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Abstract. This paper is devoted to the investigation of cardinal invariants such as the local density, the
local weak density and the relation between the tightness of the space Cn(X) of closed sets with finitely
many components and the density of a topological space itself. Moreover, it is shown that the functor
Cn : Comp → Comp preserves the local density and the local weak density of compact spaces. As a result,
criteria for locally separability and locally weakly separability of compact spaces are obtained.

1. Introduction

The cardinal invariants are considered as topological invariants with values in the class of all cardinal
numbers and are used to describe various topological properties of spaces. For example, the weight,
the character, the density, the Lindelöf number, the Souslin number and the tightness of a topological
space are some classical cardinal invariants. Many researches have been devoted to the investigation of
cardinal invariants (see for example, [1, 2, 12, 13, 16]) and their important role in Topology verifies that
this study should be continued. Thus, in recent years, related investigations enriched this topic (see for
example, [3, 4, 8–10, 20]). Hyperspaces and Hattori spaces [15] and their cardinal invariants attracted also
a particular interest.

Moreover, in recent researches an interest in the theory of cardinal invariants and their behavior under
the influence of various covariant functors is increasing fast. In [5–7] the authors investigated several
cardinal invariants under the influence of some weakly normal and normal functors, as well as, some
types of hyperspace. In the investigations [11] and [18] the concept of hyperspace of nonempty closed sets
consisting of finitely many of components is introduced. In particular, in [7] the functor Cn : Comp→ Comp
is introduced, as well as, some cardinal and categorical properties of this functor are investigated.

The current paper is devoted to the investigation of cardinal invariants such as the local density and the
local weak density. Also, the relation between the tightness of the space Cn(X) of closed sets with finitely
many components and the density of a topological space itself is studied. Moreover, it is shown that the
functor Cn : Comp → Comp preserves the local density and the local weak density of compact spaces. As a
consequence, criteria for locally separability and locally weakly separability of compact spaces are obtained.
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More precisely, the paper is organized as follows. In Section 2, we recall basic notions and notations that
will be used in the rest of the study. In Section 3, we study basic facts and results for the weak density and
the local weak density. In Section 4, we study cardinal invariants for the space Cn(X) of closed sets with
finitely many components and finally, in Section 5, we present some open problems for further investigation
on this topic.

Throughout the paper all spaces are assumed to be completely regular, τ means an infinite cardinal
number and by ω we denote the countable cardinal number. Also, by Comp we denote the category of
compact spaces and their continuous mappings.

2. Preliminary notes

Let X be a topological T1-space. The set of all non-empty closed subsets of a topological space X is
denoted by exp X. The family of all sets of the form

O⟨U1, ...,Un⟩ =

 F : F ∈ exp(X), F ⊂
n⋃

i=1

Ui, F ∩Ui , ∅, i = 1, 2, ..., n

 ,
where U1, ...,Un are open subsets of X, generates a base of the topology on the set exp(X). This topology
is called the Vietoris topology. The set exp(X) with the Vietoris topology is called exponential space or the
hyperspace of a space X [14].

By Cn (X) we denote the set of all closed subsets of X consisting of no more than n (n is natural)
components. This space contains the hyperspace expn(X) of closed sets consisting of no more than n
elements and the hyperspace of closed connected sets exp c(X).

Put
expn(X) = {F ∈ exp(X) : |F| ≤ n},

expω(X) =
⋃{

expn(X) : n = 1, 2, ...
}
,

expc(X) = {F ∈ exp(X) : F is connected in X}

and
Cω(X) =

⋃
{Cn(X) : n = 1, 2, ...} .

It is clear that expc(X) ⊂ Cn(X) ⊂ exp(X) and expn(X) ⊂ Cn(X) for any topological space X. On the sets
Cn(X) and Cω(X) the topology induced from the hyperspace exp(X) is considered. Note that expn (X) = Cn(X)
for a discrete space X. Moreover, it is clear that we have expc(X) = C1(X).

Let X,Y ∈ Comp and let f : X → Y be a continuous map between compact spaces X and Y. For any set
F ∈ Cn (X) put Cn( f ) (F) = f (F). Then Cn( f ) : Cn(X) → Cn(Y) is a continuous map. Thus, the structure Cn
forms a covariant functor in the category Comp of compacta.

Definition 2.1. ([14]) A covariant functor F : Comp → Comp acting in the category of compacta is called
normal, if it

1) preserves the weight;
2) preserves singletons and empty set;
3) is monomorphic (preserves embeddings);
4) is epimorphic (preserves surjections);
5) preserves intersections of closed subsets;
6) preserves inverse images;
7) is continuous with respect to inverse limits.

The following example shows that the functor Cn : Comp→ Comp is not normal.
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Example 2.2. ([7]) Consider the sets X = [−3,−1] ∪ [1, 3] and Y = [−2, 2]. In these sets we consider the
natural topology induced from the real line R. We construct a map f : X→ Y as follows:

f (x) =
{

x + 1, when x ∈ [−3, −1]
x − 1, when x ∈ [1, 3].

It is clear that the mapping f : X → Y is continuous and ”onto”. The set F = [−1, 1] ⊂ Y consists
of a single component, and therefore F ∈ C1(Y). But none of elements from C1(X) is transformed by
C1( f ) : C1(X) → C1(Y) onto F. Hence, the map C1( f ) : C1(X) → C1(Y) is not surjective. Therefore, we have
shown that the functor Cn : Comp→ Comp does not preserve epimorphisms.

In [7] the authors obtain the following result.

Theorem 2.3. ([7]) The functor Cn : Comp → Comp satisfies all the conditions of normality except of preserving
epimorphisms.

3. Weak density and local weak density

In this section we give basic results and facts for the weak density and the local weak density of
topological spaces.

Definition 3.1. The density of a topological space X, denoted by d(X), is defined as follows:

d(X) = min{|A| : A is a dense subset of X}.

A topological space is separable, if d(X) ≤ ω. Moreover, a collection λ = {Eα : α ∈ A} of nonempty
subsets of a topological space X is said to be a π-network of the space X if for an arbitrary open subset U ⊂ X
there exists Eα ∈ λ such that Eα ⊂ U. A π-network consisting of only open sets is called a π-base.

It is said that a family γ of subsets of a topological space has the finite intersection property if every finitely
many elements of γ has nonempty intersection. A family which has this property is said to be a centered
system.

Definition 3.2. The weak density of a topological space X, denoted by wd (X), is the smallest cardinal
number τ ≥ ℵ0 such that there is a π-base in X coinciding with τ centered systems of open sets, i.e. there
is a π-base B =

⋃
{Bα : α ∈ A}, where Bα is a centered system of open sets for each α ∈ A and |A| = τ.

If wd (X) = ℵ0, then we say that a topological space X is weakly separable.

Proposition 3.3. The weak density of a topological space X is τ if and only if there exists a π-network coinciding
with the union of τ centered systems.

Proof. If the weak density of a topological space X is τ, then according to Definition 3.2, there is a π-base in
X coinciding with τ centered systems of open sets, i.e. there is a π-base B =

⋃
{Bα : α ∈ A}, where Bα is a

centered system of open sets for each α ∈ A and |A| = τ. Since every π-base is also a π-network, we have
the “necessity” of the proposition.

Now suppose that γ = ∪{γα : α ∈ A, |A| = τ} is a π-network for X and each γα is centered. We shall prove
that wd (X) = τ. Put

σα = {U ⊂ X : U is an open and contains some E ∈ γα}.

Then clearly, the family σα is centered for every α ∈ A. We show that the system

σ = ∪{σα : α ∈ A, |A| = τ}

is a π-base for X. Let W be an arbitrary nonempty open subset of X. There exist α ∈ A and E ∈ γα such that
E ⊂ W, since the system γ is a π-network of X. Then clearly, W ∈ σα. Hence, σ coincides with τ centered
systems of open sets, which means that wd(X) = τ. Proposition 3.3 is proved.
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Proposition 3.4. Let d(X) = τ ≥ ω. Then wd(X) ≤ τ.

Proof. Let d(X) = τ, i.e. there exists a subset M = {aα : α ∈ A, |A| = τ} in X such that [M] = X, where [M]
denotes the closure of M in X. Denote by σα the system of all open subsets of X containing aα, i.e.

σα = {Uαs : aα ∈ Uαs and Uαs is open in X for every α}.

Consider the system
σ = ∪{σα : α ∈ A}.

Now we show that the system σ is a π-base for X. Indeed, let G be an arbitrary nonempty open subset
of X. Since the set M is dense in X, there exists a point aα ∈M ∩G. The set G is open, therefore, there exists
a neighborhood Uαs ∈ σα ⊂ σ such that Uαs ⊂ G. This means that the system σ is a π-base of the space X.

Further, we have to prove that σα is a centered system for each α ∈ A. Take arbitrary elements
Uαs1
,Uαs2
, . . . ,Uαsk

of the family σα. In that case, we have

aα ∈ ∩{Uαsi
: i = 1, 2, . . . , k} , ∅.

Thus, for each α ∈ A the system σα is centered. We have proved that wd(X) ≤ τ. Proposition 3.4 is
proved.

Definition 3.5. The Souslin number of a topological space X, denoted by c(X), is defined as follows:

c(X) = sup{|γ| : γ is disjoint family of open subsets of X}.

The following statement establishes the relation between the weak density and the Souslin number of a
topological space X.

Proposition 3.6. For any topological space X the following inequalities hold:

c(X) ≤ wd(X) ≤ d(X).

Proof. We show that c(X) ≤ wd(X). Let wd(X) = τ ≥ ω, i.e. there exists a π-base

B = ∪{Bα : α ∈ A, |A| = τ}

such that each Bα = ∪{Uαsk
: a ∈ A} is centered system of open sets. Now suppose that the Souslin number

of the space X is greater than τ, i.e. c(X) = τ′ > τ. In this case, there exists a system

γ = {Gβ : β ∈ B, |B| = τ′ > τ}

of nonempty open sets such that Gβ ∩ Gβ′ = ∅ for every pair of indexes β , β′.
For each open set Gβ ∈ γ there exists a set Uαs ∈ Bα such that Uαs ⊂ Gβ, since the system B is a π-base

for X. From the fact that the system Bα is centered, we obtain that distinct sets Gβ can contain sets Uαs from
only distinct systems Bα. This is a contradiction, since the system B is a π-base. Therefore, c(X) ≤ τ.

Moreover, by Proposition 3.4 we have wd(X) ≤ d(X), and this completely proves our statement. Propo-
sition 3.6 is proved.

Theorem 3.7. For every compact space X the following equality holds:

wd(X) = d(X).

Proof. By Proposition 3.4 we have wd(X) ≤ d(X). Thus, it is sufficient to show the inequality d(X) ≤ wd(X).
Suppose wd(X) = τ and

B =
⋃
{Bα : α ∈ A, |A| = τ}
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is a π-base for X. Consider the system
µα = {[U] : U ∈ Bα}.

Sinceµα is a centered system of closed subsets of the compact space X, this system has nonempty intersection.
Let xα ∈

⋂
{[U] : U ∈ Bα}. Put

X0 = {xα : α ∈ A, |A| = τ}.

We show that X0 is dense in X. Let V be a nonempty open subset of X. There exists a nonempty open
subset W such that [W] ⊂ V by completely regularity of the compact space X. Since B is a π-base for X,
there exists α ∈ A and Uαs ∈ Bα such that Uαs ⊂ W. In this case, we have [Uαs ] ⊂ [W] ⊂ V. Clearly, xα ∈ [Uαs ],
a fortiori, xα ∈ V. Theorem 3.7 is proved.

Problem 3.8. Find a non-compact space X such that wd(X) , d(X).

From Theorem 3.7 we can get the following result.

Corollary 3.9. A compact X is separable if and only if it is weakly separable.

Proposition 3.10. If Y is a dense subset of a space X, then wd(Y) = wd(X).

Proof. Let us first show that wd(Y) ≤ wd(X). Suppose wd(X) = τ ≥ ω and

B =
⋃
{Bα : α ∈ A, |A| = τ}

is a π-base for X. Put
B′α = {V ∩ Y : V ∈ Bα}

and
B′ =

⋃
α∈A

B′α.

We firstly show that B′ is a π-base for Y. Let G′ ⊂ Y be an arbitrary nonempty open subset of Y. There
exists an open subset G ⊂ X such that G ∩X = G′. Since the system B is a π-base for X, there exists Uα ∈ Bα
such that Uα ⊂ G. In this case, we have Uα ∩ Y ⊂ G ∩ Y = G′. Thus, the system B′ is a π-base.

Now let us show that the system B′ is centered for each α ∈ A. Get an arbitrary α ∈ A and sets
Uαs1
,Uαs2
, . . . ,Uαsk

from the system B′α. We have
⋂k

i=1 Uαsi
, ∅. Indeed, for each i = 1, 2, . . . , k there exists an

open set Vαsi
∈ Bα such that Vαsi

∩ Y = Uαsi
. Since the system Bα is centered, we have

⋂k
i=1 Vαsi

, ∅. Then

k⋂
i=1

Uαsi
=

k⋂
i=1

(
Y ∩ Vαsi

)
=

 k⋂
i=1

Vαsi

 ∩ Y , ∅.

Thus the system B′ is a π-base and each B′α is centered. This means that wd(Y) ≤ τ.
Now we show the inequality wd(X) ≤ wd(Y). Let wd(Y) = τ. There exists a π-base

Γ = ∪{Γα : α ∈ A}

for Y such that |A| = τ and Γα is centered for every α ∈ A. Denote by Bα the system of all open subsets
U ⊂ X for which there exists V ∈ Γα such that V ⊂ U. Clearly, each system Bα is centered. We shall prove
that the system

B =
⋃
α∈A

Bα

is a π-base for X. Indeed, let W be an arbitrary open subset of X. Since Y is dense in X, W′ = W ∩ Y is
a nonempty open subset of Y. Then there exists Vαs ∈ Γα such that Vαs ⊂ W′

⊂ W. On the other side, by
the construction of Bα, we have W ∈ Bα. This means that the system B is a π-base for X, which can be
represented as the union of τ-many centered systems. Therefore, we have wd(X) ≤ τ. Proposition 3.10 is
proved.
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Corollary 3.11. Let X be an arbitrary space and bX its arbitrary compact extension. Then the following equality
holds:

wd(X) = d(bX).

Proof. Let X be an arbitrary space. Since X is dense in its compact extension bX, by Proposition 3.10 we
have wd(X) = wd(bX). Now by Theorem 3.7 we obtain wd(bX) = d(bX), since bX is compact. Therefore,
wd(X) = d(bX). Corollary 3.11 is proved.

4. Cardinal invariants for Cn(X)

In this section we give results regarding cardinal properties of the space Cn(X) such as the tightness, the
local density and the local weak density.

Theorem 4.1. ([7]) For every infinite T1-space X the following equalities hold:
1) d(X) = d(Cn(X));
2) wd(X) = wd(Cn(X)).

Definition 4.2. The tightness of a topological space X, denoted by t(X), is the smallest infinite cardinal
number τ such that the following condition is satisfied: if x ∈ X, A ⊂ X and x ∈ [A], then there exists a set
B ⊂ A for which |B| ≤ τ and x ∈ [B].

Proposition 4.3. Let X be an infinite topological space such that X ∈ Cω(X), i.e. X has finitely many of components.
Then we have

d(X) ≤ t(Cω(X)).

Proof. Let t(Cω(X)) = τ. We have to show that d(X) ≤ τ. Suppose the opposite, i.e. d(X) > τ and M is a
dense subset of X. By the assumption, |M| > τ.

Now let γ be the family of all finite subsets of M. Clearly, |γ| = |M| and X ∈ [γ]exp X. Consider an arbitrary
neighborhood O⟨V1, ...,Vn⟩ of X in exp X. Choose a point xi from each intersection Vi ∩M, i = 1, . . . ,n. In
that case, the set F = {x1, ..., xn} belongs to Cω(X), besides, F ∈ O⟨V1, ...,Vn⟩ at the same time.

Since t(Cω(X)) ≤ τ there exists a subfamily µ ⊂ γ with |µ| ≤ τ such that X ∈ [µ]exp X. But, in that case,
the set Y = ∪µ is dense in X. Indeed, get an arbitrary open subset V ⊂ X and consider the neighborhood
O⟨V,X⟩ of X in exp X. Since X ∈ [µ]exp X, there exists a closed subset E ∈ µ ∩ O⟨V,X⟩. Therefore, we have
E∩V , ∅. On the other side, E ⊂ ∪µ = Y which implies that Y ∩V , ∅, i.e. Y is dense in X and |Y| ≤ τ. The
last contradicts the assumption d(X) > τ. Proposition 4.3 is proved.

Proposition 3.4, Theorem 4.1 and Proposition 4.3 directly imply the following results.

Corollary 4.4. For an infinite space X the following inequalities hold:

wd(Cn(X)) ≤ d(Cn(X)) ≤ t(Cn(X)).

Corollary 4.5. Let X be a topological space such that X ∈ Cn(X). If t(Cn(X)) ≤ ω, then both X and Cn(X) are
separable.

Definition 4.6. The local density at a point x ∈ X, denoted by ld(x), is τ if τ is the smallest cardinal number
such that x has a neighborhood of density τ in X.

The local density of a topological space X, denoted by ld(X), is defined as the supremum of all numbers
ld(x) for x ∈ X. A topological space X is locally separable, if ld(X) ≤ ω.

Remark 4.7. Note that if ld(X) ≤ τ and K ⊂ X is a compact subset, then there exists a neighborhood OK of
K such that d(OK) ≤ τ.
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Indeed, the set
λ = {Ox : x ∈ K and d(Ox) ≤ τ}

is an open cover of K, consisting of sets of density not greater than τ. Since K is compact, there exist
Ox1,Ox2, ...,Oxm in λ such that K ⊂ ∪m

i=1Oix. Let OK = ∪m
i=1Oix. Then clearly, d(OK) ≤ τ.

Theorem 4.8. For every infinite compact space X we have

ld(X) = ld(Cn(X)) = ld(Cω(X)),

where n is an arbitrary natural number.

Proof. First we show the inequality ld(Cω(X)) ≤ ld(X). Let ld(X) = τ. We get an arbitrary element F ∈ Cω(X)
and show that ld(F) ≤ τ in Cω(X). Suppose

F = F1 ∪ F2 ∪ ... ∪ Fn,

where Fi is a component of F for i = 1, 2, ...,n. Since each component Fi is compact, by Remark 4.7 for every
i = 1, 2, ...,n there exists a neighborhood OFi of Fi such that d(OFi) ≤ τ.

Consider a dense subset Mi of OFi with |Mi| ≤ τ for each i = 1, 2, ...,n and put M =
n⋃

i=1
Mi. Then M is

dense in
n⋃

i=1
OFi and |M| ≤ τ.

Put

µ = {F ∈ expnX : F ⊂
n⋃

i=1

Mi}.

It is clear that
∣∣∣µ∣∣∣ ≤ τ. We shall show that µ is dense in O ⟨OF1,OF2, ...,OFn⟩. Let O ⟨V1,V2, ...,Vk⟩ (k ≤ n)

be an arbitrary nonempty open set of O ⟨OF1,OF2, ...,OFn⟩. By Theorem 1 [19] we have
k⋃

i=1
Vi ⊂

n⋃
j=1

OF j, and

consequently, Vi ⊂
n⋃

j=1
OF j for every i = 1, 2, ..., k. Each Vi intersects M, since the set M is dense in

n⋃
i=1

OFi.

Choosing a point yi ∈ Vi ∩M for each i = 1, 2, ..., k, put E = {y1, y2, ..., yk}. Then E = {y1, y2, ..., yk} ∈ µ and,
on the other hand, E ∈ O ⟨V1, V2, ...,Vk⟩. Thus, the set µ is dense in O ⟨OF1,OF2, ...,OFn⟩ and |M| ≤ τ. This
proves the inequality ld(F) ≤ τ in Cω(X).

Now we shall show ld (Cω(X)) ≥ ld (X). Let ld (Cω(X)) = τ. We have to prove that ld (X) ≤ τ. Consider
an arbitrary point x ∈ X. Clearly, {x} ∈ C1(X) ⊂ Cω(X). Then there exists a neighborhood O ⟨Ux⟩ in Cn(X)
such that d (O ⟨Ux⟩) ,≤ τ,where Ux is an open neighborhood of the point x in X. Assume that S = {Fα : α ∈ A}
is a dense set in O ⟨Ux⟩ such that |S| ≤ τ. Choose an arbitrary point xα ∈ Fα from each set Fα. Put

B = {xα : xα ∈ Fα,Fα ∈ S } .

Obviously, |B| ≤ τ and B is dense in Ux. Indeed, if G ⊂ Ux is any nonempty open subset of Ux, then O ⟨G⟩
is an open subset of O ⟨Ux⟩. Since S is dense in O ⟨Ux⟩, there exists an element Fα ∈ S such that Fα ∈ O ⟨G⟩.
It is easy to see that Fα ⊂ G. According to the choice of the points of B, we have xα ∈ Fα ⊂ G. Thus, B
is dense in Ux. Since the point x ∈ X has been chosen arbitrarily, we see that ld (X) ≤ τ. This proves the
inequality ld (Cω(X)) ≥ ld (X).

From the above proven inequalities we obtain ld (X) = ld (Cω(X)). With a completely similar way, one
may prove the equality ld(X) = ld(Cn(X)). Theorem 4.8 is proved.

From Theorem 4.8 we directly obtain the following results.

Corollary 4.9. For every infinite compact space X the following conditions are equivalent:
1) X is locally separable;
2) Cn(X) is locally separable;
3) Cω(X) is locally separable.
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Corollary 4.10. The functor Cn : Comp→ Comp preserves the local density of infinite compact spaces.

Lemma 4.11. Let X be an infinite topological space and U1,U2, ...,Un be its open subsets such that wd(Ui) ≤ τ,

i = 1, 2, ...,n, where τ is some infinite cardinal number. Then wd
(

n⋃
i=1

Ui

)
≤ τ.

Proof. Assume that the system γi =
⋃
α∈A
γ(i)
α , where |A| ≤ τ, is a π-base coinciding with τ centered systems γi

α

in Ui for i = 1, 2, . . . , n. Then the system

γ =
n⋃

i=1

γi

is a π-base. Indeed, suppose that V is any nonempty open subset of the space
n⋃

i=1
Ui. Then there exists

i ∈ {1, 2, ..,n} such that V ∩ Ui , ∅ and this intersection is open in the subspace Ui. Since γi is a π-base in
Ui, there exists an element G from γi ⊂ γ such that G ⊂ V ∩ Ui and thus, G ⊂ V. Therefore γ is a π-base

in
n⋃

i=1
Ui. Moreover, the system γ can be represented as the union of τ centered systems of open sets. This

implies that wd
(

n⋃
i=1

Ui

)
≤ τ. Lemma 4.11 is proved.

Now, for an element O = O⟨U1,U2, ...,Un⟩ of the base of exp X put S(O) = {U1,U2, ...,Un}, where
U1,U2, ...,Un are open sets in X.

Lemma 4.12. Let
∆ =

{
Oβ = O

〈
Uβ1 ,U

β
2 , ...,U

β
n(i)

〉
: β ∈ B

}
be a centered system of open subsets of Cω(X), where Uβi are open sets in X for β ∈ B and i = 1, . . . ,n(i). Then the
family

µ =
{
Wβ =

⋃
S(Oβ) : Oβ ∈ ∆, β ∈ B

}
is a centered system of open sets in X.

Proof. Assume the opposite, i.e. there exists a finite sequence Wβ1 ,Wβ2 , ...,Wβk of elements from µ with
empty intersection. Since the system ∆ has the finite intersection property in Cω(X), we have

k⋂
j=1

O
〈
Uβ j

1 ,U
β j

2 , ...,U
β j

n( j)

〉
, ∅.

Then there exists F ∈ Cn(X) such that F ⊂
n( j)⋃
i=1

Uβ j

i for each j = 1, 2, ..., k. This implies that

F ⊂
k⋂

j=1

n( j)⋃
i=1

Uβ j

i

 = k⋂
j=1

Wβ j .

This contradiction proves that the system µ has the finite intersection property. Lemma 4.12 is proved.

Definition 4.13. The local weak density at a point x ∈ X, denoted by lwd(x), is τ if τ is the smallest cardinal
number such that x has a neighborhood of weak density τ in X.

The local weak density of a topological space X, denoted by lwd(X), is defined as the supremum of all
numbers lwd(x) for x ∈ X. A topological space X is locally weakly separable, if lwd(X) ≤ ω.

With the similar way as in Remark 4.7 one can prove the following result.
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Remark 4.14. If lwd(X) ≤ τ and K ⊂ X is a compact subset, then there exists a neighborhood OK of K such
that wd(OK) ≤ τ.

Theorem 4.15. For every infinite compact space X we have

lwd(X) = lwd(Cn(X)) = lwd(Cω(X)),

where n is an arbitrary natural number.

Proof. We prove the equality lwd(X) = lwd(Cω(X)). First suppose that lwd (X) = τ ≥ ℵ0. We have to show
that lwd (Cω(X)) ≤ τ. Take an arbitrary element F ∈ Cω(X). Assume that

F = F1 ∪ F2 ∪ . . . ∪ Fn,

where F1,F2, . . . ,Fn are components of the set F in X. Since lwd (X) = τ ≥ ℵ0, by Remark 4.14 there
exist neighborhoods OF1,OF2, . . . ,OFn of the sets F1,F2, . . . ,Fn, respectively, such that wd(OFi) ≤ τ for each

i = 1, 2, ...,n. Then by Lemma 4.12 we have wd(
n⋃

i=1
OFi) ≤ τ. In that case, we have the inequality

wd (O ⟨OF1,OF2, . . . ,OFn⟩) ≤ τ.

Indeed, since wd(
n⋃

i=1
OFi) ≤ τ, there exists a π-base µ =

⋃
α∈A
µα for

n⋃
i=1

OFi, coinciding with τ centered

systems µα, i.e. |A| ≤ τ and for each α ∈ A the system µα is centered. Put

Σ = {B ⊂ A : B is finite},

M = {γ ⊂ µ : γ is finite}

and
O(M) = {O ⟨W1,W2, . . . ,Wk⟩ : {W1,W2, . . . ,Wk} ∈M}.

Now we prove that O(M) is a π-base in O ⟨OF1,OF2, . . . ,OFn⟩ and can be represented as the union
of τ centered systems. Take an arbitrary open subset O ⟨U1,U2, ...,Uk⟩ of O ⟨OF1,OF2, . . . ,OFn⟩. Clearly,

U j ⊂
n⋃

i=1
OFi for j = 1, 2, ..., k. Since µ is a π-base in

n⋃
i=1

OFi, there exists an element G j from µ such that G j ⊂ U j

for each j = 1, 2, ..., k. Then it is clear that

O ⟨G1,G2, ...,Gk⟩ ⊂ O ⟨U1,U2, ...,Uk⟩

and
O ⟨G1,G2, ...,Gk⟩ ∈ O(M).

Therefore O(M) is a π-base in O ⟨OF1,OF2, . . . ,OFn⟩.
Now let us show that O(M) can be represented as the union of τ centered systems of open sets in

O ⟨OF1,OF2, . . . ,OFn⟩. For each δ ∈ Σ put

Oδ(M) =
{
O

〈
Wα1 ,Wα2 , ...,Wαm

〉
∈ O(M) : {α1, α2, ..., αm} = δ

}
.

Then this system is centered for every δ ∈ Σ and, clearly

O(M) =
⋃
δ∈Σ

Oδ(M).

Indeed, let us take an arbitrary finite sequence of elements of Oδ(M):

O
〈
W(1)
α1
,W(1)
α2
, . . . ,W(1)

αm

〉
,O

〈
W(2)
α1
,W(2)
α2
, . . . ,W(2)

αm

〉
, . . . ,O

〈
W(r)
α1
,W(r)
α2
, . . . ,W(r)

αm

〉
,
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where r is some natural number. Since every system µα is centered, we have
r⋂

j=1
W( j)
αi
, ∅ for i = 1, 2, ...,m.

Choose a point yi from the intersection for each i = 1, 2, ...,m and form the set E = {y1, y2, ..., ym}. For each

j = 1, 2, ..., r we have E ⊂
m⋃

i=1
W( j)
αi

and E ∩W( j)
αi
, ∅, i = 1, 2, ...,m. This implies that

E ∈
r⋂

j=1

O
〈
W( j)
α1
,W( j)
α2
, ...,W( j)

αm

〉
.

We have shown that any finite sequence of elements of Oδ(M) has nonempty intersection. Therefore, Oδ(M)
is centered for each δ ∈ Σ, and consequently, we obtain

wd(O ⟨OF1,OF2, . . . ,OFn⟩) ≤ τ.

The inequality lwd (Cω(X)) ≤ τ is proved.
Now assume that lwd (Cω(X)) = τ ≥ ℵ0. We shall show that lwd (X) ≤ τ. Take an arbitrary point x ∈ X.

Then {x} ∈ C1(X) ⊂ Cω(X). From the relation lwd (Cω(X)) = τ it follows that there exists a neighborhood
O ⟨Ux⟩ of the point {x} such that wd (O⟨Ux⟩) ≤ τ, where Ux is an open set in X. Let us now prove that
wd (Ux) ≤ τ.

From wd (O⟨Ux⟩) ≤ τ it follows that O⟨Ux⟩ has a π-base O =
⋃
α∈A

Oα, where the system

Oα = {O
〈
Uβ1 ,U

β
2 , ...,U

β
n

〉
: β ∈ Bα}

is centered for each α ∈ A and |A| ≤ τ. For each α ∈ A consider the system

µα = {Wβ =

n⋃
i=1

Uβi : β ∈ Bα}

of open sets in Ux. Then by Lemma 4.12 the system µα is centered for each α ∈ A.
Now let us show that the system µ =

⋃
α∈A
µα is a π-base in Ux. Let G ⊂ Ux be any nonempty open subset

of Ux. Then O⟨G⟩ is a nonempty open set in Cn(X) and O⟨G⟩ ⊂ O⟨Ux⟩. Since the system O is a π-base in
Cω(X), there exists O

〈
Uβ1 ,U

β
2 , ...,U

β
n

〉
∈ O such that O

〈
Uβ1 ,U

β
2 , ...,U

β
n

〉
⊂ O ⟨G⟩. This implies that

Wβ =

n⋃
i=1

Uβi ⊂ G.

The set Wβ is contained to µ. Therefore, µ is a π-base in Ux. We constructed the π-base coinciding with τ
centered systems in Ux. Therefore, wd (Ux) ≤ τ and since the point x ∈ X has been chosen arbitrarily, the
inequality lwd (X) ≤ τ is proved. Therefore, lwd (X) = lwd (Cω(X)).

With a similar way we can prove the equality lwd (X) = lwd (Cn(X)). Theorem 4.15 is proved.

From Theorem 4.15 we directly obtain the following results.

Corollary 4.16. For every infinite compact space X the following conditions are equivalent:
1) X is locally weakly separable;
2) Cn(X) is locally weakly separable;
3) Cω(X) is locally weakly separable.

Corollary 4.17. The functor Cn : Comp→ Comp preserves the local weak density of infinite compact spaces.
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5. Future investigation

We complete our study, presenting open problems which are related to the topic of this paper. These
problems combine cardinal invariants with the so-called universality problem. We recall that the univer-
sality problem for topological spaces is a question, which determines whether there are universal elements
in a given class of spaces. Actually, this problem can be posed also for any topological property where the
class of spaces considered is the totality of all spaces having the property.

Definition 5.1. A topological space T is said to be universal in a class P of spaces if the following conditions
are satisfied:

(1) T ∈ P and
(2) for every X ∈ P there exists an embedding of X into T.

In order to succeed answers to the universality problem in various classes of topological spaces, the
notion of saturated classes of spaces was introduced. The precise definition of the saturated class of spaces
is given in [17]. Among many important results that have been proved for the universality problem, we
state that in any saturated class of spaces, there exist universal elements (see [17]).

Problem 5.2. Let τ be an infinite cardinal and ci be one of the cardinal invariants: density, weak density, Souslin
number, local density, local weak density and tightness. Is the class of all completely regular topological spaces X with
ci(X) ⩽ τ saturated?

Problem 5.3. Let τ be an infinite cardinal and ci be one of cardinal invariants: density, weak density, Souslin
number, local density, local weak density and tightness. Does there exist a universal space in the class of all completely
regular topological spaces X with ci(X) ⩽ τ?
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