Nonlinear bi-skew Jordan-type derivations on *-algebras

Fangfang Zhao ${ }^{\text {a }}$, Dongfang Zhang ${ }^{\text {a }}$, Changjing Lia ${ }^{\text {a,* }}$
${ }^{a}$ School of Mathematics and Statistics, Shandong Normal University, Jinan 250014, P. R. China

Abstract

Let \mathcal{A} be a unital $*$-algebra. In this paper, under some mild conditions on \mathcal{A}, it is shown that Φ is a nonlinear bi-skew Jordan-type derivations on \mathcal{A} if and only if Φ is an additive $*$-derivation. As applications, the nonlinear bi-skew Jordan-type derivations on prime $*$-algebras, von Neumann algebras with no central summands of type I_{1}, factor von Neumann algebras and standard operator algebras are characterized.

1. Introduction

Let \mathcal{A} be an algebra. Recall that a linear map $\delta: \mathcal{A} \rightarrow \mathcal{A}$ is called a derivation if $\delta(A B)=\delta(A) B+A \delta(B)$ for all $A, B \in \mathcal{A}$ and a Lie derivation if $\delta([A, B])=[\delta(A), B]+[A, \delta(B)]$ for all $A, B \in \mathcal{A}$, where $[A, B]=A B-B A$ is the usual Lie product of A and B. The question of characterizing Lie derivations and revealing the relationship between Lie derivations and derivations has attracted the attentions of many researchers, see for example $[2,3,21-23,25,27,28]$. Furthermore, we say that a map (without the additivity or linearity assumption) $\delta: \mathcal{A} \rightarrow \mathcal{A}$ is a nonlinear Lie derivation or a Lie derivable map if $\delta([A, B])=[\delta(A), B]+[A, \delta(B)]$ for all $A, B \in \mathcal{A}$. Undoubtedly, it is interesting to study nonlinear Lie derivations. Recently, many mathematicians devoted themselves to study the characterizations of nonlinear Lie derivations, see for example [1, 8$14,16,19,20,24,33]$.

Recently, many authors have studied derivations related to some new products, such as the nonlinear skew Lie derivations (see [7,15, 17,34]), the nonlinear Jordan *-derivations (see [15,30,35-39]), the noninear bi-skew Lie derivations (see $[26,32]$) and so on. Let \mathcal{A} be a $*$-algebra. For $A, B \in \mathcal{A}$, define the bi-skew Jordan product of A and B by $A \circ B=A^{*} B+B^{*} A$. It is clear that the bi-skew Jordan product is different from the Jordan product $A B+B A$, the Lie product $A B-B A$, the skew Lie product $A B-B A^{*}$, the Jordan *-product $A B+B A^{*}$ and the bi-skew Lie product $A^{*} B-B^{*} A$. Quite recently, the bi-skew Jordan products have attracted many scholars to study. C. Li et al. [18] proved that every bijective map preserving bi-skew Jordan product between von Neumann algebras with no central abelian projections is just a sum of a linear *-isomorphism and a conjugate linear *-isomorphism. A. Taghavi and S. Gholampoor [31] studied surjective maps preserving bi-skew Jordan product between C^{*}-algebras. A map $\Phi: \mathcal{A} \rightarrow \mathcal{A}$ is said to be a nonlinear bi-skew Jordan derivation if

$$
\Phi(A \circ B)=\Phi(A) \circ B+A \circ \Phi(B)
$$

[^0]for all $A, B \in \mathcal{A}$. V. Darvish et al. [5] proved any nonlinear bi-skew Jordan derivation on prime *-algebra is an additive *-derivation. Similarly, a map $\Phi: \mathcal{A} \rightarrow \mathcal{A}$ is said to be a bi-skew Jordan triple derivation if
$$
\Phi(A \circ B \circ C)=\Phi(A) \circ B \circ C+A \circ \Phi(B) \circ C+A \circ B \circ \Phi(C)
$$
for all $A, B, C \in \mathcal{A}$, where $A \circ B \circ C:=(A \circ B) \circ C$. In [6], V. Darvish et al. proved any nonlinear bi-skew Jordan triple derivation on prime $*$-algebra is an additive $*$-derivation.

Given the consideration of nonlinear bi-skew Jordan derivations and nonlinear bi-skew Jordan triple derivations, we can further develop them in one natural way. Suppose that $n \geq 2$ is a fixed positive integer. Accordingly, a nonlinear bi-skew Jordan-type derivation is a map $\Phi: \mathcal{A} \rightarrow \mathcal{A}$ satisfying the condition

$$
\Phi\left(A_{1} \circ A_{2} \circ \cdots \circ A_{n}\right)=\sum_{k=1}^{n} A_{1} \circ \cdots \circ A_{k-1} \circ \Phi\left(A_{k}\right) \circ A_{k+1} \circ \cdots \circ A_{n}
$$

for all $A_{1}, A_{2}, \cdots, A_{n} \in \mathcal{A}$, where $A_{1} \circ A_{2} \circ \cdots \circ A_{n}=\left(\cdots\left(\left(A_{1} \circ A_{2}\right) \circ A_{3}\right) \cdots \circ A_{n}\right)$. By the definition, it is clear that every bi-skew Jordan derivation is a bi-skew Jordan-2 derivation and every bi-skew Jordan triple derivation is a bi-skew Jordan-3 derivation. It is obvious that every nonlinear bi-skew Jordan derivation on any *-algebra is a bi-skew Jordan- n derivation. But we do not know whether the converse is true.

Motivated by the above mentioned works, we will concentrate on giving a description of nonlinear bi-skew Jordan-type derivations on *-algebras. In this paper, our main results not only improve the results of the previous articles $[5,6]$, but also, most importantly, the methods used in our article are different from theirs.

2. The main result and its proof

Our main theorem in this paper is as follows.
Theorem 2.1. Let \mathcal{A} be a unital *-algebra with the unit I. Assume that \mathcal{A} contains a nontrivial projection P which satisfies

$$
\text { (ャ) } X \mathcal{A P}=0 \text { implies } X=0
$$

and
(ヵ) $X \mathcal{A}(I-P)=0$ implies $X=0$.
Then a map $\Phi: \mathcal{A} \rightarrow \mathcal{A}$ satisfies

$$
\Phi\left(A_{1} \circ A_{2} \circ \cdots \circ A_{n}\right)=\sum_{k=1}^{n} A_{1} \circ \cdots \circ A_{k-1} \circ \Phi\left(A_{k}\right) \circ A_{k+1} \circ \cdots \circ A_{n}
$$

for all $A_{1}, A_{2}, \cdots A_{n} \in \mathcal{A}$ if and only if Φ is an additive *-derivation.
In the following, let $P_{1}=P$ and $P_{2}=I-P$. Denote $\mathcal{A}^{a}=\left\{A \in \mathcal{A}: A=A^{*}\right\}, \mathcal{A}_{11}=P_{1} \mathcal{A}^{a} P_{1}, \mathcal{A}_{12}=$ $\left\{P_{1} A P_{2}+P_{2} A P_{1}: A \in \mathcal{A}^{a}\right\}$ and $\mathcal{A}_{22}=P_{2} \mathcal{A}^{a} P_{2}$. For every $A \in \mathcal{A}^{a}$, we may write $A=A_{11}+A_{12}+A_{22}$, where $A_{11} \in \mathcal{A}_{11}, A_{12} \in \mathcal{A}_{12}$ and $A_{22} \in \mathcal{A}_{22}$. Clearly, we only need to prove the necessity. We will complete the proof by several lemmas.

Lemma 2.2. $\Phi(0)=0$.
Proof. Indeed, we have

$$
\begin{aligned}
\Phi(0) & =\Phi(0 \circ 0 \circ I \circ \cdots \circ I) \\
& =\Phi(0) \circ 0 \circ I \circ \cdots \circ I+\cdots+0 \circ 0 \circ I \circ \cdots \circ I \circ \Phi(I) \\
& =0 .
\end{aligned}
$$

Lemma 2.3. For any $A \in \mathcal{A}^{a}$, we have $\Phi(A) \in \mathcal{F}^{a}$.
Proof. For any $A \in \mathcal{A}^{a}, A=A \circ \frac{I}{2} \circ \cdots \circ \frac{I}{2}$. Since $B \circ C \in \mathcal{A}^{a}$ for any $B, C \in \mathcal{A}$, we obtain

$$
\begin{aligned}
\Phi(A) & =\Phi\left(A \circ \frac{I}{2} \circ \cdots \circ \frac{I}{2}\right) \\
& =\Phi(A) \circ \frac{I}{2} \circ \frac{I}{2} \circ \cdots \circ \frac{I}{2}+\cdots+A \circ \frac{I}{2} \circ \cdots \circ \Phi\left(\frac{I}{2}\right) \in \mathcal{A}^{a} .
\end{aligned}
$$

Lemma 2.4. For any $A_{11} \in \mathcal{A}_{11}, A_{22} \in \mathcal{A}_{22}$ and $B_{12} \in \mathcal{A}_{12}$, we have

$$
\Phi\left(A_{11}+B_{12}\right)=\Phi\left(A_{11}\right)+\Phi\left(B_{12}\right)
$$

and

$$
\Phi\left(A_{22}+B_{12}\right)=\Phi\left(A_{22}\right)+\Phi\left(B_{12}\right)
$$

Proof. Let $T=\Phi\left(A_{11}+B_{12}\right)-\Phi\left(A_{11}\right)-\Phi\left(B_{12}\right)$. By Lemma 2.3, we have $T^{*}=T$. So we only need to prove $T=T_{11}+T_{12}+T_{22}=0$. Since $P_{2} \circ A_{11}=0$, we obtain

$$
\begin{aligned}
& \Phi\left(P_{2}\right) \circ\left(A_{11}+B_{12}\right) \circ I \circ \cdots \circ I+P_{2} \circ \Phi\left(A_{11}+B_{12}\right) \circ I \circ \cdots \circ I+\cdots \\
& +P_{2} \circ\left(A_{11}+B_{12}\right) \circ I \circ \cdots \circ \Phi(I) \\
& =\Phi\left(P_{2} \circ\left(A_{11}+B_{12}\right) \circ I \circ \cdots \circ I\right) \\
& =\Phi\left(P_{2} \circ A_{11} \circ I \circ \cdots \circ I\right)+\Phi\left(P_{2} \circ B_{12} \circ I \circ \cdots \circ I\right) \\
& =\Phi\left(P_{2}\right) \circ\left(A_{11}+B_{12}\right) \circ I \circ \cdots \circ I+P_{2} \circ\left(\Phi\left(A_{11}\right)+\Phi\left(B_{12}\right)\right) \circ I \circ \cdots \circ I+\cdots \\
& +P_{2} \circ\left(A_{11}+B_{12}\right) \circ I \circ \cdots \circ \Phi(I) .
\end{aligned}
$$

Hence $P_{2} \circ T \circ I \circ \cdots \circ I=0$, and then it yields that $T_{12}=T_{22}=0$.
It follows from $\left(P_{1}-P_{2}\right) \circ B_{12}=0$ that

$$
\begin{aligned}
& \Phi\left(P_{1}-P_{2}\right) \circ\left(A_{11}+B_{12}\right)+\left(P_{1}-P_{2}\right) \circ \Phi\left(A_{11}+B_{12}\right)+\cdots \\
& +\left(P_{1}-P_{2}\right) \circ\left(A_{11}+B_{12}\right) \circ I \circ \cdots \circ \Phi(I) \\
& \left.=\Phi\left(\left(P_{1}-P_{2}\right) \circ\left(A_{11}+B_{12}\right) \circ I \circ \cdots \circ I\right)\right) \\
& =\Phi\left(\left(P_{1}-P_{2}\right) \circ A_{11} \circ I \circ \cdots \circ I\right)+\Phi\left(\left(P_{1}-P_{2}\right) \circ B_{12} \circ I \circ \cdots \circ I\right) \\
& =\Phi\left(P_{1}-P_{2}\right) \circ\left(A_{11}+B_{12}\right)+\left(P_{1}-P_{2}\right) \circ\left(\Phi\left(A_{11}\right)+\Phi\left(B_{12}\right)\right)+\cdots \\
& +\left(P_{1}-P_{2}\right) \circ\left(A_{11}+B_{12}\right) \circ I \circ \cdots \circ \Phi(I),
\end{aligned}
$$

which implies that $\left(P_{1}-P_{2}\right) \circ T \circ I \circ \cdots \circ I=0$. So $T_{11}=0$, and then $T=0$.
Lemma 2.5. For any $A_{11} \in \mathcal{A}_{11}, B_{12} \in \mathcal{A}_{12}$ and $C_{22} \in \mathcal{A}_{22}$, we have

$$
\Phi\left(A_{11}+B_{12}+C_{22}\right)=\Phi\left(A_{11}\right)+\Phi\left(B_{12}\right)+\Phi\left(C_{22}\right)
$$

Proof. Let

$$
T=\Phi\left(A_{11}+B_{12}+C_{22}\right)-\Phi\left(A_{11}\right)-\Phi\left(B_{12}\right)-\Phi\left(C_{22}\right) .
$$

By Lemma 2.3, we have $T^{*}=T$. Since $P_{1} \circ C_{22}=0$, it follows from Lemma 2.4 that

$$
\begin{aligned}
& \left.\Phi\left(P_{1}\right) \circ\left(A_{11}+B_{12}+C_{22}\right) \circ I \circ \cdots \circ I+C_{22}\right)+P_{1} \circ \Phi\left(A_{11}+B_{12}+C_{22}\right) \circ I \circ \cdots \circ I \\
& +\cdots+P_{1} \circ\left(A_{11}+B_{12}+C_{22}\right) \circ I \circ \cdots \circ \Phi(I) \\
& =\Phi\left(P_{1} \circ\left(A_{11}+B_{12}+C_{22}\right) \circ I \circ \cdots \circ I\right) \\
& =\Phi\left(P_{1} \circ\left(A_{11}+B_{12}\right) \circ I \circ \cdots \circ I\right)+\Phi\left(P_{1} \circ C_{22} \circ I \circ \cdots \circ I\right) \\
& =\Phi\left(P_{1} \circ A_{11} \circ I \circ \cdots \circ I\right)+\Phi\left(P_{1} \circ B_{12} \circ I \circ \cdots \circ I\right)+\Phi\left(P_{1} \circ C_{22} \circ I \circ \cdots \circ I\right) \\
& =\Phi\left(P_{1}\right) \circ\left(A_{11}+B_{12}+C_{22}\right) \circ I \circ \cdots \circ I+P_{1} \circ\left(\Phi\left(A_{11}\right)+\Phi\left(B_{12}\right)+\Phi\left(C_{22}\right)\right) \circ I \circ \cdots \circ I \\
& +\cdots+P_{1} \circ\left(A_{11}+B_{12}+C_{22}\right) \circ I \circ \cdots \circ \Phi(I) .
\end{aligned}
$$

Hence $P_{1} \circ T \circ I \circ \cdots \circ I=0$, and then it yields that $T_{11}=T_{12}=0$. Similarly, we can get that $T_{22}=0$. Thus $T=0$.

Lemma 2.6. For any $A_{12}, B_{12} \in \mathcal{A}_{12}$, we have

$$
\Phi\left(A_{12}+B_{12}\right)=\Phi\left(A_{12}\right)+\Phi\left(B_{12}\right)
$$

Proof. Let $A_{12}, B_{12} \in \mathcal{A}_{12}$. Then $A_{12}=P_{1} A P_{2}+P_{2} A P_{1}, B_{12}=P_{1} B P_{2}+P_{2} B P_{1}$, where $A, B \in \mathcal{A}^{a}$. Since

$$
\left(P_{1}+A_{12}\right) \circ\left(P_{2}+B_{12}\right) \circ \frac{I}{2} \circ \cdots \circ \frac{I}{2}=A_{12}+B_{12}+A_{12} B_{12}+B_{12} A_{12}
$$

where

$$
A_{12}+B_{12} \in \mathcal{A}_{12}
$$

and

$$
A_{12} B_{12}+B_{12} A_{12}=P_{1}\left(A P_{2} B+B P_{2} A\right) P_{1}+P_{2}\left(A P_{1} B+B P_{1} A\right) P_{2} \in \mathcal{A}_{11}+\mathcal{A}_{22}
$$

by Lemma 2.4, we have

$$
\begin{aligned}
& \Phi\left(A_{12}+B_{12}\right)+\Phi\left(A_{12} B_{12}+B_{12} A_{12}\right) \\
& =\Phi\left(A_{12}+B_{12}+A_{12} B_{12}+B_{12} A_{12}\right) \\
& =\Phi\left(\left(P_{1}+A_{12}\right) \circ\left(P_{2}+B_{12}\right) \circ \frac{I}{2} \circ \cdots \circ \frac{I}{2}\right) \\
& =\Phi\left(P_{1}+A_{12}\right) \circ\left(P_{2}+B_{12}\right) \circ \frac{I}{2} \circ \cdots \circ \frac{I}{2}+\left(P_{1}+A_{12}\right) \circ \Phi\left(P_{2}+B_{12}\right) \circ \frac{I}{2} \circ \cdots \circ \frac{I}{2} \\
& +\cdots+\left(P_{1}+A_{12}\right) \circ\left(P_{2}+B_{12}\right) \circ \frac{I}{2} \circ \cdots \circ \Phi\left(\frac{I}{2}\right) \\
& =\left(\Phi\left(P_{1}\right)+\Phi\left(A_{12}\right)\right) \circ\left(P_{2}+B_{12}\right) \circ \frac{I}{2} \circ \cdots \circ \frac{I}{2}+\left(P_{1}+A_{12}\right) \circ\left(\Phi\left(P_{2}\right)+\Phi\left(B_{12}\right)\right) \circ \frac{I}{2} \circ \cdots \circ \frac{I}{2} \\
& +\cdots+\left(P_{1}+A_{12}\right) \circ\left(P_{2}+B_{12}\right) \circ \frac{I}{2} \circ \cdots \circ \Phi\left(\frac{I}{2}\right) \\
& =\Phi\left(P_{1} \circ P_{2} \circ \frac{I}{2} \circ \cdots \circ \frac{I}{2}\right)+\Phi\left(P_{1} \circ B_{12} \circ \frac{I}{2} \circ \cdots \circ \frac{I}{2}\right)+\Phi\left(A_{12} \circ P_{2} \circ \frac{I}{2} \circ \cdots \circ \frac{I}{2}\right) \\
& +\Phi\left(A_{12} \circ B_{12} \circ \frac{I}{2} \circ \cdots \circ \frac{I}{2}\right) \\
& =\Phi\left(A_{12}\right)+\Phi\left(B_{12}\right)+\Phi\left(A_{12} B_{12}+B_{12} A_{12}\right),
\end{aligned}
$$

which implies that

$$
\Phi\left(A_{12}+B_{12}\right)=\Phi\left(A_{12}\right)+\Phi\left(B_{12}\right)
$$

Lemma 2.7. For any $A_{i i}, B_{i i} \in \mathcal{A}_{i i}, i=1,2$, we have

$$
\Phi\left(A_{i i}+B_{i i}\right)=\Phi\left(A_{i i}\right)+\Phi\left(B_{i i}\right)
$$

Proof. Let $T=\Phi\left(A_{11}+B_{11}\right)-\Phi\left(A_{11}\right)-\Phi\left(B_{11}\right)$. Since $P_{2} \circ A_{11}=P_{2} \circ B_{11}=0$, we have

$$
\begin{aligned}
& \Phi\left(P_{2}\right) \circ\left(A_{11}+B_{11}\right) \circ I \circ \cdots \circ I+P_{2} \circ \Phi\left(A_{11}+B_{11}\right) \circ I \circ \cdots \circ I+ \\
& +\cdots+P_{2} \circ\left(A_{11}+B_{11}\right) \circ I \circ \cdots \circ \Phi(I) \\
& =\Phi\left(P_{2} \circ\left(A_{11}+B_{11}\right) \circ I \circ \cdots \circ I\right) \\
& =\Phi\left(P_{2} \circ A_{11} \circ I \circ \cdots \circ I\right)+\Phi\left(P_{2} \circ B_{11} \circ I \circ \cdots \circ I\right) \\
& =\Phi\left(P_{2}\right) \circ\left(A_{11}+B_{12}\right) \circ I \circ \cdots \circ I+P_{2} \circ\left(\Phi\left(A_{11}\right)+\Phi\left(B_{11}\right)\right) \circ I \circ \cdots \circ I \\
& +\cdots+P_{2} \circ\left(A_{11}+B_{11}\right) \circ I \circ \cdots \circ \Phi(I),
\end{aligned}
$$

which implies that $P_{2} \circ T \circ I \circ \cdots \circ I=0$, and then $T_{22}=T_{12}=0$.
For any $D \in \mathcal{A}$, let $C_{12}=P_{1} D P_{2}+\left(P_{1} D P_{2}\right)^{*}$. Then

$$
C_{12}, A_{11} \circ C_{12}, B_{11} \circ C_{12} \in \mathcal{A}_{12} .
$$

It follows from Lemma 2.6 that

$$
\begin{aligned}
& \Phi\left(A_{11}+B_{11}\right) \circ C_{12} \circ I \circ \cdots \circ I+\left(A_{11}+B_{11}\right) \circ \Phi\left(C_{12}\right) \circ I \circ \cdots \circ I \\
& +\cdots+\left(A_{11}+B_{11}\right) \circ C_{12} \circ I \circ \cdots \circ \Phi(I) \\
& =\Phi\left(\left(A_{11}+B_{11}\right) \circ C_{12} \circ I \circ \cdots \circ I\right) \\
& =\Phi\left(A_{11} \circ C_{12} \circ I \circ \cdots \circ I\right)+\Phi\left(B_{11} \circ C_{12} \circ I \circ \cdots \circ I\right) \\
& =\left(\Phi\left(A_{11}\right)+\Phi\left(B_{11}\right)\right) \circ C_{12} \circ I \circ \cdots \circ I+\left(A_{11}+B_{11}\right) \circ \Phi\left(C_{12}\right) \circ I \circ \cdots \circ I \\
& +\cdots+\left(A_{11}+B_{11}\right) \circ C_{12} \circ I \circ \cdots \circ \Phi(I),
\end{aligned}
$$

which implies that

$$
T \circ C_{12} \circ I \circ \cdots \circ I=T_{11} \circ C_{12} \circ I \circ \cdots \circ I=0,
$$

that is $T_{11} P_{1} D P_{2}+\left(P_{1} D P_{2}\right)^{*} T_{11}=0$. Multiplying the above equation by P_{2} from the right, we have $T_{11} P_{1} D P_{2}=$ 0 for any $D \in \mathcal{A}$. It follows from (*) that $T_{11}=0$, and so $T=0$. Similarly, we can prove that $\Phi\left(A_{22}+B_{22}\right)=$ $\Phi\left(A_{22}\right)+\Phi\left(B_{22}\right)$.
Remark 2.8. It follows from Lemmas 2.5-2.7 that Φ is additive on \mathcal{A}^{a}.
Lemma 2.9. (1) $\Phi(I)=\Phi(i I)=0$;
(2) For every $M^{*}=-M$, we have $\Phi(M)^{*}=-\Phi(M)$ and $\Phi(i M)=i \Phi(M)$.

Proof. It follows from Lemma 2.3 and Remark 2.8 that

$$
\begin{aligned}
2^{n-1} \Phi(I) & =\Phi\left(2^{n-1} I\right)=\Phi(I \circ I \circ \cdots \circ I) \\
& =\Phi(I) \circ I \circ \cdots \circ I+\cdots+I \circ \cdots \circ I \circ \Phi(I) \\
& =2^{n-1} n \Phi(I),
\end{aligned}
$$

which implies $\Phi(I)=0$.
For any $M^{*}=-M$, we have

$$
\begin{aligned}
0 & =\Phi(M \circ I \circ \cdots \circ I) \\
& =\Phi(M) \circ I \circ \cdots \circ I \\
& =2^{n-2}\left(\Phi(M)+\Phi(M)^{*}\right) .
\end{aligned}
$$

So $\Phi(M)^{*}=-\Phi(M)$.
Now, we can obtain that

$$
\begin{aligned}
0 & =2^{n-1} \Phi(I)=\Phi\left(2^{n-1} I\right) \\
& =\Phi((i I) \circ(i I) \circ \cdots \circ I) \\
& =\Phi(i I) \circ(i I) \circ \cdots \circ I+(i I) \circ \Phi(i I) \circ \cdots I \\
& =-2^{n} i \Phi(i I),
\end{aligned}
$$

that is $\Phi(i I)=0$.
For any $M^{*}=-M$, we have

$$
\begin{aligned}
-2^{n-1} \Phi(i M) & =\Phi\left(-2^{n-1} i M\right)=\Phi((i I) \circ M \circ I \circ \cdots \circ I) \\
& =(i I) \circ \Phi(M) \circ I \circ \cdots \circ I \\
& =-2^{n-1} i \Phi(M) .
\end{aligned}
$$

Hence $\Phi(i M)=i \Phi(M)$.

Lemma 2.10. For any $A_{1}^{*}=-A_{1}, A_{2}^{*}=-A_{2}$, we have

$$
\Phi\left(A_{1}+A_{2}\right)=\Phi\left(A_{1}\right)+\Phi\left(A_{2}\right)
$$

and

$$
\Phi\left(A_{1}+i A_{2}\right)=\Phi\left(A_{1}\right)+i \Phi\left(A_{2}\right)
$$

Proof. Let $A_{1}^{*}=-A_{1}, A_{2}^{*}=-A_{2}$. It follows from Remark 2.8 and Lemma 2.9 that

$$
\begin{aligned}
& i \Phi\left(A_{1}+A_{2}\right)=\Phi\left(i\left(A_{1}+A_{2}\right)\right) \\
& =\Phi\left(i A_{1}\right)+\Phi\left(i A_{2}\right)=i\left(\Phi\left(A_{1}\right)+\Phi\left(A_{2}\right)\right)
\end{aligned}
$$

which implies that $\Phi\left(A_{1}+A_{2}\right)=\Phi\left(A_{1}\right)+\Phi\left(A_{2}\right)$.
Now we can obtain that

$$
\begin{aligned}
2^{n-1} i \Phi\left(A_{2}\right) & =\Phi\left(\left(A_{1}+i A_{2}\right) \circ I \circ \cdots \circ I\right) \\
& =\Phi\left(A_{1}+i A_{2}\right) \circ I \circ \cdots \circ I \\
& =2^{n-2}\left(\Phi\left(A_{1}+i A_{2}\right)^{*}+\Phi\left(A_{1}+i A_{2}\right)\right)
\end{aligned}
$$

and

$$
\begin{aligned}
-2^{n-1} i \Phi\left(A_{1}\right) & =\Phi\left(\left(A_{1}+i A_{2}\right) \circ(i I) \circ I \circ \cdots \circ I\right) \\
& =\Phi\left(A_{1}+i A_{2}\right) \circ(i I) \circ I \circ \cdots \circ I \\
& =2^{n-2} i\left(\Phi\left(A_{1}+i A_{2}\right)^{*}-\Phi\left(A_{1}+i A_{2}\right)\right) .
\end{aligned}
$$

Comparing the above two equations, we get that $\Phi\left(A_{1}+i A_{2}\right)=\Phi\left(A_{1}\right)+i \Phi\left(A_{2}\right)$.
Lemma 2.11. (1) For any $A \in \mathcal{A}$, we have

$$
\Phi(i A)=i \Phi(A)
$$

and

$$
\Phi\left(A^{*}\right)=\Phi(A)^{*} .
$$

(2) Φ is additive on \mathcal{A}.

Proof. (1) For any $A \in \mathcal{A}$, we have $A=A_{1}+i A_{2}$, where $A_{1}^{*}=-A_{1}, A_{2}^{*}=-A_{2}$. It follows from Lemmas 2.9 and 2.10 that

$$
\begin{aligned}
\Phi(i A) & =\Phi\left(i A_{1}-A_{2}\right)=i \Phi\left(A_{1}\right)-\Phi\left(A_{2}\right) \\
& =i\left(\Phi\left(A_{1}\right)+i \Phi\left(A_{2}\right)\right)=i \Phi\left(A_{1}+i A_{2}\right) \\
& =i \Phi(A)
\end{aligned}
$$

and

$$
\begin{aligned}
\Phi\left(A^{*}\right) & =\Phi\left(-A_{1}+i A_{2}\right)=-\Phi\left(A_{1}\right)+i \Phi\left(A_{2}\right) \\
& =\left(\Phi\left(A_{1}\right)+i \Phi\left(A_{2}\right)\right)^{*}=\left(\Phi\left(A_{1}+i A_{2}\right)\right)^{*} \\
& =\Phi(A)^{*} .
\end{aligned}
$$

(2) For any $A, B \in \mathcal{A}$, we have $A=A_{1}+i A_{2}$ and $B=B_{1}+i B_{2}$, where $A_{1}^{*}=-A_{1}, A_{2}^{*}=-A_{2}, B_{1}^{*}=-B_{1}, B_{2}^{*}=$ $-B_{2}$. It follows from Lemma 2.10 that

$$
\begin{aligned}
\Phi(A+B) & =\Phi\left(\left(A_{1}+B_{1}\right)+i\left(A_{2}+B_{2}\right)\right) \\
& =\Phi\left(A_{1}+B_{1}\right)+i \Phi\left(A_{2}+B_{2}\right) \\
& =\Phi\left(A_{1}\right)+i \Phi\left(A_{2}\right)+\Phi\left(B_{1}\right)+i \Phi\left(B_{2}\right) \\
& =\Phi(A)+\Phi(B) .
\end{aligned}
$$

Lemma 2.12. Φ is an additive *-derivation.
Proof. For any $A, B \in \mathcal{A}$, by Lemma 2.11, on the one hand, we have

$$
\begin{aligned}
2^{n-2} i \Phi\left(A^{*} B-B^{*} A\right) & =\Phi\left(2^{n-2} i\left(A^{*} B-B^{*} A\right)\right) \\
& =\Phi(A \circ(i B) \circ I \circ \cdots \circ I) \\
& =\Phi(A) \circ(i B) \circ I \circ \cdots \circ I+A \circ \Phi(i B) \circ I \circ \cdots \circ I \\
& =2^{n-2} i\left(\Phi(A)^{*} B-B^{*} \Phi(A)+A^{*} \Phi(B)-\Phi(B)^{*} A\right)
\end{aligned}
$$

which impies that

$$
\Phi\left(A^{*} B-B^{*} A\right)=\Phi(A)^{*} B-B^{*} \Phi(A)+A^{*} \Phi(B)-\Phi(B)^{*} A
$$

On the other hand, we also have

$$
\begin{aligned}
2^{n-2}\left(\Phi\left(A^{*} B+B^{*} A\right)\right) & =\Phi(A \circ B \circ I \circ \cdots \circ I) \\
& =\Phi(A) \circ B \circ I \circ \cdots \circ I+A \circ \Phi(B) \circ I \circ \cdots \circ I \\
& =2^{n-2}\left(\Phi(A)^{*} B+B^{*} \Phi(A)+A^{*} \Phi(B)+\Phi(B)^{*} A\right),
\end{aligned}
$$

which impies that

$$
\Phi\left(A^{*} B+B^{*} A\right)=\Phi(A)^{*} B+B^{*} \Phi(A)+A^{*} \Phi(B)+\Phi(B)^{*} A
$$

By summing the above equation, we have

$$
\Phi\left(A^{*} B\right)=\Phi(A)^{*} B+A^{*} \Phi(B)
$$

It follows from Lemma 2.11 (1) that

$$
\Phi(A B)=\Phi(A) B+A \Phi(B)
$$

3. Corollaries

An algebra \mathcal{A} is called prime if $A \mathcal{A} B=\{0\}$ for $A, B \in \mathcal{A}$ implies either $A=0$ or $B=0$. Observing that prime $*$-algebras satisfy $(\boldsymbol{\bullet})$ and ($\boldsymbol{\bullet})$, we have the following corollary.

Corollary 3.1. Let \mathcal{A} be a prime $*$-algebra with unit I and P be a nontrivial projection in \mathcal{A}. Then Φ is a nonlinear bi-skew Jordan type derivation on \mathcal{A} if and only if Φ is an additive *-derivation.

Let $B(H)$ be the algebra of all bounded linear operators on a complex Hilbert space H, and $\mathcal{A} \subseteq B(H)$ be a von Neumann algebra. \mathcal{A} is a factor if its center is \mathbb{C}. It is well known that a factor von Neumann algebra is prime and then we have the following corollary.

Corollary 3.2. Let \mathcal{A} be a factor von Neumann algebra with $\operatorname{dim} \mathcal{A} \geq 2$. Then $\Phi: \mathcal{A} \rightarrow \mathcal{A}$ is a nonlinear bi-skew Jordan type derivation if and only if Φ is an additive *-derivation.

We denote the subalgebra of all bounded finite rank operators by $\mathcal{F}(H) \subseteq B(H)$. We call a subalgebra \mathcal{A} of $B(H)$ a standard operator algebra if it contains $\mathcal{F}(H)$. Now we have the following corollary.

Corollary 3.3. Let H be an infinite dimensional complex Hilbert space and \mathcal{A} be a standard operator algebra on H containing the identity operator I. Suppose that \mathcal{A} is closed under the adjoint operation. Then $\Phi: \mathcal{A} \rightarrow \mathcal{A}$ is a nonlinear bi-skew Jordan type derivation if and only if Φ is a linear *-derivation. Moreover, there exists an operator $T \in B(H)$ satisfying $T+T^{*}=0$ such that $\Phi(A)=A T-T A$ for all $A \in A$, i.e., Φ is inner.

Proof. Since \mathcal{A} is prime, we know that Φ is an additive $*$-derivation. It follows from [29] that Φ is a linear inner derivation, i.e., there exists an operator $S \in B(\mathcal{H})$ such that $\Phi(A)=A S-S A$. Using the fact $\Phi\left(A^{*}\right)=\Phi(A)^{*}$, we have

$$
A^{*} S-S A^{*}=\Phi\left(A^{*}\right)=\Phi(A)^{*}=-A^{*} S^{*}+S^{*} A^{*}
$$

for all $A \in A$. This leads to $A^{*}\left(S+S^{*}\right)=\left(S+S^{*}\right) A^{*}$. Hence, $S+S^{*}=\lambda I$ for some $\lambda \in \mathbb{R}$. Let us set $T=S-\frac{1}{2} \lambda I$. One can check that $T+T^{*}=0$ such that $\Phi(A)=A T-T A$.

It is shown in [4] and [15] that if a von Neumann algebra \mathcal{A} has no central summands of type I_{1}, then \mathcal{A} satifies $(\boldsymbol{\bullet})$ and $(\boldsymbol{\bullet})$. Now we have the following corollary.

Corollary 3.4. Let \mathcal{A} be a von Neumann algebra with no central summands of type I_{1}. Then $\Phi: \mathcal{A} \rightarrow \mathcal{A}$ is a nnonlinear bi-skew Jordan type derivation if and only if Φ is an additive *-derivation.

Acknowledgements

The authors are grateful to the anonymous referees and editors for their work.

References

[1] Z. Bai, S. Du. The structure of nonlinear Lie derivation on von Neumann algebras, Linear Algebra and its Applications 436 (2012) 2701-2708.
[2] M. Brešar, Commuting traces of biadditive mappings, commutativity-preserving mappings and Lie mappings, Transactions of the American Mathematical Society 335 (1993) 525-546.
[3] W. S. Cheung, Lie derivations of triangular algebras, Linear and Multilinear Algebra 51 (2003) 299-310.
[4] L. Dai, F. Lu, Nonlinear maps preserving Jordan *-products, Journal of Mathematical Analysis and Applications 409 (2014) 180-188.
[5] V. Darvish, M. Nouri, M. Razeghi, Nonlinear bi-skew Jordan derivations on *-algebras, Filomat, in press.
[6] V. Darvish, M. Nouri, M. Razeghi, Nonlinear triple product $A^{*} B+B^{*} A$ for derivations on *-algebras, Mathematical Notes 108 (2020) 179-187.
[7] W. Jing, Nonlinear *-Lie derivations of standard operator algebras, Quaestiones Mathematicae 39 (2016) 1037-1046.
[8] C. Li, Q. Chen, Strong skew commutativity preserving maps on rings with involution, Acta Mathematica Sinica, English Series 32 (2016) 745-752.
[9] C. Li, Q. Chen, T. Wang, Nonlinear maps preserving the Jordan triple *-product on factors, Chinese Annals of Mathematics, Series B 39 (2018) 633-642.
[10] C. Li, X. Fang, Lie triple and Jordan derviable mappings on nest algebras, Linear and Multilinear Algebra 61(2013) 653-666.
[11] C. Li, F. Lu, 2-local *-Lie isomorphisms of operator algebras, Aequationes Mathematicae 90 (2016) 905-916 .
[12] C. Li, F. Lu, 2-local Lie isomorphisms of nest algebras, Operators and Matrices 10 (2016) 425-434.
[13] C. Li, F. Lu, Nonlinear maps preserving the Jordan triple 1-*-product on von Neumann algebras, Complex Analysis and Operator Theory 11 (2017) 109-117.
[14] C. Li, F. Lu, Nonlinear maps preserving the Jordan triple *-product on von Neumann algebras, Annals of Functional Analysis 7 (2016) 496-507.
[15] C. Li, F. Lu, X. Fang Nonlinear ξ-Jordan *-derivations on von Neumann algebras, Linear and Multilinear Algebra 62 (2014) 466-473.
[16] C. Li, D. Zhang, Nonlinear mixed Jordan triple *-derivations on *-algebras, Siberian Mathematical Journal, 63 (2022) 735-742.
[17] C. Li, F. Zhao, Q. Chen, Nonlinear skew Lie triple derivations between factors, Acta Mathematica Sinica, English Series 32 (2016) 821-830.
[18] C. Li, F. Zhao, Q. Chen, Nonlinear maps preserving product $X^{*} Y+Y X^{*}$ on von Neumann algebras, Bulletin of the Iranian Mathematical Society 44 (2018) 729-738.
[19] C. Li, Y. Zhao, F. Zhao, Nonlinear maps preserving the mixed product $[A \bullet B, C]_{*}$ on von Neumann algebras, Filomat 35 (2021) 2775-2781.
[20] C. Li, Y. Zhao, F. Zhao, Nonlinear *-Jordan-type derivations on *-algebras, Rocky Mountain Journal of Mathematics 51 (2021) 601-612.
[21] F. Lu, Lie derivations of certain CSL algebras, Israel Journal of Mathematics 155 (2006) 149-156.
[22] F. Lu, Lie derivations of \mathcal{J}-subspace lattice algebras, Proceedings of the American Mathematical Society 135 (2007) 2581-2590.
[23] F. Lu, B. Liu, Lie derivations of reflexive algebras, Integral Equations and Operator Theory 64 (2009) 261-271.
[24] F. Lu, B. Liu, Lie derivable maps on B(X), Journal of Mathematical Analysis and Applications 372 (2010) 369-376.
[25] M. Mathieu, A. R. Villena, The structure of Lie derivations on C^{*}-algebras, Journal of Functional Analysis 202 (2003) 504-525.
[26] L. Kong, J. Zhang, Nonlinear bi-skew Lie derivations on factor von Neumann algebras, Bulletin of the Iranian Mathematical Society 47 (2021) 1097-1106.
[27] W. S. Martindale III, Lie derivations of primitive rings, Michigan Mathematical Journal 11 (1964) 183-187.
[28] C. R. Miers, Lie derivations of von Neumann algebras, Duke Mathematical Journal 40 (1973) 403-409.
[29] P. Šemrl, Additive derivations of some operator algebras, Illinois Journal of Mathematics 35 (1991) 234-240.
[30] A. Taghavi, H. Rohi and V. Darvish, Non-linear *-Jordan derivations on von Neumann algebras, Linear and Multilinear Algebra 64 (2016) 426-439.
[31] A. Taghavi, S. Gholampoor, Maps preserving product $A^{*} B+B^{*} A$ on C^{*}-algebras, Bulletin of the Iranian Mathematical Society 48 (2022) 757-767.
[32] A. Taghavi, M. Razeghi, Non-linear new product $A^{*} B-B^{*} A$ derivations on *-algebras, Proyecciones (Antofagasta) 39 (2020) 467-479.
[33] W. Yu, J. Zhang, Nonlinear Lie derivations of triangular algebras, Linear Algebra and its Applications 432 (2010) 2953-2960.
[34] W. Yu, J. Zhang, Nonlinear *-Lie derivations on factor von Neumann algebras, Linear Algebra and its Applications 437 (2012) 1979-1991.
[35] F. Zhang, Nonlinear skew Jordan derivable maps on factor von Neumann algebras, Linear and Multilinear Algebra 64 (2016) 2090-2103.
[36] D. Zhang, C. Li, Y. Zhao, Nonlinear maps preserving bi-skew Jordan triple product on factor von Neumann algebras, Periodica Mathematica Hungarica (2022) https: //doi. org/10. 1007/s10998-022-00492-4.
[37] F. Zhao, C. Li, Nonlinear *-Jordan triple derivations on von Neumann algebras, Mathematica Slovaca 68 (2018) 163-170.
[38] F. Zhao, C. Li, Nonlinear maps preserving the Jordan triple *-product between factors, Indagationes Mathematicae 29 (2018) 619-627.
[39] Y. Zhao, C. Li, Q. Chen, Nonlinear maps preserving the mixed product on factors, Bulletin of the Iranian Mathematical Society 47 (2021) 1325-1335.

[^0]: 2020 Mathematics Subject Classification. Primary 16W25; Secondary 46L10
 Keywords. bi-skew Jordan derivations; *-derivations; additivity
 Received: 06 July 2022; Revised: 09 October 2022; Accepted: 24 November 2022
 Communicated by Dijana Mosić

 * Corresponding author: Changjing Li

 Email addresses: wanwanf2@163.com (Fangfang Zhao), 1776767307@qq.com (Dongfang Zhang), lcjbxh@163.com (Changjing Li)

