Weakly S-Noetherian modules

Omid Khani-Nasab ${ }^{\text {a }}$, Ahmed Hamed ${ }^{\text {b }}$, Achraf Malek ${ }^{\text {b }}$
${ }^{a}$ Department of Pure Mathematics, Faculty of Mathematics and Statistics, University of Isfahan
${ }^{b}$ Department of Mathematics, Faculty of Sciences, Monastir, Tunisia

Abstract

Let R be a commutative ring, S a multiplicative subset of R and M an R-module. We say that M satisfies weakly S-stationary on ascending chains of submodules ($\mathrm{w}-\mathrm{ACC}_{S}$ on submodules or weakly S-Noetherian) if for every ascending chain $M_{1} \subseteq M_{2} \subseteq M_{3} \subseteq \cdots$ of submodules of M, there exists $k \in \mathbb{N}$ such that for each $n \geq k, s_{n} M_{n} \subseteq M_{k}$ for some $s_{n} \in S$. In this paper, we investigate modules (respectively, rings) with $\mathrm{w}-\mathrm{ACC}_{S}$ on submodules (respectively, ideals). We prove that if R satisfies $\mathrm{w}-\mathrm{ACC}_{S}$ on ideals, then R is a Goldie ring. Also, we prove that a semilocal commutative ring with $\mathrm{w}-\mathrm{ACC}_{S}$ on ideals have a finite number of minimal prime ideals. This extended a classical well known result of Noetherian rings.

1. Introduction

In 1988, Hamann, Houston and Johnson ([4]) in their works on polynomial rings over integral domains, introduced the notion of almost principal ideals. They called an ideal I of $D[X]$ (where D is an integral domain) almost principal if there exist a $s \in D \backslash\{0\}$ and a $f \in I$ of positive degree with $s I \subseteq f D[X]$ and they called the polynomial ring $D[X]$ an almost PID if each ideal of $D[X]$ that extends to a proper ideal of $K[X]$ is almost principal (K the quotient field of D). Then Anderson, Kwak and Zafrullah defined agreeable domains. An integral domain D is called agreeable if for each fractional ideal F of $D[X]$ with $F \subseteq K[X]$ where K is the quotient field of D, there exists a $s \in D \backslash\{0\}$ with $s F \subseteq D[X]$. They also called an ideal I of $K[X]$ is almost finitely generated if there is a finite set of polynomials $\left\{f_{1}, f_{2}, \ldots, f_{n}\right\}$ contained in I and an element $s \in D \backslash\{0\}$ such that $s I \subseteq\left(f_{1}, f_{2}, \ldots, f_{n}\right)$, [2].

Later, Anderson and Dumitrescu generalized the concept of almost principal and almost finitely generated ideals to modules over commutative rings. Let R be a commutative ring and $S \subseteq R$ be a multiplicative set and M be an R-module. Following [1], we say that M is S-finite (resp., S-principal) if $s M \subseteq F$ for some $s \in S$ and some finitely generated (resp., principal) submodule F of M. Also, M is called S-Noetherian (resp., S-PIR) if each submodule of M is a S-finite (resp., S-principal) module.

In 2016, Ahmed and Sana ([5]) tried to characterize the concept of S-Noetherian modules via a suitable chain condition and a special kind of maximality. An increasing sequence $\left(N_{n}\right)_{n \in \mathbb{N}}$ of submodules of M is called S-stationary if there exists a positive integer k and $s \in S$ such that for each $n \geq k, s N_{n} \subseteq N_{k}$ and a submodule N_{i} is called S-maximal if for every $j \in \mathbb{N}, s N_{j} \subseteq N_{i}$, for some $i \in \mathbb{N}$. They showed that, if every nonempty set of ideals of R has a S-maximal element, then R is S-Noetherian and the later that,

[^0]every increasing sequence of ideals of R is S-stationary. In 2017, Bilgin, Reyes and Tekir ([3]) characterize S-Noetherian modules over noncommutative rings. They proved that M is S-Noetherian if and only if every increasing sequence of submodules of M is S-stationary if and only if every nonempty set of submodules of M has a S-maximal element if and only if every nonempty S-saturated set of submodules of M has a maximal element.

In this paper, we study weakly S-Noetherian modules, dualizing the former notion of weakly S-Artinian modules introduced by Khani-Nasab and Hamed in [6]. We say that M satisfies weakly S-stationary on ascending chains of submodule ($\mathrm{w}-\mathrm{ACC}_{S}$ on submodules for short) if for every ascending chain $M_{1} \subseteq M_{2} \subseteq$ $M_{3} \subseteq \cdots$ of submodules of M, there exists $k \in \mathbb{N}$ such that for each $n \geq k, s_{n} M_{n} \subseteq M_{k}$ for some $s_{n} \in S$. Let \mathcal{F} be a set of submodules of M. We say that $N \in \mathcal{F}$ is weakly S-maximal if for every $L \in \mathcal{F}$ and $N \subseteq L$, there exists $s \in S$ such that $s L \subseteq N$. We compare Noetherian modules with modules which have w-ACC ${ }_{S}$ on submodules. For example, we show that there exists a module with $\mathrm{w}-\mathrm{ACC}_{S}$ on finitely generated submodules which does not satisfies $\mathrm{w}-\mathrm{ACC}_{S}$ on submodules. In section 3, we consider the case where $S \subseteq R$ is a regular multiplicative set. We show that a module M which satisfies weakly S-stationary on
 satisfies $\mathrm{w}-\mathrm{ACC}_{S}$ on ideals where S is regular, then R is a Goldie ring. Also, we show that the converse is not true in general. Finally, we prove that a semilocal commutative ring with w-ACC ${ }_{S}$ on ideals where S is regular, have a finite number of minimal prime ideals and the regularity of S is necessary.

2. Weakly S-stationary and weakly S-maximal

Let R be a commutative ring, $S \subseteq R$ a multiplicative set and M an R-module. According to [5], an increasing sequence $\left(N_{n}\right)_{n \in \mathbb{N}}$ of submodules of M is called S-stationary if there exist a positive integer $k \in \mathbb{N}$ and $s \in S$ such that for all $n \geq k, s N_{n} \subseteq N_{k}$. We say that M satisfies ACC ${ }_{S}$ on submodules if for every ascending chain of submodules of M is S-stationary. In this section we relaxes this property by introducing the notion of weakly S-stationary sequence of submodules. We study various properties of modules in which every ascending chain of submodules is weakly S-stationary.

Definition 2.1. Let R be a commutative ring, $S \subseteq R$ a multiplicative set and M an R-module. We say that M satisfies weakly S-stationary on ascending chains of submodules ($w-A_{S}$ on submodules for short) if for every ascending chain $M_{1} \subseteq M_{2} \subseteq M_{3} \subseteq \cdots$ of submodules of M, there exists $k \in \mathbb{N}$ such that for each $n \geq k, s_{n} M_{n} \subseteq M_{k}$ for some $s_{n} \in S$.

Examples 2.2. 1. Modules with ACC_{S} on submodules satisfies w-ACC ${ }_{S}$ on submodules. In Example 2.8, we prove that the reverse of this implication is not true in general.
2. Every S-Noetherian modules satisfies $\mathrm{w}-\mathrm{ACC}_{S}$ on submodules (follows from [5, Remark 2.3] and the fact that every module with ACC_{S} on submodules satisfies $\mathrm{w}-\mathrm{ACC}_{S}$ on submodules).
3. Let p be a prime number, $S=\{1\} \cup(p \mathbb{Z} \backslash\{0\})$ and $M=\mathbb{Z}_{p^{\infty}}$ (as a \mathbb{Z}-module). Then M satisfies w-ACC S on submodules. Note that M does not satisfy ACC $_{S}$ on submodules, since for every $s \in S$ and every finitely generated submodule F of $M s\left(\mathbb{Z}_{p^{\infty}}\right)=\mathbb{Z}_{p^{\infty}} \nsubseteq F$.
4. Every semisimple module satisfies $\mathrm{w}-\mathrm{ACC}_{S}$.

Definition 2.3. Let R be a commutative ring, $S \subseteq R$ a multiplicative set and M an R-module.

1. Let \mathcal{F} be a set of submodules of M. We say that $N \in \mathcal{F}$ is weakly S-maximal if for every $L \in \mathcal{F}$ and $N \subseteq L$, there exists $s \in S$ such that $s L \subseteq N$.
2. A submodule N of M is said to be weakly S-maximal if it is weakly S-maximal in the set of all proper submodules of M.

Proposition 2.4. Let R be a commutative ring, $S \subseteq R$ a multiplicative set and M an R-module. Then the following assertions are equivalent.

1. M satisfies $w-A C C_{S}$ on submodules.

2. Every nonempty set of submodules of M has a weakly S-maximal element.

Proof. (1) $\Rightarrow(2)$ Let \mathcal{F} be a nonempty set of submodules of M such that for every submodule $N \in \mathcal{F}, N$ is not weakly S-maximal. Let $N_{1} \in \mathcal{F}$. Then N_{1} is not weakly S-maximal and so there exists $N_{2} \in \mathcal{F}$ such that $N_{1} \subseteq N_{2}$ and for every $s \in S, s N_{2} \nsubseteq N_{1} . N_{2} \in \mathcal{F}$ is not weakly S-maximal, hence there exists $N_{3} \in \mathcal{F}$ such that $N_{2} \subseteq N_{3}$ and for every $s \in S, s N_{3} \nsubseteq N_{2}$. By continuing this way, we obtain a chain of submodules $N_{1} \subseteq N_{2} \subseteq N_{3} \subseteq \cdots$ which is not weakly S-stationary. This shows that M does not satisfy w-ACC C_{S} on submodules.
(2) \Rightarrow (1) Let $N_{1} \subseteq N_{2} \subseteq N_{3} \subseteq \cdots$ be a chain of submodules in M. Set

$$
\mathcal{F}=\left\{N_{i}, \quad i=1,2, \ldots\right\}
$$

By (2), \mathcal{F} has a weakly S-maximal element like N_{k} where $k \in \mathbb{N}$. Clearly for every $n \geq k$, there exists $s_{n} \in S$ such that $s_{n} N_{n} \subseteq N_{k}$.

Our next result gives equivalent conditions for an R-module M to be S-Noetherian, where S is a finite multiplicative subset of R. First let us recall the following notion. Let \mathfrak{F} be a family of submodules of M. An element $N \in \mathscr{F}$ is said to be S-maximal if there exists a $s \in S$ such that for each $L \in \mathscr{F}$, if $N \subseteq L$, then $s L \subseteq N$ ([5]).

Proposition 2.5. Let R be a commutative ring, $S \subseteq R$ a finite multiplicative set and M an R-module. Then the following assertions are equivalent.

1. M is a S-Noetherian module.
2. M satisfies $A C C_{S}$ on submodules.
3. M satisfies $w-A C C_{S}$ on submodules.
4. Every nonempty set of submodules of M has a weakly S-maximal element
5. Every nonempty set of submodules of M has a S-maximal. element.

Proof. (1) \Rightarrow (2) Follows from Example 2.2(1).
(2) \Rightarrow (3) Obvious.
$(3) \Rightarrow(4)$ Follows from Proposition 2.4.
$(4) \Rightarrow(5)$ Follows from the fact that the weakly S-maximal and the S-maximal properties are the same when S is finite.
(5) \Rightarrow (1) Let $S=\left\{s_{1}, s_{2}, s_{3}, \ldots, s_{n}\right\}$ and N be a submodule of M. Set $s:=s_{1} s_{2} \cdots s_{n}$. We show that N is S-finite. Suppose that \mathcal{F} is the set of all finitely generated submodules of M included in N. Clearly, \mathcal{F} is a nonempty set. By (5) there exists $F \in \mathcal{F}$ such that F is S-maximal. Let $x \in N$. Set $L=F+R x$. Then $L \in \mathcal{F}$ and $F \subseteq L$. Since F is S-maximal, there exists $s_{i_{0}} \in S$ such that $s_{i_{0}} L \subseteq F$. Thus

$$
\left(s_{1} s_{2} \cdots s_{n}\right) L \subseteq s_{i_{0}} L \subseteq F
$$

This implies that $s N \subseteq F$, and hence M is a S-Noetherian module.
Corollary 2.6. Let R be a commutative ring and S a finite regular multiplicative subset of R. Then R is Noetherian if and only if R satisfies $w-A C C_{S}$ on ideals. Indeed, by [5, Example 3.2], $S \subseteq U(R)$; so R satisfies $w-A C C_{S}$ on ideals if and only if R satisfies $A C C_{S}$ on ideals if and only if R satisfies $A C C$ on ideals if and only if R is a Noetherian ring.

We know that M is a Noetherian module if and only if every ascending chain of finitely generated submodules stops. Next we construct an example of a module with w-ACC C_{S} on finitely generated submodules which does not satisfies $\mathrm{w}-\mathrm{ACC}_{S}$ on submodules. First we need the following Remark.

Remark 2.7. Let R be a commutative ring, $S \subseteq R$ a multiplicative set and M an R-module. Assume that for every ascending chain $L_{1} \subseteq L_{2} \subseteq L_{3} \subseteq \cdots$ of submodules of M and for each $n \in \mathbb{N}$, there exists $s_{n} \in S$ such that $s_{n} L_{n}=0$, then M satisfies $w-A C C_{S}$ on submodules.

Example 2.8. Consider $M=\bigoplus_{p \in P} \mathbb{Z}_{p}$ as a \mathbb{Z}-module where P is the set of all prime integers. Let $S=\mathbb{Z} \backslash\{0\}$. First we show that M satisfy $w-A C C_{S}$ on finitely generated submodules. Let L be a finitely generated submodule of M. Then there exists $p_{1}, p_{2}, \ldots, p_{n} \in P$ such that $L \hookrightarrow \mathbb{Z}_{p_{1}} \oplus \mathbb{Z}_{p_{2}} \oplus \cdots \oplus \mathbb{Z}_{p_{n}}$ and hence L is finite. By Remark 2.7, every finite module satisfies $w-A C C_{S}$ on submodules. This shows that M satisfies $w-A C C_{S}$ on submodules.

Next we introduce a chain of submodules of M which does not satisfy the $w-A C C_{S}$ on submodules. Let $p_{1} \leq$ $p_{2} \leq p_{3} \leq \cdots$ be all prime numbers. Suppose that for every p we replace $\iota_{p}\left(\mathbb{Z}_{p}\right)$ by \mathbb{Z}_{p} where $\iota_{p}: \mathbb{Z}_{p} \longmapsto M$. Set $L=\mathbb{Z}_{p_{1}} \oplus \mathbb{Z}_{p_{2}} \oplus \cdots$ and $K=\mathbb{Z}_{p_{2}} \oplus \mathbb{Z}_{p_{4}} \oplus \cdots$. Since $I=\left\{p_{1}, p_{3}, p_{5}, \ldots\right\}$ is infinite, there exist infinite subsets I_{1} and I_{2} of I such that $I=I_{1} \cup I_{2}$. Also, I_{1} is infinite. So there exist infinite subsets I_{3} and I_{4} of I_{1} such that $I_{1}=I_{3} \cup I_{4}$. Continuing in this way, we get a sequence $I_{1}, I_{3}, I_{5}, \ldots$ such that $I_{n}=I_{n+2} \cup I_{n+3}$. Define $L_{i}=\bigoplus_{p \in I_{i}} \mathbb{Z}_{p}$ for every $i \in \mathbb{Z}$ we have the following chain

$$
K \oplus L_{2} \varsubsetneqq K \oplus L_{2} \oplus L_{4} \subsetneq K \oplus L_{2} \oplus L_{4} \oplus L_{6} \subsetneq \cdots
$$

Suppose that there exists $k \in \mathbb{N}$ such that for every $n \geq k$

$$
s_{n}\left(K \oplus L_{2} \oplus L_{4} \oplus \cdots \oplus L_{2 n+2}\right) \subseteq K \oplus L_{2} \oplus L_{4} \oplus \cdots \oplus L_{2 n}
$$

for some $s_{n} \in S$. Thus

$$
s_{n}\left(L_{2 n+2}\right) \subseteq K \oplus L_{2} \oplus L_{4} \oplus \ldots \oplus L_{2 n}
$$

Hence $s_{n}\left(L_{2 n+2}\right)=0$. $I_{2 n+2}$ is an infinite set of prime numbers. Let t_{1}, t_{2}, \ldots be all distinct elements of $I_{2 n+2}$. Then $L_{2 n+2}=\bigoplus_{p \in\left\{t_{1}, t_{2}, \ldots\right\}} \mathbb{Z}_{p}$. Since $s_{n} L_{2 n+2}=0$, for every $i \in \mathbb{N}, t_{i} \mid s_{n}$, a contradiction. Thus M does not satisfy $w-A C C S$ on submodules.

Next proposition investigates $\mathrm{w}-\mathrm{ACC}_{S}$ on ideals for direct product of rings.
Proposition 2.9. Let $S_{1}, S_{2}, \cdots, S_{n}$ be multiplicative subsets of rings $R_{1}, R_{2}, \cdots, R_{n}$, respectively. Set $R=\prod_{i=1}^{n} R_{i}$ and $S=\prod_{i=1}^{n} S_{i}$. Then the following conditions are equivalent.

1. R satisfies $w-A C C_{S}$ on ideals
2. For each $i \in\{1, \ldots, n\}, R_{i}$ satisfies $w-A C C_{S_{i}}$ on ideals

Proof. (1) \Rightarrow (2) Obvious.
(2) \Rightarrow (1) Suppose that $I_{1} \subseteq I_{2} \subseteq I_{3} \subseteq \cdots$ be an ascending chain of ideals in R. Then for every $i \in \mathbb{N}$, $I_{i}=L_{i 1} \times L_{i 2} \times \cdots \times L_{i n}$ where $L_{i j}$ is an ideal of R_{j}, for all $j \in\{1,2, \ldots, n\}$. Since every R_{j} satisfies $\mathrm{w}-\mathrm{ACC}_{S_{i}}$ on ideals, we can find $k \in \mathbb{N}$ such that for each $n \geq k$ and $j \in\{1,2, \ldots, n\}$ there exists $s_{n j} \in S_{j}$ such that $s_{n j} L_{n j} \subseteq L_{k j}$. Therefore, for every $n \geq k, s_{n}=\left(s_{n 1}, s_{n 2}, \ldots, s_{n n}\right) \in \prod_{i=1}^{n} S_{i}$ and we have $s_{n} I_{n} \subseteq I_{k}$. This shows that R has w-ACC S_{S} on ideals where $S=\prod_{i=1}^{n} S_{i}$.

Unlike finite product of rings, an infinite product of rings not necessarily has w-ACC S_{S} on ideals.
Example 2.10. Let $R=\prod_{i \in I} R_{i}$ and $S=\left\{1_{R}\right\}$ be a multiplicative subset of R where index set of I is infinite. Since I is infinite, there exist infinite subsets I_{1} and I_{2} of I such that $I=I_{1} \cup I_{2}$ and $I_{1} \cap I_{2}=\varnothing$. Set $J=\bigoplus_{i \in I_{1}} R_{i}$ and $K=\bigoplus_{i \in I_{2}} R_{i}$. So $J \subsetneq J \oplus K$ and continuing in this way, we can form an ascending chain of ideals of R. Thus R does not satisfy $w-A C C_{S}$ on ideals.

Proposition 2.11. Let M be an R-module, N a proper submodule of M and S a multiplicative subset of R. Then the following assertions are equivalent.

1. M satisfies $w-A C C_{S}$ on submodules.
2. N and M / N both satisfy $w-A C C_{S}$ on submodules.

Proof. (1) \Rightarrow (2) Assume that M has $\mathrm{w}-\mathrm{ACC}_{S}$ on submodules. It is immediate that N satisfies $\mathrm{w}-\mathrm{ACC}_{S}$ on submodules. Let $L_{1} / N \subseteq L_{2} / N \subseteq L_{3} / N \subseteq \cdots$ be a chain of submodules in M / N. Since $L_{1} \subseteq L_{2} \subseteq L_{3} \subseteq \cdots$ is a chain in M and M satisfies w-ACC s on submodules, there exists $k \in \mathbb{N}$ such that for each $n \geq k$, there exists $s_{n} \in S$ with $s_{n} L_{n} \subseteq L_{k}$. This implies that for every $n \geq k, s_{n}\left(L_{n} / N\right) \subseteq L_{k} / N$. Hence M / N satisfies w-ACC S_{S} on submodules.
(2) \Rightarrow (1) Let $L_{1} \subseteq L_{2} \subseteq L_{3} \subseteq \cdots$ be a chain in M. By assumption, there exists a positive integer k such that for each $n \geq k$, there exists $s_{n} \in S$ with $s_{n}\left(L_{n}+N\right) / N \subseteq\left(L_{k}+N\right) / N$ and there exists $s_{n}^{\prime} \in S$ such that $s_{n}^{\prime}\left(N \cap L_{n}\right) \subseteq N \cap L_{k}$. We prove that for each $n \geq k, s_{n}^{\prime} s_{n}\left(L_{n}\right) \subseteq L_{k}$. Since $L_{n} \subseteq L_{n}+N, s_{n}\left(L_{n}\right) \subseteq s_{n}\left(L_{n}+N\right) \subseteq L_{k}+N$. Let $x \in L_{n}$. Then $s_{n} x \in L_{k}+N$ and there exist $l \in L_{k}$ and $y \in N$ such that $s_{n} x-l=y$. Thus $s_{n} x-l \in N \cap L_{n}$, and so $s_{n}^{\prime}\left(s_{n} x-l\right) \in N \cap L_{k}$. Therefore $s^{\prime} s_{n} x \in L_{k}$, as desire.

Corollary 2.12. Let R be a ring and S be a multiplicative subset of R. Then R satisfies $w-A C C_{S}$ on ideals if and only if for each $n \in \mathbb{N}^{*}, R^{n}$ satisfies w-ACC C_{S} on submodules.

Proof. Assume that R satisfies w-ACC ${ }_{S}$ on ideals. We will show this via induction. Let $P(n)$ be the property that R^{n} satisfies $\mathrm{w}-\mathrm{ACC}_{S}$ on submodules. For $n=1, R$ satisfies $\mathrm{w}-\mathrm{ACC}_{S}$ on ideals if and only if for each R as an R-module satisfies $\mathrm{w}-\mathrm{ACC}_{S}$ on submodules. Suppose that the property holds for $1 \leq n$. Let's prove $P(n+1)$. The module R^{n} is isomorphic to the submodule $N=R^{n} \times\{0\}$. Hence, by the induction hypothesis and Proposition 2.11, N satisfies $\mathrm{w}-\mathrm{ACC}_{S}$. Clearly $R^{n+1} / N \simeq R$. Thus by Proposition 2.11, R^{n+1} satisfies $\mathrm{w}-\mathrm{ACC}_{S}$ on submodules. The other implication is obvious.

Theorem 2.13. Let R be a commutative ring, S a multiplicative subset of R and M a finitely generated R-module. If R satisfies $w-A C C_{S}$ on ideals, then M satisfies $w-A C C_{S}$ on submodules.

Proof. Since M is a finitely generated R-module, there exist $n \in \mathbb{N}^{*}$ and a surjective module homomorphism $f: R^{n} \longrightarrow M$, such that $R^{n} / \operatorname{Ker}(f) \simeq M$. By Corollary $2.12, R^{n}$ satisfies $\mathrm{w}-\mathrm{ACC} C_{S}$ on submodules; so by Proposition 2.11, $R^{n} / \operatorname{Ker}(f)$ satisfies w-ACC ${ }_{S}$. Therefore M satisfies $w-A_{S}$ on submodules.

Corollary 2.14. Let R be a commutative ring, $S \subseteq R$ a multiplicative set and M a S-finite R-module. If R satisfies $w-A C C_{S}$ on ideals, then M satisfies $w-A C C_{S}$ on submodules.

Proof. Since M is S-finite, there exist $s \in S$ and a finitely generated submodule F of M such that $s M \subseteq F$. Suppose that $N_{1} \subseteq N_{2} \subseteq N_{3} \subseteq \cdots$ is a chain of submodules in M. By Theorem 2.13, F satisfies w-ACC C_{S} on submodules. Since for each $n, s N_{n}$ is a submodule of F, the chain $s N_{1} \subseteq s N_{2} \subseteq s N_{3} \subseteq \cdots$ is a chain in F; so there exists $k \in \mathbb{N}$ such that, for each $n \geq k$ there exists $t_{n} \in S$ with $t_{n}\left(s N_{n}\right) \subseteq s N_{k} \subseteq N_{k}$. For each $n \geq k$, let $s_{n}:=s t_{n} \in S$. Thus for each $n \geq k, s_{n} N_{n} \subseteq N_{k}$. This shows that M satisfies w-ACC S_{s} on submodules.

3. Weakly S-stationary when S is a regular multiplicative set

In this section we prove a relation between modules satisfying the w-ACC C_{S} property and some classical well known modules (hopfian modules, Goldie rings, ...) where S is a regular multiplicative set. We start this section by the following definition.

Definition 3.1. For an R-module M and $s \in R$, we say that s is a nonzero divisor for M, if for each $m \in M, s m=0$ implies that $m=0$. A regular multiplicative set S over M is a set in which for every $s \in S$, s is nonzero divisor for M.

Example 3.2. Let R be a valuation ring and let S be a multiplicative set of regular elements of R. Set $K=\bigcap_{s \in S} R s$. Then $K \unlhd R$. Consider the ring $\bar{R}:=R / K$ and $\bar{S}:=\{s+K \mid s \in S\} \subseteq \bar{R}$.

1. \bar{S} is closed under multiplication.
2. $1_{\bar{R}}=1+K \in \bar{S}$.
3. $0_{\bar{R}} \notin \bar{S}$ if and only $K \neq R$.

If $K \neq R$, then \bar{S} is a multiplicative regular set in \bar{R}. In this case, \bar{R} satisfies w-ACC ${ }_{S}$ on ideals.
Proof. (1). Clear.
(2). Clear.
(3). If $K=R$, then $S \subseteq K$ and hence $\bar{S}=\{0+K\}$. Conversely, if $K \neq R$, then $1 \notin K$. Thus, there exists $s_{0} \in S$ such that $1 \notin s_{0} R$. Suppose to the contrary, $0+K \in \bar{S}$. There exists $s_{1} \in S$ such that $0+K=s_{1}+K$. Hence $s_{1} \in K \subseteq s_{0} s_{1} R$; so there exists $r \in R$ such that $s_{1}=r s_{0} s_{1}$, which implies that $1=r s_{0}$ since S is regular. Therefore $s_{0} R=R$, a contradiction.

We want to prove that if $K \neq R$, then \bar{S} is regular. Let $(s+K)(r+K)=0_{\bar{R}}$ where $s \in S$ and $r \in R$. Let $s^{\prime} \in K$. Then $s r \in s s^{\prime} R$. There exists $x \in R$ such that $s r=s s^{\prime} x$. Since S is regular, $r=s^{\prime} x \in s^{\prime} R$. Thus $r \in K$, as desire.

Now, we show that \bar{R} satisfies $\mathrm{ACC}_{\bar{s}}$ on ideals. Let I / K be a nonzero ideal in \bar{R}. Then $K \subset I \unlhd R$ and $I \nsubseteq K$. Hence, there exists $s_{0} \in S$ such that $I \nsubseteq R s_{0}$. Since R is a valuation ring, $s_{0} R \subseteq I$ and $s_{0} I \subseteq s_{0} R \subseteq I$. It follows that

$$
\left(s_{0}+K\right) I / K=\left(s_{0} I+K\right) / K \subseteq\left(s_{0} R+K\right) / K=\left(s_{0}+K\right) \bar{R} \subseteq I / K
$$

Thus \bar{R} is a \bar{S}-Noetherian ring, and hence satisfies $\mathrm{w}-\mathrm{ACC}_{\bar{S}}$ on ideals.
An R-module M is said to be hopfian if any surjective endomorphism of M is an isomorphism. We know that Noetherian modules are hopfian. Our next result relaxes the Noetherian property by the w-ACC S_{S} notion.

Proposition 3.3. Let R be a commutative ring, M an R-module and $S \subseteq R$ is a regular multiplicative set over M. If M satisfies $w-A C C_{S}$ on submodules, then M is hopfian.

Proof. Let $\phi: M \rightarrow M$ be a surjective homomorphism. Consider the following chain

$$
\operatorname{Ker}(\phi) \subseteq \operatorname{Ker}\left(\phi^{2}\right) \subseteq \operatorname{Ker}\left(\phi^{3}\right) \subseteq \cdots
$$

Since M satisfies $w-A C C C_{S}$ on submodules, there exists $k \in \mathbb{N}$ such that for each $n \geq k, s_{n} \operatorname{Ker}\left(\phi^{n+1}\right) \subseteq \operatorname{Ker}\left(\phi^{n}\right)$ for some $s_{n} \in S$. Let $m \in \operatorname{Ker}(\phi)$. Since ϕ is surjective, there exists $m^{\prime} \in M$ such that $m=\phi^{n}\left(m^{\prime}\right)$. Then $\phi(m)=\phi\left(\phi^{n}\left(m^{\prime}\right)\right)$ implies that $0=\phi^{n+1}\left(m^{\prime}\right)$ and thus $m^{\prime} \in \operatorname{Ker}\left(\phi^{n+1}\right)$. Multiplying s_{n}, we have $s_{n} m^{\prime} \in s_{n} \operatorname{Ker}\left(\phi^{n+1}\right) \subseteq \operatorname{Ker}\left(\phi^{n}\right)$. Thus $s_{n} m^{\prime} \in \operatorname{Ker}\left(\phi^{n}\right)$, and so $s_{n} \phi^{n}\left(m^{\prime}\right)=\phi^{n}\left(s_{n} m^{\prime}\right)=0$. Since S is regular on $M, m=\phi^{n}\left(m^{\prime}\right)=0$. Hence ϕ is an isomorphism.

Lemma 3.4. Let R be a commutative ring, M an R-module and $S \subseteq R$ a regular multiplicative set over M. Assume that R satisfies $w-A C C_{S}$ on ideals. Then R satisfies $A C C$ on annihilators of subsets of M.

Proof. Let $I_{1} \subseteq I_{2} \subseteq I_{3} \subseteq \cdots$ be an ascending sequence in R such that for every $j \in \mathbb{N}, I_{j}=\operatorname{ann}_{R}\left(\mathrm{~A}_{\mathrm{i}}\right)$ for some $A_{i} \subseteq M$. Since R satisfies w-ACC ${ }_{S}$ on ideals, there exists $k \in \mathbb{N}$ such that for each $n \geq k, s_{n} I_{n} \subseteq I_{k}$ for some $s_{n} \in S$. Let $n \geq k$ and $a \in I_{n}, s_{n} a \in I_{k}$. So $s_{n} a A_{k}=0$. By regularity of S on M we have $a A_{k}=0$. It follows that $a \in I_{k}$. Therefore, $I_{n} \subseteq I_{k} \subseteq I_{n}$, and hence $I_{n}=I_{k}$. Thus R satisfies ACC on annihilators of subsets of M.

Remark 3.5. Let R be a commutative ring, M an R-module and $S \subseteq R$ a regular multiplicative set over M. Assume that R satisfies $w-A C C_{S}$ on ideals. Then by the previous Lemma 3.4, the set $X=\left\{\mathrm{ann}_{\mathrm{R}}(\mathrm{A}) \mid \mathrm{A} \subseteq \mathrm{M} \backslash\{0\}\right\}$ has a maximal element.

Let R be a commutative ring and M an R-module. We denoted by $Z(M)$ the set $Z(M)=\{r \in R \mid x r=$ 0 , for some nonzero $x \in M\}=\bigcup_{0 \neq x \in M} \operatorname{ann}_{R}(\mathrm{x})$.

Theorem 3.6. Let R be a commutative ring, M an R-module and $S \subseteq R$ a regular multiplicative set over M. Let $X=\left\{\operatorname{ann}_{R}(\mathrm{x}) \mid \mathrm{x} \in \mathrm{M} \backslash\{0\}\right\}$. Assume that R and M both satisfy $w-A C C_{S}$ on submodules. Then

1. X has only a finite number of maximal elements.
2. $Z(M)$ is a union of a finite number of associated primes of M.

Proof. (1). Assume $\left\{\operatorname{ann}_{R}\left(\mathrm{x}_{\mathrm{i}}\right)\right\}_{\mathrm{i} \in \mathbb{N}}$ is a set of (distinct) maximal elements of X. Consider the chain $x_{1} R \subseteq$ $x_{1} R+x_{2} R \subseteq \cdots$ in M. Since M satisfies $\mathrm{w}-\mathrm{ACC}_{S}$ on submodules, there exists $k \in \mathbb{N}$ such that for each $n \geq k, s_{n}\left(\sum_{j=1}^{n} x_{j} R\right) \subseteq \sum_{j=1}^{k} x_{j} R$ for some $s_{n} \in S$. This implies that $s_{n}\left(\sum_{j=1}^{k+1} x_{j} R\right) \subseteq \sum_{j=1}^{k} x_{j} R$; so $s_{n} x_{k+1} \in \sum_{j=1}^{k} x_{j} R$. Thus, there exist $r_{1}, r_{2}, \ldots, r_{k} \in R$ such that $s_{n} x_{k+1}=r_{1} x_{1}+\cdots+r_{k} x_{k}$. For $i \in \mathbb{N}$, set $P_{i}=\operatorname{ann} n_{R}\left(x_{\mathrm{i}}\right)$. Then $P_{1} P_{2} \cdots P_{k}\left(r_{1} x_{1}+\cdots+r_{k} x_{k}\right)=0$; so $P_{1} P_{2} \cdots P_{k} s_{n} x_{k+1}=0$. Since S is regular, $P_{1} P_{2} \cdots P_{k} x_{k+1}=0$, and hence $P_{1} P_{2} \ldots P_{k} \subseteq P_{k+1}=\operatorname{ann}_{R}\left(\mathrm{x}_{\mathrm{k}+1}\right)$. It is easy to see that each maximal element of X is a prime ideal in R and so P_{k+1}. Thus there exists $j<k+1$ such that $P_{j} \supseteq P_{k+1}$. Since $P_{k+1} \in X$, maximality of P_{j} implies that $P_{j}=P_{k+1}$, a contradiction.
(2). By the first assertion, X has only a finite number of maximal elements, say ann $n_{R}\left(x_{1}\right), \ldots, a n n_{R}\left(x_{n}\right)$, where $x_{1}, \ldots, x_{n} \in M$. We show that $Z(M)=\bigcup_{j=1}^{n} \operatorname{ann}_{R}\left(x_{j}\right)$. Clearly, $\bigcup_{j=1}^{n} \operatorname{ann}_{R}\left(x_{j}\right) \subseteq Z(M)$. Conversely, let $a \in$ $Z(M)$. Then there exists $x \in M \backslash\{0\}$ such that $a x=0$. Consider $Y=\left\{a n_{R}(y) \mid 0 \neq \mathrm{y} \in \mathrm{M}, \mathrm{ann}_{R}(\mathrm{x}) \subseteq \mathrm{ann}_{R}(\mathrm{y})\right\}$. Then $\operatorname{ann}_{R}(x) \in Y$, and so $Y \neq \emptyset$. By Lemma 3.4, R satisfies ACC on annihilators of subsets of M; so Y has a maximal element, say $a n n_{R}(y) . B u t a n n_{R}(y)$ is a maximal element of X. So there exists $i \in\{1, \ldots, n\}$ such that $\operatorname{ann}_{R}(\mathrm{y})=\operatorname{ann}_{\mathrm{R}}\left(\mathrm{x}_{\mathrm{i}}\right)$. Hence $a \in \operatorname{ann}_{R}(\mathrm{x}) \subseteq \operatorname{ann}_{\mathrm{R}}(\mathrm{y})=\operatorname{ann}_{R}\left(\mathrm{x}_{\mathrm{i}}\right) \subseteq \bigcup_{\mathrm{j}=1}^{\mathrm{n}} \operatorname{ann}_{R}\left(\mathrm{x}_{\mathrm{j}}\right)$. Therefore, $\mathrm{Z}(M)=\bigcup_{j=1}^{n} a n_{R}\left(\mathrm{x}_{\mathrm{j}}\right)$. It is not hard to see that P_{j} is an associated prime of M.
Example 3.7. A commutative ring R with $\mathrm{w}-\mathrm{ACC}_{S}$ on ideals where S is a multiplicative non regular set of R may not have ACC on annihilators.

Let F be a field and $R=F\left[x_{1}, x_{2}, \ldots\right] /\left\langle x_{i} x_{j} ; i \neq j\right\rangle$. Suppose that $S=\left\{\overline{x_{1}^{i}} \mid i \geq 0\right\}$. Then S is a multiplicative set of R. Since the chain $\left\langle\overline{x_{1}}\right\rangle \subseteq\left\langle\overline{x_{1}}, \overline{x_{2}}\right\rangle \subseteq \cdots$ is not stationary, R is not Noetherian. It is enough to show that R is S-Noetherian. First define the following mapping; $\theta: R \rightarrow F\left[\overline{x_{1}}\right]$, with $f \mapsto f_{1}\left(\overline{x_{1}}\right)$, where $f=f_{1}\left(\overline{x_{1}}\right)+\overline{x_{2}} f_{2}\left(\overline{x_{2}}\right)+\cdots+\overline{x_{n}} f_{n}\left(\overline{x_{n}}\right)$.

Clearly θ is a surjective homomorphism and $\operatorname{ker}(\theta)=\left\{\sum_{i=2}^{n} \overline{x_{i}} f_{i}\left(\overline{x_{i}}\right) \mid n \in \mathbb{N}\right\}$. Let I be an ideal of R. Then $\overline{x_{1}} I$ is an ideal of R too. Thus $\theta\left(\overline{x_{1}} I\right)$ is an ideal of $F\left[\overline{x_{1}}\right]$. Therefore, $\theta\left(\overline{x_{1}} I\right)$ is principal. Since $\overline{x_{1}} I \cap \operatorname{ker}(\theta)=0$, $\overline{x_{1}} I$ is principal. Hence R is S-Noetherian. Thus R satisfies $w-A C C C_{S}$ on ideals. Now, we introduce a chain of annihilators in R which is not stationary:

$$
\operatorname{ann}_{R}\left(x_{1}, x_{2}, \ldots\right) \subsetneq \operatorname{ann}_{R}\left(x_{2}, x_{3}, \ldots\right) \subsetneq \operatorname{ann}_{R}\left(x_{3}, x_{4}, \ldots\right) \subsetneq \ldots
$$

So the regularity of S is necessary in Lemma 3.4.
Recall that a module M is called a uniform module if the intersection of any two nonzero submodules is nonzero. A submodule N of M is said to be an essential submodule of M if for every submodule H of M, $H \cap N=\{0\}$ implies that $H=\{0\}$. The uniform dimension of a module M, denoted u.dim(M), is defined to be n if there exists a finite set of uniform submodules U_{i} such that $\bigoplus_{i=1}^{n} U_{i}$ is an essential submodule of M. A ring R is said to be a Goldie ring if it has finite uniform dimension as a module over itself, and satisfies the ascending chain condition on annihilators of subsets of R. With aid of following lemma, we show that a ring with $\mathrm{w}-\mathrm{ACC}_{S}$ on ideals where $S \subseteq R$ is a regular multiplicative set, is a Goldie ring.

Lemma 3.8. Let R be a commutative ring and M an R-module which satisfies $w-A C C_{S}$ on submodules, where $S \subseteq R$ is a regular multiplicative set over M. Then M has finite uniform dimension.

Proof. Suppose to the contrary that M has not finite uniform dimension. Then there exists a family of independent nonzero submodules such as $\left\{N_{1}, N_{2}, N_{3}, \ldots\right\}$. Consider the following chain of submodules of M:

$$
N_{1} \subseteq N_{1} \oplus N_{2} \subseteq N_{1} \oplus N_{2} \oplus N_{3} \subseteq \cdots
$$

Since M satisfies w-ACC s on submodules, there exists $k \in \mathbb{N}$ such that for each $n \geq k, s_{n}\left(\bigoplus_{i=1}^{n} N_{i}\right) \subseteq \bigoplus_{i=1}^{k} N_{i}$ for some $s_{n} \in S$. In particular, $s_{n} N_{k+1}=0$. Since S is regular over M, we must have $N_{k+1}=0$, a contradiction. So M has finite uniform dimension.

Theorem 3.9. Let R be a commutative ring and $S \subseteq R$ a regular multiplicative set. If R satisfies $w-A C C_{S}$ on ideals, then R is Goldie.

Proof. Follows directly from Lemma 3.4 and Lemma 3.8.
Following example shows that the converse of Theorem 3.9 is not true in general.
Example 3.10. Let $R=\mathbb{Z}\left[x_{1}, x_{2}, \ldots\right]$ and $S=\left\{x_{1}^{i} \mid i \geq 0\right\}$. Clearly S is a regular multiplicative set of R. Also, R is a Goldie ring. The following chain shows that R does not satisfies $w-A C C_{S}$ on ideals:

$$
\left\langle x_{2}\right\rangle \subsetneq\left\langle x_{2}, x_{3}\right\rangle \subsetneq\left\langle x_{2}, x_{3}, x_{4}\right\rangle \subsetneq \cdots
$$

So the converse of Theorem 3.9 does not hold.
In the next result, we show that a commutative semilocal ring with $\mathrm{w}-\mathrm{ACC} \mathrm{C}_{S}$ on ideals have a finite number of minimal prime ideals. First, we need the following Lemma.

Lemma 3.11. Let R be a commutative ring and $S, T \subseteq R$ be two multiplicative sets of R. If R satisfies $w-A C C_{S}$ on ideals, then $T^{-1} R$ satisfies $w-A C C_{S}$ on ideals.

Proof. Suppose that $A_{1} \subseteq A_{2} \subseteq \cdots$ be an ascending sequence of ideals of $T^{-1} R$. Then for each $n \in \mathbb{N}^{*}$, $A_{n}=T^{-1} B_{n}$, for some ideal B_{n} of R. For each $n \in \mathbb{N}^{*}$, set $I_{n}:=\sum_{i=1}^{n} B_{i}$. Then $\left(I_{n}\right)_{n}$ is an ascending sequence of ideals of R. Since R satisfies $w-A_{S}$ on ideals, there exists $k \in \mathbb{N}^{*}$ such that for each $n \geq k, s_{n} I_{n} \subseteq I_{k}$ for some $s_{n} \in S$. This implies that for each $n \geq k, s_{n}\left(T^{-1} I_{n}\right) \subseteq T^{-1} I_{k}$.

Now, for each $n \in \mathbb{N}^{*}$,

$$
\begin{aligned}
T^{-1} I_{n} & =T^{-1}\left(B_{1}+\cdots+B_{n}\right) \\
& =T^{-1} B_{1}+\cdots+T^{-1} B_{n} \\
& =A_{1}+\cdots+A_{n} \\
& =A_{n} .
\end{aligned}
$$

Thus for each $n \geq k, s_{n} A_{n} \subseteq A_{k}$, which implies that the sequence $\left(A_{n}\right)_{n}$ is weakly S-stationary. Hence $T^{-1} R$ satisfies $\mathrm{w}-\mathrm{ACC}_{S}$ on ideals.

Theorem 3.12. Let R be a commutative semilocal ring and S a regular multiplicative subset of R. If R satisfies $w-A C C_{S}$ on ideals, then R contains only a finite number of minimal primes.

Proof. A commutative semilocal ring has only a finite number of maximal ideals. Since every minimal prime ideal of R is contained in a maximal ideal, it is enough to show that every maximal ideal of R contains only a finite number of minimal primes. But for every maximal ideal M of R, the minimal prime ideals of R which are contained in M correspond to the minimal prime ideals of the ring $T^{-1} R$ for $T=R \backslash M$. Thus it suffices to consider the case when R is a local ring. It is clear that for every ideal I in $R, R / I$ has w-ACC $\bar{S}_{\bar{S}}$ on ideals, where $\bar{S}=\{s+I \mid s \in S\}$. So considering the quotient of R modulo its prime radical, we may assume that R is semiprime. Now, by [8, Theorem 11.43], R has only a finite number of minimal primes if and only if R has finite uniform dimension. From Proposition 3.8, we obtain that R has finite uniform dimension. Hence R contains only a finite number of minimal prime ideals.

Following example shows that a ring with $\mathrm{w}-\mathrm{ACC}_{S}$ on ideals where S is a non-regular multiplicative set of R may have infinitely many minimal prime ideals.

Example 3.13. Consider R as in Example 3.7. R has w-ACC C_{S} on ideals and S is a non regular multiplicative subset of R. Then $M:=\left\langle x_{1}, x_{2}, x_{3}, \ldots\right\rangle /\left\langle x_{j} \mid i \neq j \in \mathbb{N}\right\rangle$ is a maximal ideal of R. It is easy to show that for every $k \in \mathbb{N},\left\langle x_{j} \mid j \in \mathbb{N} \backslash\{k\}\right\rangle /\left\langle x_{i} x_{j} \mid i \neq j \in \mathbb{N}\right\rangle$ is a minimal prime ideal. Thus the localization R_{M} has infinitely many minimal prime ideals. This shows that the regularity of S is necessary in Theorem 3.12.

4. Acknowledgment

The authors would like to thank the anonymous referee for a careful checking of the details and for helpful comments that improved this paper.

References

[1] D.D. Anderson and T. Dumitrescu, S-Noetherian rings, Comm. Algebra 30 (2002) 4407-4416.
[2] D.D. Anderson, D. Kwak and M. Zafrullah, Agreeable domain, Comm. Algebra 23 (1995) 4861-4883.
[3] Z. Bilgin, M. L. Reyes and U. Tekir, On right S-Noetherian rings and S-Noetherian modules, Comm. Algebra 46 (2017) 863-869.
[4] E. Hamann, E. Houston and J.L. Johnson, Properties of Uppers to Zero in R[X], Pacific J. Math. 135 (1998) 65-79.
[5] A. Hamed and S. Hizem, Modules satisfying the S-Noetherian property and S-ACCR, Comm. Algebra. 44 (2016) 1941-1951.
[6] O. khani-Nasab and A. Hamed, Weakly S-Artinian modules, Filomat 35(15) (2021) 5215-5226.
[7] T. Y. Lam, A First Course in Noncommutative Rings, New York, USA: Springer-Verlag New York (1999).
[8] T. Y. Lam, Lectures on Modules and Rings, New York, USA: Springer-Verlag New York (1999).

[^0]: 2020 Mathematics Subject Classification. Primary 13C, 13E05
 Keywords. S-Noetherian ring, weakly S-stationary, weakly S-maximal
 Received: 07 August 2022; Revised: 06 October 2022; Accepted: 14 October 2022
 Communicated by Dijana Mosić
 Email addresses: o.khani@sci.ui.ac.ir (Omid Khani-Nasab), hamed.ahmed@hotmail.fr (Ahmed Hamed), achraf_malek@yahoo.fr (Achraf Malek)

