Filomat 37:14 (2023), 4649–4657 https://doi.org/10.2298/FIL2314649K

Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

Weakly S-Noetherian modules

Omid Khani-Nasab^a, Ahmed Hamed^b, Achraf Malek^b

^aDepartment of Pure Mathematics, Faculty of Mathematics and Statistics, University of Isfahan ^bDepartment of Mathematics, Faculty of Sciences, Monastir, Tunisia

Abstract. Let *R* be a commutative ring, *S* a multiplicative subset of *R* and *M* an *R*-module. We say that *M* satisfies weakly *S*-stationary on ascending chains of submodules (w-ACC_S on submodules or weakly *S*-Noetherian) if for every ascending chain $M_1 \subseteq M_2 \subseteq M_3 \subseteq \cdots$ of submodules of *M*, there exists $k \in \mathbb{N}$ such that for each $n \ge k$, $s_n M_n \subseteq M_k$ for some $s_n \in S$. In this paper, we investigate modules (respectively, rings) with w-ACC_S on submodules (respectively, ideals). We prove that if *R* satisfies w-ACC_S on ideals, then R is a Goldie ring. Also, we prove that a semilocal commutative ring with w-ACC_S on ideals have a finite number of minimal prime ideals. This extended a classical well known result of Noetherian rings.

1. Introduction

In 1988, Hamann, Houston and Johnson ([4]) in their works on polynomial rings over integral domains, introduced the notion of almost principal ideals. They called an ideal *I* of D[X] (where *D* is an integral domain) *almost principal* if there exist a $s \in D \setminus \{0\}$ and a $f \in I$ of positive degree with $sI \subseteq fD[X]$ and they called the polynomial ring D[X] an *almost PID* if each ideal of D[X] that extends to a proper ideal of K[X] is almost principal (*K* the quotient field of *D*). Then Anderson, Kwak and Zafrullah defined agreeable domains. An integral domain *D* is called *agreeable* if for each fractional ideal *F* of D[X] with $F \subseteq K[X]$ where *K* is the quotient field of *D*, there exists a $s \in D \setminus \{0\}$ with $sF \subseteq D[X]$. They also called an ideal *I* of K[X] is *almost finitely generated* if there is a finite set of polynomials $\{f_1, f_2, \ldots, f_n\}$ contained in *I* and an element $s \in D \setminus \{0\}$ such that $sI \subseteq (f_1, f_2, \ldots, f_n)$, [2].

Later, Anderson and Dumitrescu generalized the concept of almost principal and almost finitely generated ideals to modules over commutative rings. Let *R* be a commutative ring and $S \subseteq R$ be a multiplicative set and *M* be an *R*-module. Following [1], we say that *M* is *S*-finite (resp., *S*-principal) if $sM \subseteq F$ for some $s \in S$ and some finitely generated (resp., principal) submodule *F* of *M*. Also, *M* is called *S*-Noetherian (resp., *S*-PIR) if each submodule of *M* is a *S*-finite (resp., *S*-principal) module.

In 2016, Ahmed and Sana ([5]) tried to characterize the concept of *S*-Noetherian modules via a suitable chain condition and a special kind of maximality. An increasing sequence $(N_n)_{n \in \mathbb{N}}$ of submodules of *M* is called *S*-stationary if there exists a positive integer *k* and $s \in S$ such that for each $n \ge k$, $sN_n \subseteq N_k$ and a submodule N_i is called *S*-maximal if for every $j \in \mathbb{N}$, $sN_j \subseteq N_i$, for some $i \in \mathbb{N}$. They showed that, if every nonempty set of ideals of *R* has a *S*-maximal element, then *R* is *S*-Noetherian and the later that,

Communicated by Dijana Mosić

²⁰²⁰ Mathematics Subject Classification. Primary 13C, 13E05

Keywords. S-Noetherian ring, weakly S-stationary, weakly S-maximal

Received: 07 August 2022; Revised: 06 October 2022; Accepted: 14 October 2022

Email addresses: o.khani@sci.ui.ac.ir (Omid Khani-Nasab), hamed.ahmed@hotmail.fr (Ahmed Hamed),

achraf_malek@yahoo.fr (Achraf Malek)

every increasing sequence of ideals of *R* is *S*-stationary. In 2017, Bilgin, Reyes and Tekir ([3]) characterize *S*-Noetherian modules over noncommutative rings. They proved that *M* is *S*-Noetherian if and only if every increasing sequence of submodules of *M* is *S*-stationary if and only if every nonempty set of submodules of *M* has a *S*-maximal element if and only if every nonempty *S*-saturated set of submodules of *M* has a maximal element.

In this paper, we study weakly *S*-Noetherian modules, dualizing the former notion of weakly *S*-Artinian modules introduced by Khani-Nasab and Hamed in [6]. We say that *M* satisfies *weakly S-stationary* on ascending chains of submodule (w-ACC_S on submodules for short) if for every ascending chain $M_1 \subseteq M_2 \subseteq M_3 \subseteq \cdots$ of submodules of *M*, there exists $k \in \mathbb{N}$ such that for each $n \ge k$, $s_n M_n \subseteq M_k$ for some $s_n \in S$. Let \mathcal{F} be a set of submodules of *M*. We say that $N \in \mathcal{F}$ is *weakly S-maximal* if for every $L \in \mathcal{F}$ and $N \subseteq L$, there exists $s \in S$ such that $sL \subseteq N$. We compare Noetherian modules with modules which have w-ACC_S on submodules. For example, we show that there exists a module with w-ACC_S on finitely generated submodules which does not satisfies w-ACC_S on submodules. In section 3, we consider the case where $S \subseteq R$ is a regular multiplicative set. We show that a module *M* which satisfies weakly *S*-stationary on submodules (ACC_S for short) where *S* is regular multiplicative set is a hopfian module. Moreover, if *R* satisfies w-ACC_S on ideals where *S* is regular, then *R* is a Goldie ring. Also, we show that the converse is not true in general. Finally, we prove that a semilocal commutative ring with w-ACC_S on ideals where *S* is regular, have a finite number of minimal prime ideals and the regularity of *S* is necessary.

2. Weakly S-stationary and weakly S-maximal

Let *R* be a commutative ring, $S \subseteq R$ a multiplicative set and *M* an *R*-module. According to [5], an increasing sequence $(N_n)_{n \in \mathbb{N}}$ of submodules of *M* is called *S*-stationary if there exist a positive integer $k \in \mathbb{N}$ and $s \in S$ such that for all $n \ge k$, $sN_n \subseteq N_k$. We say that *M* satisfies ACC_S on submodules if for every ascending chain of submodules of *M* is *S*-stationary. In this section we relaxes this property by introducing the notion of weakly *S*-stationary sequence of submodules. We study various properties of modules in which every ascending chain of submodules is weakly *S*-stationary.

Definition 2.1. Let *R* be a commutative ring, $S \subseteq R$ a multiplicative set and *M* an *R*-module. We say that *M* satisfies weakly *S*-stationary on ascending chains of submodules (*w*-ACC_S on submodules for short) if for every ascending chain $M_1 \subseteq M_2 \subseteq M_3 \subseteq \cdots$ of submodules of *M*, there exists $k \in \mathbb{N}$ such that for each $n \ge k$, $s_n M_n \subseteq M_k$ for some $s_n \in S$.

- **Examples 2.2.** 1. Modules with ACC_S on submodules satisfies w-ACC_S on submodules. In Example 2.8, we prove that the reverse of this implication is not true in general.
 - 2. Every *S*-Noetherian modules satisfies w-ACC_{*S*} on submodules (follows from [5, Remark 2.3] and the fact that every module with ACC_{*S*} on submodules satisfies w-ACC_{*S*} on submodules).
 - 3. Let *p* be a prime number, $S = \{1\} \cup (p\mathbb{Z} \setminus \{0\})$ and $M = \mathbb{Z}_{p^{\infty}}$ (as a \mathbb{Z} -module). Then *M* satisfies w-ACC_S on submodules. Note that *M* does not satisfy ACC_S on submodules, since for every $s \in S$ and every finitely generated submodule *F* of $M s(\mathbb{Z}_{p^{\infty}}) = \mathbb{Z}_{p^{\infty}} \nsubseteq F$.
 - 4. Every semisimple module satisfies w-ACC_S.

Definition 2.3. *Let* R *be a commutative ring,* $S \subseteq R$ *a multiplicative set and* M *an* R*-module.*

- 1. Let \mathcal{F} be a set of submodules of M. We say that $N \in \mathcal{F}$ is weakly S-maximal if for every $L \in \mathcal{F}$ and $N \subseteq L$, there exists $s \in S$ such that $sL \subseteq N$.
- 2. A submodule N of M is said to be weakly S-maximal if it is weakly S-maximal in the set of all proper submodules of M.

Proposition 2.4. *Let R be a commutative ring,* $S \subseteq R$ *a multiplicative set and M an R-module. Then the following assertions are equivalent.*

1. *M* satisfies w-ACC_S on submodules.

2. Every nonempty set of submodules of M has a weakly S-maximal element.

Proof. (1) \Rightarrow (2) Let \mathcal{F} be a nonempty set of submodules of M such that for every submodule $N \in \mathcal{F}$, N is not weakly S-maximal. Let $N_1 \in \mathcal{F}$. Then N_1 is not weakly S-maximal and so there exists $N_2 \in \mathcal{F}$ such that $N_1 \subseteq N_2$ and for every $s \in S$, $sN_2 \notin N_1$. $N_2 \in \mathcal{F}$ is not weakly S-maximal, hence there exists $N_3 \in \mathcal{F}$ such that $N_2 \subseteq N_3$ and for every $s \in S$, $sN_3 \notin N_2$. By continuing this way, we obtain a chain of submodules $N_1 \subseteq N_2 \subseteq N_3 \subseteq \cdots$ which is not weakly S-stationary. This shows that M does not satisfy w-ACC_S on submodules.

(2) \Rightarrow (1) Let $N_1 \subseteq N_2 \subseteq N_3 \subseteq \cdots$ be a chain of submodules in M. Set

$$\mathcal{F} = \{N_i, \quad i = 1, 2, \ldots\}$$

By (2), \mathcal{F} has a weakly *S*-maximal element like N_k where $k \in \mathbb{N}$. Clearly for every $n \ge k$, there exists $s_n \in S$ such that $s_n N_n \subseteq N_k$. \Box

Our next result gives equivalent conditions for an *R*-module *M* to be *S*-Noetherian, where *S* is a finite multiplicative subset of *R*. First let us recall the following notion. Let \mathfrak{F} be a family of submodules of *M*. An element $N \in \mathfrak{F}$ is said to be *S*-maximal if there exists a $s \in S$ such that for each $L \in \mathfrak{F}$, if $N \subseteq L$, then $sL \subseteq N$ ([5]).

Proposition 2.5. Let *R* be a commutative ring, $S \subseteq R$ a finite multiplicative set and *M* an *R*-module. Then the following assertions are equivalent.

- 1. *M* is a S-Noetherian module.
- 2. *M* satisfies ACC_S on submodules.
- 3. *M* satisfies *w*-ACC_S on submodules.
- 4. Every nonempty set of submodules of M has a weakly S-maximal element
- 5. Every nonempty set of submodules of M has a S-maximal. element.

Proof. (1) \Rightarrow (2) Follows from Example 2.2(1).

- $(2) \Rightarrow (3)$ Obvious.
- (3) \Rightarrow (4) Follows from Proposition 2.4.

(4) \Rightarrow (5) Follows from the fact that the weakly *S*-maximal and the *S*-maximal properties are the same when *S* is finite.

 $(5) \Rightarrow (1)$ Let $S = \{s_1, s_2, s_3, \dots, s_n\}$ and N be a submodule of M. Set $s := s_1 s_2 \cdots s_n$. We show that N is S-finite. Suppose that \mathcal{F} is the set of all finitely generated submodules of M included in N. Clearly, \mathcal{F} is a nonempty set. By (5) there exists $F \in \mathcal{F}$ such that F is S-maximal. Let $x \in N$. Set L = F + Rx. Then $L \in \mathcal{F}$ and $F \subseteq L$. Since F is S-maximal, there exists $s_{i_0} \in S$ such that $s_{i_0} L \subseteq F$. Thus

$$(s_1 s_2 \cdots s_n) L \subseteq s_{i_0} L \subseteq F$$

This implies that $sN \subseteq F$, and hence *M* is a *S*-Noetherian module. \Box

Corollary 2.6. Let *R* be a commutative ring and *S* a finite regular multiplicative subset of *R*. Then *R* is Noetherian if and only if *R* satisfies w-ACC_S on ideals. Indeed, by [5, Example 3.2], $S \subseteq U(R)$; so *R* satisfies w-ACC_S on ideals if and only if *R* satisfies ACC_S on ideals if and only if *R* satisfies ACC_S on ideals if and only if *R* satisfies ACC_S on ideals if and only if *R* satisfies ACC_S on ideals.

We know that *M* is a Noetherian module if and only if every ascending chain of finitely generated submodules stops. Next we construct an example of a module with w-ACC₅ on finitely generated submodules which does not satisfies w-ACC₅ on submodules. First we need the following Remark.

Remark 2.7. Let *R* be a commutative ring, $S \subseteq R$ a multiplicative set and *M* an *R*-module. Assume that for every ascending chain $L_1 \subseteq L_2 \subseteq L_3 \subseteq \cdots$ of submodules of *M* and for each $n \in \mathbb{N}$, there exists $s_n \in S$ such that $s_nL_n = 0$, then *M* satisfies w-ACC_S on submodules.

Example 2.8. Consider $M = \bigoplus_{p \in P} \mathbb{Z}_p$ as a \mathbb{Z} -module where P is the set of all prime integers. Let $S = \mathbb{Z} \setminus \{0\}$. First we show that M satisfy w-ACC_S on finitely generated submodules. Let L be a finitely generated submodule of M. Then there exists $p_1, p_2, \ldots, p_n \in P$ such that $L \hookrightarrow \mathbb{Z}_{p_1} \oplus \mathbb{Z}_{p_2} \oplus \cdots \oplus \mathbb{Z}_{p_n}$ and hence L is finite. By Remark 2.7, every finite module satisfies w-ACC_S on submodules. This shows that M satisfies w-ACC_S on submodules.

Next we introduce a chain of submodules of M which does not satisfy the w-ACC_S on submodules. Let $p_1 \leq p_2 \leq p_3 \leq \cdots$ be all prime numbers. Suppose that for every p we replace $\iota_p(\mathbb{Z}_p)$ by \mathbb{Z}_p where $\iota_p : \mathbb{Z}_p \mapsto M$. Set $L = \mathbb{Z}_{p_1} \oplus \mathbb{Z}_{p_2} \oplus \cdots$ and $K = \mathbb{Z}_{p_2} \oplus \mathbb{Z}_{p_4} \oplus \cdots$. Since $I = \{p_1, p_3, p_5, \ldots\}$ is infinite, there exist infinite subsets I_1 and I_2 of I such that $I = I_1 \cup I_2$. Also, I_1 is infinite. So there exist infinite subsets I_3 and I_4 of I_1 such that $I_1 = I_3 \cup I_4$. Continuing in this way, we get a sequence I_1, I_3, I_5, \ldots such that $I_n = I_{n+2} \cup I_{n+3}$. Define $L_i = \bigoplus_{p \in I_i} \mathbb{Z}_p$ for every $i \in \mathbb{Z}$ we have the following chain

$$K \oplus L_2 \subsetneq K \oplus L_2 \oplus L_4 \subsetneq K \oplus L_2 \oplus L_4 \oplus L_6 \subsetneq \cdots$$

Suppose that there exists $k \in \mathbb{N}$ such that for every $n \ge k$

 $s_n(K \oplus L_2 \oplus L_4 \oplus \cdots \oplus L_{2n+2}) \subseteq K \oplus L_2 \oplus L_4 \oplus \cdots \oplus L_{2n+2}$

for some $s_n \in S$. Thus

 $s_n(L_{2n+2}) \subseteq K \oplus L_2 \oplus L_4 \oplus \ldots \oplus L_{2n}$

Hence $s_n(L_{2n+2}) = 0$. I_{2n+2} is an infinite set of prime numbers. Let $t_1, t_2, ...$ be all distinct elements of I_{2n+2} . Then $L_{2n+2} = \bigoplus_{p \in [t_1, t_2, ...]} \mathbb{Z}_p$. Since $s_n L_{2n+2} = 0$, for every $i \in \mathbb{N}$, $t_i | s_n$, a contradiction. Thus M does not satisfy w-ACC_S on submodules.

Next proposition investigates w-ACC₅ on ideals for direct product of rings.

Proposition 2.9. Let S_1, S_2, \dots, S_n be multiplicative subsets of rings R_1, R_2, \dots, R_n , respectively. Set $R = \prod_{i=1}^n R_i$ and $S = \prod_{i=1}^n S_i$. Then the following conditions are equivalent.

- 1. R satisfies w-ACC₅ on ideals
- 2. For each $i \in \{1, ..., n\}$, R_i satisfies w-ACC_{Si} on ideals

Proof. (1) \Rightarrow (2) Obvious.

 $(2) \Rightarrow (1)$ Suppose that $I_1 \subseteq I_2 \subseteq I_3 \subseteq \cdots$ be an ascending chain of ideals in R. Then for every $i \in \mathbb{N}$, $I_i = L_{i1} \times L_{i2} \times \cdots \times L_{in}$ where L_{ij} is an ideal of R_j , for all $j \in \{1, 2, \dots, n\}$. Since every R_j satisfies w-ACC_{S_i} on ideals, we can find $k \in \mathbb{N}$ such that for each $n \geq k$ and $j \in \{1, 2, \dots, n\}$ there exists $s_{nj} \in S_j$ such that $s_{nj}L_{nj} \subseteq L_{kj}$. Therefore, for every $n \geq k$, $s_n = (s_{n1}, s_{n2}, \dots, s_{nn}) \in \prod_{i=1}^n S_i$ and we have $s_nI_n \subseteq I_k$. This shows that R has w-ACC_S on ideals where $S = \prod_{i=1}^n S_i$. \Box

Unlike finite product of rings, an infinite product of rings not necessarily has w-ACC₅ on ideals.

Example 2.10. Let $R = \prod_{i \in I} R_i$ and $S = \{1_R\}$ be a multiplicative subset of R where index set of I is infinite. Since I is infinite, there exist infinite subsets I_1 and I_2 of I such that $I = I_1 \cup I_2$ and $I_1 \cap I_2 = \emptyset$. Set $J = \bigoplus_{i \in I_1} R_i$ and $K = \bigoplus_{i \in I_2} R_i$. So $J \subsetneq J \oplus K$ and continuing in this way, we can form an ascending chain of ideals of R. Thus R does not satisfy w-ACC_S on ideals.

Proposition 2.11. Let M be an R-module, N a proper submodule of M and S a multiplicative subset of R. Then the following assertions are equivalent.

- 1. *M* satisfies w-ACC_S on submodules.
- 2. N and M/N both satisfy w-ACC_S on submodules.

Proof. (1) \Rightarrow (2) Assume that *M* has w-ACC_S on submodules. It is immediate that *N* satisfies w-ACC_S on submodules. Let $L_1/N \subseteq L_2/N \subseteq L_3/N \subseteq \cdots$ be a chain of submodules in *M*/*N*. Since $L_1 \subseteq L_2 \subseteq L_3 \subseteq \cdots$ is a chain in *M* and *M* satisfies w-ACC_S on submodules, there exists $k \in \mathbb{N}$ such that for each $n \ge k$, there exists $s_n \in S$ with $s_n L_n \subseteq L_k$. This implies that for every $n \ge k$, $s_n(L_n/N) \subseteq L_k/N$. Hence *M*/*N* satisfies w-ACC_S on submodules.

 $(2) \Rightarrow (1)$ Let $L_1 \subseteq L_2 \subseteq L_3 \subseteq \cdots$ be a chain in M. By assumption, there exists a positive integer k such that for each $n \ge k$, there exists $s_n \in S$ with $s_n(L_n + N)/N \subseteq (L_k + N)/N$ and there exists $s'_n \in S$ such that $s'_n(N \cap L_n) \subseteq N \cap L_k$. We prove that for each $n \ge k$, $s'_n s_n(L_n) \subseteq L_k$. Since $L_n \subseteq L_n + N$, $s_n(L_n) \subseteq s_n(L_n + N) \subseteq L_k + N$. Let $x \in L_n$. Then $s_n x \in L_k + N$ and there exist $l \in L_k$ and $y \in N$ such that $s_n x - l = y$. Thus $s_n x - l \in N \cap L_n$, and so $s'_n(s_n x - l) \in N \cap L_k$. Therefore $s's_n x \in L_k$, as desire. \Box

Corollary 2.12. Let *R* be a ring and *S* be a multiplicative subset of *R*. Then *R* satisfies w-ACC_S on ideals if and only if for each $n \in \mathbb{N}^*$, \mathbb{R}^n satisfies w-ACC_S on submodules.

Proof. Assume that *R* satisfies w-ACC_S on ideals. We will show this via induction. Let P(n) be the property that R^n satisfies w-ACC_S on submodules. For n = 1, *R* satisfies w-ACC_S on ideals if and only if for each *R* as an *R*-module satisfies w-ACC_S on submodules. Suppose that the property holds for $1 \le n$. Let's prove P(n + 1). The module R^n is isomorphic to the submodule $N = R^n \times \{0\}$. Hence, by the induction hypothesis and Proposition 2.11, *N* satisfies w-ACC_S. Clearly $R^{n+1}/N \simeq R$. Thus by Proposition 2.11, R^{n+1} satisfies w-ACC_S on submodules. \Box

Theorem 2.13. *Let R be a commutative ring, S a multiplicative subset of R and M a finitely generated R-module. If R satisfies w-ACC_S on ideals, then M satisfies w-ACC_S on submodules.*

Proof. Since *M* is a finitely generated *R*-module, there exist $n \in \mathbb{N}^*$ and a surjective module homomorphism $f : \mathbb{R}^n \longrightarrow M$, such that $\mathbb{R}^n / Ker(f) \simeq M$. By Corollary 2.12, \mathbb{R}^n satisfies w-ACC_S on submodules; so by Proposition 2.11, $\mathbb{R}^n / Ker(f)$ satisfies w-ACC_S. Therefore *M* satisfies w-ACC_S on submodules. \Box

Corollary 2.14. Let R be a commutative ring, $S \subseteq R$ a multiplicative set and M a S-finite R-module. If R satisfies w-ACC_S on ideals, then M satisfies w-ACC_S on submodules.

Proof. Since *M* is *S*-finite, there exist $s \in S$ and a finitely generated submodule *F* of *M* such that $sM \subseteq F$. Suppose that $N_1 \subseteq N_2 \subseteq N_3 \subseteq \cdots$ is a chain of submodules in *M*. By Theorem 2.13, *F* satisfies w-ACC_S on submodules. Since for each *n*, sN_n is a submodule of *F*, the chain $sN_1 \subseteq sN_2 \subseteq sN_3 \subseteq \cdots$ is a chain in *F*; so there exists $k \in \mathbb{N}$ such that, for each $n \ge k$ there exists $t_n \in S$ with $t_n(sN_n) \subseteq sN_k \subseteq N_k$. For each $n \ge k$, let $s_n := st_n \in S$. Thus for each $n \ge k$, $s_nN_n \subseteq N_k$. This shows that *M* satisfies w-ACC_S on submodules. \Box

3. Weakly S-stationary when S is a regular multiplicative set

In this section we prove a relation between modules satisfying the w-ACC_S property and some classical well known modules (hopfian modules, Goldie rings, ...) where S is a regular multiplicative set. We start this section by the following definition.

Definition 3.1. For an *R*-module *M* and $s \in R$, we say that *s* is a nonzero divisor for *M*, if for each $m \in M$, sm = 0 implies that m = 0. A regular multiplicative set *S* over *M* is a set in which for every $s \in S$, *s* is nonzero divisor for *M*.

Example 3.2. Let *R* be a valuation ring and let *S* be a multiplicative set of regular elements of *R*. Set $K = \bigcap_{s \in S} Rs$. Then $K \leq R$. Consider the ring $\overline{R} := R/K$ and $\overline{S} := \{s + K \mid s \in S\} \subseteq \overline{R}$.

- 1. \overline{S} is closed under multiplication.
- 2. $1_{\overline{R}} = 1 + K \in \overline{S}$.
- 3. $0_{\overline{R}} \notin \overline{S}$ if and only $K \neq R$.

If $K \neq R$, then \overline{S} is a multiplicative regular set in \overline{R} . In this case, \overline{R} satisfies w-ACC_S on ideals.

Proof. (1). Clear.

(2). Clear.

(3). If K = R, then $S \subseteq K$ and hence $\overline{S} = \{0 + K\}$. Conversely, if $K \neq R$, then $1 \notin K$. Thus, there exists $s_0 \in S$ such that $1 \notin s_0 R$. Suppose to the contrary, $0 + K \in \overline{S}$. There exists $s_1 \in S$ such that $0 + K = s_1 + K$. Hence $s_1 \in K \subseteq s_0 s_1 R$; so there exists $r \in R$ such that $s_1 = rs_0 s_1$, which implies that $1 = rs_0$ since S is regular. Therefore $s_0 R = R$, a contradiction.

We want to prove that if $K \neq R$, then \overline{S} is regular. Let $(s + K)(r + K) = 0_{\overline{R}}$ where $s \in S$ and $r \in R$. Let $s' \in K$. Then $sr \in ss'R$. There exists $x \in R$ such that sr = ss'x. Since S is regular, $r = s'x \in s'R$. Thus $r \in K$, as desire.

Now, we show that \overline{R} satisfies $ACC_{\overline{S}}$ on ideals. Let I/K be a nonzero ideal in \overline{R} . Then $K \subset I \leq R$ and $I \not\subseteq K$. Hence, there exists $s_0 \in S$ such that $I \not\subseteq Rs_0$. Since R is a valuation ring, $s_0R \subseteq I$ and $s_0I \subseteq s_0R \subseteq I$. It follows that

$$(s_0 + K)I/K = (s_0I + K)/K \subseteq (s_0R + K)/K = (s_0 + K)R \subseteq I/K.$$

Thus \overline{R} is a \overline{S} -Noetherian ring, and hence satisfies w-ACC_{\overline{S}} on ideals. \Box

An *R*-module *M* is said to be *hopfian* if any surjective endomorphism of *M* is an isomorphism. We know that Noetherian modules are hopfian. Our next result relaxes the Noetherian property by the w-ACC_S notion.

Proposition 3.3. *Let R be a commutative ring, M an R-module and* $S \subseteq R$ *is a regular multiplicative set over M. If M satisfies w*-ACC_S *on submodules, then M is hopfian.*

Proof. Let ϕ : $M \rightarrow M$ be a surjective homomorphism. Consider the following chain

$$\operatorname{Ker}(\phi) \subseteq \operatorname{Ker}(\phi^2) \subseteq \operatorname{Ker}(\phi^3) \subseteq \cdots$$

Since *M* satisfies w-ACC_S on submodules, there exists $k \in \mathbb{N}$ such that for each $n \ge k$, $s_n \operatorname{Ker}(\phi^{n+1}) \subseteq \operatorname{Ker}(\phi^n)$ for some $s_n \in S$. Let $m \in \operatorname{Ker}(\phi)$. Since ϕ is surjective, there exists $m' \in M$ such that $m = \phi^n(m')$. Then $\phi(m) = \phi(\phi^n(m'))$ implies that $0 = \phi^{n+1}(m')$ and thus $m' \in \operatorname{Ker}(\phi^{n+1})$. Multiplying s_n , we have $s_n m' \in s_n \operatorname{Ker}(\phi^{n+1}) \subseteq \operatorname{Ker}(\phi^n)$. Thus $s_n m' \in \operatorname{Ker}(\phi^n)$, and so $s_n \phi^n(m') = \phi^n(s_n m') = 0$. Since *S* is regular on $M, m = \phi^n(m') = 0$. Hence ϕ is an isomorphism. \Box

Lemma 3.4. Let *R* be a commutative ring, *M* an *R*-module and $S \subseteq R$ a regular multiplicative set over *M*. Assume that *R* satisfies *w*-ACC_S on ideals. Then *R* satisfies ACC on annihilators of subsets of *M*.

Proof. Let $I_1 \subseteq I_2 \subseteq I_3 \subseteq \cdots$ be an ascending sequence in R such that for every $j \in \mathbb{N}$, $I_j = \operatorname{ann}_R(A_i)$ for some $A_i \subseteq M$. Since R satisfies w-ACC_S on ideals, there exists $k \in \mathbb{N}$ such that for each $n \ge k$, $s_n I_n \subseteq I_k$ for some $s_n \in S$. Let $n \ge k$ and $a \in I_n$, $s_n a \in I_k$. So $s_n a A_k = 0$. By regularity of S on M we have $a A_k = 0$. It follows that $a \in I_k$. Therefore, $I_n \subseteq I_k \subseteq I_n$, and hence $I_n = I_k$. Thus R satisfies ACC on annihilators of subsets of M. \Box

Remark 3.5. Let *R* be a commutative ring, *M* an *R*-module and $S \subseteq R$ a regular multiplicative set over *M*. Assume that *R* satisfies w-ACC_S on ideals. Then by the previous Lemma 3.4, the set $X = \{ann_R(A) \mid A \subseteq M \setminus \{0\}\}$ has a maximal element.

Let *R* be a commutative ring and *M* an *R*-module. We denoted by Z(M) the set $Z(M) = \{r \in R \mid xr = 0, \text{ for some nonzero } x \in M\} = \bigcup_{0 \neq x \in M} \operatorname{ann}_{R}(x).$

Theorem 3.6. Let *R* be a commutative ring, *M* an *R*-module and $S \subseteq R$ a regular multiplicative set over *M*. Let $X = \{ann_R(x) \mid x \in M \setminus \{0\}\}$. Assume that *R* and *M* both satisfy w-ACC_S on submodules. Then

- 1. X has only a finite number of maximal elements.
- 2. Z(M) is a union of a finite number of associated primes of M.

Proof. (1). Assume {ann_R(x_i)}_{i∈N} is a set of (distinct) maximal elements of *X*. Consider the chain $x_1R \subseteq x_1R + x_2R \subseteq \cdots$ in *M*. Since *M* satisfies w-ACC_S on submodules, there exists $k \in \mathbb{N}$ such that for each $n \ge k$, $s_n(\sum_{j=1}^n x_jR) \subseteq \sum_{j=1}^k x_jR$ for some $s_n \in S$. This implies that $s_n(\sum_{j=1}^{k+1} x_jR) \subseteq \sum_{j=1}^k x_jR$; so $s_nx_{k+1} \in \sum_{j=1}^k x_jR$. Thus, there exist $r_1, r_2, \ldots, r_k \in R$ such that $s_nx_{k+1} = r_1x_1 + \cdots + r_kx_k$. For $i \in \mathbb{N}$, set $P_i = \operatorname{ann}_R(x_i)$. Then $P_1P_2 \cdots P_k(r_1x_1 + \cdots + r_kx_k) = 0$; so $P_1P_2 \cdots P_ks_nx_{k+1} = 0$. Since *S* is regular, $P_1P_2 \cdots P_kx_{k+1} = 0$, and hence $P_1P_2 \ldots P_k \subseteq P_{k+1} = \operatorname{ann}_R(x_{k+1})$. It is easy to see that each maximal element of *X* is a prime ideal in *R* and so P_{k+1} . Thus there exists j < k + 1 such that $P_j \supseteq P_{k+1}$. Since $P_{k+1} \in X$, maximality of P_j implies that $P_j = P_{k+1}$, a contradiction.

(2). By the first assertion, X has only a finite number of maximal elements, say $\operatorname{ann}_{R}(x_{1}), ..., \operatorname{ann}_{R}(x_{n}),$

where $x_1, \ldots, x_n \in M$. We show that $Z(M) = \bigcup_{j=1}^n \operatorname{ann}_R(x_j)$. Clearly, $\bigcup_{j=1}^n \operatorname{ann}_R(x_j) \subseteq Z(M)$. Conversely, let $a \in Z(M)$.

Z(*M*). Then there exists $x \in M \setminus \{0\}$ such that ax = 0. Consider $Y = \{\operatorname{ann}_R(y) \mid 0 \neq y \in M, \operatorname{ann}_R(x) \subseteq \operatorname{ann}_R(y)\}$. Then $\operatorname{ann}_R(x) \in Y$, and so $Y \neq \emptyset$. By Lemma 3.4, *R* satisfies ACC on annihilators of subsets of *M*; so *Y* has a maximal element, say $\operatorname{ann}_R(y)$. But $\operatorname{ann}_R(y)$ is a maximal element of *X*. So there exists $i \in \{1, \dots, n\}$ such that n

$$\operatorname{ann}_{R}(y) = \operatorname{ann}_{R}(x_{i})$$
. Hence $a \in \operatorname{ann}_{R}(x) \subseteq \operatorname{ann}_{R}(y) = \operatorname{ann}_{R}(x_{i}) \subseteq \bigcup_{j=1}^{j=1} \operatorname{ann}_{R}(x_{j})$. Therefore, $Z(M) = \bigcup_{j=1}^{j=1} \operatorname{ann}_{R}(x_{j})$.

It is not hard to see that P_i is an associated prime of M.

Example 3.7. A commutative ring R with w-ACC_S on ideals where S is a multiplicative non regular set of R may not have ACC on annihilators.

Let *F* be a field and $R = F[x_1, x_2, ...]/\langle x_i x_j; i \neq j \rangle$. Suppose that $S = \{x_1^i | i \ge 0\}$. Then *S* is a multiplicative set of *R*. Since the chain $\langle \overline{x_1} \rangle \subseteq \langle \overline{x_1}, \overline{x_2} \rangle \subseteq \cdots$ is not stationary, *R* is not Noetherian. It is enough to show that *R* is *S*-Noetherian. First define the following mapping; $\theta : R \to F[\overline{x_1}]$, with $f \mapsto f_1(\overline{x_1})$, where $f = f_1(\overline{x_1}) + \overline{x_2}f_2(\overline{x_2}) + \cdots + \overline{x_n}f_n(\overline{x_n})$.

Clearly θ is a surjective homomorphism and ker(θ) = { $\sum_{i=2}^{n} \overline{x_i} f_i(\overline{x_i}) \mid n \in \mathbb{N}$ }. Let *I* be an ideal of *R*. Then

 $\overline{x_1}I$ is an ideal of *R* too. Thus $\theta(\overline{x_1}I)$ is an ideal of $F[\overline{x_1}]$. Therefore, $\theta(\overline{x_1}I)$ is principal. Since $\overline{x_1}I \cap \ker(\theta) = 0$, $\overline{x_1}I$ is principal. Hence *R* is *S*-Noetherian. Thus *R* satisfies w-ACC_S on ideals. Now, we introduce a chain of annihilators in *R* which is not stationary:

$$\operatorname{ann}_{R}(x_{1}, x_{2}, \ldots) \subsetneq \operatorname{ann}_{R}(x_{2}, x_{3}, \ldots) \subsetneq \operatorname{ann}_{R}(x_{3}, x_{4}, \ldots) \subsetneq \cdots$$

So the regularity of *S* is necessary in Lemma 3.4.

Recall that a module *M* is called a *uniform* module if the intersection of any two nonzero submodules is nonzero. A submodule *N* of *M* is said to be an *essential* submodule of *M* if for every submodule *H* of *M*, $H \cap N = \{0\}$ implies that $H = \{0\}$. The *uniform dimension* of a module *M*, denoted u.dim(M), is defined to

be *n* if there exists a finite set of uniform submodules U_i such that $\bigoplus_{i=1}^{i} U_i$ is an essential submodule of *M*.

A ring *R* is said to be a *Goldie* ring if it has finite uniform dimension as a module over itself, and satisfies the ascending chain condition on annihilators of subsets of *R*. With aid of following lemma, we show that a ring with w-ACC_S on ideals where $S \subseteq R$ is a regular multiplicative set, is a Goldie ring.

Lemma 3.8. Let *R* be a commutative ring and *M* an *R*-module which satisfies w-ACC_S on submodules, where $S \subseteq R$ is a regular multiplicative set over *M*. Then *M* has finite uniform dimension.

Proof. Suppose to the contrary that *M* has not finite uniform dimension. Then there exists a family of independent nonzero submodules such as $\{N_1, N_2, N_3, ...\}$. Consider the following chain of submodules of *M*:

 $N_1 \subseteq N_1 \oplus N_2 \subseteq N_1 \oplus N_2 \oplus N_3 \subseteq \cdots$

Since *M* satisfies w-ACC_S on submodules, there exists $k \in \mathbb{N}$ such that for each $n \ge k$, $s_n(\bigoplus_{i=1}^n N_i) \subseteq \bigoplus_{i=1}^n N_i$

for some $s_n \in S$. In particular, $s_n N_{k+1} = 0$. Since *S* is regular over *M*, we must have $N_{k+1} = 0$, a contradiction. So *M* has finite uniform dimension. \Box

Theorem 3.9. Let *R* be a commutative ring and $S \subseteq R$ a regular multiplicative set. If *R* satisfies w-ACC_S on ideals, then *R* is Goldie.

Proof. Follows directly from Lemma 3.4 and Lemma 3.8.

Following example shows that the converse of Theorem 3.9 is not true in general.

Example 3.10. Let $R = \mathbb{Z}[x_1, x_2, ...]$ and $S = \{x_1^i \mid i \ge 0\}$. Clearly *S* is a regular multiplicative set of *R*. Also, *R* is a Goldie ring. The following chain shows that *R* does not satisfies w-ACC_S on ideals:

$$\langle x_2 \rangle \subsetneq \langle x_2, x_3 \rangle \subsetneq \langle x_2, x_3, x_4 \rangle \subsetneq \cdots$$

So the converse of Theorem 3.9 does not hold.

In the next result, we show that a commutative semilocal ring with w-ACC_S on ideals have a finite number of minimal prime ideals. First, we need the following Lemma.

Lemma 3.11. Let *R* be a commutative ring and $S, T \subseteq R$ be two multiplicative sets of *R*. If *R* satisfies w-ACC_S on ideals, then $T^{-1}R$ satisfies w-ACC_S on ideals.

Proof. Suppose that $A_1 \subseteq A_2 \subseteq \cdots$ be an ascending sequence of ideals of $T^{-1}R$. Then for each $n \in \mathbb{N}^*$, $A_n = T^{-1}B_n$, for some ideal B_n of R. For each $n \in \mathbb{N}^*$, set $I_n := \sum_{i=1}^n B_i$. Then $(I_n)_n$ is an ascending sequence of ideals of R. Since R satisfies w-ACC_S on ideals, there exists $k \in \mathbb{N}^*$ such that for each $n \ge k$, $s_n I_n \subseteq I_k$ for some $s_n \in S$. This implies that for each $n \ge k$, $s_n (T^{-1}I_n) \subseteq T^{-1}I_k$.

Now, for each $n \in \mathbb{N}^*$,

$$T^{-1}I_n = T^{-1}(B_1 + \dots + B_n)$$

= $T^{-1}B_1 + \dots + T^{-1}B_n$
= $A_1 + \dots + A_n$
= A_n .

Thus for each $n \ge k$, $s_n A_n \subseteq A_k$, which implies that the sequence $(A_n)_n$ is weakly *S*-stationary. Hence $T^{-1}R$ satisfies w-ACC_S on ideals. \Box

Theorem 3.12. Let *R* be a commutative semilocal ring and *S* a regular multiplicative subset of *R*. If *R* satisfies *w*-ACC_S on ideals, then *R* contains only a finite number of minimal primes.

Proof. A commutative semilocal ring has only a finite number of maximal ideals. Since every minimal prime ideal of *R* is contained in a maximal ideal, it is enough to show that every maximal ideal of *R* contains only a finite number of minimal primes. But for every maximal ideal *M* of *R*, the minimal prime ideals of *R* which are contained in *M* correspond to the minimal prime ideals of the ring $T^{-1}R$ for $T = R \setminus M$. Thus it suffices to consider the case when *R* is a local ring. It is clear that for every ideal *I* in *R*, *R/I* has w-ACC_{\overline{S}} on ideals, where $\overline{S} = \{s + I \mid s \in S\}$. So considering the quotient of *R* modulo its prime radical, we may assume that *R* is semiprime. Now, by [8, Theorem 11.43], *R* has only a finite number of minimal primes if and only if *R* has finite uniform dimension. From Proposition 3.8, we obtain that *R* has finite uniform dimension. Hence *R* contains only a finite number of minimal prime ideals.

Following example shows that a ring with w-ACC_S on ideals where S is a non-regular multiplicative set of R may have infinitely many minimal prime ideals.

Example 3.13. Consider *R* as in Example 3.7. *R* has w-ACC_S on ideals and *S* is a non regular multiplicative subset of *R*. Then $M := \langle x_1, x_2, x_3, \ldots \rangle / \langle x_j | i \neq j \in \mathbb{N} \rangle$ is a maximal ideal of *R*. It is easy to show that for every $k \in \mathbb{N}$, $\langle x_j | j \in \mathbb{N} \setminus \{k\} \rangle / \langle x_i x_j | i \neq j \in \mathbb{N} \rangle$ is a minimal prime ideal. Thus the localization *R*_M has infinitely many minimal prime ideals. This shows that the regularity of *S* is necessary in Theorem 3.12.

4. Acknowledgment

The authors would like to thank the anonymous referee for a careful checking of the details and for helpful comments that improved this paper.

References

- [1] D.D. Anderson and T. Dumitrescu, S-Noetherian rings, Comm. Algebra 30 (2002) 4407-4416.
- [2] D.D. Anderson, D. Kwak and M. Zafrullah, Agreeable domain, Comm. Algebra 23 (1995) 4861-4883.
- [3] Z. Bilgin, M. L. Reyes and U. Tekir, On right S-Noetherian rings and S-Noetherian modules, Comm. Algebra 46 (2017) 863–869.
- [4] E. Hamann, E. Houston and J.L. Johnson, Properties of Uppers to Zero in R[X], Pacific J. Math. 135 (1998) 65-79.
- [5] A. Hamed and S. Hizem, Modules satisfying the S-Noetherian property and S-ACCR, Comm. Algebra. 44 (2016) 1941–1951.
- [6] O. khani-Nasab and A. Hamed, Weakly S-Artinian modules, Filomat 35(15) (2021) 5215–5226.
- [7] T. Y. Lam, A First Course in Noncommutative Rings, New York, USA: Springer-Verlag New York (1999).
- [8] T. Y. Lam, Lectures on Modules and Rings, New York, USA: Springer-Verlag New York (1999).