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Abstract. Let F be a totally ordered field and ω ∈ F (a field extension of F) be a solution to the equation
x2 = ax + b ∈ F[x], where a and b are fixed with b , 0. With the help of this idea, we convert the F-vector
space F2 into an associative F-algebra. As far as F2 can even be converted into a field. In the next step,
based on a quadratic form, we define an inner product on F2 with values in F and call it the F-inner
product. The defined inner product is mostly studied for its various properties. In particular, when F = R,
we show that R2 with the defined product satisfies well-known inequalities such as the Cauchy-Schwarz
and the triangle inequality. Under certain conditions, the reverse of recent inequalities is established.
Some interesting properties of quadratic forms on F2 such as the invariant property are presented. In
the sequel, we let SL(2,R) denote the subgroup of M(2,R) that consists of matrices with determinant 1
and set G = SL(2,R) ∩MR, where MR is the matrix representation of R2. We then verify the coset space
SL(2,R)
G

with the quotient topology is homeomorphic to H (the upper-half complex plane) with the usual
topology. Finally, we determine some families of functions in C(H,C), the ring consisting of complex-valued
continuous functions on H; related to elements ofG for which the functional equation f ◦1 = 1◦ f is satisfied.

1. Introduction and preliminary results

A partially ordered set (in brief, poset) is a set together with a partial order relation ≤ satisfying reflexive,
antisymmetric, and transitive properties. A totally ordered set is a poset in which every pair of elements x, y
are comparable, i.e., x ≤ y or y ≤ x. Hence, a totally ordered set is often referred to as a chain. The notions
N, Q, R, and C denote the set of positive integers, rational numbers, real numbers, and complex numbers,
respectively. A totally ordered ring is a partially ordered ring (see [4, 0.19]) that is ordered by its ordering
relation. So each element is comparable with 0. A totally ordered field F is a lattice ordered ring that means if
x, y ∈ F, then x ∨ y := sup{x, y} ∈ F (note, the supremum is x or y). Also, x ∧ y := inf{x, y} = −(−x ∨ −y) ∈ F.
In particular, |x| := x ∨ −x ∈ F. Whenever F is referred to as a topological space, its topology is the interval
topology, i.e., the family of all rays {x : x > c} and {x : x < d} (c, d ∈ F) is a subbase for the open sets in
F. Hence, the family of all the open intervals (x, y) := {z ∈ F : x < z < y} is a base for the topology. The
topological concepts that we need can be found in [2] and [23]. Throughout the paper, F is a totally ordered
field with the interval topology, and note that F contains a copy of Q (Proposition 1.1). For example, R and
every countable subfield of R are totally ordered fields. If for 0 < y ∈ F there is x ∈ F such that y = xn,
then x is called the nth root of y and denoted by n

√
y or y

1
n (i.e., x = y

1
n ). Recall that Q does not satisfy the
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property of 2th root for all y > 0. But in R, all nonnegative elements have the same number of square roots.
If 0 < x < y, then xn < yn, where n ∈ N. Hence, a positive element has at most one positive nth root (see
Proposition 1.1). A mapping Q of an R-module M to R is called a quadratic form, if Q(rx) = r2Q(x) for each
r ∈ R and x ∈ M; and the mapping B : M ×M→ R defined by B(x, y) = Q(x + y) −Q(x) −Q(y) is a bilinear
symmetric form (see [8, 1.2]). For a deeper discussion of quadratic forms, we refer the reader to [5], [8], [9],
[11], [12], [14] and [15].

The paper is organized as follows: In Section 2, with the help of a solution ω ∈ F of the equation
x2 = ax + b ∈ F[x], we convert F2 into an associative F-algebra. As far as F2 can even be converted into a
field. In the next step, based on a quadratic form, we define an inner product on F2 with values in F and
call it the F-inner product. The defined product is mostly studied for its various properties. In particular,
we focus on the case of F = R and show that R2 with this product satisfies well-known inequalities such
as the Cauchy-Schwarz and the triangle inequality. Under certain conditions, the reverse of recent inequalities
is established. In the sequel, we let SL(2,R) denote the subgroup of M(2,R) that consists of matrices with
determinant 1. The best general references here are [6] and [10]. Set G = SL(2,R) ∩MR. We then show that
the coset space SL(2,R)

G with the quotient topology is homeomorphic to H (the upper-half complex plane)
with the usual topology. In Section 3, we determine some families of functions in C(H,C), the ring consisting
of complex-valued continuous functions on H (actually, from H to H); related to elements of G for which
the functional equation f ◦ 1 = 1 ◦ f is satisfied.

Proposition 1.1. ([4, 0.20]) Let D be a totally ordered integral domain. If 0 < x < y, then xn < yn, where n ∈ N.
Hence, a positive element has at most one positive nth root. D contains a natural copy ofN. If D is a totally ordered
field, then D contains a copy of Q.

Proposition 1.2. Let R be a totally ordered commutative ring and 0 < x, y ∈ R. Then x < y if and only if xn < yn

for each n ∈N.

Proof. Since R is commutative, we conclude that xn
− yn = (x − y)

(∑i=n
i=1 xn−iyi−1

)
. Moreover, the last sum is

positive. Therefore, x − y < 0 gives xn
− yn < 0 and vice versa. Actually, x − y and xn

− yn have the same
sign. It means both are positive or both are negative, and we are done

2. The structure of F2 as an associative F-algebra and some of its properties

Let F be a totally ordered field and a, b ∈ F be fixed with b , 0. Suppose ω satisfies the equation
x2 = ax + b, i.e., ω2 = aω + b. If x2 = ax + b has a zero in F, then ω ∈ F. Otherwise, we may assume that ω
belongs to a field extension (not necessarily totally ordered) F of F. For example, x2 = −1 with coefficients
in R (a = 0, b = −1) has ω = i ∈ C as a zero. Also, ω =

√
2 ∈ R satisfies x2 = 2 with coefficients in Q

(a = 0, b = 2). Now, we define ∆ as follows and refer to it often because it plays a crucial role in most results.

∆ = a2 + 4b.

Let F2 = {(x, y) : x, y ∈ F}. Then F2 with the pointwise addition and the scalar multiplication is a vector
space over F. Also, F2 can be identified by the set {x + yω : x, y ∈ F} via the map (x, y) 7→ x + yω. Our goal
in this part is to convert the vector space F2 into an associative algebra. For X = (x, y),Y = (x′, y′) ∈ F2, we
put X = x + yω and Y = x′ + y′ω. Therefore, X + Y = x + x′ + (y + y′)ω and λX = λx + λyω (λ ∈ F). Also,
X × Y represents the product of X and Y and is defined by the following relation,

X × Y = (x + yω)(x′ + y′ω) = xx′ + (xy′ + yx′)ω + yy′ω2

= xx′ + byy′ + (xy′ + yx′ + ayy′)ω
= (xx′ + byy′, xy′ + yx′ + ayy′). (∗)

Note that X×Y = Y×X. In particular, if F = R, a = 0 and b = −1, then the above multiplication agrees with
the multiplication in C. From now on, the matrix

[
x y

]
is used instead of the ordered pair (x, y).
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Proposition 2.1. Let M(2,F) be the ring of all 2-square matrices over F and SL(2,F) =
{
A ∈M(2,F) : det(A) = 1

}
.

Then H :=
{ [

1 c
0 1

]
: c ∈ F

}
and K :=

{ [
1 0
d 1

]
: d ∈ F

}
are abelian subgroups of SL(2,F). Furthermore, H � F � K

as groups.

Theorem 2.2. LetMF =

{ [
x y

by x + ay

]
: x, y ∈ F

}
. ThenMF is an F-subalgebra of M(2,F). Moreover, F2 �MF

as algebras.

Proof. Let A =
[

x y
by x + ay

]
,B =

[
x′ y′

by′ x′ + ay′

]
∈MF. Then −A,A + B ∈MF. Also,

AB =

 xx′ + byy′ xy′ + yx′ + ayy′

b(yx′ + xy′ + ayy′) xx′ + byy′ + a(xy′ + yx′ + ayy′)

 ∈MF.

Moreover, 1MF = 1M(2,F) = I, the identity matrix. Therefore,MF is a subring of M(2,F). Since rA ∈MF, for
every r ∈ F, we infer thatMF is an F-subalgebra of M(2,F). Now, let us define

φ : F2
→MF by φ(X) =

[
x y

by x + ay

]
,where X =

[
x y

]
.

Then φ(X + Y) = φ(X) + φ(Y) and φ(rX) = rφ(X), where Y =
[
x′ y′

]
and r ∈ F. Moreover,

φ(X × Y) =

 xx′ + byy′ xy′ + yx′ + ayy′

b(yx′ + xy′ + ayy′) xx′ + byy′ + a(xy′ + yx′ + ayy′)

 (see (∗)
)
. We also have

φ(X)φ(Y) =
[

x y
by x + ay

] [
x′ y′

by′ x′ + ay′

]

=

 xx′ + byy′ xy′ + yx′ + ayy′

b(yx′ + xy′ + ayy′) xx′ + byy′ + a(xy′ + yx′ + ayy′)

 .
Soφ(X×Y) = φ(X)φ(Y). Furthermore,φ is one-to-one and onto. This yieldsφ is an algebra isomorphism.

Remark 2.3. For X =
[
x y

]
∈ F2, we may let det(X) = det(φ(X)) = x2 + axy − by2. It easily follows that

det(X) is a quadratic form (see [8, 1.2]). In the sequel, we will need det(X) as in the following form.

det(X) = x2 + axy − by2 = (x +
ay
2

)2
−

1
4

(a2 + 4b)y2 (1)

= (x +
ay
2

)2
−

1
4
∆y2. (2)

The next result is now immediate.

Corollary 2.4. For every A,B ∈MF, we have AB = BA. So every subring of MF is commutative and every subgroup
of MF with multiplication is abelian. In particular,G := {M ∈MF : det(M) , 0}, andG := {M ∈MF : det(M) = 1}
are subgroups of MF. Moreover, G is a normal subgroup of G, and further, G = SL(2,F) ∩MF.

Proposition 2.5. Let G and G be as defined in Corollary 2.4, and let F = R. Then the following hold:
(i) If ∆ = a2 + 4b < 0, then GG � R

+ � R\{0}
{1,−1} .

(ii) If ∆ > 0, then GG � R \ {0}.
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Proof. First, we note that R \ {0} and R+ := {r ∈ R : r > 0} are multiplicative abelian groups with the same
identity element 1.

(i) Define ψ1 : G→ R+ with ψ1(M) = det(M) (note, ∆ < 0 gives det(M) > 0). So ψ1 is a homomorphism
and ker(ψ1) = G. Now, if r > 0 and X =

[√
r 0
]
, then ψ1(X) = r, i.e., ψ1 is onto. For the second assertion,

consider ψ : R \ {0} → R+ with ψ(r) = |r|. Hence, ψ is onto and ker(ψ) = {−1, 1}.
(ii) Define ψ2 : G→ R \ {0} like ψ1, i.e., ψ2(M) = det(M). So ψ2 is a homomorphism and ker(ψ2) = G. If

r > 0, then we choose X as the same matrix in part (i), and if r < 0, then we take x + 1
2 ay = 0 and −1

4 ∆y2 = r,
and let X =

[
x y

]
for which x and y satisfy the latter equation. Then in both cases ψ2(X) = r, i.e., ψ2 is onto,

which completes the proof.

Theorem 2.6. Let ∆ < 0. ThenMF (and hence F2) is a field.

Proof. According to Corollary 2.4,MF (and hence F2) is a commutative ring. Let 0 ,M =
[

x y
by x + ay

]
∈MF.

We claim that det(M) , 0 (and thus by (2), det(M) > 0). Otherwise, det(M) = 0 gives

0 ≤ (x +
ay
2

)2 =
1
4
∆y2
≤ 0.

Therefore, y = 0 and hence x = 0, which implies that M = 0. So every non-zero element ofMF is invertible,
meaning thatMF, as well as F2, is a field.

Definition 2.7. Let V be an F-vector space and a map φ : V × V → F provides all the requirements of an
inner product. Then, we call the pair (V, φ) or simply V an F-inner product space over F and φ the F-inner
product.

Example 2.8. Let P : F2
× F2

→ F be defined by

P(X,Y) =
1
2

[
2x1x2 + a(x1y2 + y1x2) − 2by1y2

]
, where X =

[
x1 y1

]
, and Y =

[
x2 y2

]
. (3)

If ∆ < 0, then it is easy to verify that P is an F-inner product, and thus F2 is an F-inner product space.

Theorem 2.9. Let P be as defined in Example 2.8. Then the following hold:
(i) P(X + Y,X + Y) + P(X − Y,X − Y) = 2P(X,X) + 2P(Y,Y).
(ii) P(X + Y,X + Y) − P(X − Y,X − Y) = 4P(X,Y).
(iii) If ∆ = a2 + 4b ≤ 0, then P(X,X) = det(X) ≥ 0.
(iv) If ∆ ≤ 0, then P2(X,Y) ≤ P(X,X)P(Y,Y).
(v) If ∆ ≥ 0, then P2(X,Y) ≥ P(X,X)P(Y,Y).
(vi) P2(X,Y) = P(X,X) P(Y,Y) if and only if ∆ = 0 or X = λY for some λ ∈ F.

Proof. (i)-(ii). Since the mapping P is bilinear, it follows that

P(X + Y,X + Y) = P(X,X) + P(Y,Y) + 2P(X,Y), and (4)
P(X − Y,X − Y) = P(X,X) + P(Y,Y) − 2P(X,Y). (5)

The results are now obtained by adding and subtracting recent expressions respectively.
(iii) It follows from (2).
(iv) First, we let

A = P(X,X)P(Y,Y) − P2(X,Y), (6)



A. Veisi, A. Delbaznasab / Filomat 37:14 (2023), 4671–4682 4675

and then calculate as follows:

A =
(
x2

1 + ax1y1 − by2
1

) (
x2

2 + ax2y2 − by2
2

)
−

1
4

[
2x1x2 + a(x1y2 + y1x2) − 2by1y2

]2
= x2

1x2
2 + ax2

1x2y2 − bx2
1y2

2 + ax1y1x2
2

+ a2x1y1x2y2 − abx1y1y2
2 − by2

1x2
2 − aby2

1x2y2

+ b2y2
1y2

2 −
1
4

[
4x2

1x2
2 + a2x2

1y2
2 + a2y2

1x2
2

+ 4b2y2
1y2

2 + 4ax2
1x2y2 + 4ax1y1x2

2 − 4bx1y1x2y2

+ 2a2x1y1x2y2 − 4abx1y1y2
2 − 4aby2

1x2y2

]
= −(x1y2 − y1x2)2∆.

We summarize the above calculations as follows:

A = −(x1y2 − y1x2)2∆. (7)

Now, if ∆ ≤ 0, thenA ≥ 0 and we reach the claim.
(v) Reusing (7), we obtainA ≤ 0 when ∆ ≥ 0.
(vi) (⇒) If ∆ , 0, then x1y2 = y1x2. We can assume that Y , 0. If y2 , 0, then we take λ = y1y−1

2 , and if
x2 , 0, then we take λ = x1x−1

2 . So X = λY.
(⇐) It is obvious.

Remark 2.10. If F is R or C, then every inner product induces a norm, called its canonical norm, that is
defined in the natural way, by ∥x∥ =

√
⟨x x⟩. With this norm, every inner product space becomes a normed

vector space. So, every general property of normed vector spaces applies to inner product spaces. But in
general, it is not true that every F-inner product induces a norm because the square root

√
⟨x x⟩ does not

necessarily belong to F (for example F = Q).

For X,Y ∈ R2, we put P(X,Y) = X · Y and P(X,X) = X · X = ∥X∥2.

Theorem 2.11. Let X =
[
x1 y1

]
,Y =

[
x2 y2

]
∈ R2. Then the following hold:

(i) ∥X + Y∥2 + ∥X − Y∥2 = 2(X · X) + 2(Y · Y).
(ii) ∥X + Y∥2 − ∥X − Y∥2 = 4(X · Y).
(iii) If ∆ ≤ 0, then ∥X∥2 = X · X = det(X) ≥ 0.
(iv) If ∆ ≤ 0, then |X · Y| ≤ ∥X∥ ∥Y∥. (the Cauchy-Schwarz inequality)
(v) If ∆ ≥ 0, then |X · Y| ≥ ∥X∥ ∥Y∥. (the reverse of Cauchy-Schwarz inequality)
(vi) If ∆ ≤ 0, then ∥X + Y∥ ≤ ∥X∥ + ∥Y∥. (the triangle inequality)
(vii) If ∆ ≥ 0 and X · Y ≥ 0, then ∥X + Y∥ ≥ ∥X∥ + ∥Y∥. (the reverse of triangle inequality)
(viii) ∥X∥ ∥Y∥ = |X · Y| if and only if ∆ = 0 or X = λY, for some λ ∈ R.

Proof. (i)-(v) and (viii) are obtained by (i)-(v) and (vi) in Theorem 2.9, respectively.
(vi) From (4) we get

∥X + Y∥2 = ∥X∥2 + ∥Y∥2 + 2(X · Y), and ∥X − Y∥2 = ∥X∥2 + ∥Y∥2 − 2(X · Y). (8)

Also, Theorem 2.9(iv) implies that

(X · Y)2
≤ ∥X∥2∥Y∥2, and therefore |X · Y| =

√
(X · Y)2 ≤

√
∥X∥2∥Y∥2 = ∥X∥ ∥Y∥.
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Hence, we obtain

∥X + Y∥2 = ∥X∥2 + ∥Y∥2 + 2(X · Y) ≤ ∥X∥2 + ∥Y∥2 + 2|X · Y|

≤ ∥X∥2 + ∥Y∥2 + 2∥X∥ ∥Y∥

= (∥X∥ + ∥Y∥)2.

So ∥X + Y∥ ≤ ∥X∥ + ∥Y∥, meaning that triangle inequality is established.
(vii) Using the assumptions, ∆ ≥ 0, X · Y ≥ 0, and Theorem 2.9(v), we get X · Y = |X · Y| ≥ ∥X∥ ∥Y∥. The

result is now obtained by replacing ≤with ≥ in the above calculation, and we are done.

Corollary 2.12. If ∆ < 0, then the mapping ∥ · ∥ : R2
→ R which X 7→ ∥X∥ =

√
det(X) turns R2 into a normed

space.

Remark 2.13. Similar to real-valued functions on R2, the gradient vector (gradient) of f : F2
→ F at a point

X0 is the vector ▽ f (X0) =
(
∂ f
∂x (X0), ∂ f

∂y (X0)
)
, for brevity, ▽ f = ( ∂ f

∂x ,
∂ f
∂y ), obtained by evaluating the partial

derivatives of f at X0. If the second derivations of f exist at X0, then we let J := d2 f =


∂2 f
∂x2

∂2 f
∂x∂y

∂2 f
∂x∂y

∂2 f
∂y2

 and call

it the Jacobean matrix of f .

Proposition 2.14. If X,Y ∈ F2 and Yt denote the transpose of Y, then 2P(X,Y) = XJYt (see (3)). In particular,
2∥X∥2 = XJXt.

Proof. Let f : F2
→ F be defined by f (X) = det(X) = x2 + axy − by2, where X =

[
x y

]
(Remark 2.3). Then

J =
[
2 a
a −2b

]
. Let X =

[
x1 y1

]
,Y =

[
x2 y2

]
∈ F2. Then, with a simple calculation, we get

XJYt = 2x1x2 + a(x1y2 + y1x2) − 2by1y2 = 2P(X,Y),

which gives the result. Also, XJXt = 2P(X,X) = 2∥X∥2.

Proposition 2.15. Let M ∈M(2,F) and ∆ = a2 + 4b , 0.

(i) If M ∈MF (Theorem 2.2), then MJMt = det(M)J.

(ii) M ∈ G =
{
M ∈MF : det(M) = 1

}
(Corollary 2.4) if and only if det(M) > 0 and MJMt = J.

Proof. (i) It is straightforward, so we eliminate the proof.
(ii) (⇒) It follows from (i).

(⇐) Let M =
[
x y
z t

]
∈M(2,F) such that MJMt = J. Then the assumption, det(J) = −∆ , 0, gives det2(M) = 1

and thus det(M) = 1. Moreover, from equation MJ = J(Mt)−1 we obtain z = by and t = x+ ay, i.e., M ∈ G.

Definition 2.16. Let X =
[
x1 y1

]
,Y =

[
x2 y2

]
∈ F2. Then we define

P1(X,Y) =
1
2

(
2x1x2 + a(x1y2 + x2y1) − 2by1y2

)
,

P2(X,Y) =
1
2

(
2x1x2 +

a
b

(x1y2 + x2y1) −
2
b

y1y2

)
,

Q1(X) = P1(X,X) = x2
1 + ax1y1 − by2

1, and

Q2(X) = P2(X,X) = x2
1 +

a
b

x1y1 −
y2

1

b
·



A. Veisi, A. Delbaznasab / Filomat 37:14 (2023), 4671–4682 4677

Notice that the mappings P1,P2 : F4
→ F, and, Q1,Q2 : F2

→ F are continuous. Moreover, if ∆ < 0, then
P1 (= P, in Example 2.8) and P2 are F-inner products. Also, Q1 and Q2 are quadratic forms. Furthermore,
the gradient vectors of Q1 and Q2 are as follows.

▽Q1(X) =
(
2x1 + ay1, ax1 − 2by1

)
, and ▽Q1(Y) =

(
2x2 + ay2, ax2 − 2by2

)
.

▽Q2(X) =
(
2x1 +

a
b

y1,
a
b

x1 −
2
b

y1

)
, and ▽Q2(Y) =

(
2x2 +

a
b

y2,
a
b

x2 −
2
b

y2

)
.

The relations between P1 and P2 as well as Q1 and Q2 are presented in the next two theorems.
A quadratic form Q on F2 is called G-invariant, if for all A ∈ G and X ∈ F2; we have Q(AXt) = Q(X),

where G is a family of invertible elements of M(2,F) and Xt is the transpose of X.

Theorem 2.17. Let G1 =
{
N =

[
x y
y
b x + a

b y

]
: det(N) , 0

}
and X =

[
x1 y1

]
,Y =

[
x2 y2

]
∈ F2. Then the

following hold:

(i) P1

(
▽Q2(X),▽Q2(Y)

)
= 1

2b∆P2(X,Y).

(ii) Q1

(
▽Q2(X)

)
= 1

2b∆Q2(X).

(iii) Q1(NXt) = det(N)Q1(X). In particular, if det(N) = 1, then Q1 is G1-invariant.

Proof. (i)

P1

(
▽Q2(X),▽Q2(Y)

)
=

1
2

[
2(2x1 +

a
b

y1)(2x2 +
a
b

y2) + a[(2x1 +
a
b

y1)

× (
a
b

x2 −
2
b

y2) + (2x2 +
a
b

y2)(
a
b

x1 −
2
b

y1)]

− 2b(
a
b

x1 −
2
b

y1)(
a
b

x2 −
2
b

y2)
]

=
1
2

[
(8 +

2a2

b
+

2a2

b
−

2a2

b
)x1x2 + (

4a
b
−

4a
b

+
a3

b2 +
4a
b

)x1y2 + (
4a
b
+

a3

b2 +
−4a

b
+

4a
b

)x2y1

+ (
2a2

b2 +
−2a2

b2 +
−2a2

b2 +
−8
b

)y1y2

]
=

1
2

(
a2 + 4b

b
)
[
2x1x2 + (x1y2 + y1x2)

a
b
−

2
b

y1y2

]
=

1
2

(
a2 + 4b

b
)P2(X,Y)

=
1
2b
∆P2(X,Y).

(ii) By (i), we have

Q1

(
▽Q2(X)

)
= P1

(
▽Q2(X),▽Q2(X)

)
=

1
2b
∆P2(X,X) =

1
2b
∆Q2(X).

(iii) If Xt is the transpose of X, then NXt =

[
xx1 + yy1

y
b x1 + xy1 +

a
b yy1

]
, and Q1(Xt) = Q1(X) = x2

1 + ax1y1 − by2
1.
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Therefore,

Q1(NXt) = (xx1 + yy1)2 + a(xx1 + yy1) (
y
b

x1 + xy1 +
a
b

yy1)

− b(
y
b

x1 + xy1 +
a
b

yy1)2

= (xx1)2 + (yy1)2 + 2xx1yy1 + a
[
xx2

1
y
b
+ x2x1y1 +

a
b

xx1yy1

+
y2

b
x1y1 + xyy2

1 +
a
b

y2y2
1

]
− b
[
x2

1
y2

b2 + x2y2
1 +

a2

b2 y2y2
1

+
2
b

xx1yy1 +
2a
b2 x1y1y2 +

2a
b

xyy2
1

]
=
[
x2 +

a
b

xy −
y2

b

]
x2

1 +
[
2xy + ax2 +

a2

b
xy +

a
b

y2
− 2xy

−
2a
b

y2
]
x1y1 +

[
y2 + axy +

a2

b
y2
− bx2

−
a2

b
y2
− 2axy

]
y2

1

=
(
x2 +

a
b

xy −
y2

b

) (
x2

1 + ax1y1 − by2
1

)
= det(N)Q1(X).

The second assertion is now obvious.

Theorem 2.18. Let G2 =
{
M =

[
x y

by x + ay

]
: det(M) , 0

}
and X =

[
x1 y1

]
,Y =

[
x2 y2

]
∈ F2. Then the

following hold:
(i) P2

(
▽Q1(X),▽Q1(Y)

)
= 1

2b∆P1(X,Y).

(ii) Q2

(
▽Q1(X)

)
= 1

2b∆Q1(X).
(iii) Q2(MXt) = det(M)Q2(X). In particular, if det(M) = 1, then Q2 is G2-invariant.

Proof. The proof is exactly the same as the proof of Theorem 2.17, so the details are omitted.

The next result is an application of Theorem 2.17.

Corollary 2.19. Let F = R. Then the tangent line to the curve Q1(X) = x2+ axy− by2 = 1 at the point X0 = (x0, y0)
(belonging to the curve) is P1(X,X0) = 1.

Proof. The tangent line to the curve at X0 is the line through X0 whose slope is

m =
−∂Q1
∂x (X0)
∂Q1
∂y (X0)

=
(2x0 + ay0)
(2by0 − ax0)

·

Calculations give an equation to the tangent line that is P1(X,X0) = 1.

In the remainder of this section, we focus on the case of F = R, and to obtain the main result (Theorem
2.24), we will use [3, Chapter I], [6], and [10]. Remember that by Corollary 2.4, we have

G =

{
M =

[
x y

by x + ay

]
: x, y ∈ R, det(M) = 1

}
= SL(2,R) ∩MR. (9)

Remark 2.20. Remember that the roots of the equation x2 = ax + b are ω1, ω2 =
a±
√
∆

2 , where ∆ = a2 + 4b.

If ∆ < 0, then ω1, ω2 =
a±
√
−∆i

2 . Let λ1 =
1
ω1

and λ2 =
1
ω2

. Then λ1, λ2 =
2

a±
√
−∆i
= u ∓ vi, where u and v are

defined in (10). From now on, we let

ω := ω2, and λ := λ2 = u + vi, where, u =
2a

a2 − ∆
=

a
−2b

, and v =
2
√
−∆

a2 − ∆
=

√
−∆

−2b
. (10)
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Since ∆ < 0 and b , 0; we get b < 0. So Im(λ) = v > 0, i.e., λ ∈ H = {z ∈ C : Im(z) > 0}, the upper-half plane.

Definition 2.21. Let M =
[
x y
r t

]
∈ SL(2,R) and consider a mapping TM : H → C which z 7→ M(z) := xz+y

rz+t

and let z0 ∈ H be fixed. Then we call M a stabilizer of z0, or equivalently, z0 is a fixed point of M, if M(z0) = z0.

In the next result, we show that the stabilizers of λ (see (10)) are precisely the elements of G.

Lemma 2.22. λ is a fixed point of a matrix M ∈ SL(2,R) if and only if M ∈ G.

Proof. (⇒) Let M =
[
x y
z t

]
∈ SL(2,R) such that M(λ) = xλ+y

zλ+t = λ. Then

x+yω
z+tω =

1
ω , and so xω + yω2 = z + tω.

Replacing ω2 with aω + b (since ω2 = aω + b) gives z = by, and t = x + ay. Hence, M ∈ G.
(⇐) Let M ∈ G. Since det(M) = 1, it follows that x + ay and by cannot be zero at the same time. Now,

M(λ) = λ⇔
x + yω

by + (x + ay)ω
=

1
ω
⇔ xω + yω2 = by + (x + ay)ω.

The last equality holds because ω2 = aω + b. Thus, λ is a fixed point of M, and we are done.

Proposition 2.23. The mapping p : SL(2,R)→ H which M =
[
x y
z t

]
7→M(λ) is onto and continuous.

Proof. First, we claim that (zu + t) + zvi , 0. Otherwise, z = 0 and therefore t = 0 which is absurd, since
det(M) = 1. Also, M(λ) = xλ+y

zλ+t =
(xu+y)+xvi
(zu+t)+zvi ∈ H because Im(M(λ)) = v

(zu+t)2+(zv)2 > 0. Next, for z = x + yi ∈ H
(i.e., y > 0), we set

MX =


√

y
v x

√
v
y − u

√
y
v

0
√

v
y

 , where X =
[
x y

]
. (11)

Now, it is easy to check that MX(λ) = z. Thus p(MX) = z, i.e., p is onto. Remember that SL(2,R) is a subspace
of R4 with the usual topology and p(M) =M(λ). Therefore, p is continuous.

For a topological space X and a set Y with an onto mapping π : X→ Y, a topology can be induced on Y,
which is called the quotient topology. The space Y is called a quotient space of X and π a quotient map. Hence,
V is open in Y if and only if π−1(V) is open in X. Now, consider SL(2,R) as a subspace of R4 with the usual
topology, and let SL(2,R)

G denote the family of all cosets of G (see (9)) as a quotient space of SL(2,R). Note
that G is not necessarily a normal subgroup of SL(2,R). Hence, SL(2,R)

G is regarded as a set of cosets of G.
In [3, Chapter I], the upper-half complex plane H with the usual topology is described as a coset space,

by H ∼ SL(2,R)
SO(2,R) , where the special orthogonal group SO(2,R) is the stabilizer of i (where i2 = −1). Here, in

the next theorem, we present a new description of H, where G is the stabilizer of λ, see (10).
Another main result in this section is as follows:

Theorem 2.24. Suppose that SL(2,R)
G is equipped with the quotient topology. Then SL(2,R)

G ∼ H.

Proof. Define φ : SL(2,R)
G → H with φ(MG) = M(λ). If MG = NG, then N−1MG = G and thus N−1M ∈ G. By

Lemma 2.22, N−1M(λ) = λ and hence M(λ) = N(λ), soφ is well-defined. Now, suppose thatφ(MG) = φ(NG).
Hence, M(λ) = N(λ) and thus N−1M(λ) = λ. Reusing Lemma 2.22 we get N−1M ∈ G. Therefore, MG = NG,
i.e., φ is one-to-one. To show that φ is onto, for z = x + yi ∈ H, it suffices to choose MX the same matrix as
defined in (11). Hence, φ(MXG) = MX(λ) = z. Let V be an open set in H. Then p−1(V) is open in SL(2,R)
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(Proposition 2.23) and hence p−1(V)
G is open in SL(2,R)

G . Furthermore, φ−1(V) =
{
MG : M(λ) ∈ V

}
=

P−1(V)
G ·

Therefore, φ is continuous. Now, let us define

ψ : H→
SL(2,R)
G

with ψ(x + yi) =MXG, where MX is defined in (11). (12)

Also, let π : SL(2,R)→ SL(2,R)
G be the quotient map and ψ′ : H→ SL(2,R) be defined by ψ′(x+ yi) =MX.

Then ψ = π ◦ ψ′, and it is continuous because both π and ψ′ are continuous. Remember that φ(MG) =
M(λ) = x + yi ∈ H. On the other hand, we have MX(λ) = x + yi. So MG =MXG (Lemma 2.22). Thus,

(ψ ◦ φ)(MG) = (ψ ◦ φ)(MXG) = ψ(x + yi) =MXG =MG, and
(φ ◦ ψ)(x + yi) = φ(MXG) =MX(λ) = x + yi.

This yields both ψ ◦ φ and φ ◦ ψ are identity maps. So ψ = φ−1 and hence φ is a homeomorphism.

3. Finding some solutions for the functional equation f ◦ 1 = 1 ◦ f

Let f , 1 : H → H be continuous functions and f ◦ 1 represents their composition. In this section, we
are going to introduce some families of continuous functions f , 1 from H to H which satisfy the functional
equation f ◦ 1 = 1 ◦ f . Evidently, the invertible continuous functions f and f−1 are the solutions to the
equation. Below, we prove that these types of functions are closely related to elements of G (see (9)). This
is also generalized in Theorem 3.3.

Proposition 3.1. Let TM : H → C be defined by TM(z) = M(z) = xz+y
byz+x+ay , where M =

[
x y

by x + ay

]
∈ G be fixed

(in fact, TM : H → H) and let T =
{
TM : M ∈ G

}
. Then T with the composition of functions is an abelian group.

Moreover, T � G
N0

, whereN0 = {I,−I}.

Proof. First, we note that if y = 0, then x = ±1 because det(M) = 1. Hence, TM(z) = z. Otherwise, it easily

follows that TM(z) ∈ H (i.e., Im(TM(z)) > 0) and further TM is continuous. Let N =
[

x′ y′

by′ x′ + ay′

]
∈ G. Then

(TM ◦ TN)(z) = TM

( x′z + y′

by′z + x′ + ay′
)
=

x
( x′z+y′

by′z+x′+ay′

)
+ y

by
( x′z+y′

by′z+x′+ay′

)
+ x + ay

=
(xx′ + byy′)z + xy′ + x′y + ayy′

(byx′ + bxy′ + abyy′)z + byy′ + xx′ + ayx′ + axy′ + a2yy′
= TMN(z).

So T is closed under the composition of functions. Moreover, it is easily seen that (TM)−1 = TM−1 , and the
identity element in T is TI. Therefore, T is a group. Now, since G is abelian, we have MN = NM and hence

TM ◦ TN = TMN = TNM = TN ◦ TM.

This yieldsT is abelian. To establish the second assertion, consider the mappingφ : G→ Twithφ(M) = TM.
So φ is an epimorphism. Let M ∈ ker(φ). Since TM is the identity map, we obtain xz+y

byz+x+ay = z. From b , 0,
we get y = 0. Now, det(M) = 1 yields x = ±1 and thus M = ±I. Hence, ker(φ) ⊆N0. Moreover,N0 ⊆ ker(φ).
Therefore, GN0

� T.

Corollary 3.2. Every two elements of T are solutions for the equation f ◦ 1 = 1 ◦ f .

The main result of this section is the next theorem, which generalizes Proposition 3.1.

Theorem 3.3. Let u : H → H be an invertible continuous function and TM, TN be as defined in Proposition 3.1.
Define f (z) = u−1

(
TM(u(z))

)
, briefly, f = u−1

(
TM(u)

)
, and 1 = u−1

(
TN(u)

)
. Then f ◦ 1 = 1 ◦ f .
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Proof. By Proposition 3.1, TM and TN, and therefore, f and 1 are continuous. Now, the proof is as follows:

( f ◦ 1)(z) = f
(
1(z)
)
= f
(
u−1(TN(u))

)
= f
(
u−1(

x′u + y′

by′u + x′ + ay′
)
)

= u−1
( xu(u−1( x′u+y′

by′u+x′+ay′ )) + y

byu(u−1( x′u+y′

by′u+x′+ay′ )) + x + ay

)

= u−1
( x( x′u+y′

by′u+x′+ay′ ) + y

by( x′u+y′

by′u+x′+ay′ ) + x + ay

)
= u−1

( xx′u + xy′ + byy′u + x′y + ayy′

by′xu + byy′ + bxy′u + abyy′u + xx′ + ax′y + axy′ + a2yy′
)

= u−1
( x′( xu+y

byu+x+ay ) + y′

by′( xu+y
byu+x+ay ) + x′ + ay′

)
= u−1

( x′u(u−1( xu+y
byu+x+ay )) + y′

by′u(u−1( xu+y
byu+x+ay )) + x′ + ay′

)
= u−1

(
TN( f (z))

)
= (1 ◦ f )(z).

An immediate consequence of the above theorem is given below:

Corollary 3.4. Let u : H→ H be an invertible continuous function and let

Tu =
{
u−1
(
TM(u)

)
: M ∈ G

}
.

Then every pair of elements of Tu satisfy the equation f ◦ 1 = 1 ◦ f . In particular, if u is the identity map, then
Tu = T (Proposition 3.1).
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