right), \rho_{2} \leqslant \rho_{1}$ and since $c_{2}(\alpha)(r)$ is an increasing function of r, $c_{2}(\alpha)\left(\rho_{2}\right) \leqslant c_{2}(\alpha)\left(\rho_{1}\right)=1+\left(e-e^{-1}\right) / 2$. Therefore by Lemma 8.1, the radius of starlikeness associated with the cardiod φ_{\wp} for the class C_{2}^{α} is at least ρ_{2}. To prove the sharpness, consider the function \tilde{f} from the class $C V^{\prime}$ given by $\tilde{f}(z)=z /(1-z)$ and the corresponding function $\tilde{g} \in C_{2}^{\alpha}$. Then by (2.3) we can see that, for $z=-\rho_{2}$,

$$
\frac{z \tilde{g}^{\prime}(z)}{\tilde{g}(z)}=\frac{\left(-\rho_{2}\right) \tilde{g}^{\prime}\left(-\rho_{2}\right)}{\tilde{g}\left(-\rho_{2}\right)}=1-e^{-1}=\varphi_{\wp}(-1)
$$

thus proving the sharpness for ρ_{2}.

Case(ii): $\alpha \leqslant 2 /\left(e-e^{-1}\right)$. When $\alpha \leqslant 2 /\left(e-e^{-1}\right), \rho_{1} \leqslant \rho_{2}$ and since $c_{2}(\alpha)(r)$ is an increasing function of r, $1+\left(e-e^{-1}\right) / 2=c_{2}(\alpha)\left(\rho_{1}\right) \leqslant c_{2}(\alpha)\left(\rho_{2}\right)$. Therefore by Lemma 8.1, the radius of starlikeness associated with the cardioid φ_{\wp} for the class C_{2}^{α} is at least ρ_{3}. To prove the sharpness, consider the function $\tilde{f}(z)=z /(1-z)$ from the class $C V^{\prime}$. Then for $z=\rho_{3},(2.3)$ shows that

$$
\frac{z \tilde{g}^{\prime}(z)}{\tilde{g}(z)}=\frac{\left(\rho_{3}\right) \tilde{g}^{\prime}\left(\rho_{3}\right)}{\tilde{g}\left(\rho_{3}\right)}=1+e=\varphi_{\wp}(1) .
$$

9. Radius of starlikeness associated with the class $\mathcal{S T}_{S G}$

The class $\mathcal{S T}_{S G}=\boldsymbol{S T}\left(\varphi_{S G}\right)$ where $\varphi_{S G}(z)=2 /\left(1+e^{-z}\right)$ was introduced by Goel and Kumar [6]. The boundary of $\varphi_{S G}(\mathbb{D})$ is a modified sigmoid. They proved the following lemma.
Lemma 9.1. [6] For $2 /(1+e)<a<2 e /(1+e)$, let r_{a} be given by

$$
r_{a}=\frac{e-1}{e+1}-|a-1| .
$$

Then $\left\{w:|w-a|<r_{a}\right\} \subset \varphi_{S G}(\mathbb{D})=\Delta_{S G}:=\{w:|\log w /(2-w)|<1\}$.
Theorem 9.2. The inclusion $C_{1}^{\alpha}[A, B] \subset \mathcal{S T}$ SG holds if either

1. $B \geqslant 0$ and $(\alpha(A-B)) /(1-B) \leqslant(e-1) /(e+1)$
or
2. $B \leqslant 0$ and $(\alpha(A-B)) /(1+B) \leqslant(e-1) /(e+1)$.

Proof. Assume that $B \geqslant 0$ and $(\alpha(A-B)) /(1-B) \leqslant(e-1) /(e+1)$. The inequality $B \geqslant 0$ is equivalent to $c_{1}(\alpha, A, B)(1) \leqslant$ 1. Since the inequality $a_{1}(\alpha, A, B)(1) \leqslant c_{1}(\alpha, A, B)(1)+(e-1) /(e+1)-1$ follows from $(\alpha(A-B)) /(1-B) \leqslant(e-1) /(e+1)$, the result follows from Lemma 9.1.

Now assume that $B \leqslant 0$ and $(\alpha(A-B)) /(1+B) \leqslant(e-1) /(e+1)$. The first inequality reduces to $c_{1}(\alpha, A, B)(1) \geqslant 1$. The result will follow from Lemma 9.1 if $a_{1}(\alpha, A, B)(1) \leqslant(e-1) /(e+1)+1-c_{1}(\alpha, A, B)(1)$ which directly follows from the inequality $(\alpha(A-B)) /(1+B) \leqslant(e-1) /(e+1)$.

When the conditions in Theorem 9.2 do not hold, then we have the result giving the radius of starlikeness associated with the function $\varphi_{S G}$ for the class $C_{1}^{\alpha}[A, B]$, which is stated in the following theorem.

Theorem 9.3. Let $\alpha>0$ and $-1 \leqslant B<A \leqslant 1$. If neither condition (1) nor condition (2) of Theorem 9.2 holds, then the radius of starlikeness associated with the modified sigmoid function $\varphi_{S G}$ for the class $C_{1}^{\alpha}[A, B]$ is given by

$$
\mathcal{R}_{\mathcal{S T}}\left(C_{1}^{\alpha}[A, B]\right)=\frac{e-1}{(e+1) \alpha(A-B)+(e-1)|B|}
$$

Proof. Consider the disc $\mathbb{D}\left(c_{1}(\alpha, A, B)(r) ; a_{1}(\alpha, A, B)(r)\right)$ given in (3.1). We prove the theorem by proving the containment of this disc in $\Delta_{S G}$ for all $0<r \leqslant \mathcal{R}_{\mathcal{S T}}{ }_{s G}\left(C_{1}^{\alpha}[A, B]\right)$. Consider the case when $B \geqslant 0$. Then the centre $c_{1}(\alpha, A, B)(r) \leqslant 1$. Let

$$
\rho_{2}:=\frac{e-1}{(e+1) \alpha(A-B)+(e-1) B} .
$$

Note that $\rho_{2}=(e-1) /((e+1) \alpha(A-B)+(e-1)|B|)$ and ρ_{2} is the root of the polynomial

$$
\xi(r):=\left((e-1) B^{2}+(e+1) B \alpha(A-B)\right) r^{2}+(e+1) \alpha(A-B) r+1-e,
$$

where $\xi(r)=0$ is equivalent to the equation $a_{1}(\alpha, A, B)(r)=c_{1}(\alpha, A, B)(r)+(e-1) /(e+1)-1$. As $\xi(0)=1-e<0$ and $\xi(1)=(e-1) B^{2}+(e+1) B \alpha(A-B)+(e+1) \alpha(A-B)+1-e>0$, since the condition (1) in Theorem 9.2 does not hold, the belongingness of ρ_{2} in the interval $(0,1)$ is guaranteed. Therefore by Lemma 9.1, the radius of starlikeness associated with the modified sigmoid function $\varphi_{S G}$ is at least ρ_{2}. To prove the sharpness, consider the function \tilde{f} from the class $C \mathcal{V}[A, B]$ given by (2.1). For the above function \tilde{f} and the corresponding function $\tilde{g} \in C_{1}^{\alpha}[A, B]$, by using (2.2), for $z=-\rho_{2}$, we get

$$
\frac{z \tilde{g}^{\prime}(z)}{\tilde{g}(z)}=\frac{\left(-\rho_{2}\right) \tilde{g}^{\prime}\left(-\rho_{2}\right)}{\tilde{g}\left(-\rho_{2}\right)}=\frac{2}{1+e}=\varphi_{S G}(-1)
$$

thus proving the sharpness for ρ_{2}.
Similarly, when $B \leqslant 0$, the centre $c_{1}(\alpha, A, B)(r) \geqslant 1$. Note that ρ_{3} is the positive root of the polynomial

$$
\psi(r):=\left((e-1) B^{2}-(e+1) B \alpha(A-B)\right) r^{2}+(e+1) \alpha(A-B) r+1-e
$$

where

$$
\rho_{3}:=\frac{e-1}{(e+1) \alpha(A-B)-(e-1) B} .
$$

Observe that $\rho_{3}=(e-1) /((e+1) \alpha(A-B)+(e-1)|B|)$ and $\psi(r)=0$ is equivalent to the equation $a_{1}(\alpha, A, B)(r)=$ $(e-1) /(e+1)+1-c_{1}(\alpha, A, B)(r)$. Clearly $\psi(0)=1-e<0$ and since the condition (2) in Theorem 9.2 does not hold, $\psi(1)=(e-1) B^{2}-(e+1) B \alpha(A-B)+(e+1) \alpha(A-B)+1-e>0$ and thus $\rho_{3} \in(0,1)$. Hence by Lemma 9.1, the radius of starlikeness associated with the modified sigmoid function $\varphi_{S G}$ for the class $C_{1}^{\alpha}[A, B]$ is at least ρ_{3}. To prove the sharpness, consider the function \tilde{f} from the class $C \mathcal{V}[A, B]$ given by (2.1). It can be seen from (2.2) that for $z=\rho_{3}$,

$$
\frac{z \tilde{g}^{\prime}(z)}{\tilde{g}(z)}=\frac{\left(\rho_{3}\right) \tilde{g}^{\prime}\left(\rho_{3}\right)}{\tilde{g}\left(\rho_{3}\right)}=\frac{2 e}{e+1}=\varphi_{S G}(1)
$$

thus proving the sharpness for ρ_{3}.
The following theorem gives the radius result associated with the function $\varphi_{S G}$ corresponding to the class C_{2}^{α}.
Theorem 9.4. Let $\alpha>0$. Then the radius of starlikeness associated with the modified sigmoid function $\varphi_{S G}$ for the class C_{2}^{α} is given by

$$
\mathcal{R}_{\mathcal{S T}}\left(C_{2}^{\alpha}\right)=\frac{e-1}{(e+1) \alpha+(e-1)}
$$

Proof. Our aim is to show that the disc $\mathbb{D}\left(c_{2}(\alpha)(r) ; a_{2}(\alpha)(r)\right)$ given in (3.2) is contained in $\Delta_{S G}$ for all $0<r \leqslant$ $\mathcal{R}_{\mathcal{S T}}{ }_{\text {sG }}\left(C_{2}^{\alpha}\right)$. Let

$$
\rho_{3}:=\frac{e-1}{(e+1) \alpha+(e-1)} .
$$

Here $c_{2}(\alpha)(r)>1$. It can be seen that ρ_{3} is the positive root of the polynomial

$$
\psi(r):=((e+1) \alpha+e-1) r^{2}+(e+1) \alpha r+1-e
$$

and is less than 1 since $\alpha>0$ and $\psi(r)=0$ is equivalent to the equation $a_{2}(\alpha)(r)=(e-1) /(e+1)+1-c_{2}(\alpha)(r)$. Therefore by Lemma 9.1, the radius of starlikeness associated with the modified sigmoid function $\varphi_{S G}$ for the class C_{2}^{α} is at least ρ_{3}. To prove the sharpness, consider the function \tilde{f} from the class $\mathcal{C} \mathcal{V}^{\prime}$ given by $\tilde{f}(z)=z /(1-z)$. Then for the corresponding function $\tilde{g} \in C_{2}^{\alpha}$, for $z=\rho_{3}$, (2.3) shows that

$$
\frac{z \tilde{g}^{\prime}(z)}{\tilde{g}(z)}=\frac{\left(\rho_{3}\right) \tilde{g}^{\prime}\left(\rho_{3}\right)}{\tilde{g}\left(\rho_{3}\right)}=\frac{2 e}{e+1}=\varphi_{S G}(1),
$$

thus proving the sharpness for ρ_{3}.

10. Radius of starlikeness associated with the class $\mathcal{S T}_{\text {sin }}$

Cho et al. [2] introduced the class $\mathcal{S T}_{\sin }=\mathcal{S T}\left(\varphi_{\sin }\right)$, where $\varphi_{\sin }(z)=1+\sin z$ and proved the following lemma.

Lemma 10.1. [2] For $1-\sin 1<a<1+\sin 1$, let r_{a} be given by

$$
r_{a}=\sin 1-|a-1|
$$

Then $\left\{w:|w-a|<r_{a}\right\} \subset \varphi_{\sin }(\mathbb{D})$.
Theorem 10.2. The inclusion $C_{1}^{\alpha}[A, B] \subset \mathcal{S} \mathcal{T}_{\text {sin }}$ holds if either

1. $B \geqslant 0$ and $(\alpha(A-B)) /(1-B) \leqslant \sin 1$ or
2. $B \leqslant 0$ and $(\alpha(A-B)) /(1+B) \leqslant \sin 1$.

Proof. Assume that (1) holds. The inequality $B \geqslant 0$ is equivalent to $c_{1}(\alpha, A, B)(1) \leqslant 1$. The condition $a_{1}(\alpha, A, B)(1) \leqslant$ $c_{1}(\alpha, A, B)(1)+(\sin 1)-1$ follows from $(\alpha(A-B)) /(1-B) \leqslant \sin 1$ and hence by Lemma 10.1, the result follows.

Similarly, if $B \leqslant 0$ and $(\alpha(A-B)) /(1+B) \leqslant \sin 1$, then the first inequality reduces to $c_{1}(\alpha, A, B)(1) \geqslant 1$ and the condition $a_{1}(\alpha, A, B)(1) \leqslant(\sin 1)+1-c_{1}(\alpha, A, B)(1)$ directly follows from the inequality $(\alpha(A-B)) /(1+B) \leqslant \sin 1$. Therefore, the result follows from Lemma 10.1.

Our next theorem gives the radius of starlikeness associated with the function $\varphi_{\sin }$ for the class $C_{1}^{\alpha}[A, B]$, when the conditions in Theorem 10.2 do not hold.

Theorem 10.3. Let $\alpha>0$ and $-1 \leqslant B<A \leqslant 1$. If neither condition (1) nor condition (2) of Theorem 10.2 holds, then the radius of starlikeness associated with the function $\varphi_{\sin }$ for the class $C_{1}^{\alpha}[A, B]$ is given by

$$
\mathcal{R}_{\mathcal{S} \mathcal{T}_{\sin }}\left(C_{1}^{\alpha}[A, B]\right)=\frac{\sin 1}{\alpha(A-B)+(\sin 1)|B|}
$$

Proof. By proving that the disc $\mathbb{D}\left(c_{1}(\alpha, A, B)(r) ; a_{1}(\alpha, A, B)(r)\right)$ given in (3.1) is contained in $\varphi_{\sin }(\mathbb{D})$ for all $0<r \leqslant$ $\mathcal{R}_{\mathcal{S} \mathcal{T}_{\text {sin }}}\left(C_{1}^{\alpha}[A, B]\right)$, the required result will follow. Let

$$
\rho_{2}:=\frac{\sin 1}{\alpha(A-B)+(\sin 1) B}
$$

and

$$
\rho_{3}:=\frac{\sin 1}{\alpha(A-B)-(\sin 1) B}
$$

If $B \geqslant 0$, the centre $c_{1}(\alpha, A, B)(r) \leqslant 1$ and $\rho_{2}=(\sin 1) /(\alpha(A-B)+(\sin 1)|B|)$. We can see that ρ_{2} is the root of the polynomial

$$
\xi(r):=\left((\sin 1) B^{2}+\alpha B(A-B)\right) r^{2}+\alpha(A-B) r-\sin 1
$$

where $\xi(r)=0$ is equivalent to the equation $a_{1}(\alpha, A, B)(r)=c_{1}(\alpha, A, B)(r)+(\sin 1)-1$. Note that $\xi(0)=-\sin 1<0$ and $\xi(1)=(\sin 1) B^{2}+\alpha B(A-B)+\alpha(A-B)-\sin 1>0$, since the condition (1) in Theorem 10.2 does not hold. Hence $\rho_{2} \in(0,1)$. Therefore by Lemma 10.1, the radius of starlikeness associated with the function $\varphi_{\sin }$ is at least ρ_{2}. Now consider the function \tilde{f} from the class $C \mathcal{V}[A, B]$ given by (2.1) and the corresponding function $\tilde{g} \in C_{1}^{\alpha}[A, B]$. Then, for $z=-\rho_{2}$, by using (2.2), we get

$$
\frac{z \tilde{g}^{\prime}(z)}{\tilde{g}(z)}=\frac{\left(-\rho_{2}\right) \tilde{g}^{\prime}\left(-\rho_{2}\right)}{\tilde{g}\left(-\rho_{2}\right)}=1-\sin 1=\varphi_{\sin }(-1),
$$

which proves the sharpness for ρ_{2}.
Similarly, if $B \leqslant 0$, the centre $c_{1}(\alpha, A, B)(r) \geqslant 1$ and $\rho_{3}=(\sin 1) /(\alpha(A-B)+(\sin 1)|B|)$. Note that ρ_{3} is the positive root of the polynomial

$$
\psi(r):=\left((\sin 1) B^{2}-\alpha B(A-B)\right) r^{2}+\alpha(A-B) r-\sin 1
$$

where $\psi(r)=0$ is equivalent to the equation $a_{1}(\alpha, A, B)(r)=(\sin 1)+1-c_{1}(\alpha, A, B)(r)$. Clearly $\psi(0)=-\sin 1<0$ and since the condition (2) in Theorem 10.2 does not hold, $\psi(1)=(\sin 1) B^{2}-\alpha B(A-B)+\alpha(A-B)-\sin 1>0$ and thus $\rho_{3} \in(0,1)$. Hence by Lemma 10.1, the radius of starlikeness associated with the function $\varphi_{\sin }$ for the class $C_{1}^{\alpha}[A, B]$ is at least ρ_{3}. The sharpness can be proved by considering the function \tilde{f} from the class $C \mathcal{V}[A, B]$ given by (2.1). Then if \tilde{g} is the corresponding function in $C_{1}^{\alpha}[A, B]$, by using (2.2), for $z=\rho_{3}$, we get

$$
\frac{z \tilde{g}^{\prime}(z)}{\tilde{g}(z)}=\frac{\left(\rho_{3}\right) \tilde{g}^{\prime}\left(\rho_{3}\right)}{\tilde{g}\left(\rho_{3}\right)}=1+\sin 1=\varphi_{\sin }(1)
$$

thus proving the sharpness for ρ_{3}.
We now turn our attention to finding the radius of starlikeness associated with the function $\varphi_{\sin }$ for the class C_{2}^{α} which is stated in the following theorem.
Theorem 10.4. Let $\alpha>0$. Then the radius of starlikeness associated with the function $\varphi_{\sin }$ for the class C_{2}^{α} is given by

$$
\mathcal{R}_{\mathcal{S} \mathcal{T}_{\text {sin }}}\left(C_{2}^{\alpha}\right)=\frac{\sin 1}{\alpha+\sin 1}
$$

Proof. Our aim is to show that the disc $\mathbb{D}\left(c_{2}(\alpha)(r) ; a_{2}(\alpha)(r)\right)$ given in (3.2) is contained in $\varphi_{\text {sin }}(\mathbb{D})$ for all $0<r \leqslant$ $\mathcal{R}_{\mathcal{S} \mathcal{T}_{\text {sin }}}\left(C_{2}^{\alpha}\right)$. Here $\mathcal{c}_{2}(\alpha)(r)>1$. Consider the polynomial

$$
\psi(r):=(\alpha+\sin 1) r^{2}+\alpha r-\sin 1
$$

and let

$$
\rho_{3}:=\frac{\sin 1}{\alpha+\sin 1} .
$$

It can be seen that ρ_{3} is the positive root of the polynomial $\psi(r)$ and is less than 1 since $\alpha>0$ and $\psi(r)=0$ is equivalent to the equation $a_{2}(\alpha)(r)=(\sin 1)+1-c_{2}(\alpha)(r)$. Therefore by Lemma 10.1, the radius of starlikeness associated with the function $\varphi_{\sin }$ for the class C_{2}^{α} is at least ρ_{3}. Considering the function \tilde{f} from the class $C \mathcal{V}^{\prime}$ given by $\tilde{f}(z)=z /(1-z)$ and the corresponding function $\tilde{g} \in C_{2}^{\alpha}$, by using (2.3), for $z=\rho_{3}$, we get

$$
\frac{z \tilde{g}^{\prime}(z)}{\tilde{g}(z)}=\frac{\left(\rho_{3}\right) \tilde{g}^{\prime}\left(\rho_{3}\right)}{\tilde{g}\left(\rho_{3}\right)}=1+\sin 1=\varphi_{\sin }(1)
$$

which proves the sharpness for ρ_{3}.

11. Radius of starlikeness associated with the class $\boldsymbol{S T}_{h}$

Kumar and Arora [9] defined the class $\mathcal{S T}{ }_{h}=\mathcal{S T}\left(\varphi_{h}\right)$ where $\varphi_{h}(z)=1+\sinh ^{-1}(z)$. The boundary of $\varphi_{h}(\mathbb{D})$ is petal shaped. The following lemma is due to them.

Lemma 11.1. [9] For $1-\sinh ^{-1}(1)<a<1+\sinh ^{-1}(1)$, let r_{a} be given by

$$
r_{a}=\left\{\begin{array}{lll}
a-\left(1-\sinh ^{-1}(1)\right) & \text { if } & 1-\sinh ^{-1}(1)<a \leqslant 1 \\
1+\sinh ^{-1}(1)-a & \text { if } & 1 \leqslant a<1+\sinh ^{-1}(1)
\end{array}\right.
$$

Then $\left\{w:|w-a|<r_{a}\right\} \subset \varphi_{h}(\mathbb{D})=\Omega_{h}:=\{w \in \mathbb{C}:|\sinh (w-1)|<1\}$.

Theorem 11.2. The inclusion $C_{1}^{\alpha}[A, B] \subset \mathcal{S} \mathcal{T}_{h}$ holds if either

1. $B \geqslant 0$ and $(\alpha(A-B)) /(1-B) \leqslant \sinh ^{-1}(1)$
or
2. $B \leqslant 0$ and $(\alpha(A-B)) /(1+B) \leqslant \sinh ^{-1}(1)$.

Proof. Assume that $B \geqslant 0$ and $(\alpha(A-B)) /(1-B) \leqslant \sinh ^{-1}(1)$. The inequality $B \geqslant 0$ is equivalent to $c_{1}(\alpha, A, B)(1) \leqslant 1$. The result follows from Lemma 11.1, since the inequality $a_{1}(\alpha, A, B)(1) \leqslant c_{1}(\alpha, A, B)(1)+\left(\sinh ^{-1}(1)\right)-1$ follows from $(\alpha(A-B)) /(1-B) \leqslant \sinh ^{-1}(1)$.

If $B \leqslant 0$ and $(\alpha(A-B)) /(1+B) \leqslant \sinh ^{-1}(1)$, then it can be seen that the first inequality reduces to $c_{1}(\alpha, A, B)(1) \geqslant 1$. The result will follow from Lemma 11.1 if $a_{1}(\alpha, A, B)(1) \leqslant 1+\left(\sinh ^{-1}(1)\right)-c_{1}(\alpha, A, B)(1)$ which directly follows from the inequality $(\alpha(A-B)) /(1+B) \leqslant \sinh ^{-1}(1)$.

The result stated in the following theorem can be discussed if the conditions in Theorem 11.2 do not hold.

Theorem 11.3. Let $\alpha>0$ and $-1 \leqslant B<A \leqslant 1$. If neither condition (1) nor condition (2) of Theorem 11.2 holds, then the radius of starlikeness associated with the function φ_{h} for the class $C_{1}^{\alpha}[A, B]$ is given by

$$
\mathcal{R}_{\mathcal{S T}_{h}}\left(C_{1}^{\alpha}[A, B]\right)=\frac{\sinh ^{-1}(1)}{\alpha(A-B)+\left(\sinh ^{-1}(1)\right)|B|}
$$

Proof. We aim to show that the disc $\mathbb{D}\left(c_{1}(\alpha, A, B)(r) ; a_{1}(\alpha, A, B)(r)\right)$ given in (3.1) is contained in Ω_{h} for all $0<r \leqslant$ $\mathcal{R}_{\mathcal{S T}_{h}}\left(C_{1}^{\alpha}[A, B]\right)$. Let

$$
\rho_{2}:=\frac{\sinh ^{-1}(1)}{\alpha(A-B)+\left(\sinh ^{-1}(1)\right) B}
$$

and

$$
\rho_{3}:=\frac{\sinh ^{-1}(1)}{\alpha(A-B)-\left(\sinh ^{-1}(1)\right) B} .
$$

Consider the case when $B \geqslant 0$. In this case, the centre $c_{1}(\alpha, A, B)(r) \leqslant 1$ and note that $\rho_{2}=\left(\sinh ^{-1}(1)\right) /(\alpha(A-B)+$ $\left.\left(\sinh ^{-1}(1)\right)|B|\right)$. We can see that ρ_{2} is the root of the polynomial

$$
\xi(r):=\left(\left(\sinh ^{-1}(1)\right) B^{2}+\alpha B(A-B)\right) r^{2}+\alpha(A-B) r-\sinh ^{-1}(1),
$$

where $\xi(r)=0$ is equivalent to the equation $a_{1}(\alpha, A, B)(r)=c_{1}(\alpha, A, B)(r)+\left(\sinh ^{-1}(1)\right)-1$. Observe that $\xi(0)=$ $-\sinh ^{-1}(1)<0$ and $\xi(1)=\left(\sinh ^{-1}(1)\right) B^{2}+\alpha B(A-B)+\alpha(A-B)-\sinh ^{-1}(1)>0$, since the condition (1) in Theorem 11.2 does not hold. Hence $\rho_{2} \in(0,1)$. Therefore by Lemma 11.1, the radius of starlikeness associated with the function φ_{h} is at least ρ_{2}. To prove the sharpness, consider the function \tilde{f} from the class $C \mathcal{V}[A, B]$ given by (2.1) and the corresponding function $\tilde{g} \in C_{1}^{\alpha}[A, B]$. Then for $z=-\rho_{2}$, by using (2.2) we get

$$
\frac{z \tilde{g}^{\prime}(z)}{\tilde{g}(z)}=\frac{\left(-\rho_{2}\right) \tilde{g}^{\prime}\left(-\rho_{2}\right)}{\tilde{g}\left(-\rho_{2}\right)}=1-\sinh ^{-1}(1)=\varphi_{h}(-1),
$$

thus proving the sharpness for ρ_{2}.
Similarly, considering the case when $B \leqslant 0$, we get that the centre $c_{1}(\alpha, A, B)(r) \geqslant 1$ and $\rho_{3}=\left(\sinh ^{-1}(1)\right) /(\alpha(A-$ $\left.B)+\left(\sinh ^{-1}(1)\right)|B|\right)$. Consider the polynomial

$$
\psi(r):=\left(\left(\sinh ^{-1}(1)\right) B^{2}-\alpha B(A-B)\right) r^{2}+\alpha(A-B) r-\sinh ^{-1}(1)
$$

and note that ρ_{3} is the positive root of the polynomial $\psi(r)$. A calculation readily shows that $\psi(r)=0$ is equivalent to the equation $a_{1}(\alpha, A, B)(r)=1+\left(\sinh ^{-1}(1)\right)-c_{1}(\alpha, A, B)(r)$. Clearly $\psi(0)=-\sinh ^{-1}(1)<0$ and since the condition (2) in Theorem 11.2 does not hold, $\psi(1)=\left(\sinh ^{-1}(1)\right) B^{2}-\alpha B(A-B)+\alpha(A-B)-\sinh ^{-1}(1)>0$ and thus $\rho_{3} \in(0,1)$. Hence by Lemma 11.1, the radius of starlikeness associated with the function φ_{h} for the class $C_{1}^{\alpha}[A, B]$ is at least ρ_{3}. Now consider the function \tilde{f} from the class $C \mathcal{V}[A, B]$ given by (2.1). It can be seen from (2.2) that for $z=\rho_{3}$,

$$
\frac{z \tilde{g}^{\prime}(z)}{\tilde{g}(z)}=\frac{\left(\rho_{3}\right) \tilde{g}^{\prime}\left(\rho_{3}\right)}{\tilde{g}\left(\rho_{3}\right)}=1+\sinh ^{-1}(1)=\varphi_{h}(1),
$$

which proves the sharpness for ρ_{3}.
The radius of starlikeness associated with the function φ_{h} for the class C_{2}^{α} is discussed in the following theorem.
Theorem 11.4. Let $\alpha>0$. Then the radius of starlikeness associated with the function φ_{h} for the class C_{2}^{α} is given by

$$
\mathcal{R}_{\mathcal{S T}_{h}}\left(C_{2}^{\alpha}\right)=\frac{\sinh ^{-1}(1)}{\alpha+\sinh ^{-1}(1)} .
$$

Proof. We prove the theorem by showing that the disc $\mathbb{D}\left(c_{2}(\alpha)(r) ; a_{2}(\alpha)(r)\right)$ given in (3.2) is contained in Ω_{h} for all $0<r \leqslant \mathcal{R}_{\mathcal{S}_{h}}\left(C_{2}^{\alpha}\right)$. Here the centre of the disc $c_{2}(\alpha)(r)>1$. Let

$$
\rho_{3}:=\frac{\sinh ^{-1}(1)}{\alpha+\sinh ^{-1}(1)} .
$$

Then ρ_{3} is the positive root of the polynomial

$$
\psi(r):=\left(\alpha+\sinh ^{-1}(1)\right) r^{2}+\alpha r-\sinh ^{-1}(1)
$$

and since $\alpha>0, \rho_{3}$ is less than 1 . Also $\psi(r)=0$ is equivalent to the equation $a_{2}(\alpha)(r)=1+\left(\sinh ^{-1}(1)\right)-c_{2}(\alpha)(r)$. Therefore by Lemma 11.1, the radius of starlikeness associated with the function φ_{h} for the class C_{2}^{α} is at least ρ_{3}. Considering the function \tilde{f} from the class $C \mathcal{V}^{\prime}$ given by $\tilde{f}(z)=z /(1-z)$ and the corresponding function $\tilde{g} \in C_{2}^{\alpha}$, (2.3) shows that for $z=\rho_{3}$,

$$
\frac{z \tilde{g}^{\prime}(z)}{\tilde{g}(z)}=\frac{\left(\rho_{3}\right) \tilde{g}^{\prime}\left(\rho_{3}\right)}{\tilde{g}\left(\rho_{3}\right)}=1+\sinh ^{-1}(1)=\varphi_{h}(1),
$$

thus proving the sharpness for ρ_{3}.

References

[1] R. M. Ali, N. K. Jain and V. Ravichandran, Radii of starlikeness associated with the lemniscate of Bernoulli and the left-half plane, Appl. Math. Comput. 218 (2012), no. 11, 6557-6565.
[2] N. E. Cho, V. Kumar, S. S. Kumar and V. Ravichandran, Radius problems for starlike functions associated with the sine function, Bull. Iranian Math. Soc. 45 (2019), no. 1, 213-232.
[3] P. L. Duren, Univalent functions, Grundlehren der mathematischen Wissenschaften, 259, Springer-Verlag, New York, 1983.
[4] S. Gandhi and V. Ravichandran, Starlike functions associated with a lune, Asian-Eur. J. Math. 10 (2017), no. 4, 1750064, 12 pp.
[5] A. Gangadharan, V. Ravichandran and T. N. Shanmugam, Radii of convexity and strong starlikeness for some classes of analytic functions, J. Math. Anal. Appl. 211 (1997), no. 1, 301-313.
[6] P. Goel and S. Sivaprasad Kumar, Certain class of starlike functions associated with modified sigmoid function, Bull. Malays. Math. Sci. Soc. 43 (2020), no. 1, 957-991.
[7] W. Janowski, Some extremal problems for certain families of analytic functions. I, Ann. Polon. Math. 28 (1973), 297-326.
[8] R. Kanaga and V. Ravichandran, Starlikeness for certain close-to-star functions, Hacet. J. Math. Stat. 50 (2021), no. 2, 414-432.
[9] S. S. Kumar and K. Arora, Starlike Functions associated with a Petal Shaped Domain, arXiv: 2011.10072 (2020), 15 pages.
[10] S. S. Kumar and G. Kamaljeet, A cardioid domain and starlike functions, Anal. Math. Phys. 11 (2021), no. 2, Paper No. 54, 34 pp.
[11] S. Kumar and V. Ravichandran, A subclass of starlike functions associated with a rational function, Southeast Asian Bull. Math. 40 (2016), no. 2, 199-212.
[12] A. Lecko, V. Ravichandran and A. Sebastian, Starlikeness of certain non-univalent functions, Anal. Math. Phys. 11 (2021), no. 4, Paper No. 163, 23 pp.
[13] S. K. Lee, K. Khatter and V. Ravichandran, Radius of starlikeness for classes of analytic functions, Bull. Malays. Math. Sci. Soc. 43 (2020), no. 6, 4469-4493.
[14] W. C. Ma and D. Minda, A unified treatment of some special classes of univalent functions, in Proceedings of the Conference on Complex Analysis (Tianjin, 1992), 157-169, Conf. Proc. Lecture Notes Anal., I, Int. Press, Cambridge, MA.
[15] S. Madhumitha and V. Ravichandran, Radius of starlikeness of certain analytic functions, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM 115 (2021), no. 4, Paper No. 184, 18 pp.
[16] R. Mendiratta, S. Nagpal and V. Ravichandran, On a subclass of strongly starlike functions associated with exponential function, Bull. Malays. Math. Sci. Soc. 38 (2015), no. 1, 365-386.
[17] R. K. Raina and J. Sokół, Some properties related to a certain class of starlike functions, C. R. Math. Acad. Sci. Paris 353 (2015), no. 11, 973-978.
[18] V. Ravichandran, F. Rønning and T. N. Shanmugam, Radius of convexity and radius of starlikeness for some classes of analytic functions, Complex Variables Theory Appl. 33 (1997), no. 1-4, 265-280.
[19] A. Sebastian and V. Ravichandran, Radius of starlikeness of certain analytic functions, Math. Slovaca 71 (2021), no. 1, 83-104.
[20] K. Sharma, N. K. Jain and V. Ravichandran, Starlike functions associated with a cardioid, Afr. Mat. 27 (2016), no. 5-6, 923-939.
[21] H. Silverman and E. M. Silvia, Subclasses of starlike functions subordinate to convex functions, Canad. J. Math. 37 (1985), no. 1, 48-61.
[22] L. A. Wani and A. Swaminathan, Radius problems for functions associated with a nephroid domain, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM 114 (2020), no. 4, Paper No. 178, 20 pp.
[23] L. A. Wani and A. Swaminathan, Starlike and convex functions associated with a nephroid domain, Bull. Malays. Math. Sci. Soc. 44 (2021), no. 1, 79-104.

[^0]: 2020 Mathematics Subject Classification. 30C80; 30C45
 Keywords. Univalent functions; starlike functions; convex functions; subordination; Janowski starlike functions; Janowski convex functions; radius of starlikeness.

 Received: 14 July 2022; Accepted: 15 September 2022
 Communicated by Miodrag Mateljević
 The first author is supported by Junior Research Fellowship from University Grants Commission, New Delhi.
 Email addresses: reachpriya96@gmail.com (Priya G. Krishnan), vravi68@gmail.com (V. Ravichandran), psai@nitt.edu (P. Saikrishnan)

