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Abstract. We present necessary and sufficient conditions under which the anti-triangular matrix
(

a b
1 0

)
over a Banach algebra has g-Drazin inverse. New additive results for g-Drazin inverse are obtained. Then
we apply our results to 2 × 2 operator matrices and generalize many known results, e.g., [5, Theorem 2.2],
[13, Theorem 2.1] and [14, Theorem 4.1].

1. Introduction

LetA be a Banach algebra with an identity. An element a inA has g-Drazin inverse provided that there
exists some b ∈ A such that

b = bab, ab = ba, a − a2b ∈ Aqnil.

Here,Aqnil = {a ∈ A | 1+ ax ∈ A−1 whenever ax = xa}. That is, x ∈ Aqnil
⇔ lim

n→∞
∥ xn
∥

1
n= 0.We say that a ∈ A

has Drazin inverse aD if Aqnil is replaced by the set Anil of all nilpotents in A. As is well known, a ∈ A
has Drazin (resp. g-Drazin) inverse if and only if there exists an idempotent e ∈ A such that ae = ea, a − e
is invertible and ae ∈ Anil(resp.Aqnil). The Drazin and g-Drazin inverses play important roles in matrix
and operator theory. They also were extensively studied in ring theory under strongly π-regularity and
quasipolarity (see [3–5, 9, 12, 15, 16, 18]).

The solutions to singular systems of differential equations are determined by the Drazin (g-Drazin)
inverses of certain anti-triangular block complex matrices (see [1]). This inspires to investigate the Drazin

(g-Drazin) invertibility for the anti-triangular matrix M =
(

a 1
b 0

)
∈M2(A) with a, b ∈ Ad. In [8], Patrı́cio

and Hartwig considered the case ab = ba for the Drazin inverse of M. For bounded linear operators on
Banach spaces, a new expression of MD was given under the same condition (see [12, Theorem 3.8]). Also
Bu et al. gave the alternative representation of MD for subblock complex matrices. In [16, Theorem 2.3],
Zhang and Mosić presented the g-Drazin inverse of M under the condition babπ = 0. In [15, Theorem 2.6] the
g-Drazin inverse Md under the conditions bdabπ = 0, bπba = 0 has been investigated. For the anti-triangular
operator matrix M over a complex Hilbert space, Yu and Deng characterized its Drazin inverse under wider
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conditions bπabD = 0, bπab = bπba and bπabD = 0, bπab(bπa)π = 0, (bπa)Dbπab = 0 (see [14, Theorem 4.1]).
These conditions were also considered in [17, Theorem 2.12].

In Section 2, we present necessary and sufficient conditions under which the anti-triangular matrix(
a 1
b 0

)
over a Banach algebra has g-Drazin inverse. [14, Theorem 4.1] and [17, Theorem 2.12] are thereby

extended to a more general setting.
Let a, b ∈ Ad. Many authors have studied when a+b ∈ A has Drazin (g-Drazin) inverse. In [14, Theorem

2.1], Yang and Liu considered the conditions ab2 = 0 and aba = 0. In [2, Theorem 2.4], the authors extend
to the conditions ab2 = 0 and bπaba = 0. In [9, Theorem 3.1], for the setting of complex matrices, Shakoor
et al. investigated the Drazin inverse of a + b under the conditions ab2 = 0 and a2ba = 0. These conditions
were also considered in [10, Theorem 3.1]. We refer the reader for more related papers, e.g., [11, 13, 16, 18].

In Section 3, we apply our results to establish some new additive results. Let a, b, ab, (ab)πa ∈ Ad. If
ab2 = 0, (ab)πa(ab)d = 0 and (ab)πaba = 0, we prove that a + b ∈ Ad. This also extends the existing results
above.

Let X,Y be Banach spaces and M =

(
A B
C D

)
(∗), where A ∈ L(X),B ∈ L(X,Y),C ∈ L(Y,X) and

D ∈ L(Y). Then M is a bounded linear operator on X ⊕ Y. Finally, in the last section, we split M into the
sum of two block operator matrices. We then establish new results for the g-Drazin inverse of 2 × 2 block
operator matrix M. These also recover some known results, e.g., [5, Theorem 2.2].

Throughout the paper, we useAd to denote the set of all g-Drazin invertible elements inA. Let a ∈ Ad.
The spectral idempotent 1 − aad is denoted by aπ. L(X) denotes the Banach algebra of all bounded linear
operators on the Banach space X. Cn×n stands for the Banach algebra of all n × n complex matrices.

2. Anti-triangular matrices over Banach algebra

The aim of this section is to investigate the g-Drazin invertibility of the operator matrix
(

a b
1 0

)
over a

Banach algebraA.We begin with

Lemma 2.1. (see [16, Lemma 1.3]) Let a, b ∈ Ad. If ab = 0, then a + b ∈ Ad and

(a + b)d =

∞∑
i=0

bibπ(ad)i+1 +

∞∑
i=0

(bd)i+1aiaπ.

Theorem 2.2. Let a, b ∈ Ad and bπabd = 0. Then the following are equivalent:

(1)
(

a 1
b 0

)
has g-Drazin inverse.

(2)
(

bπa 1
bπb 0

)
has g-Drazin inverse.

(3)
(

abπ 1
bbπ 0

)
has g-Drazin inverse.

Proof. (1)⇒ (2) Let M =
(

a 1
b 0

)
and p =

(
bπ 0
0 bπ

)
. Since bπabd = 0, we see that

pM(1 − p) = 0,M(1 − p) =
(

bbdabbd bbd

b2bd 0

)
.

Obviously, [M(1−p)]# =

(
0 bd

bbd
−abd

)
. In view of [16, Lemma 2.2], pM =

(
bπa bπ

bπb 0

)
has g-Drazin inverse.
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Let N =
(

bπa 1
bπb 0

)
. Then we have

N =

(
1 0
0 bπ

) (
bπa 1
bπb 0

)
,(

bπa bπ

bπb 0

)
=

(
bπa 1
bπb 0

) (
1 0
0 bπ

)
.

By using Cline’s formula (see [6, Theorem 2.1]), N has g-Drazin inverse.

(2)⇒ (1) Let e =
(

bbd 0
0 1

)
. Then M =

(
α β
γ δ

)
e
,where

α =

(
bbdabbd bbd

b2bd 0

)
, β =

(
bbdabπ 0

bbπ 0

)
,

γ =

(
0 bπ

0 0

)
, δ =

(
bπa 0
0 0

)
.

Then

α# =

(
0 bd

bbd
−abd

)
, απ =

(
bπ 0
0 bπ

)
,

β + γ + δ =

(
bbdabπ + bπa bπ

bbπ 0

)
,

and

(β + γ + δ)α =
(

bbdabπ + bπa bπ

bbπ 0

) (
bbdabbd bbd

b2bd 0

)
= 0.

Moreover, we have

β + γ + δ =

(
bbda + bπa 1

b 0

) (
bπ 0
0 bπ

)
;(

bπa bπ

bπb 0

)
=

(
bπ 0
0 bπ

) (
bbda + bπa 1

b 0

)
;(

bπa bπ

bπb 0

)
=

(
bπa 1
bπb 0

) (
1 0
0 bπ

)
,(

bπa 1
bπb 0

)
=

(
1 0
0 bπ

) (
bπa 1
bπb 0

)
.

Since N has g-Drazin inverse, by using Cline’s formula, β + γ + δ has g-Drazin inverse. Clearly, we have(
bπa bπ

bπb 0

)d

=

(
bπa 1
bπb 0

)
(Nd)2

(
1 0
0 bπ

)
= Nd

(
1 0
0 bπ

)
.

Therefore
(β + γ + δ)d

=

(
bbda + bπa 1

b 0

) [ ( bπa bπ

bπb 0

)d ]2
(

bπ 0
0 bπ

)
=

(
bbda + bπa 1

b 0

)
Nd

(
1 0
0 bπ

)
Nd

(
bπ 0
0 bπ

)
.

In light of Lemma 2.1, M has g-Drazin inverse. In fact, we get

Md =
∞∑

i=0
αiαπ[(β + γ + δ)d]i+1 +

∞∑
i=0

[α#]i+1(β + γ + δ)i(β + γ + δ)π

= απ(β + γ + δ)d +
∞∑

i=0
[α#]i+1(β + γ + δ)i(β + γ + δ)π.
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(2)⇔ (3) Obviously, we have (
bπa 1
bπb 0

)
=

(
1 0
0 bπ

) (
bπa 1
bπb 0

)
,(

bπa bπ

bπb 0

)
=

(
bπa 1
bπb 0

) (
1 0
0 bπ

)
;(

bπa bπ

bπb 0

)
=

(
bπ 0
0 bπ

) (
a 1
b 0

)
,(

abπ bπ

bbπ 0

)
=

(
a 1
b 0

) (
bπ 0
0 bπ

)
;(

abπ bπ

bbπ 0

)
=

(
abπ 1
bbπ 0

) (
1 0
0 bπ

)
,(

abπ 1
bbπ 0

)
=

(
1 0
0 bπ

) (
abπ 1
bbπ 0

)
.

Therefore we complete the proof by repeatedly using Cline’s formula (see [6, Theorem 2.1]).

Corollary 2.3. Let a, b, bπa ∈ Ad. If bπabd = 0, abbπ = bπba, then
(

a 1
b 0

)
has g-Drazin inverse.

Proof. Let N =
(

abπ 1
bbπ 0

)
. We check that

(abπ)(bbπ) = abbπ = bπba = bπbabπ = (bbπ)(abπ).

As the argument in [8], N has g-Drazin inverse. This completes the proof by Theorem 2.2.

Yu et al. characterized the Drazin invertibility of an anti-triangular matrix over a complex Hibert space
by using solutions of certain operator equations (see [14, Theorem 4.1]). We now generalize their main
results to the g-Darzin inverse in a Banach algebra by using ring technique as follows.

Corollary 2.4. Let a, b, bπa ∈ Ad. If bπabd = 0, bπab = bπba, then
(

a 1
b 0

)
has g-Drazin inverse.

Proof. Let N =
(

bπa 1
bπb 0

)
. By hypothesis, we have

(bπa)(bπb) = bπab = bπba = (bπb)(bπa).

As the argument in [8], N has g-Drazin inverse. We obtain the result by Theorem 2.2.

Corollary 2.5. Let a, b, bπa ∈ Ad. If bπabd = 0, (bπa)dbπab = 0, bπab(bπa)π = 0, then
(

a 1
b 0

)
has g-Drazin

inverse.

Proof. Let N =
(

bπa 1
bπb 0

)
. Then N = P +Q, where

P =
(

(bπa)2(bπa)d (bπa)(bπa)d

0 0

)
,Q =

(
(bπa)(bπa)π (bπa)π

(bπa)π(bπb) 0

)
.

Clearly, P has g-Drazin inverse and PQ = 0.
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Write
(

(bπa)(bπa)π (bπa)π(bπb)(bπa)π

1 0

)
= K + L, where

K =
(

(bπa)(bπa)π 0
0 0

)
,L =

(
0 (bπa)π(bπb)(bπa)π

1 0

)
.

Obviously, (bπa)(bπa)π is quasinilpotent. Hence, K is quasinilpotent.
One easily checks that

(bπa)π(bπb) = [1 − (bπa)d(bπa)](bπb)
= bπb − (bπa)dbπa(1 − bdb)b
= bπb − (bπa)dbπab + (bπa)d(bπabd)b2

= bπb.

Then (bπa)π(bπb) is quasinilpotent. By using Cline’s formula, (bπa)π(bπb)(bπa)π is quasinilpotent. Accord-
ingly, L is quasinilpotent.

By hypothesis, we check that

[(bπa)(bπa)π][(bπa)π(bπb)(bπa)π]
= (bπa)π(bπa)(bπb)(bπa)π]
= (bπa)π(bπab)(bπa)π

= 0.

By Lemma 2.1,
(

(bπa)(bπa)π (bπa)π(bπb)(bπa)π

1 0

)
is quasinilpotent. We verify that

(
bπa(bπa)π (bπa)π

(bπa)πbπb 0

)
=

(
(bπa)π 0

0 (bπa)π

) (
bπa 1
bπb 0

)
,(

(bπa)(bπa)π (bπa)π

(bπb)(bπa)π 0

)
=

(
bπa 1
bπb 0

) (
(bπa)π 0

0 (bπa)π

)
=

(
1 0
0 (bπb)(bπa)π

) (
(bπa)(bπa)π (bπa)π

1 0

)
,(

(bπa)(bπa)π (bπa)π(bπb)(bπa)π

1 0

)
=

(
(bπa)(bπa)π (bπa)π

1 0

) (
1 0
0 (bπb)(bπa)π

)
.

By using Cline’s formula, Q has quasinilpotent. In view of Lemma 2.1, N has g-Drazin inverse. According
to Theorem 2.2, we complete the proof.

We are now ready to prove the following:

Theorem 2.6. Let a, b, bπa ∈ Ad. If bπ(ab2) = 0 and bπ(aba) = 0, then
(

a 1
b 0

)
has g-Drazin inverse.

Proof. Since bπ(ab2) = 0, we have

bπabd = bπab2(bd)3 = 0, bπa(bπb)2 = 0, bπa(bπb)bπa = 0.
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Let N =
(

bπa 1
bπb 0

)
. Then N2 =

(
(bπa)2 + bπb bπa

bπbbπa bπb

)
.Write N2 = P +Q, where

P =
(

(bπa)2 bπa
0 0

)
,Q =

(
bπb 0

bπbbπa bπb

)
.

Obviously, we have

PQ2 =

(
(bπa)2bπb bπab

0 0

) (
bπb 0

bπbbπa bπb

)
= 0,

PQP =
(

(bπa)2bπb bπab
0 0

) (
(bπa)2 bπa

0 0

)
= 0.

By virtue of [2, Theorem 2.4], N2 has g-Drazin inverse. It follows from [7, Corollary 2.2] that N has g-Drazin
inverse. In light of Theorem 2.2, the result follows.

Corollary 2.7. Let a, b ∈ Ad. If ab2 = 0 and aba = 0, then
(

a 1
b 0

)
has g-Drazin inverse.

Proof. Since ab2 = 0, abπ = a − (ab2)(bd)2 = a ∈ Ad. By Cline’s formula, bπa ∈ Ad. This completes the proof
by Theorem 2.6.

Corollary 2.8. Let a, b, bπa ∈ Ad. If bπab = 0, then
(

a 1
b 0

)
has g-Drazin inverse.

Proof. Since bπab = 0, we see that bπab2 = 0 and bπ(aba) = 0. So the corollary is true by Theorem 2.6.

3. Additive properties

In this section we establish some elementary additive properties of g-Drazin inverse in a Banach algebra.
The following fact will also be used in our subsequent investigations.

Theorem 3.1. Let a, b, ab, (ab)πa ∈ Ad. If ab2 = 0, (ab)πa(ab)d = 0 and (ab)π aba = 0, then a + b ∈ Ad.

Proof. Obviously, we have a + b = (1, b)
(

a
1

)
. In view of Cline’s formula, it suffices to prove

M =
(

a
1

)
(1, b) =

(
a ab
1 b

)
has g-Drazin inverse. Write M = K + L,where

K =
(

a ab
1 0

)
,L =

(
0 0
0 b

)
.

Let H =
(

a 1
ab 0

)
and N =

(
(ab)πa 1
(ab)πab 0

)
. One easily checks that

(ab)πa[(ab)πab]2 = (ab)πa(ab)π(aba)b = 0,
(ab)πa[(ab)πab](ab)πa = (ab)πa(ab)π(aba) = 0.

In light of Corollary 2.7, N has g-Drazin inverse. By hypothesis, (ab)πa(ab)d = 0. According to Theorem 2.2,
H has g-Drazin inverse. Clearly,

H =
(

1 0
0 ab

) (
a 1
1 0

)
,K =

(
a 1
1 0

) (
1 0
0 ab

)
.

By using Cline’s formula, K has g-Drazin inverse. Since ab2 = 0, we have KL = 0. In light of Lemma 2.1, M
has g-Drazin inverse. Therefore a + b ∈ Ad.
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Corollary 3.2. Let a, b, ab, b(ab)π ∈ Ad. If a2b = 0, (ab)db(ab)π = 0 and bab(ab)π = 0, then a + b ∈ Ad

Proof. Since (A, ·) is a Banach algebra, (A, ∗) is a Banach algebra with the multiplication x ∗ y = y · x. Then
we complete the proof by applying Theorem 3.1 to the Banach algebra (A, ∗).

We are now ready to generalize [9, Theorem 3.1] as follow:

Theorem 3.3. Let a, b, ab ∈ Ad. If ab2 = 0 and (ab)πa2ba = 0, then a + b ∈ Ad.

Proof. Let M =
(

a ab
1 b

)
.Write M = K + L,where

K =
(

a ab
1 0

)
,L =

(
0 0
0 b

)
.

Let H =
(

a 1
ab 0

)
. By hypothesis, we check that

(ab)πa(ab)2 = 0, (ab)πa(ab)a = 0.

According to Theorem 2.6, H is g-Drazin inverse. As in the proof of Theorem 3.1, by using Cline’s formula,
K has g-Drazin inverse. Since ab2 = 0, it follows by Lemma 2.1 that M has g-Drazin inverse. Observing that

a + b = (1, b)
(

a
1

)
,

M =

(
a
1

)
(1, b),

by using Cline’s formula again, a + b has g-Drazin inverse.

Corollary 3.4. Let a, b, ab ∈ Ad. If a2b = 0 and bab2(ab)π = 0, then a + b ∈ Ad.

Proof. Similarly to Corollary 3.2, we obtain the result by Theorem 3.3.

Corollary 3.5. Let a, b, ab ∈ Ad. If ab2 = 0 and a2ba = 0, then a + b ∈ Ad.

Proof. This is obvious by Theorem 3.3.

4. Operator matrices over Banach spaces

In this section we apply our results to establish g-Drazin invertibility for the block operator matrix M
as in (∗). Throughout this section, we always assume that A,D,BC ∈ L(X)d. We come now to extend [14,
Theorem 3.1] as follows.

Theorem 4.1. If (BC)πABCA = 0, (BC)πABCB = 0,DCA = 0 and DCB = 0, then M has g-Drazin inverse.

Proof. Write M = P +Q, where

P =
(

A B
0 D

)
,Q =

(
0 0
C 0

)
.

Clearly, Q2 = 0, and so PQ2 = 0. Moreover, we have

PQ =

(
BC 0
DC 0

)
,

(PQ)d =

(
(BC)d 0

DC[(BC)d]2 0

)
=

(
(BC)d 0

0 0

)
,

(PQ)π =

(
(BC)π 0

−DC(BC)d I

)
=

(
(BC)π 0

0 I

)
.
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We easily check that
(PQ)πP2QP

=

(
(BC)π 0

−DC(BC)d I

) (
A B
0 D

) (
BC 0
DC 0

) (
A B
0 D

)
=

(
(BC)πA (BC)πB

0 D

) (
BCA BCB

0 0

)
= 0.

Therefore we complete the proof by Theorem 3.3.

Corollary 4.2. If (BC)πABCA = 0, (BC)πABCB = 0,BDC = 0 and BD2 = 0, then M has g-Drazin inverse.

Proof. Write M = P +Q, where

P =
(

A B
C 0

)
,Q =

(
0 0
0 D

)
.

In light of Theorem 4.1, P has g-Drazin inverse. Since PQ2 = 0 and PQP = 0, we complete the proof by [2,
Theorem 2.4].

Theorem 4.3. If (BC)πA(BC)d = 0, (BC)πBCA = 0, (BC)π BCB = 0,DCA = 0 and DCB = 0, then M has g-Drazin
inverse.

Proof. Write M = P +Q, where

P =
(

A B
0 D

)
,Q =

(
0 0
C 0

)
.

Then Q2 = 0 and PQ =
(

BC 0
DC 0

)
; hence,

(PQ)d =

(
(BC)d 0

0 0

)
, (PQ)π =

(
(BC)π 0

0 I

)
.

By hypothesis, we verify that

(PQ)πP(PQ)d

=

(
(BC)π 0

0 I

) (
A B
0 D

) (
(BC)d 0

0 0

)
=

(
(BC)π 0

0 I

) (
A(BC)d 0

0 0

)
= 0,

(PQ)πPQP

=

(
(BC)π 0

0 I

) (
BC 0
DC 0

) (
A B
0 D

)
=

(
(BC)πBCA (BC)πBCB
DC(BC)πA DC(BC)πB

)
= 0.

This completes the proof by Theorem 3.1.

Corollary 4.4. If (BC)πA(BC)d = 0, (BC)πBCA = 0, (BC)π BCB = 0,BDC = 0 and BD2 = 0, then M has g-Drazin
inverse.

Proof. Write M = P +Q, where

P =
(

A B
C 0

)
,Q =

(
0 0
0 D

)
.

In light of Theorem 4.3, P is g-Drazin inverse. As in the proof of Corollary 4.2, M has g-Drazin inverse.
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Theorem 4.5. If (CB)πCABC = 0,A(BC)πABC = 0,ABD = 0 and CBD = 0, then M has g-Drazin inverse.

Proof. Write M = P +Q,where

P =
(

A 0
C 0

)
,Q =

(
0 B
0 D

)
.

Then

PQ2 =

(
A 0
C 0

) (
0 B
0 D

)2

=

(
0 ABD
0 CBD

)
,

(PQ)πP2QP =

(
0 AB
0 CB

)π (
A 0
C 0

)2 (
0 B
0 D

) (
A 0
C 0

)
=

(
I −AB(CB)d

0 (CB)π

) (
A2BC 0
CABC 0

)
.

Clearly, P and Q have g-Drazin inverses. Moreover, PQ2 = 0 and (PQ)πP2QP = 0, and therefore we complete
the proof by Theorem 3.3.

We now generalize [5, Theorem 2.2] as follow.

Corollary 4.6. If (CB)πCABC = 0,A(BC)πABC = 0,BDC = 0 and BD2 = 0, then M has g-Drazin inverse.

Proof. As in the proof of Corollary 4.2, we are through by Theorem 4.5.
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