The structure of F^{2} as an associative algebra via quadratic forms

Amir Veisi ${ }^{\text {a }}$, Ali Delbaznasab ${ }^{\text {b }}$
${ }^{a}$ Faculty of Petroleum and Gas, Yasouj University, Gachsaran, Iran
${ }^{b}$ Department of Mathematics, Shahid Bahonar University of Kerman, Kerman, Iran

Abstract

Let F be a totally ordered field and $\omega \in \bar{F}$ (a field extension of F) be a solution to the equation $x^{2}=a x+b \in F[x]$, where a and b are fixed with $b \neq 0$. With the help of this idea, we convert the F-vector space F^{2} into an associative F-algebra. As far as F^{2} can even be converted into a field. In the next step, based on a quadratic form, we define an inner product on F^{2} with values in F and call it the F-inner product. The defined inner product is mostly studied for its various properties. In particular, when $F=\mathbb{R}$, we show that \mathbb{R}^{2} with the defined product satisfies well-known inequalities such as the Cauchy-Schwarz and the triangle inequality. Under certain conditions, the reverse of recent inequalities is established. Some interesting properties of quadratic forms on F^{2} such as the invariant property are presented. In the sequel, we let $S L(2, \mathbb{R})$ denote the subgroup of $M(2, \mathbb{R})$ that consists of matrices with determinant 1 and set $G=S L(2, \mathbb{R}) \cap \mathbb{M}_{\mathbb{R}}$, where $\mathbb{M}_{\mathbb{R}}$ is the matrix representation of \mathbb{R}^{2}. We then verify the coset space $\frac{S L(2, \mathbb{R})}{G}$ with the quotient topology is homeomorphic to H (the upper-half complex plane) with the usual topology. Finally, we determine some families of functions in $C(H, \mathbb{C})$, the ring consisting of complex-valued continuous functions on H; related to elements of G for which the functional equation $f \circ g=g \circ f$ is satisfied.

1. Introduction and preliminary results

A partially ordered set (in brief, poset) is a set together with a partial order relation \leq satisfying reflexive, antisymmetric, and transitive properties. A totally ordered set is a poset in which every pair of elements x, y are comparable, i.e., $x \leq y$ or $y \leq x$. Hence, a totally ordered set is often referred to as a chain. The notions $\mathbb{N}, \mathbb{Q}, \mathbb{R}$, and \mathbb{C} denote the set of positive integers, rational numbers, real numbers, and complex numbers, respectively. A totally ordered ring is a partially ordered ring (see [4, 0.19]) that is ordered by its ordering relation. So each element is comparable with 0 . A totally ordered field F is a lattice ordered ring that means if $x, y \in F$, then $x \vee y:=\sup \{x, y\} \in F$ (note, the supremum is x or y). Also, $x \wedge y:=\inf \{x, y\}=-(-x \vee-y) \in F$. In particular, $|x|:=x \vee-x \in F$. Whenever F is referred to as a topological space, its topology is the interval topology, i.e., the family of all rays $\{x: x>c\}$ and $\{x: x<d\}(c, d \in F)$ is a subbase for the open sets in F. Hence, the family of all the open intervals $(x, y):=\{z \in F: x<z<y\}$ is a base for the topology. The topological concepts that we need can be found in [2] and [23]. Throughout the paper, F is a totally ordered field with the interval topology, and note that F contains a copy of \mathbb{Q} (Proposition 1.1). For example, \mathbb{R} and every countable subfield of \mathbb{R} are totally ordered fields. If for $0<y \in F$ there is $x \in F$ such that $y=x^{n}$, then x is called the $n^{\text {th }}$ root of y and denoted by $\sqrt[n]{y}$ or $y^{\frac{1}{n}}$ (i.e., $x=y^{\frac{1}{n}}$). Recall that \mathbb{Q} does not satisfy the

[^0]property of $2^{\text {th }}$ root for all $y>0$. But in \mathbb{R}, all nonnegative elements have the same number of square roots. If $0<x<y$, then $x^{n}<y^{n}$, where $n \in \mathbb{N}$. Hence, a positive element has at most one positive $n^{\text {th }}$ root (see Proposition 1.1). A mapping Q of an R-module M to R is called a quadratic form, if $Q(r x)=r^{2} Q(x)$ for each $r \in R$ and $x \in M$; and the mapping $B: M \times M \rightarrow R$ defined by $B(x, y)=Q(x+y)-Q(x)-Q(y)$ is a bilinear symmetric form (see [8, 1.2]). For a deeper discussion of quadratic forms, we refer the reader to [5], [8], [9], [11], [12], [14] and [15].

The paper is organized as follows: In Section 2, with the help of a solution $\omega \in \bar{F}$ of the equation $x^{2}=a x+b \in F[x]$, we convert F^{2} into an associative F-algebra. As far as F^{2} can even be converted into a field. In the next step, based on a quadratic form, we define an inner product on F^{2} with values in F and call it the F-inner product. The defined product is mostly studied for its various properties. In particular, we focus on the case of $F=\mathbb{R}$ and show that \mathbb{R}^{2} with this product satisfies well-known inequalities such as the Cauchy-Schwarz and the triangle inequality. Under certain conditions, the reverse of recent inequalities is established. In the sequel, we let $S L(2, \mathbb{R})$ denote the subgroup of $M(2, \mathbb{R})$ that consists of matrices with determinant 1 . The best general references here are [6] and [10]. Set $\mathbb{G}=S L(2, \mathbb{R}) \cap \mathbb{M _ { \mathbb { R } }}$. We then show that the coset space $\frac{S L(2, \mathbb{R})}{G}$ with the quotient topology is homeomorphic to H (the upper-half complex plane) with the usual topology. In Section 3, we determine some families of functions in $C(H, \mathbb{C})$, the ring consisting of complex-valued continuous functions on H (actually, from H to H); related to elements of \mathbb{G} for which the functional equation $f \circ g=g \circ f$ is satisfied.

Proposition 1.1. ([4, 0.20]) Let D be a totally ordered integral domain. If $0<x<y$, then $x^{n}<y^{n}$, where $n \in \mathbb{N}$. Hence, a positive element has at most one positive $n^{\text {th }}$ root. D contains a natural copy of \mathbb{N}. If D is a totally ordered field, then D contains a copy of \mathbb{Q}.

Proposition 1.2. Let R be a totally ordered commutative ring and $0<x, y \in R$. Then $x<y$ if and only if $x^{n}<y^{n}$ for each $n \in \mathbb{N}$.

Proof. Since R is commutative, we conclude that $x^{n}-y^{n}=(x-y)\left(\sum_{i=1}^{i=n} x^{n-i} y^{i-1}\right)$. Moreover, the last sum is positive. Therefore, $x-y<0$ gives $x^{n}-y^{n}<0$ and vice versa. Actually, $x-y$ and $x^{n}-y^{n}$ have the same sign. It means both are positive or both are negative, and we are done

2. The structure of F^{2} as an associative F-algebra and some of its properties

Let F be a totally ordered field and $a, b \in F$ be fixed with $b \neq 0$. Suppose ω satisfies the equation $x^{2}=a x+b$, i.e., $\omega^{2}=a \omega+b$. If $x^{2}=a x+b$ has a zero in F, then $\omega \in F$. Otherwise, we may assume that ω belongs to a field extension (not necessarily totally ordered) \bar{F} of F. For example, $x^{2}=-1$ with coefficients in $\mathbb{R}(a=0, b=-1)$ has $\omega=i \in \mathbb{C}$ as a zero. Also, $\omega=\sqrt{2} \in \mathbb{R}$ satisfies $x^{2}=2$ with coefficients in \mathbb{Q} ($a=0, b=2$). Now, we define Δ as follows and refer to it often because it plays a crucial role in most results.

$$
\Delta=a^{2}+4 b
$$

Let $F^{2}=\{(x, y): x, y \in F\}$. Then F^{2} with the pointwise addition and the scalar multiplication is a vector space over F. Also, F^{2} can be identified by the set $\{x+y \omega: x, y \in F\}$ via the map $(x, y) \mapsto x+y \omega$. Our goal in this part is to convert the vector space F^{2} into an associative algebra. For $X=(x, y), Y=\left(x^{\prime}, y^{\prime}\right) \in F^{2}$, we put $X=x+y \omega$ and $Y=x^{\prime}+y^{\prime} \omega$. Therefore, $X+Y=x+x^{\prime}+\left(y+y^{\prime}\right) \omega$ and $\lambda X=\lambda x+\lambda y \omega(\lambda \in F)$. Also, $X \times Y$ represents the product of X and Y and is defined by the following relation,

$$
\begin{align*}
X \times Y=(x+y \omega)\left(x^{\prime}+y^{\prime} \omega\right) & =x x^{\prime}+\left(x y^{\prime}+y x^{\prime}\right) \omega+y y^{\prime} \omega^{2} \\
& =x x^{\prime}+b y y^{\prime}+\left(x y^{\prime}+y x^{\prime}+a y y^{\prime}\right) \omega \\
& =\left(x x^{\prime}+b y y^{\prime}, x y^{\prime}+y x^{\prime}+a y y^{\prime}\right) . \tag{*}
\end{align*}
$$

Note that $X \times Y=Y \times X$. In particular, if $F=\mathbb{R}, a=0$ and $b=-1$, then the above multiplication agrees with the multiplication in \mathbb{C}. From now on, the matrix $\left[\begin{array}{ll}x & y\end{array}\right]$ is used instead of the ordered pair (x, y).

Proposition 2.1. Let $M(2, F)$ be the ring of all 2-square matrices over F and $\operatorname{SL}(2, F)=\{A \in M(2, F): \operatorname{det}(A)=1\}$. Then $H:=\left\{\left[\begin{array}{ll}1 & c \\ 0 & 1\end{array}\right]: c \in F\right\}$ and $K:=\left\{\left[\begin{array}{ll}1 & 0 \\ d & 1\end{array}\right]: d \in F\right\}$ are abelian subgroups of $S L(2, F)$. Furthermore, $H \cong F \cong K$ as groups.

Theorem 2.2. Let $\mathbb{M}_{F}=\left\{\left[\begin{array}{cc}x & y \\ b y & x+a y\end{array}\right]: x, y \in F\right\}$. Then \mathbb{M}_{F} is an F-subalgebra of $M(2, F)$. Moreover, $F^{2} \cong \mathbb{M}_{F}$ as algebras.

Proof. Let $A=\left[\begin{array}{cc}x & y \\ b y & x+a y\end{array}\right], B=\left[\begin{array}{cc}x^{\prime} & y^{\prime} \\ b y^{\prime} & x^{\prime}+a y^{\prime}\end{array}\right] \in \mathbb{M}_{F}$. Then $-A, A+B \in \mathbb{M}_{F}$. Also,

$$
A B=\left[\begin{array}{cc}
x x^{\prime}+b y y^{\prime} & x y^{\prime}+y x^{\prime}+a y y^{\prime} \\
b\left(y x^{\prime}+x y^{\prime}+a y y^{\prime}\right) & x x^{\prime}+b y y^{\prime}+a\left(x y^{\prime}+y x^{\prime}+a y y^{\prime}\right)
\end{array}\right] \in \mathbb{M}_{F} .
$$

Moreover, $1_{\mathbb{M}_{F}}=1_{M(2, F)}=I$, the identity matrix. Therefore, \mathbb{M}_{F} is a subring of $M(2, F)$. Since $r A \in \mathbb{M}_{F}$, for every $r \in F$, we infer that \mathbb{M}_{F} is an F-subalgebra of $M(2, F)$. Now, let us define

$$
\varphi: F^{2} \rightarrow \mathbb{M}_{F} \text { by } \varphi(X)=\left[\begin{array}{cc}
x & y \\
b y & x+a y
\end{array}\right] \text {, where } X=\left[\begin{array}{ll}
x & y
\end{array}\right] .
$$

Then $\varphi(X+Y)=\varphi(X)+\varphi(Y)$ and $\varphi(r X)=r \varphi(X)$, where $Y=\left[\begin{array}{ll}x^{\prime} & y^{\prime}\end{array}\right]$ and $r \in F$. Moreover,

$$
\begin{aligned}
\varphi(X \times Y) & =\left[\begin{array}{cc}
x x^{\prime}+b y y^{\prime} & x y^{\prime}+y x^{\prime}+a y y^{\prime} \\
b\left(y x^{\prime}+x y^{\prime}+a y y^{\prime}\right) & x x^{\prime}+b y y^{\prime}+a\left(x y^{\prime}+y x^{\prime}+a y y^{\prime}\right)
\end{array}\right](\text { see }(*)) . \text { We also have } \\
\varphi(X) \varphi(Y) & =\left[\begin{array}{cc}
x & y \\
b y & x+a y
\end{array}\right]\left[\begin{array}{cc}
x^{\prime} & y^{\prime} \\
b y^{\prime} & x^{\prime}+a y^{\prime}
\end{array}\right] \\
& =\left[\begin{array}{cc}
x x^{\prime}+b y y^{\prime} & x y^{\prime}+y x^{\prime}+a y y^{\prime} \\
b\left(y x^{\prime}+x y^{\prime}+a y y^{\prime}\right) & x x^{\prime}+b y y^{\prime}+a\left(x y^{\prime}+y x^{\prime}+a y y^{\prime}\right)
\end{array}\right]
\end{aligned}
$$

So $\varphi(X \times Y)=\varphi(X) \varphi(Y)$. Furthermore, φ is one-to-one and onto. This yields φ is an algebra isomorphism.
Remark 2.3. For $X=\left[\begin{array}{ll}x & y\end{array}\right] \in F^{2}$, we may let $\operatorname{det}(X)=\operatorname{det}(\varphi(X))=x^{2}+a x y-b y^{2}$. It easily follows that $\operatorname{det}(X)$ is a quadratic form (see $[8,1.2]$). In the sequel, we will need $\operatorname{det}(X)$ as in the following form.

$$
\begin{align*}
\operatorname{det}(X)=x^{2}+a x y-b y^{2} & =\left(x+\frac{a y}{2}\right)^{2}-\frac{1}{4}\left(a^{2}+4 b\right) y^{2} \tag{1}\\
& =\left(x+\frac{a y}{2}\right)^{2}-\frac{1}{4} \Delta y^{2} . \tag{2}
\end{align*}
$$

The next result is now immediate.
Corollary 2.4. For every $A, B \in \mathbb{M}_{F}$, we have $A B=B A$. So every subring of \mathbb{M}_{F} is commutative and every subgroup of \mathbb{M}_{F} with multiplication is abelian. In particular, $\overline{\mathrm{G}}:=\left\{M \in \mathbb{M}_{F}: \operatorname{det}(M) \neq 0\right\}$, and $\mathbb{G}:=\left\{M \in \mathbb{M}_{F}: \operatorname{det}(M)=1\right\}$ are subgroups of \mathbb{M}_{F}. Moreover, \mathbb{G} is a normal subgroup of $\overline{\mathbb{G}}$, and further, $\mathbb{G}=S L(2, F) \cap \mathbb{M}_{F}$.
Proposition 2.5. Let G and $\overline{\mathrm{G}}$ be as defined in Corollary 2.4, and let $F=\mathbb{R}$. Then the following hold:
(i) If $\Delta=a^{2}+4 b<0$, then $\frac{\overline{\mathrm{G}}}{\mathrm{G}} \cong \mathbb{R}^{+} \cong \frac{\mathbb{R} \backslash\{0 \mid}{[1,-1 \mid}$.
(ii) If $\Delta>0$, then $\frac{\overline{\mathrm{G}}}{\mathrm{G}} \cong \mathbb{R} \backslash\{0\}$.

Proof. First, we note that $\mathbb{R} \backslash\{0\}$ and $\mathbb{R}^{+}:=\{r \in \mathbb{R}: r>0\}$ are multiplicative abelian groups with the same identity element 1.
(i) Define $\psi_{1}: \overline{\mathbb{G}} \rightarrow \mathbb{R}^{+}$with $\psi_{1}(M)=\operatorname{det}(M)$ (note, $\Delta<0$ gives $\operatorname{det}(M)>0$). So ψ_{1} is a homomorphism and $\operatorname{ker}\left(\psi_{1}\right)=G$. Now, if $r>0$ and $X=\left[\begin{array}{ll}\sqrt{r} & 0\end{array}\right]$, then $\psi_{1}(X)=r$, i.e., ψ_{1} is onto. For the second assertion, consider $\psi: \mathbb{R} \backslash\{0\} \rightarrow \mathbb{R}^{+}$with $\psi(r)=|r|$. Hence, ψ is onto and $\operatorname{ker}(\psi)=\{-1,1\}$.
(ii) Define $\psi_{2}: \bar{G} \rightarrow \mathbb{R} \backslash\{0\}$ like ψ_{1}, i.e., $\psi_{2}(M)=\operatorname{det}(M)$. So ψ_{2} is a homomorphism and $\operatorname{ker}\left(\psi_{2}\right)=\mathbb{G}$. If $r>0$, then we choose X as the same matrix in part (i), and if $r<0$, then we take $x+\frac{1}{2} a y=0$ and $\frac{-1}{4} \Delta y^{2}=r$, and let $X=\left[\begin{array}{ll}x & y\end{array}\right]$ for which x and y satisfy the latter equation. Then in both cases $\psi_{2}(X)=r$, i.e., ψ_{2} is onto, which completes the proof.

Theorem 2.6. Let $\Delta<0$. Then \mathbb{M}_{F} (and hence F^{2}) is a field.
Proof. According to Corollary 2.4, \mathbb{M}_{F} (and hence F^{2}) is a commutative ring. Let $0 \neq M=\left[\begin{array}{cc}x & y \\ b y & x+a y\end{array}\right] \in \mathbb{M}_{F}$. We claim that $\operatorname{det}(M) \neq 0$ (and thus by $(2), \operatorname{det}(M)>0$). Otherwise, $\operatorname{det}(M)=0$ gives

$$
0 \leq\left(x+\frac{a y}{2}\right)^{2}=\frac{1}{4} \Delta y^{2} \leq 0
$$

Therefore, $y=0$ and hence $x=0$, which implies that $M=0$. So every non-zero element of \mathbb{M}_{F} is invertible, meaning that \mathbb{M}_{F}, as well as F^{2}, is a field.

Definition 2.7. Let V be an F-vector space and a map $\varphi: V \times V \rightarrow F$ provides all the requirements of an inner product. Then, we call the pair (V, φ) or simply V an F-inner product space over F and φ the F-inner product.

Example 2.8. Let $P: F^{2} \times F^{2} \rightarrow F$ be defined by

$$
P(X, Y)=\frac{1}{2}\left[2 x_{1} x_{2}+a\left(x_{1} y_{2}+y_{1} x_{2}\right)-2 b y_{1} y_{2}\right], \text { where } X=\left[\begin{array}{ll}
x_{1} & y_{1}
\end{array}\right], \text { and } Y=\left[\begin{array}{ll}
x_{2} & y_{2} \tag{3}
\end{array}\right]
$$

If $\Delta<0$, then it is easy to verify that P is an F-inner product, and thus F^{2} is an F-inner product space.
Theorem 2.9. Let P be as defined in Example 2.8. Then the following hold:
(i) $P(X+Y, X+Y)+P(X-Y, X-Y)=2 P(X, X)+2 P(Y, Y)$.
(ii) $P(X+Y, X+Y)-P(X-Y, X-Y)=4 P(X, Y)$.
(iii) If $\Delta=a^{2}+4 b \leq 0$, then $P(X, X)=\operatorname{det}(X) \geq 0$.
(iv) If $\Delta \leq 0$, then $P^{2}(X, Y) \leq P(X, X) P(Y, Y)$.
(v) If $\Delta \geq 0$, then $P^{2}(X, Y) \geq P(X, X) P(Y, Y)$.
(vi) $P^{2}(X, Y)=P(X, X) P(Y, Y)$ if and only if $\Delta=0$ or $X=\lambda Y$ for some $\lambda \in F$.

Proof. (i)-(ii). Since the mapping P is bilinear, it follows that

$$
\begin{align*}
& P(X+Y, X+Y)=P(X, X)+P(Y, Y)+2 P(X, Y), \text { and } \tag{4}\\
& P(X-Y, X-Y)=P(X, X)+P(Y, Y)-2 P(X, Y) \tag{5}
\end{align*}
$$

The results are now obtained by adding and subtracting recent expressions respectively.
(iii) It follows from (2).
(iv) First, we let

$$
\begin{equation*}
\mathcal{A}=P(X, X) P(Y, Y)-P^{2}(X, Y) \tag{6}
\end{equation*}
$$

and then calculate as follows:

$$
\begin{aligned}
\mathcal{A}= & \left(x_{1}^{2}+a x_{1} y_{1}-b y_{1}^{2}\right)\left(x_{2}^{2}+a x_{2} y_{2}-b y_{2}^{2}\right) \\
& -\frac{1}{4}\left[2 x_{1} x_{2}+a\left(x_{1} y_{2}+y_{1} x_{2}\right)-2 b y_{1} y_{2}\right]^{2} \\
= & x_{1}^{2} x_{2}^{2}+a x_{1}^{2} x_{2} y_{2}-b x_{1}^{2} y_{2}^{2}+a x_{1} y_{1} x_{2}^{2} \\
& +a^{2} x_{1} y_{1} x_{2} y_{2}-a b x_{1} y_{1} y_{2}^{2}-b y_{1}^{2} x_{2}^{2}-a b y_{1}^{2} x_{2} y_{2} \\
& +b^{2} y_{1}^{2} y_{2}^{2}-\frac{1}{4}\left[4 x_{1}^{2} x_{2}^{2}+a^{2} x_{1}^{2} y_{2}^{2}+a^{2} y_{1}^{2} x_{2}^{2}\right. \\
& +4 b^{2} y_{1}^{2} y_{2}^{2}+4 a x_{1}^{2} x_{2} y_{2}+4 a x_{1} y_{1} x_{2}^{2}-4 b x_{1} y_{1} x_{2} y_{2} \\
& \left.+2 a^{2} x_{1} y_{1} x_{2} y_{2}-4 a b x_{1} y_{1} y_{2}^{2}-4 a b y_{1}^{2} x_{2} y_{2}\right] \\
= & -\left(x_{1} y_{2}-y_{1} x_{2}\right)^{2} \Delta .
\end{aligned}
$$

We summarize the above calculations as follows:

$$
\begin{equation*}
\mathcal{A}=-\left(x_{1} y_{2}-y_{1} x_{2}\right)^{2} \Delta . \tag{7}
\end{equation*}
$$

Now, if $\Delta \leq 0$, then $\mathcal{A} \geq 0$ and we reach the claim.
(v) Reusing (7), we obtain $\mathcal{A} \leq 0$ when $\Delta \geq 0$.
(vi) (\Rightarrow) If $\Delta \neq 0$, then $x_{1} y_{2}=y_{1} x_{2}$. We can assume that $Y \neq 0$. If $y_{2} \neq 0$, then we take $\lambda=y_{1} y_{2}^{-1}$, and if $x_{2} \neq 0$, then we take $\lambda=x_{1} x_{2}^{-1}$. So $X=\lambda Y$.
(\Leftarrow) It is obvious.
Remark 2.10. If F is \mathbb{R} or \mathbb{C}, then every inner product induces a norm, called its canonical norm, that is defined in the natural way, by $\|x\|=\sqrt{\langle x x\rangle}$. With this norm, every inner product space becomes a normed vector space. So, every general property of normed vector spaces applies to inner product spaces. But in general, it is not true that every F-inner product induces a norm because the square root $\sqrt{\langle x x\rangle}$ does not necessarily belong to F (for example $F=\mathbb{Q}$).

For $X, Y \in \mathbb{R}^{2}$, we put $P(X, Y)=X \cdot Y$ and $P(X, X)=X \cdot X=\|X\|^{2}$.
Theorem 2.11. Let $X=\left[\begin{array}{ll}x_{1} & y_{1}\end{array}\right], Y=\left[\begin{array}{ll}x_{2} & y_{2}\end{array}\right] \in \mathbb{R}^{2}$. Then the following hold:
(i) $\|X+Y\|^{2}+\|X-Y\|^{2}=2(X \cdot X)+2(Y \cdot Y)$.
(ii) $\|X+Y\|^{2}-\|X-Y\|^{2}=4(X \cdot Y)$.
(iii) If $\Delta \leq 0$, then $\|X\|^{2}=X \cdot X=\operatorname{det}(X) \geq 0$.
(iv) If $\Delta \leq 0$, then $|X \cdot Y| \leq\|X\|\|Y\|$. (the Cauchy-Schwarz inequality)
(v) If $\Delta \geq 0$, then $|X \cdot Y| \geq\|X\|\|Y\|$. (the reverse of Cauchy-Schwarz inequality)
(vi) If $\Delta \leq 0$, then $\|X+Y\| \leq\|X\|+\|Y\|$. (the triangle inequality)
(vii) If $\Delta \geq 0$ and $X \cdot Y \geq 0$, then $\|X+Y\| \geq\|X\|+\|Y\|$. (the reverse of triangle inequality)
(viii) $\|X\|\|Y\|=|X \cdot Y|$ if and only if $\Delta=0$ or $X=\lambda Y$, for some $\lambda \in \mathbb{R}$.

Proof. (i)-(v) and (viii) are obtained by (i)-(v) and (vi) in Theorem 2.9, respectively.
(vi) From (4) we get

$$
\begin{equation*}
\|X+Y\|^{2}=\|X\|^{2}+\|Y\|^{2}+2(X \cdot Y), \text { and }\|X-Y\|^{2}=\|X\|^{2}+\|Y\|^{2}-2(X \cdot Y) \tag{8}
\end{equation*}
$$

Also, Theorem 2.9(iv) implies that

$$
(X \cdot Y)^{2} \leq\|X\|^{2}\|Y\|^{2}, \text { and therefore }|X \cdot Y|=\sqrt{(X \cdot Y)^{2}} \leq \sqrt{\|X\|^{2}\|Y\|^{2}}=\|X\|\|Y\| .
$$

Hence, we obtain

$$
\begin{aligned}
\|X+Y\|^{2}=\|X\|^{2}+\|Y\|^{2}+2(X \cdot Y) & \leq\|X\|^{2}+\|Y\|^{2}+2|X \cdot Y| \\
& \leq\|X\|^{2}+\|Y\|^{2}+2\|X\|\|Y\| \\
& =(\|X\|+\|Y\|)^{2} .
\end{aligned}
$$

So $\|X+Y\| \leq\|X\|+\|Y\|$, meaning that triangle inequality is established.
(vii) Using the assumptions, $\Delta \geq 0, X \cdot Y \geq 0$, and Theorem 2.9(v), we get $X \cdot Y=|X \cdot Y| \geq\|X\|\|Y\|$. The result is now obtained by replacing \leq with \geq in the above calculation, and we are done.
Corollary 2.12. If $\Delta<0$, then the mapping $\|\cdot\|: \mathbb{R}^{2} \rightarrow \mathbb{R}$ which $X \mapsto\|X\|=\sqrt{\operatorname{det}(X)}$ turns \mathbb{R}^{2} into a normed space.

Remark 2.13. Similar to real-valued functions on \mathbb{R}^{2}, the gradient vector (gradient) of $f: F^{2} \rightarrow F$ at a point X_{0} is the vector $\nabla f\left(X_{0}\right)=\left(\frac{\partial f}{\partial x}\left(X_{0}\right), \frac{\partial f}{\partial y}\left(X_{0}\right)\right)$, for brevity, $\nabla f=\left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right)$, obtained by evaluating the partial derivatives of f at X_{0}. If the second derivations of f exist at X_{0}, then we let $J:=d^{2} f=\left[\begin{array}{ll}\frac{\partial^{2} f}{\partial x^{2}} & \frac{\partial^{2} f}{\partial x \partial y} \\ \frac{\partial^{2} f}{\partial x \partial y} & \frac{\partial^{2} f}{\partial y^{2}}\end{array}\right]$ and call it the Jacobean matrix of f.

Proposition 2.14. If $X, Y \in F^{2}$ and Y^{t} denote the transpose of Y, then $2 P(X, Y)=X J Y^{t}$ (see (3)). In particular, $2\|X\|^{2}=X J X^{t}$.

Proof. Let $f: F^{2} \rightarrow F$ be defined by $f(X)=\operatorname{det}(X)=x^{2}+a x y-b y^{2}$, where $X=\left[\begin{array}{ll}x & y\end{array}\right]$ (Remark 2.3). Then $J=\left[\begin{array}{cc}2 & a \\ a & -2 b\end{array}\right]$. Let $X=\left[\begin{array}{ll}x_{1} & y_{1}\end{array}\right], Y=\left[\begin{array}{ll}x_{2} & y_{2}\end{array}\right] \in F^{2}$. Then, with a simple calculation, we get

$$
X J Y^{t}=2 x_{1} x_{2}+a\left(x_{1} y_{2}+y_{1} x_{2}\right)-2 b y_{1} y_{2}=2 P(X, Y)
$$

which gives the result. Also, $X J X^{t}=2 P(X, X)=2\|X\|^{2}$.
Proposition 2.15. Let $M \in M(2, F)$ and $\Delta=a^{2}+4 b \neq 0$.
(i) If $M \in \mathbb{M}_{F}$ (Theorem 2.2), then $M J M^{t}=\operatorname{det}(M) J$.
(ii) $M \in \mathbb{G}=\left\{M \in \mathbb{M}_{F}: \operatorname{det}(M)=1\right\}$ (Corollary 2.4) if and only if $\operatorname{det}(M)>0$ and $M J M^{t}=J$.

Proof. (i) It is straightforward, so we eliminate the proof.
(ii) (\Rightarrow) It follows from (i).
(\Leftarrow) Let $M=\left[\begin{array}{ll}x & y \\ z & t\end{array}\right] \in M(2, F)$ such that $M J M^{t}=J$. Then the assumption, $\operatorname{det}(J)=-\Delta \neq 0$, gives $\operatorname{det}^{2}(M)=1$ and thus $\operatorname{det}(M)=1$. Moreover, from equation $M J=J\left(M^{t}\right)^{-1}$ we obtain $z=b y$ and $t=x+a y$, i.e., $M \in \mathbb{G}$.

Definition 2.16. Let $X=\left[\begin{array}{ll}x_{1} & y_{1}\end{array}\right], Y=\left[\begin{array}{ll}x_{2} & y_{2}\end{array}\right] \in F^{2}$. Then we define

$$
\begin{aligned}
& P_{1}(X, Y)=\frac{1}{2}\left(2 x_{1} x_{2}+a\left(x_{1} y_{2}+x_{2} y_{1}\right)-2 b y_{1} y_{2}\right) \\
& P_{2}(X, Y)=\frac{1}{2}\left(2 x_{1} x_{2}+\frac{a}{b}\left(x_{1} y_{2}+x_{2} y_{1}\right)-\frac{2}{b} y_{1} y_{2}\right) \\
& Q_{1}(X)=P_{1}(X, X)=x_{1}^{2}+a x_{1} y_{1}-b y_{1}^{2}, \text { and } \\
& Q_{2}(X)=P_{2}(X, X)=x_{1}^{2}+\frac{a}{b} x_{1} y_{1}-\frac{y_{1}^{2}}{b} .
\end{aligned}
$$

Notice that the mappings $P_{1}, P_{2}: F^{4} \rightarrow F$, and, $Q_{1}, Q_{2}: F^{2} \rightarrow F$ are continuous. Moreover, if $\Delta<0$, then P_{1} (=P, in Example 2.8) and P_{2} are F-inner products. Also, Q_{1} and Q_{2} are quadratic forms. Furthermore, the gradient vectors of Q_{1} and Q_{2} are as follows.

$$
\begin{aligned}
& \nabla Q_{1}(X)=\left(2 x_{1}+a y_{1}, a x_{1}-2 b y_{1}\right), \text { and } \nabla Q_{1}(Y)=\left(2 x_{2}+a y_{2}, a x_{2}-2 b y_{2}\right) . \\
& \nabla Q_{2}(X)=\left(2 x_{1}+\frac{a}{b} y_{1}, \frac{a}{b} x_{1}-\frac{2}{b} y_{1}\right), \text { and } \nabla Q_{2}(Y)=\left(2 x_{2}+\frac{a}{b} y_{2}, \frac{a}{b} x_{2}-\frac{2}{b} y_{2}\right) .
\end{aligned}
$$

The relations between P_{1} and P_{2} as well as Q_{1} and Q_{2} are presented in the next two theorems.
A quadratic form Q on F^{2} is called G-invariant, if for all $A \in G$ and $X \in F^{2}$; we have $Q\left(A X^{t}\right)=Q(X)$, where G is a family of invertible elements of $M(2, F)$ and X^{t} is the transpose of X.

Theorem 2.17. Let $G_{1}=\left\{N=\left[\begin{array}{cc}x & y \\ \frac{y}{b} & x+\frac{a}{b} y\end{array}\right]: \operatorname{det}(N) \neq 0\right\}$ and $X=\left[\begin{array}{ll}x_{1} & y_{1}\end{array}\right], Y=\left[\begin{array}{ll}x_{2} & y_{2}\end{array}\right] \in F^{2}$. Then the following hold:
(i) $P_{1}\left(\nabla Q_{2}(X), \nabla Q_{2}(Y)\right)=\frac{1}{2 b} \Delta P_{2}(X, Y)$.
(ii) $Q_{1}\left(\nabla Q_{2}(X)\right)=\frac{1}{2 b} \Delta Q_{2}(X)$.
(iii) $Q_{1}\left(N X^{t}\right)=\operatorname{det}(N) Q_{1}(X)$. In particular, if $\operatorname{det}(N)=1$, then Q_{1} is G_{1}-invariant.

Proof. (i)

$$
\begin{aligned}
P_{1}\left(\nabla Q_{2}(X), \nabla Q_{2}(Y)\right)= & \frac{1}{2}\left[2\left(2 x_{1}+\frac{a}{b} y_{1}\right)\left(2 x_{2}+\frac{a}{b} y_{2}\right)+a\left[\left(2 x_{1}+\frac{a}{b} y_{1}\right)\right.\right. \\
& \left.\times\left(\frac{a}{b} x_{2}-\frac{2}{b} y_{2}\right)+\left(2 x_{2}+\frac{a}{b} y_{2}\right)\left(\frac{a}{b} x_{1}-\frac{2}{b} y_{1}\right)\right] \\
& \left.-2 b\left(\frac{a}{b} x_{1}-\frac{2}{b} y_{1}\right)\left(\frac{a}{b} x_{2}-\frac{2}{b} y_{2}\right)\right] \\
= & \frac{1}{2}\left[\left(8+\frac{2 a^{2}}{b}+\frac{2 a^{2}}{b}-\frac{2 a^{2}}{b}\right) x_{1} x_{2}+\left(\frac{4 a}{b}-\frac{4 a}{b}\right.\right. \\
& \left.+\frac{a^{3}}{b^{2}}+\frac{4 a}{b}\right) x_{1} y_{2}+\left(\frac{4 a}{b}+\frac{a^{3}}{b^{2}}+\frac{-4 a}{b}+\frac{4 a}{b}\right) x_{2} y_{1} \\
& \left.+\left(\frac{2 a^{2}}{b^{2}}+\frac{-2 a^{2}}{b^{2}}+\frac{-2 a^{2}}{b^{2}}+\frac{-8}{b}\right) y_{1} y_{2}\right] \\
= & \frac{1}{2}\left(\frac{a^{2}+4 b}{b}\right)\left[2 x_{1} x_{2}+\left(x_{1} y_{2}+y_{1} x_{2}\right) \frac{a}{b}-\frac{2}{b} y_{1} y_{2}\right] \\
= & \frac{1}{2}\left(\frac{a^{2}+4 b}{b}\right) P_{2}(X, Y) \\
= & \frac{1}{2 b} \Delta P_{2}(X, Y) .
\end{aligned}
$$

(ii) By (i), we have

$$
\begin{aligned}
Q_{1}\left(\nabla Q_{2}(X)\right) & =P_{1}\left(\nabla Q_{2}(X), \nabla Q_{2}(X)\right) \\
& =\frac{1}{2 b} \Delta P_{2}(X, X)=\frac{1}{2 b} \Delta Q_{2}(X)
\end{aligned}
$$

(iii) If X^{t} is the transpose of X, then $N X^{t}=\left[\begin{array}{c}x x_{1}+y y_{1} \\ \frac{y}{b} x_{1}+x y_{1}+\frac{a}{b} y y_{1}\end{array}\right]$, and $Q_{1}\left(X^{t}\right)=Q_{1}(X)=x_{1}^{2}+a x_{1} y_{1}-b y_{1}^{2}$.

Therefore,

$$
\begin{aligned}
Q_{1}\left(N X^{t}\right)= & \left(x x_{1}+y y_{1}\right)^{2}+a\left(x x_{1}+y y_{1}\right)\left(\frac{y}{b} x_{1}+x y_{1}+\frac{a}{b} y y_{1}\right) \\
& -b\left(\frac{y}{b} x_{1}+x y_{1}+\frac{a}{b} y y_{1}\right)^{2} \\
= & \left(x x_{1}\right)^{2}+\left(y y_{1}\right)^{2}+2 x x_{1} y y_{1}+a\left[x x_{1}^{2} \frac{y}{b}+x^{2} x_{1} y_{1}+\frac{a}{b} x x_{1} y y_{1}\right. \\
& \left.+\frac{y^{2}}{b} x_{1} y_{1}+x y y_{1}^{2}+\frac{a}{b} y^{2} y_{1}^{2}\right]-b\left[x_{1}^{2} \frac{y^{2}}{b^{2}}+x^{2} y_{1}^{2}+\frac{a^{2}}{b^{2}} y^{2} y_{1}^{2}\right. \\
& \left.+\frac{2}{b} x x_{1} y y_{1}+\frac{2 a}{b^{2}} x_{1} y_{1} y^{2}+\frac{2 a}{b} x y y_{1}^{2}\right] \\
= & {\left[x^{2}+\frac{a}{b} x y-\frac{y^{2}}{b}\right] x_{1}^{2}+\left[2 x y+a x^{2}+\frac{a^{2}}{b} x y+\frac{a}{b} y^{2}-2 x y\right.} \\
& \left.-\frac{2 a}{b} y^{2}\right] x_{1} y_{1}+\left[y^{2}+a x y+\frac{a^{2}}{b} y^{2}-b x^{2}-\frac{a^{2}}{b} y^{2}-2 a x y\right] y_{1}^{2} \\
= & \left(x^{2}+\frac{a}{b} x y-\frac{y^{2}}{b}\right)\left(x_{1}^{2}+a x_{1} y_{1}-b y_{1}^{2}\right) \\
= & \operatorname{det}(N) Q_{1}(X) .
\end{aligned}
$$

The second assertion is now obvious.
Theorem 2.18. Let $G_{2}=\left\{M=\left[\begin{array}{cc}x & y \\ b y & x+a y\end{array}\right]: \operatorname{det}(M) \neq 0\right\}$ and $X=\left[\begin{array}{ll}x_{1} & y_{1}\end{array}\right], Y=\left[\begin{array}{ll}x_{2} & y_{2}\end{array}\right] \in F^{2}$. Then the following hold:
(i) $P_{2}\left(\nabla Q_{1}(X), \nabla Q_{1}(Y)\right)=\frac{1}{2 b} \Delta P_{1}(X, Y)$.
(ii) $Q_{2}\left(\nabla Q_{1}(X)\right)=\frac{1}{2 b} \Delta Q_{1}(X)$.
(iii) $Q_{2}\left(M X^{t}\right)=\operatorname{det}(M) Q_{2}(X)$. In particular, if $\operatorname{det}(M)=1$, then Q_{2} is G_{2}-invariant.

Proof. The proof is exactly the same as the proof of Theorem 2.17, so the details are omitted.
The next result is an application of Theorem 2.17.
Corollary 2.19. Let $F=\mathbb{R}$. Then the tangent line to the curve $Q_{1}(X)=x^{2}+a x y-b y^{2}=1$ at the point $X_{0}=\left(x_{0}, y_{0}\right)$ (belonging to the curve) is $P_{1}\left(X, X_{0}\right)=1$.
Proof. The tangent line to the curve at X_{0} is the line through X_{0} whose slope is

$$
m=\frac{\frac{-\partial Q_{1}}{\partial x}\left(X_{0}\right)}{\frac{\partial Q_{1}}{\partial y}\left(X_{0}\right)}=\frac{\left(2 x_{0}+a y_{0}\right)}{\left(2 b y_{0}-a x_{0}\right)}
$$

Calculations give an equation to the tangent line that is $P_{1}\left(X, X_{0}\right)=1$.
In the remainder of this section, we focus on the case of $F=\mathbb{R}$, and to obtain the main result (Theorem 2.24), we will use [3, Chapter I], [6], and [10]. Remember that by Corollary 2.4, we have

$$
\mathfrak{G}=\left\{M=\left[\begin{array}{cc}
x & y \tag{9}\\
b y & x+a y
\end{array}\right]: x, y \in \mathbb{R}, \operatorname{det}(M)=1\right\}=S L(2, \mathbb{R}) \cap \mathbb{M}_{\mathbb{R}}
$$

Remark 2.20. Remember that the roots of the equation $x^{2}=a x+b$ are $\omega_{1}, \omega_{2}=\frac{a \pm \sqrt{\Delta}}{2}$, where $\Delta=a^{2}+4 b$. If $\Delta<0$, then $\omega_{1}, \omega_{2}=\frac{a \pm \sqrt{-\Delta} i}{2}$. Let $\lambda_{1}=\frac{1}{\omega_{1}}$ and $\lambda_{2}=\frac{1}{\omega_{2}}$. Then $\lambda_{1}, \lambda_{2}=\frac{2}{a \pm \sqrt{-\Delta i}}=u \mp v i$, where u and v are defined in (10). From now on, we let

$$
\begin{equation*}
\omega:=\omega_{2}, \text { and } \lambda:=\lambda_{2}=u+v i, \text { where, } u=\frac{2 a}{a^{2}-\Delta}=\frac{a}{-2 b}, \text { and } v=\frac{2 \sqrt{-\Delta}}{a^{2}-\Delta}=\frac{\sqrt{-\Delta}}{-2 b} . \tag{10}
\end{equation*}
$$

Since $\Delta<0$ and $b \neq 0$; we get $b<0$. So $\operatorname{Im}(\lambda)=v>0$, i.e., $\lambda \in H=\{z \in \mathbb{C}: \operatorname{Im}(z)>0\}$, the upper-half plane.
Definition 2.21. Let $M=\left[\begin{array}{ll}x & y \\ r & t\end{array}\right] \in S L(2, \mathbb{R})$ and consider a mapping $T_{M}: H \rightarrow \mathbb{C}$ which $z \mapsto M(z):=\frac{x z+y}{r z+t}$ and let $z_{0} \in H$ be fixed. Then we call M a stabilizer of z_{0}, or equivalently, z_{0} is a fixed point of M, if $M\left(z_{0}\right)=z_{0}$.

In the next result, we show that the stabilizers of λ (see (10)) are precisely the elements of G.
Lemma 2.22. λ is a fixed point of a matrix $M \in S L(2, \mathbb{R})$ if and only if $M \in \mathbb{G}$.
Proof. (\Rightarrow) Let $M=\left[\begin{array}{ll}x & y \\ z & t\end{array}\right] \in S L(2, \mathbb{R})$ such that $M(\lambda)=\frac{x \lambda+y}{z \lambda+t}=\lambda$. Then

$$
\frac{x+y \omega}{z+t \omega}=\frac{1}{\omega}, \text { and so } x \omega+y \omega^{2}=z+t \omega
$$

Replacing ω^{2} with $a \omega+b$ (since $\omega^{2}=a \omega+b$) gives $z=b y$, and $t=x+a y$. Hence, $M \in \mathbb{G}$.
(\Leftarrow) Let $M \in \mathbb{G}$. Since $\operatorname{det}(M)=1$, it follows that $x+a y$ and $b y$ cannot be zero at the same time. Now,

$$
M(\lambda)=\lambda \Leftrightarrow \frac{x+y \omega}{b y+(x+a y) \omega}=\frac{1}{\omega} \Leftrightarrow x \omega+y \omega^{2}=b y+(x+a y) \omega .
$$

The last equality holds because $\omega^{2}=a \omega+b$. Thus, λ is a fixed point of M, and we are done.
Proposition 2.23. The mapping $p: S L(2, \mathbb{R}) \rightarrow H$ which $M=\left[\begin{array}{ll}x & y \\ z & t\end{array}\right] \mapsto M(\lambda)$ is onto and continuous.
Proof. First, we claim that $(z u+t)+z v i \neq 0$. Otherwise, $z=0$ and therefore $t=0$ which is absurd, since $\operatorname{det}(M)=1$. Also, $M(\lambda)=\frac{x \lambda+y}{z \lambda+t}=\frac{(x u+y)+x v i}{(z u+t)+z v i} \in H$ because $\operatorname{Im}(M(\lambda))=\frac{v}{(z u+t)^{2}+(z v)^{2}}>0$. Next, for $z=x+y i \in H$ (i.e., $y>0$), we set

$$
M_{X}=\left[\begin{array}{cc}
\sqrt{\frac{y}{v}} & x \sqrt{\frac{v}{y}}-u \sqrt{\frac{y}{v}} \tag{11}\\
0 & \sqrt{\frac{v}{y}}
\end{array}\right], \text { where } X=\left[\begin{array}{ll}
x & y
\end{array}\right]
$$

Now, it is easy to check that $M_{X}(\lambda)=z$. Thus $p\left(M_{X}\right)=z$, i.e., p is onto. Remember that $S L(2, \mathbb{R})$ is a subspace of \mathbb{R}^{4} with the usual topology and $p(M)=M(\lambda)$. Therefore, p is continuous.

For a topological space X and a set Y with an onto mapping $\pi: X \rightarrow Y$, a topology can be induced on Y, which is called the quotient topology. The space Y is called a quotient space of X and π a quotient map. Hence, V is open in Y if and only if $\pi^{-1}(V)$ is open in X. Now, consider $S L(2, \mathbb{R})$ as a subspace of \mathbb{R}^{4} with the usual topology, and let $\frac{S L(2, \mathbb{R})}{G}$ denote the family of all cosets of \mathbb{G} (see (9)) as a quotient space of $S L(2, \mathbb{R})$. Note that \mathbb{G} is not necessarily a normal subgroup of $S L(2, \mathbb{R})$. Hence, $\frac{S L(2, \mathbb{R})}{\mathbb{G}}$ is regarded as a set of cosets of \mathbb{G}.

In [3, Chapter I], the upper-half complex plane H with the usual topology is described as a coset space, by $H \sim \frac{S L(2, \mathbb{R})}{S O(2, \mathbb{R})}$, where the special orthogonal group $S O(2, \mathbb{R})$ is the stabilizer of i (where $i^{2}=-1$). Here, in the next theorem, we present a new description of H, where G is the stabilizer of λ, see (10).

Another main result in this section is as follows:
Theorem 2.24. Suppose that $\frac{\operatorname{SL}(2, \mathbb{R})}{G}$ is equipped with the quotient topology. Then $\frac{\operatorname{SL}(2, \mathbb{R})}{G} \sim H$.
Proof. Define $\varphi: \frac{S L(2, \mathbb{R})}{G} \rightarrow H$ with $\varphi(M G)=M(\lambda)$. If $M G=N G$, then $N^{-1} M G=\mathbb{G}$ and thus $N^{-1} M \in \mathbb{G}$. By Lemma 2.22, $N^{-1} M(\lambda)=\lambda$ and hence $M(\lambda)=N(\lambda)$, so φ is well-defined. Now, suppose that $\varphi(M G)=\varphi(N G)$. Hence, $M(\lambda)=N(\lambda)$ and thus $N^{-1} M(\lambda)=\lambda$. Reusing Lemma 2.22 we get $N^{-1} M \in \mathbb{G}$. Therefore, $M G=N G$, i.e., φ is one-to-one. To show that φ is onto, for $z=x+y i \in H$, it suffices to choose M_{X} the same matrix as defined in (11). Hence, $\varphi\left(M_{X} \mathbb{G}\right)=M_{X}(\lambda)=z$. Let V be an open set in H. Then $p^{-1}(V)$ is open in $S L(2, \mathbb{R})$
(Proposition 2.23) and hence $\frac{p^{-1}(V)}{G}$ is open in $\frac{S L(2, \mathbb{R})}{G}$. Furthermore, $\varphi^{-1}(V)=\{M G: M(\lambda) \in V\}=\frac{p^{-1}(V)}{G}$. Therefore, φ is continuous. Now, let us define

$$
\begin{equation*}
\psi: H \rightarrow \frac{S L(2, \mathbb{R})}{G} \text { with } \psi(x+y i)=M_{X} G, \text { where } M_{X} \text { is defined in (11). } \tag{12}
\end{equation*}
$$

Also, let $\pi: S L(2, \mathbb{R}) \rightarrow \frac{S L(2, \mathbb{R})}{G}$ be the quotient map and $\psi^{\prime}: H \rightarrow S L(2, \mathbb{R})$ be defined by $\psi^{\prime}(x+y i)=M_{X}$. Then $\psi=\pi \circ \psi^{\prime}$, and it is continuous because both π and ψ^{\prime} are continuous. Remember that $\varphi(M G)=$ $M(\lambda)=x+y i \in H$. On the other hand, we have $M_{X}(\lambda)=x+y i$. So $M G=M_{X} G$ (Lemma 2.22). Thus,

$$
\begin{aligned}
& (\psi \circ \varphi)(M G)=(\psi \circ \varphi)\left(M_{X} G\right)=\psi(x+y i)=M_{X} G=M G, \text { and } \\
& (\varphi \circ \psi)(x+y i)=\varphi\left(M_{X} G\right)=M_{X}(\lambda)=x+y i .
\end{aligned}
$$

This yields both $\psi \circ \varphi$ and $\varphi \circ \psi$ are identity maps. So $\psi=\varphi^{-1}$ and hence φ is a homeomorphism.

3. Finding some solutions for the functional equation $f \circ g=g \circ f$

Let $f, g: H \rightarrow H$ be continuous functions and $f \circ g$ represents their composition. In this section, we are going to introduce some families of continuous functions f, g from H to H which satisfy the functional equation $f \circ g=g \circ f$. Evidently, the invertible continuous functions f and f^{-1} are the solutions to the equation. Below, we prove that these types of functions are closely related to elements of \mathbb{G} (see (9)). This is also generalized in Theorem 3.3.

Proposition 3.1. Let $T_{M}: H \rightarrow \mathbb{C}$ be defined by $T_{M}(z)=M(z)=\frac{x z+y}{b y z+x+a y}$, where $M=\left[\begin{array}{cc}x & y \\ b y & x+a y\end{array}\right] \in \mathbb{G}$ be fixed (in fact, $T_{M}: H \rightarrow H$) and let $\mathbb{T}=\left\{T_{M}: M \in \mathbb{G}\right\}$. Then \mathbb{T} with the composition of functions is an abelian group. Moreover, $\mathbb{T} \cong \frac{G}{\mathbb{N}_{0}}$, where $\mathbb{N}_{0}=\{I,-I\}$.
Proof. First, we note that if $y=0$, then $x= \pm 1$ because $\operatorname{det}(M)=1$. Hence, $T_{M}(z)=z$. Otherwise, it easily follows that $T_{M}(z) \in H$ (i.e., $\left.\operatorname{Im}\left(T_{M}(z)\right)>0\right)$ and further T_{M} is continuous. Let $N=\left[\begin{array}{cc}x^{\prime} & y^{\prime} \\ b y^{\prime} & x^{\prime}+a y^{\prime}\end{array}\right] \in \mathbb{G}$. Then

$$
\begin{aligned}
\left(T_{M} \circ T_{N}\right)(z) & =T_{M}\left(\frac{x^{\prime} z+y^{\prime}}{b y^{\prime} z+x^{\prime}+a y^{\prime}}\right)=\frac{x\left(\frac{x^{\prime} z+y^{\prime}}{b y^{\prime} z+x^{\prime}+a y^{\prime}}\right)+y}{b y\left(\frac{x^{\prime} z+y^{\prime}}{b y^{\prime} z+x^{\prime}+a y^{\prime}}\right)+x+a y} \\
& =\frac{\left(x x^{\prime}+b y y^{\prime}\right) z+x y^{\prime}+x^{\prime} y+a y y^{\prime}}{\left(b y x^{\prime}+b x y^{\prime}+a b y y^{\prime}\right) z+b y y^{\prime}+x x^{\prime}+a y x^{\prime}+a x y^{\prime}+a^{2} y y^{\prime}}=T_{M N}(z) .
\end{aligned}
$$

So \mathbb{T} is closed under the composition of functions. Moreover, it is easily seen that $\left(T_{M}\right)^{-1}=T_{M^{-1}}$, and the identity element in \mathbb{T} is T_{I}. Therefore, \mathbb{T} is a group. Now, since \mathbb{G} is abelian, we have $M N=N M$ and hence

$$
T_{M} \circ T_{N}=T_{M N}=T_{N M}=T_{N} \circ T_{M}
$$

This yields \mathbb{T} is abelian. To establish the second assertion, consider the mapping $\varphi: \mathbb{G} \rightarrow \mathbb{T}$ with $\varphi(M)=T_{M}$. So φ is an epimorphism. Let $M \in \operatorname{ker}(\varphi)$. Since T_{M} is the identity map, we obtain $\frac{x z+y}{b y z+x+a y}=z$. From $b \neq 0$, we get $y=0$. Now, $\operatorname{det}(M)=1$ yields $x= \pm 1$ and thus $M= \pm I$. Hence, $\operatorname{ker}(\varphi) \subseteq \mathbb{N}_{0}$. Moreover, $\mathbb{N}_{0} \subseteq \operatorname{ker}(\varphi)$. Therefore, $\frac{G}{\mathbb{N}_{0}} \cong \mathbb{T}$.
Corollary 3.2. Every two elements of \mathbb{T} are solutions for the equation $f \circ g=g \circ f$.
The main result of this section is the next theorem, which generalizes Proposition 3.1.
Theorem 3.3. Let $u: H \rightarrow H$ be an invertible continuous function and T_{M}, T_{N} be as defined in Proposition 3.1. Define $f(z)=u^{-1}\left(T_{M}(u(z))\right)$, briefly, $f=u^{-1}\left(T_{M}(u)\right)$, and $g=u^{-1}\left(T_{N}(u)\right)$. Then $f \circ g=g \circ f$.

Proof. By Proposition 3.1, T_{M} and T_{N}, and therefore, f and g are continuous. Now, the proof is as follows:

$$
\begin{aligned}
(f \circ g)(z) & =f(g(z))=f\left(u^{-1}\left(T_{N}(u)\right)\right) \\
& =f\left(u^{-1}\left(\frac{x^{\prime} u+y^{\prime}}{b y^{\prime} u+x^{\prime}+a y^{\prime}}\right)\right) \\
& =u^{-1}\left(\frac{x u\left(u^{-1}\left(\frac{x^{\prime} u+y^{\prime}}{b y^{\prime} u+x^{\prime}+a y^{\prime}}\right)\right)+y}{b y u\left(u^{-1}\left(\frac{x^{\prime} u+y^{\prime}}{b y^{\prime} u+x^{\prime}+a y^{\prime}}\right)\right)+x+a y}\right) \\
& =u^{-1}\left(\frac{x\left(\frac{x^{\prime} u+y^{\prime}}{b y^{\prime} u+x^{\prime}+a y^{\prime}}\right)+y}{b y\left(\frac{x^{\prime} u+y^{\prime}}{b y^{\prime} u+x^{\prime}+a y^{\prime}}\right)+x+a y}\right) \\
& =u^{-1}\left(\frac{x x^{\prime} u+x y^{\prime}+b y y^{\prime} u+x^{\prime} y+a y y^{\prime}}{b y^{\prime} x u+b y y^{\prime}+b x y^{\prime} u+a b y y^{\prime} u+x x^{\prime}+a x^{\prime} y+a x y^{\prime}+a^{2} y y^{\prime}}\right) \\
& =u^{-1}\left(\frac{x^{\prime}\left(\frac{x u+y}{b y u+x+a y}\right)+y^{\prime}}{b y^{\prime}\left(\frac{x u+y}{b y u+x+a y}\right)+x^{\prime}+a y^{\prime}}\right) \\
& =u^{-1}\left(\frac{x^{\prime} u\left(u^{-1}\left(\frac{x u+y}{b y u+x+a y}\right)\right)+y^{\prime}}{b y^{\prime} u\left(u^{-1}\left(\frac{x u+y}{b y u+x+a y}\right)\right)+x^{\prime}+a y^{\prime}}\right) \\
& =u^{-1}\left(T_{N}(f(z))\right) \\
& =(g \circ f)(z) .
\end{aligned}
$$

An immediate consequence of the above theorem is given below:
Corollary 3.4. Let $u: H \rightarrow H$ be an invertible continuous function and let

$$
\mathbb{T}_{u}=\left\{u^{-1}\left(T_{M}(u)\right): M \in \mathbb{G}\right\}
$$

Then every pair of elements of \mathbb{T}_{u} satisfy the equation $f \circ g=g \circ f$. In particular, if u is the identity map, then $\mathbb{T}_{u}=\mathbb{T}$ (Proposition 3.1).

Acknowledgments

We thank the editor and referee(s) for evaluation and helpful comments on an earlier draft of this paper.

References

[1] A.R. Aliabad, R. Mohamadian, S. Nazari, On regular ideals in reduced rings, Filomat 31 (2017) 3715-3726.
[2] R. Engelking, General Topology, Sigma Ser. Pure Math., Vol. 6, Heldermann Verlag, Berlin, 1989.
[3] E. Freitag, Hilbert Modular Forms, Springer-Verlag Berlin Heidelberg, 1990.
[4] L. Gillman, M. Jerison, Rings of Continuous Functions, Springer-Verlag, Berlin/Heidelberg/New York, 1976.
[5] O.T. Izhboldin, N.A. Karpenko, Some new examples in the theory of quadratic forms, Math. Z. 234 (2000) 647-695.
[6] J. Jorgenson, S. Lang, Spherical Inversion on $S L(n, \mathbb{R})$, Springer Verlag, New York, 2001.
[7] O.A.S. Karamzadeh, Z. Keshtkar, On c-realcompact spaces, Quaest. Math. 41 (2018) 1135-1167.
[8] Y. Kitaoka, Arithmetic of Quadratic Forms, Cambridge University Press, 1993.
[9] T.Y. Lam, Introduction to Quadratic Forms over Fields, AMS, 2005.
[10] S. Lang, $S L_{2}(\mathbb{R})$, Springer Verlag, New York, 1998.
[11] B. Martos, Subdefinite matrices and quadratic forms, SIAM J. Appl. Math. 17 (1969) 1215-1223.
[12] T. Miyake, Y. Maeda, Modular Forms, Springer Verlag, 1989.
[13] M. Namdari, A. Veisi, Rings of quotients of the subalgebra of $C(X)$ consisting of functions with countable image, Inter. Math. Forum 7 (2012) 561-571.
[14] O. T. O'meara, Introduction to Quadratic Forms, Springer-Verlag, New York, 1973.
[15] A. Pfister, Quadratic Forms with Applications to Algebraic Geometry and Topology, Cambridge University Press, Cambridge; New York, 1995.
[16] S. Romaguera, P. Tirado, $\alpha-\psi$-contractive type mappings on quasi-metric spaces, Filomat 35 (2021) 1649-1659.
[17] A. Veisi, e_{c}-Filters and e_{c}-ideals in the functionally countable subalgebra of $C^{*}(X)$, Appl. Gen. Topol. 20(2) (2019) 395-405.
[18] A. Veisi, On the m_{c}-topology on the functionally countable subalgebra of $C(X)$, J. Algeb. Syst. 9 (2022) 335-345.
[19] A. Veisi, On maximal ideal space of the functionally countable subring of $C(\mathcal{F})$, Jordan J. Math. Stat. 15 (2021) 305-320.
[20] A. Veisi, Closed ideals the functionally countable subalgebra of C(X), Appl. Gen. Topol. 23 (2022) 79-90.
[21] A. Veisi, Rings of quotients of the ring consisting of ordered field valued continuous functions with countable range, Filomat 36(20) (2022) 6945-6956.
[22] A. Veisi, A. Delbaznasab, Metric spaces related to Abelian groups, Appl. Gen. Topol. 22 (2021) 169-181.
[23] S. Willard, General Topology, Addison Wesly, Reading Mass., 1970.

[^0]: 2020 Mathematics Subject Classification. Primary 54B15; Seconary 15A63
 Keywords. Associative algebra, totally ordered field, quadratic form, F-inner product, quotient topology
 Received: 05 August 2022; Revised: 27 November 2022; Accepted: 31 December 2022
 Communicated by Ljubiša D.R. Kočinac
 Email addresses: aveisi@yu.ac.ir (Amir Veisi), delbaznasab@gmail.com (Ali Delbaznasab)

