The g-Drazin invertibility in a Banach algebra

Huanyin Chen ${ }^{\text {a }}$, Marjan Sheibani Abdolyousef ${ }^{\text {b,* }}$
${ }^{a}$ School of Mathematics, Hangzhou Normal University, Hangzhou, China
${ }^{b}$ Farzanegan Campus, Semnan University, Semnan, Iran

Abstract

We present necessary and sufficient conditions under which the anti-triangular matrix $\left(\begin{array}{ll}a & b \\ 1 & 0\end{array}\right)$ over a Banach algebra has g-Drazin inverse. New additive results for g-Drazin inverse are obtained. Then we apply our results to 2×2 operator matrices and generalize many known results, e.g., [5, Theorem 2.2], [13, Theorem 2.1] and [14, Theorem 4.1].

1. Introduction

Let \mathcal{A} be a Banach algebra with an identity. An element a in \mathcal{A} has g-Drazin inverse provided that there exists some $b \in \mathcal{A}$ such that

$$
b=b a b, a b=b a, a-a^{2} b \in \mathcal{A}^{\text {qnil }} .
$$

Here, $\mathcal{A}^{\text {qnil }}=\left\{a \in \mathcal{A} \mid 1+a x \in \mathcal{A}^{-1}\right.$ whenever $\left.a x=x a\right\}$. That is, $x \in \mathcal{A}^{\text {qnil }} \Leftrightarrow \lim _{n \rightarrow \infty}\left\|x^{n}\right\|^{\frac{1}{n}}=0$. We say that $a \in \mathcal{A}$ has Drazin inverse a^{D} if $\mathcal{A}^{\text {nil }}$ is replaced by the set $\mathcal{A}^{\text {nil }}$ of all nilpotents in \mathcal{A}. As is well known, $a \in \mathcal{A}$ has Drazin (resp. g-Drazin) inverse if and only if there exists an idempotent $e \in \mathcal{A}$ such that $a e=e a, a-e$ is invertible and $a e \in \mathcal{A}^{\text {nil }}$ (resp. $\left.\mathcal{A}^{q n i l}\right)$. The Drazin and g-Drazin inverses play important roles in matrix and operator theory. They also were extensively studied in ring theory under strongly π-regularity and quasipolarity (see $[3-5,9,12,15,16,18]$).

The solutions to singular systems of differential equations are determined by the Drazin (g-Drazin) inverses of certain anti-triangular block complex matrices (see [1]). This inspires to investigate the Drazin (g-Drazin) invertibility for the anti-triangular matrix $M=\left(\begin{array}{ll}a & 1 \\ b & 0\end{array}\right) \in M_{2}(\mathcal{A})$ with $a, b \in \mathcal{A}^{d}$. In [8], Patrício and Hartwig considered the case $a b=b a$ for the Drazin inverse of M. For bounded linear operators on Banach spaces, a new expression of M^{D} was given under the same condition (see [12, Theorem 3.8]). Also Bu et al. gave the alternative representation of M^{D} for subblock complex matrices. In [16, Theorem 2.3], Zhang and Mosić presented the g-Drazin inverse of M under the condition $b a b^{\pi}=0$. In [15, Theorem 2.6] the g-Drazin inverse M^{d} under the conditions $b^{d} a b^{\pi}=0, b^{\pi} b a=0$ has been investigated. For the anti-triangular operator matrix M over a complex Hilbert space, Yu and Deng characterized its Drazin inverse under wider

[^0]conditions $b^{\pi} a b^{D}=0, b^{\pi} a b=b^{\pi} b a$ and $b^{\pi} a b^{D}=0, b^{\pi} a b\left(b^{\pi} a\right)^{\pi}=0,\left(b^{\pi} a\right)^{D} b^{\pi} a b=0$ (see [14, Theorem 4.1]). These conditions were also considered in [17, Theorem 2.12].

In Section 2, we present necessary and sufficient conditions under which the anti-triangular matrix $\left(\begin{array}{ll}a & 1 \\ b & 0\end{array}\right)$ over a Banach algebra has g-Drazin inverse. [14, Theorem 4.1] and [17, Theorem 2.12] are thereby extended to a more general setting.

Let $a, b \in \mathcal{A}^{d}$. Many authors have studied when $a+b \in \mathcal{A}$ has Drazin (g-Drazin) inverse. In [14, Theorem 2.1], Yang and Liu considered the conditions $a b^{2}=0$ and $a b a=0$. In [2, Theorem 2.4], the authors extend to the conditions $a b^{2}=0$ and $b^{\pi} a b a=0$. In [9, Theorem 3.1], for the setting of complex matrices, Shakoor et al. investigated the Drazin inverse of $a+b$ under the conditions $a b^{2}=0$ and $a^{2} b a=0$. These conditions were also considered in [10, Theorem 3.1]. We refer the reader for more related papers, e.g., $[11,13,16,18]$.

In Section 3, we apply our results to establish some new additive results. Let $a, b, a b,(a b)^{\pi} a \in \mathcal{A}^{d}$. If $a b^{2}=0,(a b)^{\pi} a(a b)^{d}=0$ and $(a b)^{\pi} a b a=0$, we prove that $a+b \in \mathcal{A}^{d}$. This also extends the existing results above.

Let X, Y be Banach spaces and $M=\left(\begin{array}{cc}A & B \\ C & D\end{array}\right) \quad(*)$, where $A \in \mathcal{L}(X), B \in \mathcal{L}(X, Y), C \in \mathcal{L}(Y, X)$ and $D \in \mathcal{L}(Y)$. Then M is a bounded linear operator on $X \oplus Y$. Finally, in the last section, we split M into the sum of two block operator matrices. We then establish new results for the g-Drazin inverse of 2×2 block operator matrix M. These also recover some known results, e.g., [5, Theorem 2.2].

Throughout the paper, we use \mathcal{A}^{d} to denote the set of all g-Drazin invertible elements in \mathcal{A}. Let $a \in \mathcal{A}^{d}$. The spectral idempotent $1-a a^{d}$ is denoted by a^{π}. $\mathcal{L}(X)$ denotes the Banach algebra of all bounded linear operators on the Banach space X. $\mathbb{C}^{n \times n}$ stands for the Banach algebra of all $n \times n$ complex matrices.

2. Anti-triangular matrices over Banach algebra

The aim of this section is to investigate the g-Drazin invertibility of the operator matrix $\left(\begin{array}{ll}a & b \\ 1 & 0\end{array}\right)$ over a Banach algebra \mathcal{A}. We begin with

Lemma 2.1. (see [16, Lemma 1.3]) Let $a, b \in \mathcal{A}^{d}$. If $a b=0$, then $a+b \in \mathcal{A}^{d}$ and

$$
(a+b)^{d}=\sum_{i=0}^{\infty} b^{i} b^{\pi}\left(a^{d}\right)^{i+1}+\sum_{i=0}^{\infty}\left(b^{d}\right)^{i+1} a^{i} a^{\pi} .
$$

Theorem 2.2. Let $a, b \in \mathcal{A}^{d}$ and $b^{\pi} a b^{d}=0$. Then the following are equivalent:
(1) $\left(\begin{array}{ll}a & 1 \\ b & 0\end{array}\right)$ has g-Drazin inverse.
(2) $\left(\begin{array}{ll}b^{\pi} a & 1 \\ b^{\pi} b & 0\end{array}\right)$ has g-Drazin inverse.
(3) $\left(\begin{array}{ll}a b^{\pi} & 1 \\ b b^{\pi} & 0\end{array}\right)$ has g-Drazin inverse.

Proof. (1) \Rightarrow (2) Let $M=\left(\begin{array}{cc}a & 1 \\ b & 0\end{array}\right)$ and $p=\left(\begin{array}{cc}b^{\pi} & 0 \\ 0 & b^{\pi}\end{array}\right)$. Since $b^{\pi} a b^{d}=0$, we see that

$$
p M(1-p)=0, M(1-p)=\left(\begin{array}{cc}
b b^{d} a b b^{d} & b b^{d} \\
b^{2} b^{d} & 0
\end{array}\right) .
$$

Obviously, $[M(1-p)]^{\#}=\left(\begin{array}{cc}0 & b^{d} \\ b b^{d} & -a b^{d}\end{array}\right)$. In view of [16, Lemma 2.2], $p M=\left(\begin{array}{cc}b^{\pi} a & b^{\pi} \\ b^{\pi} b & 0\end{array}\right)$ has g-Drazin inverse.

Let $N=\left(\begin{array}{cc}b^{\pi} a & 1 \\ b^{\pi} b & 0\end{array}\right)$. Then we have

$$
\begin{aligned}
N & =\left(\begin{array}{cc}
1 & 0 \\
0 & b^{\pi}
\end{array}\right)\left(\begin{array}{cc}
b^{\pi} a & 1 \\
b^{\pi} b & 0
\end{array}\right), \\
\left(\begin{array}{cc}
b^{\pi} a & b^{\pi} \\
b^{\pi} b & 0
\end{array}\right) & =\left(\begin{array}{cc}
b^{\pi} a & 1 \\
b^{\pi} b & 0
\end{array}\right)\left(\begin{array}{cc}
1 & 0 \\
0 & b^{\pi}
\end{array}\right)
\end{aligned}
$$

By using Cline's formula (see [6, Theorem 2.1]), N has g-Drazin inverse.
$(2) \Rightarrow(1)$ Let $e=\left(\begin{array}{cc}b b^{d} & 0 \\ 0 & 1\end{array}\right)$. Then $M=\left(\begin{array}{cc}\alpha & \beta \\ \gamma & \delta\end{array}\right)_{e}$, where

$$
\begin{gathered}
\alpha=\left(\begin{array}{cc}
b b^{d} a b b^{d} & b b^{d} \\
b^{2} b^{d} & 0
\end{array}\right), \beta=\left(\begin{array}{cc}
b b^{d} a b^{\pi} & 0 \\
b b^{\pi} & 0
\end{array}\right), \\
\gamma=\left(\begin{array}{ll}
0 & b^{\pi} \\
0 & 0
\end{array}\right), \delta=\left(\begin{array}{cc}
b^{\pi} a & 0 \\
0 & 0
\end{array}\right) .
\end{gathered}
$$

Then

$$
\begin{gathered}
\alpha^{\#}=\left(\begin{array}{cc}
0 & b^{d} \\
b b^{d} & -a b^{d}
\end{array}\right), \alpha^{\pi}=\left(\begin{array}{cc}
b^{\pi} & 0 \\
0 & b^{\pi}
\end{array}\right), \\
\beta+\gamma+\delta=\left(\begin{array}{cc}
b b^{d} a b^{\pi}+b^{\pi} a & b^{\pi} \\
b b^{\pi} & 0
\end{array}\right),
\end{gathered}
$$

and

$$
(\beta+\gamma+\delta) \alpha=\left(\begin{array}{cc}
b b^{d} a b^{\pi}+b^{\pi} a & b^{\pi} \\
b b^{\pi} & 0
\end{array}\right)\left(\begin{array}{cc}
b b^{d} a b b^{d} & b b^{d} \\
b^{2} b^{d} & 0
\end{array}\right)=0 .
$$

Moreover, we have

$$
\begin{aligned}
\beta+\gamma+\delta & =\left(\begin{array}{cc}
b b^{d} a+b^{\pi} a & 1 \\
b & 0
\end{array}\right)\left(\begin{array}{cc}
b^{\pi} & 0 \\
0 & b^{\pi}
\end{array}\right) ; \\
\left(\begin{array}{cc}
b^{\pi} a & b^{\pi} \\
b^{\pi} b & 0
\end{array}\right) & =\left(\begin{array}{cc}
b^{\pi} & 0 \\
0 & b^{\pi}
\end{array}\right)\left(\begin{array}{cc}
b b^{d} a+b^{\pi} a & 1 \\
& b
\end{array}\right) ; \\
\left(\begin{array}{cc}
b^{\pi} a & b^{\pi} \\
b^{\pi} b & 0
\end{array}\right) & =\left(\begin{array}{cc}
b^{\pi} a & 1 \\
b^{\pi} b & 0
\end{array}\right)\left(\begin{array}{cc}
1 & 0 \\
0 & b^{\pi}
\end{array}\right), \\
\left(\begin{array}{cc}
b^{\pi} a & 1 \\
b^{\pi} b & 0
\end{array}\right) & =\left(\begin{array}{cc}
1 & 0 \\
0 & b^{\pi}
\end{array}\right)\left(\begin{array}{cc}
b^{\pi} a & 1 \\
b^{\pi} b & 0
\end{array}\right) .
\end{aligned}
$$

Since N has g-Drazin inverse, by using Cline's formula, $\beta+\gamma+\delta$ has g-Drazin inverse. Clearly, we have

$$
\begin{aligned}
\left(\begin{array}{cc}
b^{\pi} a & b^{\pi} \\
b^{\pi} b & 0
\end{array}\right)^{d} & =\left(\begin{array}{cc}
b^{\pi} a & 1 \\
b^{\pi} b & 0
\end{array}\right)\left(N^{d}\right)^{2}\left(\begin{array}{cc}
1 & 0 \\
0 & b^{\pi}
\end{array}\right) \\
& =N^{d}\left(\begin{array}{cc}
1 & 0 \\
0 & b^{\pi}
\end{array}\right)
\end{aligned}
$$

Therefore

$$
\begin{aligned}
& (\beta+\gamma+\delta)^{d} \\
= & \left(\begin{array}{cc}
b b^{d} a+b^{\pi} a & 1 \\
b & 0
\end{array}\right)\left[\left(\begin{array}{cc}
b^{\pi} a & b^{\pi} \\
b^{\pi} b & 0
\end{array}\right)^{d}\right]^{2}\left(\begin{array}{cc}
b^{\pi} & 0 \\
0 & b^{\pi} \\
b b^{d} a+b^{\pi} a & 1 \\
b & 0
\end{array}\right) \\
= & N^{d}\left(\begin{array}{cc}
1 & 0 \\
0 & b^{\pi}
\end{array}\right) N^{d}\left(\begin{array}{cc}
b^{\pi} & 0 \\
0 & b^{\pi}
\end{array}\right) .
\end{aligned}
$$

In light of Lemma 2.1, M has g-Drazin inverse. In fact, we get

$$
\begin{aligned}
M^{d} & =\sum_{i=0}^{\infty} \alpha^{i} \alpha^{\pi}\left[(\beta+\gamma+\delta)^{d}\right]^{i+1}+\sum_{i=0}^{\infty}\left[\alpha^{\#}\right]^{i+1}(\beta+\gamma+\delta)^{i}(\beta+\gamma+\delta)^{\pi} \\
& =\alpha^{\pi}(\beta+\gamma+\delta)^{d}+\sum_{i=0}^{\infty}\left[\alpha^{\#}\right]^{i+1}(\beta+\gamma+\delta)^{i}(\beta+\gamma+\delta)^{\pi}
\end{aligned}
$$

(2) \Leftrightarrow (3) Obviously, we have

$$
\begin{aligned}
\left(\begin{array}{cc}
b^{\pi} a & 1 \\
b^{\pi} b & 0
\end{array}\right) & =\left(\begin{array}{cc}
1 & 0 \\
0 & b^{\pi}
\end{array}\right)\left(\begin{array}{cc}
b^{\pi} a & 1 \\
b^{\pi} b & 0
\end{array}\right), \\
\left(\begin{array}{cc}
b^{\pi} a & b^{\pi} \\
b^{\pi} b & 0
\end{array}\right) & =\left(\begin{array}{cc}
b^{\pi} a & 1 \\
b^{\pi} b & 0
\end{array}\right)\left(\begin{array}{cc}
1 & 0 \\
0 & b^{\pi}
\end{array}\right) \\
\left(\begin{array}{cc}
b^{\pi} a & b^{\pi} \\
b^{\pi} b & 0 \\
b^{\pi} & 0 \\
0 & b^{\pi}
\end{array}\right)\left(\begin{array}{cc}
a & 1 \\
b & 0 \\
b b^{\pi} & 0 \\
b & b^{\pi}
\end{array}\right) & =\left(\begin{array}{cc}
a & 1 \\
b & 0
\end{array}\right)\left(\begin{array}{cc}
b^{\pi} & 0 \\
0 & b^{\pi}
\end{array}\right) \\
\left(\begin{array}{cc}
a b^{\pi} & b^{\pi} \\
b b^{\pi} & 0
\end{array}\right) & =\left(\begin{array}{cc}
a b^{\pi} & 1 \\
b b^{\pi} & 0
\end{array}\right)\left(\begin{array}{cc}
1 & 0 \\
0 & b^{\pi}
\end{array}\right), \\
\left(\begin{array}{cc}
a b^{\pi} & 1 \\
b b^{\pi} & 0
\end{array}\right) & =\left(\begin{array}{cc}
1 & 0 \\
0 & b^{\pi}
\end{array}\right)\left(\begin{array}{cc}
a b^{\pi} & 1 \\
b b^{\pi} & 0
\end{array}\right)
\end{aligned}
$$

Therefore we complete the proof by repeatedly using Cline's formula (see [6, Theorem 2.1]).
Corollary 2.3. Let $a, b, b^{\pi} a \in \mathcal{A}^{d}$. If $b^{\pi} a b^{d}=0, a b b^{\pi}=b^{\pi} b a$, then $\left(\begin{array}{cc}a & 1 \\ b & 0\end{array}\right)$ has g-Drazin inverse.
Proof. Let $N=\left(\begin{array}{ll}a b^{\pi} & 1 \\ b b^{\pi} & 0\end{array}\right)$. We check that

$$
\left(a b^{\pi}\right)\left(b b^{\pi}\right)=a b b^{\pi}=b^{\pi} b a=b^{\pi} b a b^{\pi}=\left(b b^{\pi}\right)\left(a b^{\pi}\right) .
$$

As the argument in [8], N has g-Drazin inverse. This completes the proof by Theorem 2.2.
Yu et al. characterized the Drazin invertibility of an anti-triangular matrix over a complex Hibert space by using solutions of certain operator equations (see [14, Theorem 4.1]). We now generalize their main results to the g-Darzin inverse in a Banach algebra by using ring technique as follows.

Corollary 2.4. Let $a, b, b^{\pi} a \in \mathcal{A}^{d}$. If $b^{\pi} a b^{d}=0, b^{\pi} a b=b^{\pi} b a$, then $\left(\begin{array}{cc}a & 1 \\ b & 0\end{array}\right)$ has g-Drazin inverse.
Proof. Let $N=\left(\begin{array}{cc}b^{\pi} a & 1 \\ b^{\pi} b & 0\end{array}\right)$. By hypothesis, we have

$$
\left(b^{\pi} a\right)\left(b^{\pi} b\right)=b^{\pi} a b=b^{\pi} b a=\left(b^{\pi} b\right)\left(b^{\pi} a\right) .
$$

As the argument in [8], N has g-Drazin inverse. We obtain the result by Theorem 2.2.
Corollary 2.5. Let $a, b, b^{\pi} a \in \mathcal{A}^{d}$. If $b^{\pi} a b^{d}=0,\left(b^{\pi} a\right)^{d} b^{\pi} a b=0, b^{\pi} a b\left(b^{\pi} a\right)^{\pi}=0$, then $\left(\begin{array}{ll}a & 1 \\ b & 0\end{array}\right)$ has g-Drazin inverse.

Proof. Let $N=\left(\begin{array}{ll}b^{\pi} a & 1 \\ b^{\pi} b & 0\end{array}\right)$. Then $N=P+Q$, where

$$
P=\left(\begin{array}{cc}
\left(b^{\pi} a\right)^{2}\left(b^{\pi} a\right)^{d} & \left(b^{\pi} a\right)\left(b^{\pi} a\right)^{d} \\
0 & 0
\end{array}\right), Q=\left(\begin{array}{cc}
\left(b^{\pi} a\right)\left(b^{\pi} a\right)^{\pi} & \left(b^{\pi} a\right)^{\pi} \\
\left(b^{\pi} a\right)^{\pi}\left(b^{\pi} b\right) & 0
\end{array}\right) .
$$

Clearly, P has g-Drazin inverse and $P Q=0$.

$$
\begin{array}{r}
\text { Write }\left(\begin{array}{cc}
\left(b^{\pi} a\right)\left(b^{\pi} a\right)^{\pi} & \left(b^{\pi} a\right)^{\pi}\left(b^{\pi} b\right)\left(b^{\pi} a\right)^{\pi} \\
1 & 0
\end{array}\right)=K+L \text {, where } \\
K=\left(\begin{array}{cc}
\left(b^{\pi} a\right)\left(b^{\pi} a\right)^{\pi} & 0 \\
0 & 0
\end{array}\right), L=\left(\begin{array}{cc}
0 & \left(b^{\pi} a\right)^{\pi}\left(b^{\pi} b\right)\left(b^{\pi} a\right)^{\pi} \\
1 & 0
\end{array}\right) .
\end{array}
$$

Obviously, $\left(b^{\pi} a\right)\left(b^{\pi} a\right)^{\pi}$ is quasinilpotent. Hence, K is quasinilpotent.
One easily checks that

$$
\begin{aligned}
\left(b^{\pi} a\right)^{\pi}\left(b^{\pi} b\right) & =\left[1-\left(b^{\pi} a\right)^{d}\left(b^{\pi} a\right)\right]\left(b^{\pi} b\right) \\
& =b^{\pi} b-\left(b^{\pi} a\right)^{d} b^{\pi} a\left(1-b^{d} b\right) b \\
& =b^{\pi} b-\left(b^{\pi} a\right)^{d} b^{\pi} a b+\left(b^{\pi} a\right)^{d}\left(b^{\pi} a b^{d}\right) b^{2} \\
& =b^{\pi} b .
\end{aligned}
$$

Then $\left(b^{\pi} a\right)^{\pi}\left(b^{\pi} b\right)$ is quasinilpotent. By using Cline's formula, $\left(b^{\pi} a\right)^{\pi}\left(b^{\pi} b\right)\left(b^{\pi} a\right)^{\pi}$ is quasinilpotent. Accordingly, L is quasinilpotent.

By hypothesis, we check that

$$
\begin{aligned}
& {\left[\left(b^{\pi} a\right)\left(b^{\pi} a\right)^{\pi}\right]\left[\left(b^{\pi} a\right)^{\pi}\left(b^{\pi} b\right)\left(b^{\pi} a\right)^{\pi}\right] } \\
= & \left.\left(b^{\pi} a\right)^{\pi}\left(b^{\pi} a\right)\left(b^{\pi} b\right)\left(b^{\pi} a\right)^{\pi}\right] \\
= & \left(b^{\pi} a\right)^{\pi}\left(b^{\pi} a b\right)\left(b^{\pi} a\right)^{\pi} \\
= & 0 .
\end{aligned}
$$

By Lemma 2.1, $\left(\begin{array}{cc}\left(b^{\pi} a\right)\left(b^{\pi} a\right)^{\pi} & \left(b^{\pi} a\right)^{\pi}\left(b^{\pi} b\right)\left(b^{\pi} a\right)^{\pi} \\ 1 & 0\end{array}\right)$ is quasinilpotent. We verify that

$$
\begin{aligned}
& =\left(\begin{array}{cc}
1 & 0 \\
0 & \left(b^{\pi} b\right)\left(b^{\pi} a\right)^{\pi}
\end{array}\right)\left(\begin{array}{cc}
\left(b^{\pi} a\right)\left(b^{\pi} a\right)^{\pi} & \left(b^{\pi} a\right)^{\pi} \\
1 & 0
\end{array}\right) \text {, } \\
& =\left(\begin{array}{cc}
\left(b^{\pi} a\right)\left(b^{\pi} a\right)^{\pi} & \left(b^{\pi} a\right)^{\pi}\left(b^{\pi} b\right)\left(b^{\pi} a\right)^{\pi} \\
1 & 0
\end{array}\right) .
\end{aligned}
$$

By using Cline's formula, Q has quasinilpotent. In view of Lemma 2.1, N has g-Drazin inverse. According to Theorem 2.2, we complete the proof.

We are now ready to prove the following:
Theorem 2.6. Let $a, b, b^{\pi} a \in \mathcal{A}^{d}$. If $b^{\pi}\left(a b^{2}\right)=0$ and $b^{\pi}(a b a)=0$, then $\left(\begin{array}{ll}a & 1 \\ b & 0\end{array}\right)$ has g-Drazin inverse.
Proof. Since $b^{\pi}\left(a b^{2}\right)=0$, we have

$$
b^{\pi} a b^{d}=b^{\pi} a b^{2}\left(b^{d}\right)^{3}=0, b^{\pi} a\left(b^{\pi} b\right)^{2}=0, b^{\pi} a\left(b^{\pi} b\right) b^{\pi} a=0 .
$$

Let $N=\left(\begin{array}{cc}b^{\pi} a & 1 \\ b^{\pi} b & 0\end{array}\right)$. Then $N^{2}=\left(\begin{array}{cc}\left(b^{\pi} a\right)^{2}+b^{\pi} b & b^{\pi} a \\ b^{\pi} b b^{\pi} a & b^{\pi} b\end{array}\right)$. Write $N^{2}=P+Q$, where

$$
P=\left(\begin{array}{cc}
\left(b^{\pi} a\right)^{2} & b^{\pi} a \\
0 & 0
\end{array}\right), Q=\left(\begin{array}{cc}
b^{\pi} b & 0 \\
b^{\pi} b b^{\pi} a & b^{\pi} b
\end{array}\right) .
$$

Obviously, we have

$$
\begin{aligned}
& P Q^{2}=\left(\begin{array}{cc}
\left(b^{\pi} a\right)^{2} b^{\pi} b & b^{\pi} a b \\
0 & 0
\end{array}\right)\left(\begin{array}{cc}
b^{\pi} b & 0 \\
b^{\pi} b b^{\pi} a & b^{\pi} b
\end{array}\right)=0, \\
& P Q P=\left(\begin{array}{cc}
\left(b^{\pi} a\right)^{2} b^{\pi} b & b^{\pi} a b \\
0 & 0
\end{array}\right)\left(\begin{array}{cc}
\left(b^{\pi} a\right)^{2} & b^{\pi} a \\
0 & 0
\end{array}\right)=0 .
\end{aligned}
$$

By virtue of [2, Theorem 2.4], N^{2} has g-Drazin inverse. It follows from [7, Corollary 2.2] that N has g-Drazin inverse. In light of Theorem 2.2, the result follows.
Corollary 2.7. Let $a, b \in \mathcal{A}^{d}$. If $a b^{2}=0$ and $a b a=0$, then $\left(\begin{array}{ll}a & 1 \\ b & 0\end{array}\right)$ has g-Drazin inverse.
Proof. Since $a b^{2}=0, a b^{\pi}=a-\left(a b^{2}\right)\left(b^{d}\right)^{2}=a \in \mathcal{A}^{d}$. By Cline's formula, $b^{\pi} a \in \mathcal{A}^{d}$. This completes the proof by Theorem 2.6.
Corollary 2.8. Let $a, b, b^{\pi} a \in \mathcal{A}^{d}$. If $b^{\pi} a b=0$, then $\left(\begin{array}{ll}a & 1 \\ b & 0\end{array}\right)$ has g-Drazin inverse.
Proof. Since $b^{\pi} a b=0$, we see that $b^{\pi} a b^{2}=0$ and $b^{\pi}(a b a)=0$. So the corollary is true by Theorem 2.6.

3. Additive properties

In this section we establish some elementary additive properties of g-Drazin inverse in a Banach algebra. The following fact will also be used in our subsequent investigations.

Theorem 3.1. Let $a, b, a b,(a b)^{\pi} a \in \mathcal{A}^{d}$. If $a b^{2}=0,(a b)^{\pi} a(a b)^{d}=0$ and $(a b)^{\pi} a b a=0$, then $a+b \in \mathcal{A}^{d}$.
Proof. Obviously, we have $a+b=(1, b)\binom{a}{1}$. In view of Cline's formula, it suffices to prove

$$
M=\binom{a}{1}(1, b)=\left(\begin{array}{cc}
a & a b \\
1 & b
\end{array}\right)
$$

has g-Drazin inverse. Write $M=K+L$, where

$$
K=\left(\begin{array}{cc}
a & a b \\
1 & 0
\end{array}\right), L=\left(\begin{array}{ll}
0 & 0 \\
0 & b
\end{array}\right) .
$$

Let $H=\left(\begin{array}{cc}a & 1 \\ a b & 0\end{array}\right)$ and $N=\left(\begin{array}{cc}(a b)^{\pi} a & 1 \\ (a b)^{\pi} a b & 0\end{array}\right)$. One easily checks that
$(a b)^{\pi} a\left[(a b)^{\pi} a b\right]^{2}=(a b)^{\pi} a(a b)^{\pi}(a b a) b=0$,
$(a b)^{\pi} a\left[(a b)^{\pi} a b\right](a b)^{\pi} a=(a b)^{\pi} a(a b)^{\pi}(a b a)=0$.
In light of Corollary 2.7, N has g-Drazin inverse. By hypothesis, $(a b)^{\pi} a(a b)^{d}=0$. According to Theorem 2.2, H has g-Drazin inverse. Clearly,

$$
H=\left(\begin{array}{cc}
1 & 0 \\
0 & a b
\end{array}\right)\left(\begin{array}{cc}
a & 1 \\
1 & 0
\end{array}\right), K=\left(\begin{array}{cc}
a & 1 \\
1 & 0
\end{array}\right)\left(\begin{array}{cc}
1 & 0 \\
0 & a b
\end{array}\right)
$$

By using Cline's formula, K has g-Drazin inverse. Since $a b^{2}=0$, we have $K L=0$. In light of Lemma 2.1, M has g-Drazin inverse. Therefore $a+b \in \mathcal{A}^{d}$.

Corollary 3.2. Let $a, b, a b, b(a b)^{\pi} \in \mathcal{A}^{d}$. If $a^{2} b=0,(a b)^{d} b(a b)^{\pi}=0$ and $b a b(a b)^{\pi}=0$, then $a+b \in \mathcal{A}^{d}$
Proof. Since (\mathcal{A}, \cdot) is a Banach algebra, $(\mathcal{A}, *)$ is a Banach algebra with the multiplication $x * y=y \cdot x$. Then we complete the proof by applying Theorem 3.1 to the Banach algebra ($\mathcal{A}, *)$.

We are now ready to generalize [9, Theorem 3.1] as follow:
Theorem 3.3. Let $a, b, a b \in \mathcal{A}^{d}$. If $a b^{2}=0$ and $(a b)^{\pi} a^{2} b a=0$, then $a+b \in \mathcal{A}^{d}$.
Proof. Let $M=\left(\begin{array}{cc}a & a b \\ 1 & b\end{array}\right)$. Write $M=K+L$, where

$$
K=\left(\begin{array}{cc}
a & a b \\
1 & 0
\end{array}\right), L=\left(\begin{array}{ll}
0 & 0 \\
0 & b
\end{array}\right) .
$$

Let $H=\left(\begin{array}{cc}a & 1 \\ a b & 0\end{array}\right)$. By hypothesis, we check that

$$
(a b)^{\pi} a(a b)^{2}=0,(a b)^{\pi} a(a b) a=0 .
$$

According to Theorem 2.6, H is g-Drazin inverse. As in the proof of Theorem 3.1, by using Cline's formula, K has g-Drazin inverse. Since $a b^{2}=0$, it follows by Lemma 2.1 that M has g-Drazin inverse. Observing that

$$
\begin{aligned}
a+b & =(1, b)\binom{a}{1} \\
M & =\binom{a}{1}(1, b)
\end{aligned}
$$

by using Cline's formula again, $a+b$ has g-Drazin inverse.
Corollary 3.4. Let $a, b, a b \in \mathcal{A}^{d}$. If $a^{2} b=0$ and $b a b^{2}(a b)^{\pi}=0$, then $a+b \in \mathcal{A}^{d}$.
Proof. Similarly to Corollary 3.2, we obtain the result by Theorem 3.3.
Corollary 3.5. Let $a, b, a b \in \mathcal{A}^{d}$. If $a b^{2}=0$ and $a^{2} b a=0$, then $a+b \in \mathcal{A}^{d}$.
Proof. This is obvious by Theorem 3.3.

4. Operator matrices over Banach spaces

In this section we apply our results to establish g-Drazin invertibility for the block operator matrix M as in (*). Throughout this section, we always assume that $A, D, B C \in \mathcal{L}(X)^{d}$. We come now to extend [14, Theorem 3.1] as follows.

Theorem 4.1. If $(B C)^{\pi} A B C A=0,(B C)^{\pi} A B C B=0, D C A=0$ and $D C B=0$, then M has g-Drazin inverse.
Proof. Write $M=P+Q$, where

$$
P=\left(\begin{array}{cc}
A & B \\
0 & D
\end{array}\right), Q=\left(\begin{array}{ll}
0 & 0 \\
C & 0
\end{array}\right) .
$$

Clearly, $Q^{2}=0$, and so $P Q^{2}=0$. Moreover, we have

$$
\begin{aligned}
P Q & =\left(\begin{array}{cc}
B C & 0 \\
D C & 0
\end{array}\right) \\
(P Q)^{d} & =\left(\begin{array}{cc}
(B C)^{d} & 0 \\
D C\left[(B C)^{d}\right]^{2} & 0
\end{array}\right)=\left(\begin{array}{cc}
(B C)^{d} & 0 \\
0 & 0
\end{array}\right) \\
(P Q)^{\pi} & =\left(\begin{array}{cc}
(B C)^{\pi} & 0 \\
-D C(B C)^{d} & I
\end{array}\right)=\left(\begin{array}{cc}
(B C)^{\pi} & 0 \\
0 & I
\end{array}\right)
\end{aligned}
$$

We easily check that

$$
\begin{aligned}
& (P Q)^{\pi} P^{2} Q P \\
= & \left(\begin{array}{cc}
(B C)^{\pi} & 0 \\
-D C(B C)^{d} & I
\end{array}\right)\left(\begin{array}{cc}
A & B \\
0 & D
\end{array}\right)\left(\begin{array}{cc}
B C & 0 \\
D C & 0
\end{array}\right)\left(\begin{array}{cc}
A & B \\
0 & D
\end{array}\right) \\
= & \left(\begin{array}{cc}
(B C)^{\pi} A & (B C)^{\pi} B \\
0 & D
\end{array}\right)\left(\begin{array}{cc}
B C A & B C B \\
0 & 0
\end{array}\right) \\
= & 0 .
\end{aligned}
$$

Therefore we complete the proof by Theorem 3.3.
Corollary 4.2. If $(B C)^{\pi} A B C A=0,(B C)^{\pi} A B C B=0, B D C=0$ and $B D^{2}=0$, then M has g-Drazin inverse.
Proof. Write $M=P+Q$, where

$$
P=\left(\begin{array}{ll}
A & B \\
C & 0
\end{array}\right), Q=\left(\begin{array}{cc}
0 & 0 \\
0 & D
\end{array}\right) .
$$

In light of Theorem 4.1, P has g-Drazin inverse. Since $P Q^{2}=0$ and $P Q P=0$, we complete the proof by [2, Theorem 2.4].

Theorem 4.3. If $(B C)^{\pi} A(B C)^{d}=0,(B C)^{\pi} B C A=0,(B C)^{\pi} B C B=0, D C A=0$ and $D C B=0$, then M has g-Drazin inverse.

Proof. Write $M=P+Q$, where

$$
P=\left(\begin{array}{cc}
A & B \\
0 & D
\end{array}\right), Q=\left(\begin{array}{ll}
0 & 0 \\
C & 0
\end{array}\right) .
$$

Then $Q^{2}=0$ and $P Q=\left(\begin{array}{cc}B C & 0 \\ D C & 0\end{array}\right)$; hence,

$$
(P Q)^{d}=\left(\begin{array}{cc}
(B C)^{d} & 0 \\
0 & 0
\end{array}\right),(P Q)^{\pi}=\left(\begin{array}{cc}
(B C)^{\pi} & 0 \\
0 & I
\end{array}\right) .
$$

By hypothesis, we verify that

$$
\begin{aligned}
& (P Q)^{\pi} P(P Q)^{d} \\
= & \left(\begin{array}{cc}
(B C)^{\pi} & 0 \\
0 & I
\end{array}\right)\left(\begin{array}{cc}
A & B \\
0 & D
\end{array}\right)\left(\begin{array}{cc}
(B C)^{d} & 0 \\
0 & 0
\end{array}\right) \\
= & \left(\begin{array}{cc}
(B C)^{\pi} & 0 \\
0 & I
\end{array}\right)\left(\begin{array}{cc}
A(B C)^{d} & 0 \\
0 & 0
\end{array}\right) \\
= & 0, \\
= & \left(\begin{array}{cc}
\left.(B Q)^{\pi} P Q P\right)^{\pi} & 0 \\
0 & I
\end{array}\right)\left(\begin{array}{cc}
B C & 0 \\
D C & 0
\end{array}\right)\left(\begin{array}{cc}
A & B \\
0 & D
\end{array}\right) \\
= & \left(\begin{array}{cc}
(B C)^{\pi} B C A & (B C)^{\pi} B C B \\
D C(B C)^{\pi} A & D C(B C)^{\pi} B
\end{array}\right) \\
= & 0 .
\end{aligned}
$$

This completes the proof by Theorem 3.1.
Corollary 4.4. If $(B C)^{\pi} A(B C)^{d}=0,(B C)^{\pi} B C A=0,(B C)^{\pi} B C B=0, B D C=0$ and $B D^{2}=0$, then M has g-Drazin inverse.

Proof. Write $M=P+Q$, where

$$
P=\left(\begin{array}{ll}
A & B \\
C & 0
\end{array}\right), Q=\left(\begin{array}{cc}
0 & 0 \\
0 & D
\end{array}\right) .
$$

In light of Theorem 4.3, P is g-Drazin inverse. As in the proof of Corollary 4.2, M has g-Drazin inverse.

Theorem 4.5. If $(C B)^{\pi} C A B C=0, A(B C)^{\pi} A B C=0, A B D=0$ and $C B D=0$, then M has g-Drazin inverse.
Proof. Write $M=P+Q$, where

$$
P=\left(\begin{array}{ll}
A & 0 \\
C & 0
\end{array}\right), Q=\left(\begin{array}{ll}
0 & B \\
0 & D
\end{array}\right)
$$

Then

$$
\begin{aligned}
P Q^{2} & =\left(\begin{array}{cc}
A & 0 \\
C & 0
\end{array}\right)\left(\begin{array}{cc}
0 & B \\
0 & D
\end{array}\right)^{2} \\
& =\left(\begin{array}{ll}
0 & A B D \\
0 & C B D
\end{array}\right), \\
(P Q)^{\pi} P^{2} Q P & =\left(\begin{array}{ll}
0 & A B \\
0 & C B
\end{array}\right)^{\pi}\left(\begin{array}{ll}
A & 0 \\
C & 0
\end{array}\right)^{2}\left(\begin{array}{cc}
0 & B \\
0 & D
\end{array}\right)\left(\begin{array}{ll}
A & 0 \\
C & 0
\end{array}\right) \\
& =\left(\begin{array}{cc}
I & -A B(C B)^{d} \\
0 & (C B)^{\pi}
\end{array}\right)\left(\begin{array}{cc}
A^{2} B C & 0 \\
C A B C & 0
\end{array}\right) .
\end{aligned}
$$

Clearly, P and Q have g-Drazin inverses. Moreover, $P Q^{2}=0$ and $(P Q)^{\pi} P^{2} Q P=0$, and therefore we complete the proof by Theorem 3.3.

We now generalize [5, Theorem 2.2] as follow.
Corollary 4.6. If $(C B)^{\pi} C A B C=0, A(B C)^{\pi} A B C=0, B D C=0$ and $B D^{2}=0$, then M has g-Drazin inverse.
Proof. As in the proof of Corollary 4.2, we are through by Theorem 4.5.

Acknowledgement

The authors are thankful the referees for the valuable suggestions which led to improvement of the paper.

References

[1] C. Bu; K. Zhang and J. Zhao, Representation of the Drazin inverse on solution of a class singular differential equations, Linear Multilinear Algebra, 59(2011), 863-877.
[2] H. Chen and M. Sheibani, G-Drazin inverses for operator matrices, Operators and Matrices, 14(2020), 23-31.
[3] J. Cui and J. Chen, When is a 2×2 matrix ring over a commutative local ring quasipolar? Comm. Algebra, 39(2011), 3212-3221.
[4] J. Cui and J. Chen, Quasipolar triangular matrix rings over local rings, Comm. Algebra, 40(2012), 784-794.
[5] E. Dopazo and M.F. Martínez-Serrano, Further results on the representation of the Drazin inverse of a 2×2 block matrix, Linear Algebra Appl., 432(2010), 1896-1904.
[6] Y. Liao; J. Chen and J. Cui, Cline's formula for generalized Drazin inverse, Bull. Malays. Math. Sci. Soc., 37(2014), 37-42.
[7] D. Mosić, A note on Cline's formula for the generalized Drazin inverse, Linear Multilinear Algebra, 63(2014), 1106-1110.
[8] P. Patricío and R.E. Hartwig, The (2,2,0) Drazin inverse problem, Linear Algebra Appl., 437(2012), 2755-2772.
[9] A. Shakoor; I. Ali; S. Wali and A. Rehman, Some formulas on the Drazin inverse for the sum of two matrices and block matrices, Bull. Iran. Math. Soc., 2021, https://doi.org/10.1007/s41980-020-00521-3.
[10] L. Sun; B. Zheng; S. Bai and C. Bu, Formulas for the Drazin inverse of matrices over skew fields, Filomat, 30(2016), $3377-3388$.
[11] L. Xia and B. Deng, The Drazin inverse of the sum of two matrices and its applications, Filomat, 31 (2017), 5151-5158.
[12] Q. Xu; C. Song and L. Zhang, Solvability of certain quadratic operator equations and representations of Drazin inverse, Linear Algebra Appl., 439 (2013), 291-309.
[13] H. Yang and X. Liu, The Drazin inverse of the sum of two matrices and its applications, J. Comput. Applied Math., 235(2011), 1412-1417.
[14] A. Yu; X. Wang and C. Deng, On the Drazin inverse of an anti-triangular block matrix, . Linear Algebra Appl., 489(2016), $274-287$.
[15] D. Zhang, Representations for generalized Drazin inverse of operator matrices over a Banach space, Turk. J. Math., 40(2016), 428-437.
[16] D. Zhang and D. Mosić, Explicit formulae for the generalized Drazin inverse of block matrices over a Banach algebra, Filomat, 32(2018), 5907-5917.
[17] H. Zou; J. Chen and D. Mosić, The Drazin invertibility of an anti-triangular matrix over a ring, Studia Scient. Math. Hungar., 54(2017), 489-508.
[18] H. Zou; D. Mosić and J. Chen, Generalized Drazin invertibility of the product and sum of two elements in a Banach algebra and its applications, Turk. J. Math., 41(2017), 548-563.

[^0]: 2020 Mathematics Subject Classification. 15A09, 47C05, 16U99
 Keywords. g-Drazin inverse; anti-triangular matrix; operator matrix; Banach algebra
 Received: 04 August 2022; Revised: 14 September 2022; Accepted: 08 October 2022
 Communicated by Dijana Mosić
 Research supported by the Natural Science Foundation of Zhejiang Province, China (No. LY21A010018).

 * Corresponding author: Marjan Sheibani Abdolyousef

 Email addresses: huanyinchen@aliyun. com (Huanyin Chen), m.sheibani@semnan. ac.ir (Marjan Sheibani Abdolyousef)

