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Abstract. This paper introduces a new type of tensor absolute value equation, namely the generalized
tensor absolute value equation (GTAVE), and studies its equivalence to the generalized tensor comple-
mentarity problem (GTCP). With the help of this equivalence and the degree theory approach, some exis-
tence results for the GTAVE are achieved.

1. Introduction

For given real matrices A and B of order n and vector b ∈ Rn, the absolute value equation (AVE) was
introduced by Rohn [17], and defined as

Aw + B|w| = b, (1)

where w = (w1,w2, ...,wn)T
∈ Rn. After that, this problem was studied by Mangasarian [12], and it was

proved that solving AVE (1) is NP-hard. The AVE has many applications in numerical partial differential
equations, applied sciences and optimization. When A+B is nonsingular, then it was proved by Rohn [17]
that AVE (1) can be converted into a linear complementarity problem (LCP) [2], which is to find a solution
of the system

w ≥ 0, Mw + b ≥ 0 and wT(Mw + b) = 0, (2)

where the matrix M is a given real matrix of order n and b ∈ Rn is known. Since the LCP incorporates
many mathematical programming problems, such as bimatrix games, quadratic programs, linear pro-
gramming, it is relevant to ask when does the solution of the LCP (2) exists. Due to the nonlinearity and
non-differentiability of the term B|w| in AVE (1), it is not easy to determine under what conditions the so-
lution of the AVE (1) exists. Over the years, many researchers have obtained significant results about the
existence and uniqueness of the solution by introducing some constraints on A and B and utilizing the
equivalence between the AVE (1) and the LCP (2), see for example [9, 18, 19, 24]. Note that when B = −I (I
is the identity matrix), AVE (1) becomes

Aw − |w| = b. (3)
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The existence and non-existence of the solution of the AVE (3) were discussed by Mangasarian et al. [13].
Further investigations about the existence and uniqueness of the solution of the AVE (3) is given in [23,
26]. Many generalizations of the AVE has been studied due to its importance in the optimization field.
We suggest the readers to see [25, 27]. In recent years, a higher-order generalization of matrices, so-called
tensors (hyper-matrices), has been well studied in the literature [16] and the corresponding tensor com-
plementarity problem (TCP); find a vector w in Rn satisfying

w ≥ 0,F(w) = Awm−1 + b ≥ 0 and wTF(w) = 0, (4)

(where b is known) was introduced and studied by Song and Qi [20] as a subclass of the well-known non-
linear complementarity problems [6]. Here

(Awm−1)i =

n∑
i2,...,im=1

aii2...im wi2 ...wim ,

is a homogeneous polynomial of degree m − 1 for a given tensorA = (ai1i2...im ) of order m and dimension n,
where ai1i2...im ∈ R. The TCP has many applications in optimization, non-cooperative games, and equilib-
rium problems. It is easy to observe that the TCP (4) is a natural generalization of the LCP (2). Since LCP
(2) can be equivalently formulated as an AVE (3), one may wonder whether there exists such an equiva-
lent formulation for the TCP (4). This equivalent formulation, named as tensor absolute value equation
(TAVE), was introduced by Du et al. [5], and the existence of the solution of this type of equation was
studied. A more general type of TAVE was given in [11], and the solution analysis of this type of TAVE
was presented using degree theoretical ideas. It should be noted that these TAVE’s are a natural gener-
alization of the AVE (1) and AVE (3). Recently Shi-Liang Wu [27] introduced a new type of generalized
absolute value equation (NGAVE), where the existing results about the generalized order linear comple-
mentarity problem [7, 21] were used to determine the unique solution of the NGAVE.
The importance of the TAVE’s in various fields such as scientific computing, optimization, linear pro-
gramming, quadratic programming has motivated us to define a new type of generalized tensor absolute
value equation (GTAVE) and study its equivalence with the generalized tensor complementarity prob-
lem (GTCP)[1]. Our results comprise of degree theoretical ideas, and we have established some existence
results for the solution of the GTCP. The GTAVE considered by us is a generalized form of the TAVE con-
sidered in [5] and it is different from the TAVE considered in [11]. Also it subsumes a multilinear system
of equations as a particular case, which has numerous applications in tensor complementarity problems
[15] and numerical partial differential equations [3].

2. Preliminaries

2.1. Notation
Throughout this paper, we use Rn to denote the n-dimensional Euclidean space. [n] is used to denote the
set {1, 2, ...,n}. We use bold small letters to denote vectors in Rn, e.g. u, v, w..., and bold capital letters to
denote matrices, e.g. A, B. 0 is used to denote the zero vector. For a vector w ∈ Rn and a natural number
m, w[m−1] denotes a vector having its ith component as wm−1

i . We write w ≥ 0 if each component of w is
nonnegative. We use min{u,v} to denote a vector having its ith component equal to min{ui, vi}. Note that

min{u,v} = 0 if and only if u ≥ 0,v ≥ 0 and uTv = 0.

For any two natural numbers m and n, an order m and dimension n real tensorA is a multidimensional
array with entries (ai1i2...im ), where 1 ≤ i j ≤ n, for all 1 ≤ j ≤ m and ai1i2...im ∈ R. The entries aii...i are termed as
diagonal entries ofA, and the remaining entries are referred as off-diagonal entries. We use calligraphic
letters to denote tensors, e.g. A, B and Tm,n is used to denote the set of all mth order n dimensional real
tensors. I denotes the identity tensor (all the diagonal entries are equal to 1 and the off-diagonal entries
are zero). A tensorA in Tm,n is known as Z-tensor, if all of its off-diagonal entries are nonpositive. If all
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the entries of a tensor are nonnegative, then it is said to be a nonnegative tensor. A tensorA ∈ Tm,n is said
to be a P-tensor [20], if for each w(, 0) ∈ Rn, there exists i ∈ [n] such that wi , 0 and wi(Awm−1)i > 0. A
scalar λ is said to be an H-eigenvalue of a tensorA, if there exists a nonzero vector w in Rn such that

Awm−1 = λw[m−1].

Let the set of all H-eigenvalues ofA be denoted by σ(A). The spectral radius ofA is denoted as ρ(A) and
defined as

ρ(A) = max{|λ| : λ ∈ σ(A)}.

We call a Z-tensorA as a strong M-tensor [4], if there exits a real number θ and a nonnegative tensor B
such thatA = θI − B and θ > ρ(B).

2.2. Degree Theory

We describe some basic results of degree theory that will be useful to prove our main theorems. For de-
tails, we refer the readers to [10]. Let B be a nonempty, bounded, open subset of Rn. B̄, ∂B denotes the clo-
sure and boundary of B, respectively. Let Φ : B̄ → Rn be a continuous function and u < Φ(∂B), then the
degree of Φ over B with respect to u is defined. It is denoted by deg(Φ,B,u) and it is always an integer. If
deg(Φ,B,u) , 0, then Φ(w) = u has a solution in B. The following properties hold for the deg(Φ,B,u).

(i) deg(I,B,u) = 1 if u ∈ B, where I denotes the identity function.

(ii) (Nearness Property). LetΨ : Rn
→ Rn be a continuous function such that sup{∥Φ(w)−Ψ(w)∥∞ : w ∈

B̄} is sufficiently small, then deg(Φ,B,u) = deg(Ψ,B,u), where ∥ · ∥∞ denotes the max-norm of vectors
in Rn.

(iii) (Homotopy Invariance Property). LetZ(w, θ) : Rn
× [0, 1] → Rn be a homotopy and the set ∆ =

{w ∈ Rn : Z(w, θ) = 0 for some 0 ≤ θ ≤ 1} be bounded. Let S be a bounded set such that ∆ ⊆ S, then
we have

deg(Z(·, 0),S, 0) = deg(Z(·, 1),S, 0).

(iv) Let ζ : Rn
→ Rn be a continuous function and ζ(w) = 0 if and only if w = 0. Then deg(ζ,S, 0)

is invariant for any bounded open set S containing 0, and we denote deg(ζ,S, 0) as deg(ζ, 0). Also
deg(ζ, 0) is known as the local degree of ζ at 0.

(v) (Poincaré-Bohl Theorem) Let B ⊆ Rn be open and bounded and u ∈ Rn. Let Φ,Ψ : Rn
→ Rn be

two continuous functions. If the line segment [Φ(w),Ψ(w)] does not contain u, for all w ∈ ∂B, then
deg(Φ,B,u) = deg(Ψ,B,u).

(vi) If Φ
′

(w) is the derivative of Φ at w, then we denote JΦ(w) as the Jacobian determinant of the func-
tion Φ at the point w. The set ZΦ = {w̃ ∈ B : JΦ(w̃) = 0} is said to be the set of all critical points of Φ.
Let v < Φ(ZΦ), then Φ−1(v) is a finite set and

deg(Φ,B,v) =
∑

w∈Φ−1(v)

sgnJΦ(w).

Now we recall some results that will be useful throughout our paper.

Theorem 2.1. [8, Theorem 5.1] LetA in Tm,n be an even order Z-tensor. IfA is a strong M-tensor, thenAwm−1 =
0 implies w = 0 and deg(A, 0) = 1.

Proposition 2.2. [6, Proposition 2.1.4] Let B be a nonempty, bounded, open subset of Rn. Let ζ : B̄ → Rn be an
injective continuous function. Then for any u ∈ ζ(B), we have deg(ζ,B,u) , 0.
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3. Results

In this section, we define the generalized tensor absolute value equation and the generalized tensor com-
plementarity problem and establish the equivalence between these two problems.

Definition 3.1. LetA,B ∈ Tm,n and b ∈ Rn. The generalized tensor absolute value equation is expressed as

Awm−1
− |Bwm−1

| + b = 0, (5)

where (|Bwm−1
|)i = |

n∑
i2,i3,...,im=1

bii2...im wi2 wi3 ...wim |.We denote this problem as GTAVE(A, B, b). The set of all

such w in Rn that satisfies Eq.(5) is denoted by SOLGTAVE(A,B,b).

Definition 3.2. LetA,B ∈ Tm,n and a,b ∈ Rn. Then the generalized tensor complementarity problem (GTCP)
is to find a vector w in Rn satisfying

Awm−1 + a ≥ 0, Bwm−1 + b ≥ 0 and (Awm−1 + a)T(Bwm−1 + b) = 0. (6)

This problem is denoted as GTCP(A, B, a, b). The set of all such w in Rn satisfying Eq.(6) is denoted as
SOLGTCP(A,B, a,b), and known as the solution set to the GTCP(A, B, a, b).

It can be easily seen that w solves min{Awm−1 + a,Bwm−1 + b} = 0, if and only if w is a solution of
the GTCP(A, B, a, b). In the following, we prove that the generalized tensor absolute value equation is
equivalent to the generalized tensor complementarity problem.

Theorem 3.3. The GTAVE(A, B, b) given by (5) is equivalent to the GTCP(A−B,A +B,b,b) for any b ∈ Rn.

Proof. The GTAVE(A, B, b) in Eq.(5) is given by

Awm−1
− |Bwm−1

| + b = 0.

For any two vectors u,v ∈ Rn, we have

min{u,v} =
1
2

(u + v − |u − v|).

This implies

min{(A +B)wm−1 + b, (A−B)wm−1 + b} = Awm−1
− |Bwm−1

| + b. (7)

From Eq.(7), it is clear that w solves the GTAVE(A,B,b) if and only if w is a solution of the GTCP(A +
B,A−B,b,b). This completes the proof.

It is clear from the definition of GTCP that the generalized tensor complementarity problem is a particu-
lar case of the polynomial complementarity problems (PCP) discussed in [14]. For the GTCP(A, B, a, b),
we recall the following result from [14].

Proposition 3.4. [14, Proposition 4.4] Let ζ(w) = min{Φ(w),Ψ(w)}, where Φ(w) = Awm−1 andΨ(w) =
Bwm−1, for given tensorsA, B in Tm,n. Suppose that the following conditions hold.

(i) ζ(w) = 0 =⇒ w = 0.

(ii) deg(ζ, 0) , 0.

Then the GTCP(A, B, a, b) has a nonempty and compact solution set for each a,b ∈ Rn.

From Theorem 3.3 and Proposition 3.4, we give the following existence theorem for the solution of the
GTAVE(A,B,b).



S. Sharma, K. Palpandi / Filomat 37:13 (2023), 4185–4194 4189

Theorem 3.5. Let η : Rn
→ Rn be a function defined as η(w) = Awm−1

− |Bwm−1
|, whereA,B ∈ Tm,n. Suppose

that the following conditions hold.

(i) η(w) = 0 =⇒ w = 0.

(ii) deg(η, 0) , 0.

Then the GTAVE(A,B,b) has a nonempty compact solution set for each b ∈ Rn.

We now give an example that illustrates the above theorem.

Example 3.6. LetA ∈ T4,2 with a1111 =
3
4 , a2222 = 1, a1222 = −1 and all other zero. Let B ∈ T4,2 such that

b1111 =
1
4 , b1222 = 1 and all other zero. Then for any w = (w1,w2) ∈ R2, the function η(w) = Aw3

− |Bw3
| is

given as

η(w) = (
3
4

w3
1 − w3

2 − |
1
4

w3
1 + w3

2|,w
3
2).

It is easy to see that η(w) = 0 if and only if w = 0. We now show that deg(η, 0) , 0. Let us denote C =
A − B and Φ(w) = Cw3. Then c1111 =

1
2 , c2222 = 1, c1222 = −2 and all other entries are zero. So C is an even

order Z-tensor. Also, it can be easily verified that C is a P-tensor. From [8, Theorem 4.3], it follows that C
is a strong M-tensor. By Theorem 2.1, we get Φ(w) = 0 =⇒ w = 0 and deg(Φ, 0) = 1. As η(w) − Φ(w) is a
continuous function, so there exists an open neighbourhood B of 0 such that sup{∥η(w) − Φ(w)∥∞ : w ∈ B̄}
is sufficiently small. So by property 2 (nearness property), we get deg(η,B, 0) = deg(Φ,B, 0) = deg(Φ, 0).
As η(w) = 0 ⇐⇒ w = 0, and deg(Φ, 0) , 0, it follows that deg(η,B, 0) = deg(η, 0) , 0. Therefore by
Theorem 3.5, GTAVE(A,B,b) has a nonempty compact solution set for each b ∈ R2.

Definition 3.7. A function Φ : Rn
→ Rn is a Z+-function, if the system

Φ(w) + tw = 0, t ≥ 0, w , 0,

does not have a solution in Rn.

We now give some examples of Z+-functions.

Example 3.8. LetA ∈ Tm,n be a Z+-tensor [22], then it is easy to see that Φ(w) = Awm−1 is a Z+-function.

Example 3.9. A pair of tensors (A,B), whereA,B ∈ Tm,n is said to be a P∗-pair, if for each non-zero w ∈
Rn, there exists an index k ∈ [n] such that

wk(Awm−1)k > 0 and wk(Bwm−1)k > 0.

If (A,B) is a P∗-pair, then Φ(w) = min{Awm−1,Bwm−1
} is a Z+-function. Suppose not, then there exists

some (θ,w) ∈ (R+ × Rn
\ {0}) such that Φ(w) = −θw. This implies min{Awm−1,Bwm−1

} = −θw. Therefore
(Awm−1)i = −θwi, for each i ∈ S and (Bwm−1) j = −θw j, for each j ∈ [n] \ S, where S is a subset (may be
empty) of [n]. Then

wi(Awm−1)i = −θw2
i ≤ 0, ∀ i ∈ S and w j(Bwm−1) j = −θw2

j ≤ 0, ∀ j ∈ [n] \ S. (8)

From Eq.(8), it is easy to see that there is no such k ∈ [n] satisfying wk(Awm−1)k > 0 and wk(Bwm−1)k > 0,
which contradicts the fact that the tensor pair (A,B) is a P∗-pair. Hence Φ(w) = min{Awm−1,Bwm−1

} is a
Z+-function.

We now give the solvability of an equation for the positively homogeneous, Z+-function. Recall that a
function Φ : Rn

→ Rn is a positively homogeneous function of order d, if Φ(αw) = αdΦ(w), for all α ≥ 0
and w ∈ Rn. We now prove our result.
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Theorem 3.10. Let ζ : Rn
→ Rn be a continuous and positively homogeneous function with order d (d ≥ 1) and

b ∈ Rn. Then either ζ(w) = b has a solution or there exists (t̄, w̄) ∈ (R+ ×Rn
\ {0}) such that ζ(w̄) + t̄w̄ = 0.

Proof. Let b ∈ Rn be fixed. For any r > 0, let Br be the open ball with radius r centred at 0. So

Br = {w ∈ Rn : ∥w∥ < r} and ∂Br = {w ∈ Rn : ∥w∥ = r}.

Consider the homotopy

Z(w, θ) = θw + (1 − θ)[ζ(w) − b], for all w ∈ ∂Br and 0 ≤ θ ≤ 1.

ThenZ(w, 0) = ζ(w) − b andZ(w, 1) = w. We consider the following two cases:
(a) There exists some r > 0 such thatZ(w, θ) does not vanish on ∂Br × [0, 1]. By Poincaré-Bohl Theorem,
we get deg(I,Br, 0) = deg(Z(·, 0),Br, 0). Since deg(I,Br, 0) = 1, therefore we get deg(Z(·, 0),Br, 0) = 1.
Hence there exists at least one solution of the equation ζ(w) − b = 0 in Br.
(b) For each r > 0, there exists wr in ∂Br and θr in [0, 1] such that

Z(wr, θr) = θrwr + (1 − θr)(ζ(wr) − b) = 0. (9)

Now we have the following sub cases:
(i) When θr = 0 for some r > 0, then we get ζ(wr) − b = 0. Hence wr is a solution of ζ(w) = b.
(ii) If θr = 1 for some r > 0, then we get wr = 0, but ∥wr∥ = r > 0. So we get a contradiction. Thus θr < 1.
(iii) If 0 < θr < 1 for each r, let αr =

θr
(1−θr)

> 0. Then from Eq.(9), we get

αrwr + (ζ(wr) − b) = 0 =⇒ αr
wr

∥wr∥
d
+

(ζ(wr) − b)
∥wr∥

d
= 0. (10)

In Eq.(10), as r → ∞, we can see that { αr
∥wr∥d−1 } is bounded. Without loss of generality, we assume that

αr
∥wr∥d−1 → α and wr

∥wr∥
→ w̄. Clearly α ≥ 0 and w̄ , 0. In Eq.(10), letting r → ∞, we get ζ(w̄) + αw̄ = 0.

Hence our conclusion follows.

Corollary 3.11. If ζ(w) = Awm−1
− |Bwm−1

|, where m ≥ 2 is a Z+-function, then SOLGTAVE(A,B,b) is
nonempty for all b ∈ Rn.

Proof. Given that ζ(w) = Awm−1
− |Bwm−1

| is a Z+-function. Note that ζ is continuous and positively
homogeneous of order m − 1, therefore from Theorem 3.10, for each b ∈ Rn there exists w ∈ Rn such that
ζ(w) + b = 0. This implies there exists w ∈ Rn such thatAwm−1

− |Bwm−1
| + b = 0. Hence our conclusion

follows.

Definition 3.12. LetA,B ∈ Tm,n, then the tensor pair (A,B) is said to be a Karamardian pair, if the fol-
lowing conditions are satisfied.

(i) SOLGTCP(A,B, 0, 0) = {0}.

(ii) SOLGTCP(A,B, 0,d) = {0}, for some d > 0.

We present a simple example of a Karamardian pair.

Example 3.13. Let m be even. LetA ∈ Tm,n be a P-tensor and B ∈ Tm,n be a diagonal tensor with positive
diagonal entries, say bii...i. Then (A,B) is a Karamardian pair. It can be seen as follows.

(i) Let w ∈ SOLGTCP(A,B, 0, 0), then we haveAwm−1
≥ 0, Bwm−1

≥ 0 and (Awm−1)T(Bwm−1) = 0. This
implies bii...iwi

m−1(Awm−1)i = 0, for each i ∈ [n]. Since bii...i > 0, for each i ∈ [n] and m is even, we get
wi(Awm−1)i = 0, for each i ∈ [n]. Due toA being a P-tensor, we get w = 0.
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(ii) Let d ∈ Rn such that di = 1, for each i ∈ [n]. Consider a vector w in SOLGTCP(A,B, 0,d). This
impliesAwm−1

≥ 0, Bwm−1 + d ≥ 0 and (Awm−1)T(Bwm−1 + d) = 0. This implies (bii...iwi
m−1 +

1)(Awm−1)i = 0, for each i ∈ [n]. Therefore, we get (bii...iwi
m−1)(Awm−1)i = −(Awm−1)i ≤ 0, for each

i ∈ [n]. Since bii...i > 0, for each i ∈ [n] and m is even, we get wi(Awm−1)i ≤ 0, for each i ∈ [n]. Due to
A being a P-tensor, we get w = 0.

Theorem 3.14. SupposeA,B ∈ Tm,n, where m ≥ 2. If there exists C in Tm,n such that

(i) Cwm−1 = 0 implies w = 0 and deg(C, 0) , 0.

(ii) For any α ≥ 0, min{(A + αC)wm−1,Bwm−1
} = 0 =⇒ w = 0.

(iii) (C,B) is a Karamardian pair.

then SOLGTCP(A,B, a,b) is nonempty and compact for each a,b in Rn.

Proof. Let H(w) = min{Awm−1,Bwm−1
}. From condition (ii), we get H(w) = 0 implies w = 0. By Proposi-

tion 3.4, it is enough to show that deg(H, 0) , 0. Since (C,B) is a Karamardian pair, so there exists d > 0
such that SOLGTCP(C,B, 0,d) = {0}. Let this d > 0 be fixed andZ(w, θ) : Rn

× [0, 1]→ Rn be such that

Z(w, θ) = min{θ(Cwm−1) + (1 − θ)Awm−1,Bwm−1 + θd}

ThenZ(w, 0) = H(w) andZ(w, 1) = min{Cwm−1,Bwm−1 + d}. Let ∆ = {w ∈ Rn : Z(w, θ) = 0 for some θ ∈
[0, 1]}. We claim that ∆ is bounded. Assume contrary. Suppose that there exists an unbounded sequence
{wn} in ∆ and a sequence {θn} ⊆ [0, 1] such thatZ(wn, θn) = 0,∀ n. Then

min{θn(Cwm−1
n ) + (1 − θn)A(wn)m−1,B(wn)m−1 + θnd} = 0

=⇒ min{
(θn(Cwm−1

n ) + (1 − θn)A(wn)m−1)
∥wn∥

m−1 ,
(B(wn)m−1 + θnd)

∥wn∥
m−1 } = 0.

(11)

Assume (without loss of generality) that wn
∥wn∥
→ w, and θn → θ as n → ∞. Then from Eq.(11), as n → ∞,

we get

min{θ(Cwm−1) + (1 − θ)Awm−1,Bwm−1
} = 0.

We have the following cases:
(i): If θ = 0, then using the condition (ii), we get

min{Awm−1,Bwm−1
} = 0 implies w = 0.

(ii): When θ = 1, then from the condition (iii),

min{Cwm−1,Bwm−1
} = 0 implies w = 0.

(iii): When θ ∈ (0, 1), we have

min{
( θ
1 − θ

)
Cwm−1 +Awm−1,Bwm−1

} = 0

=⇒ min{α(Cwm−1) +Awm−1,Bwm−1
} = 0

=⇒ min{(A + αC)wm−1,Bwm−1
} = 0,

where α =
(
θ

1−θ

)
> 0. From the condition (ii), we get w = 0. Since ∥w∥ = 1, we arrive at a contradiction in

each of the above cases. Hence ∆ is bounded. Suppose that B is a bounded open set containing ∆, then by
property 3 (homotopy invariance), we get

deg(Z(·, 1),B, 0) = deg(Z(·, 0),B, 0). (12)
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Note that condition (iii) yieldsZ(w, 1) = 0 if and only if w = 0. Therefore deg(Z(·, 1),B, 0) = deg(Z(·, 1), 0).
Now we claim that deg(Z(·, 1), 0) , 0. It is easy to verify that that Bwm−1 + d is close to d > 0, whenever w
is near to zero. Hence there exists an open neighbourhood Ω of 0 such that sup{∥Z(w, 1) − Cwm−1

∥ : w ∈
Ω̄} is sufficiently small. So by property 2 (nearness property) and condition (i), we get

deg(Z(·, 1), 0) = deg(Z(·, 1),Ω, 0) = deg(C,Ω, 0) = deg(C, 0). (13)

Also from condition (i), we have deg(C, 0) , 0. Therefore, from Eq.(13), we get deg(Z(·, 1), 0) , 0. Now
from the Eqs.(12) and (13), we get deg(H, 0) , 0. Hence our claim is proved.

Corollary 3.15. LetA,B ∈ Tm,n and m (≥ 2) be even. Assume that the following statements are true.

(i) For any α ≥ 0, min{(A + αI)wm−1,Bwm−1
} = 0 =⇒ w = 0.

(ii) (I,B) is a Karamardian pair.

Then SOLGTCP(A,B, a,b) is nonempty and compact for each a,b in Rn. Hence SOLGTAVE(A+B,A−B,b) is
nonempty and compact for any b ∈ Rn.

Proof. Let us denote Φ(w) = Iwm−1. Then Φ(w) = 0 implies w = 0. Due to m being even, it follows that
Φ(w) = w[m−1] is an injective continuous function on Rn. From Proposition 2.2, we get deg(Φ, 0) , 0. Our
Proof follows by taking C = I in Theorem 3.14.

Corollary 3.16. LetA,B ∈ Tm,n (m ≥ 2) withA be an even order Z-tensor. Suppose that the following conditions
hold.

(i) A is a strong M-tensor.

(ii) (A,B) is a Karamardian pair.

Then SOLGTCP(A,B, a,b) is nonempty and compact for each a,b in Rn. Hence SOLGTAVE(A+B,A−B,b) is
nonempty and compact for any b ∈ Rn.

Proof. Given thatA is an even order Z-tensor. From condition (i), we haveA is a strong M-tensor. By
Theorem 2.1, it follows thatAwm−1 = 0 implies w = 0 and deg(A, 0) = 1. By replacing C = A in The-
orem 3.14, our conclusion follows.

Proposition 3.17. Let m ≥ 2 andA ∈ Tm,n be a Z+-tensor, then the local degree of the mapping Φ(w) = Awm−1

at 0 is well-defined and nonzero.

Proof. AsA is a Z+-tensor, so Φ(w) = 0 implies w = 0. Therefore local degree of Φ at 0 is well-defined. We
claim that deg(Φ, 0) , 0. To prove this, let us considerZ(w, θ) : Rn

× [0, 1]→ Rn defined as

Z(w, θ) = Awm−1 + θw.

ThenZ(w, 0) = Awm−1 andZ(w, 1) = Awm−1 +w. Let ∆ = {w ∈ Rn : Z(w, θ) = 0 for some 0 ≤ θ ≤ 1}. We
claim that ∆ is bounded. Assume Contrary. Suppose there exists an unbounded sequence {wn} in ∆ and
a sequence {θn} ⊆ [0, 1] such thatZ(wn, θn) = 0. This gives thatA(wn)m−1 + θnwn = 0, for large n. This
implies

Awm−1
n + θnwn

∥wn∥
m−1 = 0 =⇒ Aym−1

n + θn
yn

∥wn∥
m−2 = 0, (14)

where {yn} = {
wn
∥wn∥
}. As n → ∞, we assume (without loss of generality) that θn → θ, yn → y and θn

∥wn∥m−2 →

β. Clearly β ≥ 0 and ∥y∥ = 1. As m ≥ 2, in Eq.(14), letting n → ∞, we getAym−1 + βy = 0. SinceA is a
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Z+-tensor, we get y = 0, which is a contradiction. Hence the set ∆must be bounded. Suppose that B is a
bounded open set containing ∆, then by property 3 (homotopy invariance), we get

deg(Z(·, 1),B, 0) = deg(Z(·, 0),B, 0) =⇒ deg(Z(·, 1),B, 0) = deg(Φ, 0). (15)

SinceA is a Z+-tensor, soZ(w, 1) = 0 implies w = 0. Therefore deg(Z(·, 1),B, 0) = sgn (det(J(Awm−1 +
w))|w=0) = sgn ((det(J(Awm−1) + J(w))|w=0) = 1, where J denotes the Jacobian matrix. Therefore we get
deg(Z(·, 1),B, 0) , 0 and hence from Eq.(15), we get deg(Φ, 0) , 0, which proves our claim.

Theorem 3.18. Let m ≥ 2 andA,B ∈ Tm,n such that (A,B) be a Karamardian pair and letA be a Z+-tensor.
Then SOLGTCP(A,B, a,b) is nonempty for each a,b in Rn. Hence the GTAVE(A − B,A + B,b) has a solution
for every b ∈ Rn.

Proof. SinceA is a Z+-tensor, from Proposition 3.17, it follows that deg(A, 0) , 0. Replacing CwithA in
Theorem 3.14, our conclusion is straightforward.

We now give a class of tensor pair (A,B) such that GTAVE(A−B,A+B,b) has a solution for every b ∈ Rn.

Example 3.19. Let m ≥ 2 be even. LetA ∈ Tm,n be a P-tensor and B ∈ Tm,n be a diagonal tensor with
positive diagonal entries. It can be seen from Example 3.13 that (A,B) is a Karamardian pair. Also it is
easy to verify that a P-tensor must be a Z+-tensor, soA is a Z+-tensor. Hence from Theorem 3.18, we can
conclude that SOLGTAVE(A−B,A +B,b) is nonempty for every b ∈ Rn.

4. Conclusion

We have defined a new type of generalized tensor absolute value equation (GTAVE) and obtained its
equivalence with the generalized tensor complementarity problem (GTCP). With the help of some exist-
ing results about the solution set of the GTCP and using degree theoretic ideas, we establish sufficient
conditions to guarantee the existence of the solution of the GTAVE.

Acknowledgements

The authors are thankful to the anonymous referee(s) for their valuable suggestions.

References

[1] Andreani, R., Friedlander, A., Santos, S.A., On the Resolution of the Generalized Nonlinear Complementarity Problem, SIAM J. Op-
tim., 12(2) (2002), 303-321.

[2] Cottle, R.W., Pang, J.-S., Stone, R.E., The linear complementarity problem, Academic Press, Boston 1992.
[3] Ding, W., Wei, Y., Solving Multi-linear Systems withM-Tensors, J. Sci. Comput., 68(2) (2016), 689-715.
[4] Ding W, Qi L, Wei Y, M-tensors and nonsingular M-tensors, Linear Algebra Appl., 439(10) (2013), 3264-3278.
[5] Du, S., Zhang, L., Chen, C., Qi, L., Tensor absolute value equations, Science China Mathematics, 61(9) (2018), 1695-1710.
[6] Facchinei, F., Pang, J.-S., Finite dimensional variational inequality and complementarity problems, (Vol. I and II.) Springer, Berlin,

2003.
[7] Gowda, M. S., Sznajder, R., The generalized order linear complementarity problem, SIAM J. Matrix Anal. Appl., 15(3) (1994), 779-795.
[8] Gowda, M.S., Luo, Z., Qi, L., Xiu, N., Z-tensors and complementarity problems, (2015), arXiv:1510.07933.
[9] Hladík, M., Bounds for the Solutions of Absolute Value Equations, Comput. Optim. Appl., 69(1) (2018), 243-266.

[10] Isac, G., Leray-Schauder Type Alternatives, Complemantarity Problems and Variational Inequalities, (87), Springer, Boston, 2006.
[11] Ling, C., Yan, W., He, H., Qi, L., Further study on tensor absolute value equations, Science China Mathematics, 63(10) (2020), 2137-

2156.
[12] Mangasarian, O. L., Absolute Value Programming, Comput. Optim. Appl., 36 (2007), 43-53.
[13] Mangasarian, O. L., Meyer, R.R., Absolute value equations, Linear Algebra Appl., 419 (2006), 359-367.
[14] Pham, T.-S., Nguyen, C. H., Complementary problems with polynomial data, Vietnam Journal of Mathematics, 49(4) (2021), 1283-

1303.
[15] Qi, L., Chen, H., Chen, Y., Tensor Eigenvalues and Their Applications, Springer, Singapore, 2018.
[16] Qi, L., Luo, Z., Tensor Analysis: Spectral Theory and Special Tensors, SIAM, Philadelphia, 2017.
[17] Rohn, J., A theorem of the alternatives for the equation Ax + B|x| = b, Linear Multilinear Algebra, 52(6) (2004), 421-426.



S. Sharma, K. Palpandi / Filomat 37:13 (2023), 4185–4194 4194

[18] Rohn, J., On unique solvability of the absolute value equation, Optim. Lett., 3 (2009), 603-606.
[19] Rohn, J., An algorithm for solving the absolute value equations, Electron. J. Linear Algebra, 18 (2009), 589-599.
[20] Song, Y., Qi, L., Properties of some classes of structured tensors, J. Optim. Theory Appl., 165 (2015), 854-873.
[21] Sznajder, R., Gowda, M. S., Generalizations of P0-and P-properties; extended vertical and horizontal linear complementarity problems,

Linear Algebra Appl., 223 (1995), 695-715.
[22] Yan, W., Ling, C., Ling, L., He, H., Generalized tensor equations with leading structured tensors, Appl. Math. Comp., 361 (2019),

311-324.
[23] Wu, S.-L., Li, C.-X., The unique solution of the absolute value equations, Appl. Math. Lett., 76 (2018), 195-200.
[24] Wu, S.-L., Li, C.-X., A note on unique solvability of the absolute value equation, Optim. Lett., 14 (2020), 1957-1960.
[25] Wu, S.-L., Guo, P., On the unique solvability of the absolute value equation, J. Optim. Theory Appl., 169(2) (2016), 705-712.
[26] Wu, S.-L., Shen, S., On the unique solution of the generalized absolute value equation, Optim. Lett., 15(6) (2021), 2017-2024.
[27] Wu, S.-L., The unique solution of a class of the new generalized absolute value equation, Appl. Math. Lett., 116 (2021), 107029.


