Filomat 37:14 (2023), 4671–4682 https://doi.org/10.2298/FIL2314671V

Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

The structure of F^2 as an associative algebra via quadratic forms

Amir Veisi^a, Ali Delbaznasab^b

^aFaculty of Petroleum and Gas, Yasouj University, Gachsaran, Iran ^bDepartment of Mathematics, Shahid Bahonar University of Kerman, Kerman, Iran

Abstract. Let *F* be a totally ordered field and $\omega \in \overline{F}$ (a field extension of *F*) be a solution to the equation $x^2 = ax + b \in F[x]$, where *a* and *b* are fixed with $b \neq 0$. With the help of this idea, we convert the *F*-vector space F^2 into an associative *F*-algebra. As far as F^2 can even be converted into a field. In the next step, based on a quadratic form, we define an inner product on F^2 with values in *F* and call it the *F*-inner product. The defined inner product is mostly studied for its various properties. In particular, when $F = \mathbb{R}$, we show that \mathbb{R}^2 with the defined product satisfies well-known inequalities such as the Cauchy-Schwarz and the triangle inequality. Under certain conditions, the reverse of recent inequalities is established. Some interesting properties of quadratic forms on F^2 such as the invariant property are presented. In the sequel, we let $SL(2, \mathbb{R})$ denote the subgroup of $M(2, \mathbb{R})$ that consists of matrices with determinant 1 and set $\mathbb{G} = SL(2, \mathbb{R}) \cap \mathbb{M}_{\mathbb{R}}$, where $\mathbb{M}_{\mathbb{R}}$ is the matrix representation of \mathbb{R}^2 . We then verify the coset space $\frac{SL(2,\mathbb{R})}{\mathbb{G}}$ with the quotient topology is homeomorphic to *H* (the upper-half complex plane) with the usual topology. Finally, we determine some families of functions in $C(H, \mathbb{C})$, the ring consisting of complex-valued continuous functions on *H*; related to elements of \mathbb{G} for which the functional equation $f \circ g = g \circ f$ is satisfied.

1. Introduction and preliminary results

A *partially ordered set* (in brief, *poset*) is a set together with a partial order relation \leq satisfying reflexive, antisymmetric, and transitive properties. A *totally ordered set* is a poset in which every pair of elements x, y are comparable, i.e., $x \leq y$ or $y \leq x$. Hence, a totally ordered set is often referred to as a chain. The notions \mathbb{N} , \mathbb{Q} , \mathbb{R} , and \mathbb{C} denote the set of positive integers, rational numbers, real numbers, and complex numbers, respectively. A *totally ordered ring* is a *partially ordered ring* (see [4, 0.19]) that is ordered by its ordering relation. So each element is comparable with 0. A totally ordered field *F* is a *lattice ordered ring* that means if $x, y \in F$, then $x \lor y := \sup\{x, y\} \in F$ (note, the supremum is x or y). Also, $x \land y := \inf\{x, y\} = -(-x \lor -y) \in F$. In particular, $|x| := x \lor -x \in F$. Whenever *F* is referred to as a topological space, its topology is *the interval topology*, i.e., the family of all rays $\{x : x > c\}$ and $\{x : x < d\}$ ($c, d \in F$) is a subbase for the open sets in *F*. Hence, the family of all the open intervals $(x, y) := \{z \in F : x < z < y\}$ is a base for the topology. The topological concepts that we need can be found in [2] and [23]. Throughout the paper, *F* is a totally ordered field with the interval topology, and note that *F* contains a copy of \mathbb{Q} (Proposition 1.1). For example, \mathbb{R} and every countable subfield of \mathbb{R} are totally ordered fields. If for $0 < y \in F$ there is $x \in F$ such that $y = x^n$, then x is called *the n*th root of y and denoted by $\sqrt[4]{y}$ or $y^{\frac{1}{n}}$ (i.e., $x = y^{\frac{1}{n}}$). Recall that \mathbb{Q} does not satisfy the

Received: 05 August 2022; Revised: 27 November 2022; Accepted: 31 December 2022

²⁰²⁰ Mathematics Subject Classification. Primary 54B15; Seconary 15A63

Keywords. Associative algebra, totally ordered field, quadratic form, F-inner product, quotient topology

Communicated by Ljubiša D.R. Kočinac

Email addresses: aveisi@yu.ac.ir (Amir Veisi), delbaznasab@gmail.com (Ali Delbaznasab)

property of 2^{th} root for all y > 0. But in \mathbb{R} , all nonnegative elements have the same number of square roots. If 0 < x < y, then $x^n < y^n$, where $n \in \mathbb{N}$. Hence, a positive element has at most one positive n^{th} root (see Proposition 1.1). A mapping Q of an R-module M to R is called a *quadratic form*, if $Q(rx) = r^2Q(x)$ for each $r \in R$ and $x \in M$; and the mapping $B : M \times M \to R$ defined by B(x, y) = Q(x + y) - Q(x) - Q(y) is a bilinear symmetric form (see [8, 1.2]). For a deeper discussion of quadratic forms, we refer the reader to [5], [8], [9], [11], [12], [14] and [15].

The paper is organized as follows: In Section 2, with the help of a solution $\omega \in \overline{F}$ of the equation $x^2 = ax + b \in F[x]$, we convert F^2 into an associative *F*-algebra. As far as F^2 can even be converted into a field. In the next step, based on a quadratic form, we define an inner product on F^2 with values in *F* and call it the *F*-inner product. The defined product is mostly studied for its various properties. In particular, we focus on the case of $F = \mathbb{R}$ and show that \mathbb{R}^2 with this product satisfies well-known inequalities such as *the Cauchy-Schwarz* and *the triangle inequality*. Under certain conditions, the reverse of recent inequalities is established. In the sequel, we let $SL(2, \mathbb{R})$ denote the subgroup of $M(2, \mathbb{R})$ that consists of matrices with determinant 1. The best general references here are [6] and [10]. Set $\mathbb{G} = SL(2, \mathbb{R}) \cap \mathbb{M}_{\mathbb{R}}$. We then show that the coset space $\frac{SL(2,\mathbb{R})}{\mathbb{G}}$ with the quotient topology is homeomorphic to H (the upper-half complex plane) with the usual topology. In Section 3, we determine some families of functions in $C(H, \mathbb{C})$, the ring consisting of complex-valued continuous functions on H (actually, from H to H); related to elements of \mathbb{G} for which the functional equation $f \circ g = g \circ f$ is satisfied.

Proposition 1.1. ([4, 0.20]) Let D be a totally ordered integral domain. If 0 < x < y, then $x^n < y^n$, where $n \in \mathbb{N}$. Hence, a positive element has at most one positive n^{th} root. D contains a natural copy of \mathbb{N} . If D is a totally ordered field, then D contains a copy of \mathbb{Q} .

Proposition 1.2. Let *R* be a totally ordered commutative ring and $0 < x, y \in R$. Then x < y if and only if $x^n < y^n$ for each $n \in \mathbb{N}$.

Proof. Since *R* is commutative, we conclude that $x^n - y^n = (x - y) \left(\sum_{i=1}^{i=n} x^{n-i} y^{i-1} \right)$. Moreover, the last sum is positive. Therefore, x - y < 0 gives $x^n - y^n < 0$ and vice versa. Actually, x - y and $x^n - y^n$ have the same sign. It means both are positive or both are negative, and we are done \Box

2. The structure of F^2 as an associative *F*-algebra and some of its properties

Let *F* be a totally ordered field and $a, b \in F$ be fixed with $b \neq 0$. Suppose ω satisfies the equation $x^2 = ax + b$, i.e., $\omega^2 = a\omega + b$. If $x^2 = ax + b$ has a zero in *F*, then $\omega \in F$. Otherwise, we may assume that ω belongs to a field extension (not necessarily totally ordered) \overline{F} of *F*. For example, $x^2 = -1$ with coefficients in \mathbb{R} (a = 0, b = -1) has $\omega = i \in \mathbb{C}$ as a zero. Also, $\omega = \sqrt{2} \in \mathbb{R}$ satisfies $x^2 = 2$ with coefficients in \mathbb{Q} (a = 0, b = 2). Now, we define Δ as follows and refer to it often because it plays a crucial role in most results.

$$\Delta = a^2 + 4b.$$

Let $F^2 = \{(x, y) : x, y \in F\}$. Then F^2 with the pointwise addition and the scalar multiplication is a vector space over *F*. Also, F^2 can be identified by the set $\{x + y\omega : x, y \in F\}$ via the map $(x, y) \mapsto x + y\omega$. Our goal in this part is to convert the vector space F^2 into an associative algebra. For $X = (x, y), Y = (x', y') \in F^2$, we put $X = x + y\omega$ and $Y = x' + y'\omega$. Therefore, $X + Y = x + x' + (y + y')\omega$ and $\lambda X = \lambda x + \lambda y\omega$ ($\lambda \in F$). Also, $X \times Y$ represents the product of *X* and *Y* and is defined by the following relation,

$$X \times Y = (x + y\omega)(x' + y'\omega) = xx' + (xy' + yx')\omega + yy'\omega^{2}$$

= xx' + byy' + (xy' + yx' + ayy')\omega
= (xx' + byy', xy' + yx' + ayy'). (*)

Note that $X \times Y = Y \times X$. In particular, if $F = \mathbb{R}$, a = 0 and b = -1, then the above multiplication agrees with the multiplication in \mathbb{C} . From now on, the matrix $\begin{bmatrix} x & y \end{bmatrix}$ is used instead of the ordered pair (*x*, *y*).

Proposition 2.1. Let M(2, F) be the ring of all 2-square matrices over F and $SL(2, F) = \{A \in M(2, F) : det(A) = 1\}$. Then $H := \{ \begin{bmatrix} 1 & c \\ 0 & 1 \end{bmatrix} : c \in F \}$ and $K := \{ \begin{bmatrix} 1 & 0 \\ d & 1 \end{bmatrix} : d \in F \}$ are abelian subgroups of SL(2, F). Furthermore, $H \cong F \cong K$ as groups.

Theorem 2.2. Let $\mathbb{M}_F = \left\{ \begin{bmatrix} x & y \\ by & x+ay \end{bmatrix} : x, y \in F \right\}$. Then \mathbb{M}_F is an *F*-subalgebra of M(2, F). Moreover, $F^2 \cong \mathbb{M}_F$ as algebras.

Proof. Let
$$A = \begin{bmatrix} x & y \\ by & x + ay \end{bmatrix}$$
, $B = \begin{bmatrix} x' & y' \\ by' & x' + ay' \end{bmatrix} \in \mathbb{M}_F$. Then $-A, A + B \in \mathbb{M}_F$. Also,
$$AB = \begin{bmatrix} xx' + byy' & xy' + yx' + ayy' \\ b(yx' + xy' + ayy') & xx' + byy' + a(xy' + yx' + ayy') \end{bmatrix} \in \mathbb{M}_F.$$

Moreover, $1_{\mathbb{M}_F} = 1_{M(2,F)} = I$, the identity matrix. Therefore, \mathbb{M}_F is a subring of M(2,F). Since $rA \in \mathbb{M}_F$, for every $r \in F$, we infer that \mathbb{M}_F is an *F*-subalgebra of M(2,F). Now, let us define

$$\varphi: F^2 \to \mathbb{M}_F$$
 by $\varphi(X) = \begin{bmatrix} x & y \\ by & x + ay \end{bmatrix}$, where $X = \begin{bmatrix} x & y \end{bmatrix}$

Then $\varphi(X + Y) = \varphi(X) + \varphi(Y)$ and $\varphi(rX) = r\varphi(X)$, where $Y = \begin{bmatrix} x' & y' \end{bmatrix}$ and $r \in F$. Moreover,

$$\varphi(X \times Y) = \begin{bmatrix} xx' + byy' & xy' + yx' + ayy' \\ b(yx' + xy' + ayy') & xx' + byy' + a(xy' + yx' + ayy') \end{bmatrix} \text{(see (*)). We also have}$$

$$\begin{split} \varphi(X)\varphi(Y) &= \begin{bmatrix} x & y \\ by & x+ay \end{bmatrix} \begin{bmatrix} x' & y' \\ by' & x'+ay' \end{bmatrix} \\ &= \begin{bmatrix} xx'+byy' & xy'+yx'+ayy' \\ b(yx'+xy'+ayy') & xx'+byy'+a(xy'+yx'+ayy') \end{bmatrix} \end{split}$$

So $\varphi(X \times Y) = \varphi(X)\varphi(Y)$. Furthermore, φ is one-to-one and onto. This yields φ is an algebra isomorphism. \Box

Remark 2.3. For $X = \begin{bmatrix} x & y \end{bmatrix} \in F^2$, we may let $det(X) = det(\varphi(X)) = x^2 + axy - by^2$. It easily follows that det(X) is a quadratic form (see [8, 1.2]). In the sequel, we will need det(X) as in the following form.

$$det(X) = x^{2} + axy - by^{2} = (x + \frac{ay}{2})^{2} - \frac{1}{4}(a^{2} + 4b)y^{2}$$

$$= (x + \frac{ay}{2})^{2} - \frac{1}{4}\Delta y^{2}.$$
(1)
(2)

The next result is now immediate.

Corollary 2.4. For every $A, B \in \mathbb{M}_F$, we have AB = BA. So every subring of \mathbb{M}_F is commutative and every subgroup of \mathbb{M}_F with multiplication is abelian. In particular, $\overline{\mathbb{G}} := \{M \in \mathbb{M}_F : \det(M) \neq 0\}$, and $\mathbb{G} := \{M \in \mathbb{M}_F : \det(M) = 1\}$ are subgroups of \mathbb{M}_F . Moreover, \mathbb{G} is a normal subgroup of $\overline{\mathbb{G}}$, and further, $\mathbb{G} = SL(2, F) \cap \mathbb{M}_F$.

Proposition 2.5. Let \mathbb{G} and $\overline{\mathbb{G}}$ be as defined in Corollary 2.4, and let $F = \mathbb{R}$. Then the following hold: (i) If $\Delta = a^2 + 4b < 0$, then $\overline{\frac{G}{G}} \cong \mathbb{R}^+ \cong \frac{\mathbb{R} \setminus [0]}{\{1, -1\}}$. (ii) If $\Delta > 0$, then $\overline{\frac{G}{G}} \cong \mathbb{R} \setminus \{0\}$. *Proof.* First, we note that $\mathbb{R} \setminus \{0\}$ and $\mathbb{R}^+ := \{r \in \mathbb{R} : r > 0\}$ are multiplicative abelian groups with the same identity element 1.

(*i*) Define $\psi_1 : \overline{\mathbb{G}} \to \mathbb{R}^+$ with $\psi_1(M) = \det(M)$ (note, $\Delta < 0$ gives $\det(M) > 0$). So ψ_1 is a homomorphism and $\ker(\psi_1) = \mathbb{G}$. Now, if r > 0 and $X = \begin{bmatrix} \sqrt{r} & 0 \end{bmatrix}$, then $\psi_1(X) = r$, i.e., ψ_1 is onto. For the second assertion, consider $\psi : \mathbb{R} \setminus \{0\} \to \mathbb{R}^+$ with $\psi(r) = |r|$. Hence, ψ is onto and $\ker(\psi) = \{-1, 1\}$.

(*ii*) Define $\psi_2 : \overline{\mathbb{G}} \to \mathbb{R} \setminus \{0\}$ like ψ_1 , i.e., $\psi_2(M) = \det(M)$. So ψ_2 is a homomorphism and $\ker(\psi_2) = \mathbb{G}$. If r > 0, then we choose *X* as the same matrix in part (*i*), and if r < 0, then we take $x + \frac{1}{2}ay = 0$ and $\frac{-1}{4}\Delta y^2 = r$, and let $X = \begin{bmatrix} x & y \end{bmatrix}$ for which *x* and *y* satisfy the latter equation. Then in both cases $\psi_2(X) = r$, i.e., ψ_2 is onto, which completes the proof. \Box

Theorem 2.6. Let $\Delta < 0$. Then \mathbb{M}_F (and hence F^2) is a field.

Proof. According to Corollary 2.4, \mathbb{M}_F (and hence F^2) is a commutative ring. Let $0 \neq M = \begin{bmatrix} x & y \\ by & x + ay \end{bmatrix} \in \mathbb{M}_F$. We claim that det(M) $\neq 0$ (and thus by (2), det(M) > 0). Otherwise, det(M) = 0 gives

$$0 \le (x + \frac{ay}{2})^2 = \frac{1}{4}\Delta y^2 \le 0.$$

Therefore, y = 0 and hence x = 0, which implies that M = 0. So every non-zero element of \mathbb{M}_F is invertible, meaning that \mathbb{M}_F , as well as F^2 , is a field. \Box

Definition 2.7. Let *V* be an *F*-vector space and a map $\varphi : V \times V \rightarrow F$ provides all the requirements of an inner product. Then, we call the pair (V, φ) or simply *V* an *F*-inner product space over *F* and φ the *F*-inner product.

Example 2.8. Let $P : F^2 \times F^2 \to F$ be defined by

$$P(X,Y) = \frac{1}{2} \Big[2x_1x_2 + a(x_1y_2 + y_1x_2) - 2by_1y_2 \Big], \text{ where } X = \begin{bmatrix} x_1 & y_1 \end{bmatrix}, \text{ and } Y = \begin{bmatrix} x_2 & y_2 \end{bmatrix}.$$
(3)

If $\Delta < 0$, then it is easy to verify that *P* is an *F*-inner product, and thus F^2 is an *F*-inner product space.

Theorem 2.9. Let P be as defined in Example 2.8. Then the following hold: (i) P(X + Y, X + Y) + P(X - Y, X - Y) = 2P(X, X) + 2P(Y, Y). (ii) P(X + Y, X + Y) - P(X - Y, X - Y) = 4P(X, Y). (iii) If $\Delta = a^2 + 4b \le 0$, then $P(X, X) = \det(X) \ge 0$. (iv) If $\Delta \le 0$, then $P^2(X, Y) \le P(X, X)P(Y, Y)$. (v) If $\Delta \ge 0$, then $P^2(X, Y) \ge P(X, X)P(Y, Y)$. (vi) $P^2(X, Y) = P(X, X) P(Y, Y)$ if and only if $\Delta = 0$ or $X = \lambda Y$ for some $\lambda \in F$.

Proof. (*i*)-(*ii*). Since the mapping *P* is bilinear, it follows that

$$P(X + Y, X + Y) = P(X, X) + P(Y, Y) + 2P(X, Y), \text{ and}$$

$$P(X - Y, X - Y) = P(X, X) + P(Y, Y) - 2P(X, Y).$$
(5)

The results are now obtained by adding and subtracting recent expressions respectively.

(*iii*) It follows from (2).

(iv) First, we let

$$\mathcal{A} = P(X, X)P(Y, Y) - P^2(X, Y), \tag{6}$$

and then calculate as follows:

$$\begin{aligned} \mathcal{A} &= \left(x_1^2 + ax_1y_1 - by_1^2\right) \left(x_2^2 + ax_2y_2 - by_2^2\right) \\ &- \frac{1}{4} \Big[2x_1x_2 + a(x_1y_2 + y_1x_2) - 2by_1y_2 \Big]^2 \\ &= x_1^2 x_2^2 + ax_1^2 x_2 y_2 - bx_1^2 y_2^2 + ax_1 y_1 x_2^2 \\ &+ a^2 x_1 y_1 x_2 y_2 - abx_1 y_1 y_2^2 - by_1^2 x_2^2 - aby_1^2 x_2 y_2 \\ &+ b^2 y_1^2 y_2^2 - \frac{1}{4} \Big[4x_1^2 x_2^2 + a^2 x_1^2 y_2^2 + a^2 y_1^2 x_2^2 \\ &+ 4b^2 y_1^2 y_2^2 + 4ax_1^2 x_2 y_2 + 4ax_1 y_1 x_2^2 - 4bx_1 y_1 x_2 y_2 \\ &+ 2a^2 x_1 y_1 x_2 y_2 - 4abx_1 y_1 y_2^2 - 4aby_1^2 x_2 y_2 \Big] \\ &= -(x_1 y_2 - y_1 x_2)^2 \Delta. \end{aligned}$$

We summarize the above calculations as follows:

$$\mathcal{A} = -(x_1 y_2 - y_1 x_2)^2 \Delta. \tag{7}$$

Now, if $\Delta \leq 0$, then $\mathcal{R} \geq 0$ and we reach the claim.

(*v*) Reusing (7), we obtain $\mathcal{A} \leq 0$ when $\Delta \geq 0$.

 $(vi) \implies$ If $\Delta \neq 0$, then $x_1y_2 = y_1x_2$. We can assume that $Y \neq 0$. If $y_2 \neq 0$, then we take $\lambda = y_1y_2^{-1}$, and if $x_2 \neq 0$, then we take $\lambda = x_1x_2^{-1}$. So $X = \lambda Y$.

 (\Leftarrow) It is obvious.

Remark 2.10. If *F* is \mathbb{R} or \mathbb{C} , then every inner product induces a norm, called its canonical norm, that is defined in the natural way, by $||x|| = \sqrt{\langle x x \rangle}$. With this norm, every inner product space becomes a normed vector space. So, every general property of normed vector spaces applies to inner product spaces. But in general, it is not true that every *F*-inner product induces a norm because the square root $\sqrt{\langle x x \rangle}$ does not necessarily belong to *F* (for example *F* = \mathbb{Q}).

For $X, Y \in \mathbb{R}^2$, we put $P(X, Y) = X \cdot Y$ and $P(X, X) = X \cdot X = ||X||^2$.

Theorem 2.11. Let $X = \begin{bmatrix} x_1 & y_1 \end{bmatrix}$, $Y = \begin{bmatrix} x_2 & y_2 \end{bmatrix} \in \mathbb{R}^2$. Then the following hold: (i) $||X + Y||^2 + ||X - Y||^2 = 2(X \cdot X) + 2(Y \cdot Y)$. (ii) $||X + Y||^2 - ||X - Y||^2 = 4(X \cdot Y)$. (iii) If $\Delta \le 0$, then $||X||^2 = X \cdot X = \det(X) \ge 0$. (iv) If $\Delta \le 0$, then $||X \cdot Y| \le ||X|| ||Y||$. (the Cauchy-Schwarz inequality) (v) If $\Delta \ge 0$, then $||X + Y|| \le ||X|| + ||Y||$. (the triangle inequality) (vi) If $\Delta \ge 0$ and $X \cdot Y \ge 0$, then $||X + Y|| \ge ||X|| + ||Y||$. (the reverse of triangle inequality) (vii) $||X|| ||Y|| = |X \cdot Y|$ if and only if $\Delta = 0$ or $X = \lambda Y$, for some $\lambda \in \mathbb{R}$.

Proof. (*i*)-(*v*) and (*viii*) are obtained by (*i*)-(*v*) and (*vi*) in Theorem 2.9, respectively.(*vi*) From (4) we get

$$||X + Y||^{2} = ||X||^{2} + ||Y||^{2} + 2(X \cdot Y), \text{ and } ||X - Y||^{2} = ||X||^{2} + ||Y||^{2} - 2(X \cdot Y).$$
(8)

Also, Theorem 2.9(iv) implies that

$$(X \cdot Y)^2 \le ||X||^2 ||Y||^2$$
, and therefore $|X \cdot Y| = \sqrt{(X \cdot Y)^2} \le \sqrt{||X||^2 ||Y||^2} = ||X|| ||Y||$.

Hence, we obtain

$$\begin{split} \|X + Y\|^2 &= \|X\|^2 + \|Y\|^2 + 2(X \cdot Y) \le \|X\|^2 + \|Y\|^2 + 2|X \cdot Y| \\ &\le \|X\|^2 + \|Y\|^2 + 2\|X\| \|Y\| \\ &= (\|X\| + \|Y\|)^2. \end{split}$$

So $||X + Y|| \le ||X|| + ||Y||$, meaning that triangle inequality is established.

(*vii*) Using the assumptions, $\Delta \ge 0$, $X \cdot Y \ge 0$, and Theorem 2.9(*v*), we get $X \cdot Y = |X \cdot Y| \ge ||X|| ||Y||$. The result is now obtained by replacing \le with \ge in the above calculation, and we are done.

Corollary 2.12. If $\Delta < 0$, then the mapping $\|\cdot\| : \mathbb{R}^2 \to \mathbb{R}$ which $X \mapsto \|X\| = \sqrt{\det(X)}$ turns \mathbb{R}^2 into a normed space.

Remark 2.13. Similar to real-valued functions on \mathbb{R}^2 , the gradient vector (gradient) of $f : F^2 \to F$ at a point X_0 is the vector $\nabla f(X_0) = \left(\frac{\partial f}{\partial x}(X_0), \frac{\partial f}{\partial y}(X_0)\right)$, for brevity, $\nabla f = \left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right)$, obtained by evaluating the partial $\int \frac{\partial^2 f}{\partial x} = \frac{\partial^2 f}{\partial y} \int \frac{\partial f}{\partial y} \int \frac$

derivatives of *f* at *X*₀. If the second derivations of *f* exist at *X*₀, then we let $J := d^2 f = \begin{bmatrix} \frac{\partial^2 f}{\partial x^2} & \frac{\partial^2 f}{\partial x \partial y} \\ \\ \frac{\partial^2 f}{\partial y^2} & \frac{\partial^2 f}{\partial y^2} \end{bmatrix}$ and call

it the Jacobean matrix of f.

Proposition 2.14. If $X, Y \in F^2$ and Y^t denote the transpose of Y, then $2P(X, Y) = XJY^t$ (see (3)). In particular, $2||X||^2 = XJX^t$.

Proof. Let $f : F^2 \to F$ be defined by $f(X) = \det(X) = x^2 + axy - by^2$, where $X = \begin{bmatrix} x & y \end{bmatrix}$ (Remark 2.3). Then $J = \begin{bmatrix} 2 & a \\ a & -2b \end{bmatrix}$. Let $X = \begin{bmatrix} x_1 & y_1 \end{bmatrix}$, $Y = \begin{bmatrix} x_2 & y_2 \end{bmatrix} \in F^2$. Then, with a simple calculation, we get

 $XJY^{t} = 2x_{1}x_{2} + a(x_{1}y_{2} + y_{1}x_{2}) - 2by_{1}y_{2} = 2P(X, Y),$

which gives the result. Also, $XJX^t = 2P(X, X) = 2||X||^2$. \Box

Proposition 2.15. Let $M \in M(2, F)$ and $\Delta = a^2 + 4b \neq 0$.

- (*i*) If $M \in \mathbb{M}_F$ (Theorem 2.2), then $MJM^t = \det(M)J$.
- (*ii*) $M \in \mathbb{G} = \{M \in \mathbb{M}_F : \det(M) = 1\}$ (Corollary 2.4) if and only if $\det(M) > 0$ and $MJM^t = J$.

Proof. (*i*) It is straightforward, so we eliminate the proof.

 $(ii) \implies$ It follows from (i).

(⇐) Let $M = \begin{bmatrix} x & y \\ z & t \end{bmatrix} \in M(2, F)$ such that $MJM^t = J$. Then the assumption, $det(J) = -\Delta \neq 0$, gives $det^2(M) = 1$ and thus det(M) = 1. Moreover, from equation $MJ = J(M^t)^{-1}$ we obtain z = by and t = x + ay, i.e., $M \in \mathbb{G}$. \Box

Definition 2.16. Let $X = \begin{bmatrix} x_1 & y_1 \end{bmatrix}$, $Y = \begin{bmatrix} x_2 & y_2 \end{bmatrix} \in F^2$. Then we define

$$P_{1}(X,Y) = \frac{1}{2} \Big(2x_{1}x_{2} + a(x_{1}y_{2} + x_{2}y_{1}) - 2by_{1}y_{2} \Big),$$

$$P_{2}(X,Y) = \frac{1}{2} \Big(2x_{1}x_{2} + \frac{a}{b}(x_{1}y_{2} + x_{2}y_{1}) - \frac{2}{b}y_{1}y_{2} \Big),$$

$$Q_{1}(X) = P_{1}(X,X) = x_{1}^{2} + ax_{1}y_{1} - by_{1}^{2}, \text{ and}$$

$$Q_{2}(X) = P_{2}(X,X) = x_{1}^{2} + \frac{a}{b}x_{1}y_{1} - \frac{y_{1}^{2}}{b}.$$

Notice that the mappings $P_1, P_2 : F^4 \to F$, and, $Q_1, Q_2 : F^2 \to F$ are continuous. Moreover, if $\Delta < 0$, then P_1 (= P, in Example 2.8) and P_2 are F-inner products. Also, Q_1 and Q_2 are quadratic forms. Furthermore, the gradient vectors of Q_1 and Q_2 are as follows.

$$\nabla Q_1(X) = \left(2x_1 + ay_1, ax_1 - 2by_1\right), \text{ and } \nabla Q_1(Y) = \left(2x_2 + ay_2, ax_2 - 2by_2\right).$$

$$\nabla Q_2(X) = \left(2x_1 + \frac{a}{b}y_1, \frac{a}{b}x_1 - \frac{2}{b}y_1\right), \text{ and } \nabla Q_2(Y) = \left(2x_2 + \frac{a}{b}y_2, \frac{a}{b}x_2 - \frac{2}{b}y_2\right).$$

The relations between P_1 and P_2 as well as Q_1 and Q_2 are presented in the next two theorems.

A quadratic form Q on F^2 is called *G*-invariant, if for all $A \in G$ and $X \in F^2$; we have $Q(AX^t) = Q(X)$, where *G* is a family of invertible elements of M(2, F) and X^t is the transpose of *X*.

Theorem 2.17. Let $G_1 = \left\{ N = \begin{bmatrix} x & y \\ \frac{y}{b} & x + \frac{a}{b}y \end{bmatrix}$: $det(N) \neq 0 \right\}$ and $X = \begin{bmatrix} x_1 & y_1 \end{bmatrix}$, $Y = \begin{bmatrix} x_2 & y_2 \end{bmatrix} \in F^2$. Then the following hold:

(*i*) $P_1(\nabla Q_2(X), \nabla Q_2(Y)) = \frac{1}{2b}\Delta P_2(X, Y).$ (*ii*) $Q_1(\nabla Q_2(X)) = \frac{1}{2b}\Delta Q_2(X).$ (*iii*) $Q_1(NX^t) = \det(N)Q_1(X).$ In particular, if $\det(N) = 1$, then Q_1 is G_1 -invariant.

Proof. (i)

$$\begin{split} P_1\Big(\nabla Q_2(X), \nabla Q_2(Y) \Big) &= \frac{1}{2} \Big[2(2x_1 + \frac{a}{b}y_1)(2x_2 + \frac{a}{b}y_2) + a[(2x_1 + \frac{a}{b}y_1) \\ &\times (\frac{a}{b}x_2 - \frac{2}{b}y_2) + (2x_2 + \frac{a}{b}y_2)(\frac{a}{b}x_1 - \frac{2}{b}y_1)] \\ &- 2b(\frac{a}{b}x_1 - \frac{2}{b}y_1)(\frac{a}{b}x_2 - \frac{2}{b}y_2) \Big] \\ &= \frac{1}{2} \Big[(8 + \frac{2a^2}{b} + \frac{2a^2}{b} - \frac{2a^2}{b})x_1x_2 + (\frac{4a}{b} - \frac{4a}{b} \\ &+ \frac{a^3}{b^2} + \frac{4a}{b})x_1y_2 + (\frac{4a}{b} + \frac{a^3}{b^2} + \frac{-4a}{b} + \frac{4a}{b})x_2y_1 \\ &+ (\frac{2a^2}{b^2} + \frac{-2a^2}{b^2} + \frac{-2a^2}{b^2} + \frac{-8}{b})y_1y_2 \Big] \\ &= \frac{1}{2} (\frac{a^2 + 4b}{b}) \Big[2x_1x_2 + (x_1y_2 + y_1x_2)\frac{a}{b} - \frac{2}{b}y_1y_2 \Big] \\ &= \frac{1}{2b} \Delta P_2(X, Y). \end{split}$$

(ii) By (i), we have

$$Q_1(\nabla Q_2(X)) = P_1(\nabla Q_2(X), \nabla Q_2(X))$$
$$= \frac{1}{2b} \Delta P_2(X, X) = \frac{1}{2b} \Delta Q_2(X)$$

(*iii*) If X^t is the transpose of X, then $NX^t = \begin{bmatrix} xx_1 + yy_1 \\ \frac{y}{b}x_1 + xy_1 + \frac{a}{b}yy_1 \end{bmatrix}$, and $Q_1(X^t) = Q_1(X) = x_1^2 + ax_1y_1 - by_1^2$.

Therefore,

$$\begin{aligned} Q_1(NX^t) &= (xx_1 + yy_1)^2 + a(xx_1 + yy_1) \left(\frac{y}{b}x_1 + xy_1 + \frac{a}{b}yy_1\right) \\ &- b(\frac{y}{b}x_1 + xy_1 + \frac{a}{b}yy_1)^2 \\ &= (xx_1)^2 + (yy_1)^2 + 2xx_1yy_1 + a\left[xx_1^2\frac{y}{b} + x^2x_1y_1 + \frac{a}{b}xx_1yy_1\right. \\ &+ \frac{y^2}{b}x_1y_1 + xyy_1^2 + \frac{a}{b}y^2y_1^2\right] - b\left[x_1^2\frac{y^2}{b^2} + x^2y_1^2 + \frac{a^2}{b^2}y^2y_1^2\right. \\ &+ \frac{2}{b}xx_1yy_1 + \frac{2a}{b^2}x_1y_1y^2 + \frac{2a}{b}xyy_1^2\right] \\ &= \left[x^2 + \frac{a}{b}xy - \frac{y^2}{b}\right]x_1^2 + \left[2xy + ax^2 + \frac{a^2}{b}xy + \frac{a}{b}y^2 - 2xy\right. \\ &- \frac{2a}{b}y^2\right]x_1y_1 + \left[y^2 + axy + \frac{a^2}{b}y^2 - bx^2 - \frac{a^2}{b}y^2 - 2axy\right]y_1^2 \\ &= \left(x^2 + \frac{a}{b}xy - \frac{y^2}{b}\right)\left(x_1^2 + ax_1y_1 - by_1^2\right) \\ &= \det(N)Q_1(X). \end{aligned}$$

The second assertion is now obvious. \Box

Theorem 2.18. Let $G_2 = \left\{ M = \begin{bmatrix} x & y \\ by & x + ay \end{bmatrix} : det(M) \neq 0 \right\}$ and $X = \begin{bmatrix} x_1 & y_1 \end{bmatrix}$, $Y = \begin{bmatrix} x_2 & y_2 \end{bmatrix} \in F^2$. Then the

following hold:

(i)
$$P_2(\nabla Q_1(X), \nabla Q_1(Y)) = \frac{1}{2b}\Delta P_1(X, Y).$$

(ii) $Q_2(\nabla Q_1(X)) = \frac{1}{2b}\Delta Q_1(X).$
(iii) $Q_2(MX^t) = \det(M)Q_2(X).$ In particular, if $\det(M) = 1$, then Q_2 is G_2 -invariant.

Proof. The proof is exactly the same as the proof of Theorem 2.17, so the details are omitted. \Box

The next result is an application of Theorem 2.17.

Corollary 2.19. Let $F = \mathbb{R}$. Then the tangent line to the curve $Q_1(X) = x^2 + axy - by^2 = 1$ at the point $X_0 = (x_0, y_0)$ (belonging to the curve) is $P_1(X, X_0) = 1$.

Proof. The tangent line to the curve at X_0 is the line through X_0 whose slope is

$$m = \frac{\frac{-\partial Q_1}{\partial x}(X_0)}{\frac{\partial Q_1}{\partial y}(X_0)} = \frac{(2x_0 + ay_0)}{(2by_0 - ax_0)}.$$

Calculations give an equation to the tangent line that is $P_1(X, X_0) = 1$. \Box

In the remainder of this section, we focus on the case of $F = \mathbb{R}$, and to obtain the main result (Theorem 2.24), we will use [3, Chapter I], [6], and [10]. Remember that by Corollary 2.4, we have

$$\mathbb{G} = \left\{ M = \begin{bmatrix} x & y \\ by & x + ay \end{bmatrix} : x, y \in \mathbb{R}, \det(M) = 1 \right\} = SL(2, \mathbb{R}) \cap \mathbb{M}_{\mathbb{R}}.$$
(9)

Remark 2.20. Remember that the roots of the equation $x^2 = ax + b$ are ω_1 , $\omega_2 = \frac{a \pm \sqrt{\Delta}}{2}$, where $\Delta = a^2 + 4b$. If $\Delta < 0$, then ω_1 , $\omega_2 = \frac{a \pm \sqrt{-\Delta i}}{2}$. Let $\lambda_1 = \frac{1}{\omega_1}$ and $\lambda_2 = \frac{1}{\omega_2}$. Then λ_1 , $\lambda_2 = \frac{2}{a \pm \sqrt{-\Delta i}} = u \mp vi$, where u and v are defined in (10). From now on, we let

$$\omega := \omega_2$$
, and $\lambda := \lambda_2 = u + vi$, where, $u = \frac{2a}{a^2 - \Delta} = \frac{a}{-2b}$, and $v = \frac{2\sqrt{-\Delta}}{a^2 - \Delta} = \frac{\sqrt{-\Delta}}{-2b}$. (10)

4678

Since $\Delta < 0$ and $b \neq 0$; we get b < 0. So $\operatorname{Im}(\lambda) = v > 0$, i.e., $\lambda \in H = \{z \in \mathbb{C} : \operatorname{Im}(z) > 0\}$, the upper-half plane. **Definition 2.21.** Let $M = \begin{bmatrix} x & y \\ r & t \end{bmatrix} \in SL(2, \mathbb{R})$ and consider a mapping $T_M : H \to \mathbb{C}$ which $z \mapsto M(z) := \frac{xz+y}{rz+t}$ and let $z_0 \in H$ be fixed. Then we call M a *stabilizer* of z_0 , or equivalently, z_0 is a *fixed point* of M, if $M(z_0) = z_0$.

In the next result, we show that the stabilizers of λ (see (10)) are precisely the elements of G.

Lemma 2.22. λ is a fixed point of a matrix $M \in SL(2, \mathbb{R})$ if and only if $M \in \mathbb{G}$.

Proof. (
$$\Rightarrow$$
) Let $M = \begin{bmatrix} x & y \\ z & t \end{bmatrix} \in SL(2, \mathbb{R})$ such that $M(\lambda) = \frac{x\lambda + y}{z\lambda + t} = \lambda$. Then
$$\frac{x + y\omega}{z + t\omega} = \frac{1}{\omega}, \text{ and so } x\omega + y\omega^2 = z + t\omega$$

Replacing ω^2 with $a\omega + b$ (since $\omega^2 = a\omega + b$) gives z = by, and t = x + ay. Hence, $M \in \mathbb{G}$.

(⇐) Let $M \in \mathbb{G}$. Since det(M) = 1, it follows that x + ay and by cannot be zero at the same time. Now,

$$M(\lambda) = \lambda \Leftrightarrow \frac{x + y\omega}{by + (x + ay)\omega} = \frac{1}{\omega} \Leftrightarrow x\omega + y\omega^2 = by + (x + ay)\omega$$

The last equality holds because $\omega^2 = a\omega + b$. Thus, λ is a fixed point of *M*, and we are done. \Box

Proposition 2.23. The mapping $p : SL(2, \mathbb{R}) \to H$ which $M = \begin{bmatrix} x & y \\ z & t \end{bmatrix} \mapsto M(\lambda)$ is onto and continuous.

Proof. First, we claim that $(zu + t) + zvi \neq 0$. Otherwise, z = 0 and therefore t = 0 which is absurd, since det(M) = 1. Also, $M(\lambda) = \frac{x\lambda+y}{z\lambda+t} = \frac{(xu+y)+xvi}{(zu+t)+zvi} \in H$ because $Im(M(\lambda)) = \frac{v}{(zu+t)^2+(zv)^2} > 0$. Next, for $z = x + yi \in H$ (i.e., y > 0), we set

$$M_{X} = \begin{bmatrix} \sqrt{\frac{y}{v}} & x \sqrt{\frac{v}{y}} - u \sqrt{\frac{y}{v}} \\ 0 & \sqrt{\frac{v}{y}} \end{bmatrix}, \text{ where } X = \begin{bmatrix} x & y \end{bmatrix}.$$
(11)

Now, it is easy to check that $M_X(\lambda) = z$. Thus $p(M_X) = z$, i.e., p is onto. Remember that $SL(2, \mathbb{R})$ is a subspace of \mathbb{R}^4 with the usual topology and $p(M) = M(\lambda)$. Therefore, p is continuous.

For a topological space *X* and a set *Y* with an onto mapping $\pi : X \to Y$, a topology can be induced on *Y*, which is called *the quotient topology*. The space *Y* is called a *quotient space* of *X* and π a *quotient map*. Hence, *V* is open in *Y* if and only if $\pi^{-1}(V)$ is open in *X*. Now, consider $SL(2, \mathbb{R})$ as a subspace of \mathbb{R}^4 with the usual topology, and let $\frac{SL(2,\mathbb{R})}{G}$ denote the family of all cosets of *G* (see (9)) as a quotient space of $SL(2,\mathbb{R})$. Note that *G* is not necessarily a normal subgroup of $SL(2,\mathbb{R})$. Hence, $\frac{SL(2,\mathbb{R})}{G}$ is regarded as a set of cosets of *G*.

that G is not necessarily a normal subgroup of $SL(2, \mathbb{R})$. Hence, $\frac{SL(2, \mathbb{R})}{G}$ is regarded as a set of cosets of G. In [3, Chapter I], the upper-half complex plane *H* with the usual topology is described as a coset space, by $H \sim \frac{SL(2, \mathbb{R})}{SO(2, \mathbb{R})}$, where the special orthogonal group $SO(2, \mathbb{R})$ is the stabilizer of *i* (where $i^2 = -1$). Here, in the next theorem, we present a new description of *H*, where G is the stabilizer of λ , see (10).

Another main result in this section is as follows:

Theorem 2.24. Suppose that $\frac{SL(2,\mathbb{R})}{G}$ is equipped with the quotient topology. Then $\frac{SL(2,\mathbb{R})}{G} \sim H$.

Proof. Define $\varphi : \frac{SL(2,\mathbb{R})}{\mathbb{G}} \to H$ with $\varphi(M\mathbb{G}) = M(\lambda)$. If $M\mathbb{G} = N\mathbb{G}$, then $N^{-1}M\mathbb{G} = \mathbb{G}$ and thus $N^{-1}M \in \mathbb{G}$. By Lemma 2.22, $N^{-1}M(\lambda) = \lambda$ and hence $M(\lambda) = N(\lambda)$, so φ is well-defined. Now, suppose that $\varphi(M\mathbb{G}) = \varphi(N\mathbb{G})$. Hence, $M(\lambda) = N(\lambda)$ and thus $N^{-1}M(\lambda) = \lambda$. Reusing Lemma 2.22 we get $N^{-1}M \in \mathbb{G}$. Therefore, $M\mathbb{G} = N\mathbb{G}$, i.e., φ is one-to-one. To show that φ is onto, for $z = x + yi \in H$, it suffices to choose M_X the same matrix as defined in (11). Hence, $\varphi(M_X\mathbb{G}) = M_X(\lambda) = z$. Let *V* be an open set in *H*. Then $p^{-1}(V)$ is open in $SL(2,\mathbb{R})$

(Proposition 2.23) and hence $\frac{p^{-1}(V)}{G}$ is open in $\frac{SL(2,\mathbb{R})}{G}$. Furthermore, $\varphi^{-1}(V) = \{MG : M(\lambda) \in V\} = \frac{p^{-1}(V)}{G}$. Therefore, φ is continuous. Now, let us define

$$\psi: H \to \frac{SL(2,\mathbb{R})}{\mathbb{G}}$$
 with $\psi(x+yi) = M_X \mathbb{G}$, where M_X is defined in (11). (12)

Also, let $\pi : SL(2, \mathbb{R}) \to \frac{SL(2, \mathbb{R})}{\mathbb{G}}$ be the quotient map and $\psi' : H \to SL(2, \mathbb{R})$ be defined by $\psi'(x + yi) = M_X$. Then $\psi = \pi \circ \psi'$, and it is continuous because both π and ψ' are continuous. Remember that $\varphi(M\mathbb{G}) = M(\lambda) = x + yi \in H$. On the other hand, we have $M_X(\lambda) = x + yi$. So $M\mathbb{G} = M_X\mathbb{G}$ (Lemma 2.22). Thus,

$$(\psi \circ \varphi)(M\mathbf{G}) = (\psi \circ \varphi)(M_X\mathbf{G}) = \psi(x + yi) = M_X\mathbf{G} = M\mathbf{G}$$
, and
 $(\varphi \circ \psi)(x + yi) = \varphi(M_X\mathbf{G}) = M_X(\lambda) = x + yi.$

This yields both $\psi \circ \varphi$ and $\varphi \circ \psi$ are identity maps. So $\psi = \varphi^{-1}$ and hence φ is a homeomorphism. \Box

3. Finding some solutions for the functional equation $f \circ g = g \circ f$

Let $f, g : H \to H$ be continuous functions and $f \circ g$ represents their composition. In this section, we are going to introduce some families of continuous functions f, g from H to H which satisfy the functional equation $f \circ g = g \circ f$. Evidently, the invertible continuous functions f and f^{-1} are the solutions to the equation. Below, we prove that these types of functions are closely related to elements of \mathbb{G} (see (9)). This is also generalized in Theorem 3.3.

Proposition 3.1. Let $T_M : H \to \mathbb{C}$ be defined by $T_M(z) = M(z) = \frac{xz+y}{byz+x+ay}$, where $M = \begin{bmatrix} x & y \\ by & x+ay \end{bmatrix} \in \mathbb{G}$ be fixed (in fact, $T_M : H \to H$) and let $\mathbb{T} = \{T_M : M \in \mathbb{G}\}$. Then \mathbb{T} with the composition of functions is an abelian group. Moreover, $\mathbb{T} \cong \frac{\mathbb{G}}{\mathbb{N}_0}$, where $\mathbb{N}_0 = \{I, -I\}$.

Proof. First, we note that if y = 0, then $x = \pm 1$ because $\det(M) = 1$. Hence, $T_M(z) = z$. Otherwise, it easily follows that $T_M(z) \in H$ (i.e., $\operatorname{Im}(T_M(z)) > 0$) and further T_M is continuous. Let $N = \begin{bmatrix} x' & y' \\ by' & x' + ay' \end{bmatrix} \in \mathbb{G}$. Then

$$(T_M \circ T_N)(z) = T_M \Big(\frac{x'z + y'}{by'z + x' + ay'} \Big) = \frac{x \Big(\frac{x'z + y'}{by'z + x' + ay'} \Big) + y}{by \Big(\frac{x'z + y'}{by'z + x' + ay'} \Big) + x + ay}$$
$$= \frac{(xx' + byy')z + xy' + x'y + ayy'}{(byx' + bxy' + abyy')z + byy' + xx' + ayx' + axy' + a^2yy'} = T_{MN}(z).$$

So \mathbb{T} is closed under the composition of functions. Moreover, it is easily seen that $(T_M)^{-1} = T_{M^{-1}}$, and the identity element in \mathbb{T} is T_I . Therefore, \mathbb{T} is a group. Now, since \mathbb{G} is abelian, we have MN = NM and hence

$$T_M \circ T_N = T_{MN} = T_{NM} = T_N \circ T_M.$$

This yields \mathbb{T} is abelian. To establish the second assertion, consider the mapping $\varphi : \mathbb{G} \to \mathbb{T}$ with $\varphi(M) = T_M$. So φ is an epimorphism. Let $M \in \ker(\varphi)$. Since T_M is the identity map, we obtain $\frac{xz+y}{byz+x+ay} = z$. From $b \neq 0$, we get y = 0. Now, det(M) = 1 yields $x = \pm 1$ and thus $M = \pm I$. Hence, $\ker(\varphi) \subseteq \mathbb{N}_0$. Moreover, $\mathbb{N}_0 \subseteq \ker(\varphi)$. Therefore, $\frac{\mathbb{G}}{\mathbb{N}_0} \cong \mathbb{T}$. \Box

Corollary 3.2. *Every two elements of* \mathbb{T} *are solutions for the equation* $f \circ g = g \circ f$ *.*

The main result of this section is the next theorem, which generalizes Proposition 3.1.

Theorem 3.3. Let $u : H \to H$ be an invertible continuous function and T_M , T_N be as defined in Proposition 3.1. Define $f(z) = u^{-1}(T_M(u(z)))$, briefly, $f = u^{-1}(T_M(u))$, and $g = u^{-1}(T_N(u))$. Then $f \circ g = g \circ f$.

4680

Proof. By Proposition 3.1, T_M and T_N , and therefore, f and g are continuous. Now, the proof is as follows:

$$\begin{split} (f \circ g)(z) &= f\left(g(z)\right) = f\left(u^{-1}(T_N(u))\right) \\ &= f\left(u^{-1}\left(\frac{x'u+y'}{by'u+x'+ay'}\right)\right) \\ &= u^{-1}\left(\frac{xu(u^{-1}\left(\frac{x'u+y'}{by'u+x'+ay'}\right)) + y}{byu(u^{-1}\left(\frac{x'u+y'}{by'u+x'+ay'}\right)) + x + ay}\right) \\ &= u^{-1}\left(\frac{x\left(\frac{x'u+y'}{by'u+x'+ay'}\right) + y}{by\left(\frac{x'u+y'}{by'u+x'+ay'}\right) + x + ay}\right) \\ &= u^{-1}\left(\frac{xx'u+xy'+byy'u+x'y+ayy'u+xy'+ayy'}{by'xu+byy'u+abyy'u+xx'+ax'y+axy'+a^2yy'}\right) \\ &= u^{-1}\left(\frac{x'\left(\frac{xu+y}{byu+x+ay}\right) + y'}{by'\left(\frac{xu+y}{byu+x+ay}\right) + x'+ay'}\right) \\ &= u^{-1}\left(\frac{x'u(u^{-1}\left(\frac{xu+y}{byu+x+ay}\right)) + y'}{by'u(u^{-1}\left(\frac{xu+y}{byu+x+ay}\right)) + x'+ay'}\right) \\ &= u^{-1}\left(T_N(f(z))\right) \\ &= (g \circ f)(z). \end{split}$$

An immediate consequence of the above theorem is given below:

Corollary 3.4. Let $u : H \to H$ be an invertible continuous function and let

$$\mathbb{T}_u = \left\{ u^{-1} \big(T_M(u) \big) : M \in \mathbb{G} \right\}.$$

Then every pair of elements of \mathbb{T}_u satisfy the equation $f \circ g = g \circ f$. In particular, if u is the identity map, then $\mathbb{T}_u = \mathbb{T}$ (Proposition 3.1).

Acknowledgments

We thank the editor and referee(s) for evaluation and helpful comments on an earlier draft of this paper.

References

- [1] A.R. Aliabad, R. Mohamadian, S. Nazari, On regular ideals in reduced rings, Filomat 31 (2017) 3715–3726.
- [2] R. Engelking, General Topology, Sigma Ser. Pure Math., Vol. 6, Heldermann Verlag, Berlin, 1989.
- [3] E. Freitag, Hilbert Modular Forms, Springer-Verlag Berlin Heidelberg, 1990.
- [4] L. Gillman, M. Jerison, Rings of Continuous Functions, Springer-Verlag, Berlin/Heidelberg/New York, 1976.
- [5] O.T. Izhboldin, N.A. Karpenko, Some new examples in the theory of quadratic forms, Math. Z. 234 (2000) 647-695.
- [6] J. Jorgenson, S. Lang, Spherical Inversion on $SL(n, \mathbb{R})$, Springer Verlag, New York, 2001.
- [7] O.A.S. Karamzadeh, Z. Keshtkar, On c-realcompact spaces, Quaest. Math. 41 (2018) 1135–1167.
- [8] Y. Kitaoka, Arithmetic of Quadratic Forms, Cambridge University Press, 1993.
- [9] T.Y. Lam, Introduction to Quadratic Forms over Fields, AMS, 2005.
- [10] S. Lang, $SL_2(\mathbb{R})$, Springer Verlag, New York, 1998.
- [11] B. Martos, Subdefinite matrices and quadratic forms, SIAM J. Appl. Math. 17 (1969) 1215–1223.
- [12] T. Miyake, Y. Maeda, Modular Forms, Springer Verlag, 1989.

- [13] M. Namdari, A. Veisi, Rings of quotients of the subalgebra of C(X) consisting of functions with countable image, Inter. Math. Forum 7 (2012) 561-571.
- [14] O. T. O'meara, Introduction to Quadratic Forms, Springer-Verlag, New York, 1973.
- [15] A. Pfister, Quadratic Forms with Applications to Algebraic Geometry and Topology, Cambridge University Press, Cambridge; New York, 1995.
- [16] S. Romaguera, P. Tirado, $\alpha \psi$ -contractive type mappings on quasi-metric spaces, Filomat 35 (2021) 1649–1659. [17] A. Veisi, e_c -Filters and e_c -ideals in the functionally countable subalgebra of $C^*(X)$, Appl. Gen. Topol. 20(2) (2019) 395–405.
- [18] A. Veisi, On the *m_c*-topology on the functionally countable subalgebra of *C*(*X*), J. Algeb. Syst. 9 (2022) 335–345.
- [19] A. Veisi, On maximal ideal space of the functionally countable subring of $C(\mathcal{F})$, Jordan J. Math. Stat. 15 (2021) 305–320.
- [20] A. Veisi, Closed ideals the functionally countable subalgebra of C(X), Appl. Gen. Topol. 23 (2022) 79–90.
- [21] A. Veisi, Rings of quotients of the ring consisting of ordered field valued continuous functions with countable range, Filomat 36(20) (2022) 6945-6956.
- [22] A. Veisi, A. Delbaznasab, Metric spaces related to Abelian groups, Appl. Gen. Topol. 22 (2021) 169–181.
- [23] S. Willard, General Topology, Addison Wesly, Reading Mass., 1970.