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Abstract. The present paper deals with a new generalization of Bleimann-Butzer-Hahn operators that
depends on a real non-negative parameter α and is therefore called the α-Bleimann-Butzer-Hahn operators.
We examined the uniform convergence of the newly defined operators with the help of the Korovkin type
approximation theorem. The rate of convergence is investigated by means of the modulus of continuity and
by Lipschitz type maximal functions. A Voronovskaya type theorem is also obtained and lastly graphical
examples are given in order to illustrate the convergence of the operators to the given functions.

1. Introduction

It was 1980 that Bleimann, Butzer and Hahn introduced a Bernstein type linear positive operators on
C[0,∞), the space of continuous functions on the interval [0,∞).

The Bleimann-Butzer-Hahn operators- shortly written as BBH- were defined by

(Ln f )(x) =
n∑

k=0

(
n
k

)
xk

(1 + x)n f
(

k
n − k + 1

)
, x ≥ 0, n ∈N (1)

and investigated in several different papers. In [7], assuming f ∈ CB[0,∞) ( the space of continuous
and bounded real valued functions defined on [0,∞)) the authors proved the pointwise and uniform
convergence of the operators on [0,∞) and on any compact subset of [0,∞), respectively. In [9], the
monotonicity properties of the BBH operators were examined. In 1999, Gadjiev and Çakar [13] presented
a Korovkin type theorem by using the test functions

(
x

x+1

)ν
, ν = 0, 1, 2. They first defined a special class

of functions -denoted by Hϖ - on some subspace of bounded continuous functions and then proved the
uniform convergence of the sequence of linear positive operators to the functions in Hϖ. They applied this
result to the BBH operators and investigated the uniform convergence result for these operators.

In 1999, Abel and Ivan [1] obtained some results on the BBH operators by using their connection to
the well known Bernstein operators. Altın et al. [4] introduced a bivariate case of the BBH operators
and studied their approximation properties. For some relatively new generalizations of BBH operators we
recommend the papers ([5], [10], [11], [12], [21]).
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Very recently, a new kind of generalization of some well known operators has appeared, which depends
on a nonnegative real parameter α. Unsuprisingly, Bernstein operators were the first to be examined, and
it is followed by Baskakov and Meyer König Zeller operators. Chen et. al. [8] constructed a new family of
Bernstein operators as

Bn,α( f ; x) =
n∑

i=0

p(α)
n,i (x) f

( i
n

)
where

p(α)
n,i (x) =

{
(1 − α)x

(
n − 2

i

)
+ (1 − α) (1 − x)

(
n − 2
i − 2

)
+ α(1 − x)x

(
n
i

)}
xi−1 (1 − x)n−i−1

for x ∈ [0, 1],n ≥ 2.
These operators, henceforth, are known as α-Bernstein operators in the literature. In their paper,

the authors investigated some basic properties of the newly constructed operators; they proved uniform
convergence of the operators and also estimated the error in terms of modulus of continuity. Following
this study, there appeared severel studies on α-Bernstein operators and among them the most recent one
belong to Sofyalıoğlu et.al. [20]. Inspired by α-Bernstein operators, in 2019, Aral and Erbay [6] proposed a
parametric generalization of Baskakov operators and called them α-Baskakov operators. These operators
are defined as, for every f ∈ CB[0,∞)

Ln,α( f ; x) =
∞∑

k=0

p(α)
n,k(x) f

(
k
n

)
where x ∈ [0,∞),n ≥ 1 and

p(α)
n,k(x) =

{
α

x
1 + x

(
n + k − 1

k

)
− (1 − α)(1 + x)

(
n + k − 3

k − 2

)
+ (1 − α)x

(
n + k − 1

k

)}
xk−1

(1 + x)n+k−1
,

with
(n−3
−2

)
=

(n−2
−1

)
= 0. They examined the approximation properties of the operators in detail. Using the

same basis function p(α)
n,k, in 2022, Kajlaa et. al [15] introduced α-Baskakov-Jain operators and studied their

weighted approximation properties.
Very recently M. Sofyalıoğlu et.al. [19] constructed a parametric generalization of Meyer-König-Zeller

operators as

(M(α)
r h)(x) =

∞∑
y=0

B(α)
r,y (x)h

(
y

r + y + 1

)
where r ∈N, 0 ≤ α < 1, x ∈ [0, 1) and

B(α)
r,y (x) =

{
αx(1 − x)

(
r + y

y

)
− (1 − α)

(
r + y − 2

y − 2

)
+ (1 − α)x

(
r + y

y

)}
xy−1(1 − x)r

with
(r−2
−2

)
=

(r−1
−1

)
= 0. The Korovkin type theorem and the rate of convergence of the operators are investi-

gated and graphical analysis is demonstrated in this study. For more information on the approximation of
the operators and estimations for the rate of the convergence of the operators we refer the papers ( [2], [3],
[14], [17], [18]).

The above mentioned studies motivated us to construct a new generalization of BBH operators de-
pending on a real nonnegative parameter α. The paper is arranged in the following way: In Section 2,
α-Bleimann-Butzer-Hahn operators are constructed. In Section 3, approximation properties of these oper-
ators are examined. Section 4 is devoted to the Voronovskaya theorem and in the last section graphical
illustrations are given.
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2. Construction of the operators

For every f ∈ CB[0,∞),we define the parametric form of BBH operators as follows:

(B(α)
n f )(x) =

n∑
k=0

ℓ(α)
n,k(x) f

(
k

n − k + 1

)
(2)

where x ≥ 0,n ∈N and ℓ(α)
n,k(x), is given by

ℓ(α)
n,k(x) =

xk−1

(1 + x)n−1

{
α

x
1 + x

(
n
k

)
+ (1 − α)

(
n − 2
k − 2

)
+ (1 − α)x

(
n − 2

k

)}
(3)

with (
n − 2
−2

)
=

(
n − 2
−1

)
= 0.

For simplicity, we denote the parametric form of BBH operators by α-BBH and one can check that, for
α = 1,

(B(1)
n f )(x) =

n∑
k=0

ℓ(1)
n,k(x) f

(
k

n − k + 1

)

=

n∑
k=0

(
n
k

)
xk

(1 + x)n f
(

k
n − k + 1

)
= (Ln f )(x)

That is, for α = 1, α-BBH operators turn into to the classical BBH operators.

Theorem 2.1. The α-BBH operators given in (2) can also be written in the form

(B(α)
n f )(x) = (1 − α)

n−1∑
k=0

1k

(
n − 1

k

)
xk

(1 + x)n−1 + α
n∑

k=0

hk

(
n
k

)
xk

(1 + x)n (4)

where

hk = f
(

k
n − k + 1

)
(5)

and

1k =

(
1 −

k
n − 1

)
f
(

k
n − k + 1

)
+

k
n − 1

f
(

k + 1
n − k

)
. (6)

Proof. From (2) and (3) we can rewrite the α-BBH operators as

(B(α)
n f )(x) = (1 − α)(p1 + p2) + α

n∑
k=0

(
n
k

)
xk

(1 + x)n f
(

k
n − k + 1

)
(7)

where

p1 =

n∑
k=0

(
n − 2

k

)
xk

(1 + x)n−1 f
(

k
n − k + 1

)
and p2 =

n∑
k=0

(
n − 2
k − 2

)
xk−1

(1 + x)n−1 f
(

k
n − k + 1

)
.
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Note that in p1, the term for k = n and in p2, the term for k = 0 are both zero. So we can rewrite p1 and p2 as

p1 =

n−1∑
k=0

(
n − 2

k

)
xk

(1 + x)n−1 f
(

k
n − k + 1

)
;

(
n − 2
n − 1

)
= 0

and

p2 =

n∑
k=1

(
n − 2
k − 2

)
xk−1

(1 + x)n−1 f
(

k
n − k + 1

)
;

(
n − 2
−1

)
= 0.

Arranging the indices of p2, we get

p2 =

n−1∑
k=0

(
n − 2
k − 1

)
xk

(1 + x)n−1 f
(

k + 1
n − k

)
.

Remember that(
n − 2

k

)
=

(
1 −

k
n − 1

) (
n − 1

k

)
and

(
n − 2
k − 1

)
=

k
n − 1

(
n − 1

k

)
.

Using the above identities, we can write

p1 + p2 =

n−1∑
k=0

[(
1 −

k
n − 1

)
f
(

k
n − k + 1

)
+

k
n − 1

f
(

k + 1
n − k

)] (
n − 1

k

)
xk

(1 + x)n−1

which, substituting into the equation (7) gives the desired representation of α-BBH operators.

Lemma 2.2. For n ∈N, the following identities hold for the operators α-BBH.

B(α)
n (1; x) = 1 (8)

B(α)
n (

t
1 + t

; x) =
n

n + 1
x

1 + x
(9)

B(α)
n (

t2

(1 + t)2 ; x) =
(n − 2) (n + 1) + 2α

(n + 1)2

x2

(1 + x)2 +
n + 2 − 2α

(n + 1)2

x
1 + x

(10)

B(α)
n (

t3

(1 + t)3 ; x) =
(n − 2) [(n + 2) (n − 3) + 6α]

(n + 1)3

x3

(1 + x)3 +
3 (n − 2) (n + 3) − 6α (n − 3)

(n + 1)3

x2

(1 + x)2 (11)

+
n + 6 − 6α

(n + 1)3

x
1 + x

B(α)
n (

t4

(1 + t)4 ; x) =
(n − 2) (n − 3) [(n + 3) (n − 4) + 12α]

(n + 1)4

x4

(1 + x)4 +
6(n − 2)

(
n2 + (1 − 2α) n − 12(1 − α)

)
(n + 1)4

x3

(1 + x)3

+
7n2 + (29 − 36α)n − 86(1 − α)

(n + 1)4

x2

(1 + x)2 +
n + 14(1 − α)

(n + 1)4

x
1 + x

(12)

Proof. The proof of the above lemma is not difficult, yet it involves some complicated calculations. We only
give the proof for the first three identity.
For f (x) = 1, we have 1k = hk = 1 from the equations (5) and (6). Thus it follows

(B(α)
n 1)(x) = (1 − α)

n−1∑
k=0

(
n − 1

k

)
xk

(1 + x)n−1 + α
n∑

k=0

(
n
k

)
xk

(1 + x)n

= (1 − α)Ln−1(1; x) + αLn(1; x)
= 1 − α + α = 1.
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For f (x) = x
1+x ,we have

1k =

(
1 −

k
n − 1

)
f
(

k
n − k + 1

)
+

k
n − 1

f
(

k + 1
n − k

)
=

(
1 −

k
n − 1

)
k

n + 1
+

k
n − 1

k + 1
n + 1

.

Substitution of the above relation into the equation (4), we obtain

B(α)
n (

t
1 + t

; x) = (1 − α)
n−1∑
k=0

(
n.k

n2 − 1

) (
n − 1

k

)
xk

(1 + x)n−1 + α
n∑

k=0

k
n + 1

(
n
k

)
xk

(1 + x)n

= (1 − α)
n−2∑
k=0

( n
n + 1

) (n − 2
k

)
xk+1

(1 + x)n−1 + α
n∑

k=0

k
n + 1

(
n
k

)
xk

(1 + x)n

= (1 − α)
n

n + 1
x

1 + x
+ α

n
n + 1

x
1 + x

from which we get the result. Lastly for f (x) =
x2

(1 + x)2 ,we have

1k =

(
1 −

k
n − 1

)
f
(

k
n − k + 1

)
+

k
n − 1

f
(

k + 1
n − k

)
=

(
1 −

k
n − 1

)
k2

(n + 1)2 +
k

n − 1
(k + 1)2

(n + 1)2 .

Hence we have

B(α)
n (

t2

(1 + t)2 ; x) = (1 − α)
n−1∑
k=0

(n + 1) k2 + k
(n − 1) (n + 1)2

(
n − 1

k

)
xk

(1 + x)n−1 + α
n∑

k=0

k2

(n + 1)2

(
n
k

)
xk

(1 + x)n .

Making the necessary computations yields,

B(α)
n (

t2

(1 + t)2 ; x) = (1−α)
{

n − 2
n + 1

x2

(1 + x)2 +

(
1

n + 1
+

1
(n + 1)2

)
x

1 + x

}
+α

{
n (n − 1)

(n + 1)2

x2

(1 + x)2 +
n

(n + 1)2

x
1 + x

}
.

Arranging the terms we obtain the desired equality.

Remark 2.3. One can see that, B(α)
n (ei; x) = (Ln)(ei; x) for i = 0, 1 where ei =

( t
1 + t

)i
.

The immediate consequence of the above lemma is the following corollary.

Corollary 2.4. The identities given below hold for the operator B(α)
n f .

µαn,1(x) := B(α)
n

( t
1 + t

−
x

1 + x
; x

)
=
−1

n + 1
x

1 + x
(13)

µαn,2(x) := B(α)
n

(( t
1 + t

−
x

1 + x

)2
; x

)
=
−n − 1 + 2α

(n + 1)2

x2

(1 + x)2 +
n + 2 − 2α

(n + 1)2

x
1 + x

(14)
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µαn,4(x) = B(α)
n

(( t
1 + t

−
x

1 + x

)4
; x

)
=

(
(n − 2) (n − 3) [(n − 3) (n − 4) + 12α]

(n + 1)4 −
4(n − 2) [(n − 2) (n + 3) + 6α]

(n + 1)3 +
6(n − 2) (n + 1) + 2α

(n + 1)2

−
4n

n + 1
+ 1

) x4

(1 + x)4

+

6(n − 2)
(
n2 + (1 − 2α) n − 12(1 − α)

)
(n + 1)4 −

4 (n − 2) (n − 3) − 2α (n − 3)

(n + 1)3 +
6 (n + 2 − 2α)

(n + 1)2

 x3

(1 + x)3

+

(
7n2 + (29 + 36α)n − 86(1 − α)

(n + 1)4 −
4(n + 6 − 6α)

(n + 1)3

)
x2

(1 + x)2 +
n + 14(1 − α)

(n + 1)4

x
1 + x

.

3. Approximation properties of the operators

In this section, we will give a Korovkin type theorem and obtain some convergence results of the α-BBH
operators. For this reason, we recall the function ω, a general function of the type of modulus of continuity
that satisfies the following conditions:

(a) ω is a continuous, nonnegative, increasing function on [0,∞),
(b) ω(δ1 + δ2) ≤ ω(δ1) + ω(δ2),
(c) limδ→0 ω(δ) = 0.

Now let us recall the space Hω : Hω indicates the space of all real-valued functions defined on semi axis
[0,∞) and satisfy the condition

∣∣∣ f (x) − f (y)
∣∣∣ ≤ ω (∣∣∣∣∣ x

1 + x
−

y
1 + y

∣∣∣∣∣) (15)

for any x, y ∈ [0,∞).Recall that Hω ⊂ CB[0,∞), where CB[0,∞) is the space of functions f which is continuous
and bounded on [0,∞) endowed with the norm∥∥∥ f

∥∥∥
CB
= sup

x≥0

∣∣∣ f (x)
∣∣∣ .

Gadjiev and Çakar [13] were the first to establish the following Korovkin type theorem for the linear positive
operators acting from Hω to CB[0,∞).

Theorem 3.1. ([13]) If An is the sequence of linear positive operators acting from Hω to CB[0,∞) and satisfy the
three conditions

lim
n→∞

∥∥∥∥∥An

(( t
1 + t

)τ
; x

)
−

( x
1 + x

)τ∥∥∥∥∥
CB

= 0, for τ = 0, 1, 2, (16)

then for any function f ∈ Hω

lim
n→∞

∥∥∥An
(

f
)
− f

∥∥∥
CB
= 0.

Theorem 3.2. Let B(α)
n f be the operator defined in (2). For any f ∈ Hω, we have

lim
n→∞

∥∥∥B(α)
n

(
f
)
− f

∥∥∥
CB
= 0.
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Proof. We have to show that three conditions given in Theorem (3.1) are satisfied. The first condition of
(16), corresponding to τ = 0, is fullfilled for B(α)

n f from (8) in Lemma (2.2).
For τ = 1,we have∥∥∥∥∥B(α)

n

( t
1 + t

; x
)
−

x
1 + x

∥∥∥∥∥
CB

=
∣∣∣∣ n
n + 1

− 1
∣∣∣∣ sup

x≥0

x
1 + x

≤
1

n + 1

which implies the second condition of (16) is fullfilled for B(α)
n f . Lastly for τ = 2, we address the identity

given in (10). We obtain∥∥∥∥∥∥B(α)
n

(( t
1 + t

)2
; x

)
−

( x
1 + x

)2
∥∥∥∥∥∥

CB

=

∣∣∣∣∣∣−3n − 3 + 2α

(n + 1)2

∣∣∣∣∣∣ sup
x≥0

x2

(1 + x)2 +

∣∣∣∣∣∣n + 2 − 2α

(n + 1)2

∣∣∣∣∣∣ sup
x≥0

x
1 + x

≤
3n + 3 + 2α

(n + 1)2 +
n + 2 + 2α

(n + 1)2

=
4n + 5 + 4α

(n + 1)2

which implies that the third condition of (16) is fulfilled for B(α)
n f . Hence the proof of the theorem is

completed.

Theorem 3.3. Let B(α)
n f be an operator defined in (2). For each x ≥ 0 and for any f ∈ Hω, the following inequality

holds: ∣∣∣B(α)
n

(
f ; x

)
− f (x)

∣∣∣ ≤ 2ω
(√
νn(x)

)
where

νn(x) =
2α − n − 1

(n + 1)2

x2

(1 + x)2 +
n + 2 − 2α

(n + 1)2

x
1 + x

. (17)

Proof. Since L(α)
n (1; x) = 1,we have∣∣∣B(α)

n
(

f ; x
)
− f (x)

∣∣∣ ≤ B(α)
n

(∣∣∣ f (t) − f (x)
∣∣∣ ; x

)
.

On the other hand, from the properties of the modulus of continuity function ω, we have∣∣∣ f (t) − f (x)
∣∣∣ ≤ ω

(∣∣∣∣∣ t
1 + t

−
x

1 + x

∣∣∣∣∣)
≤

1 +

∣∣∣ t
1+t −

x
1+x

∣∣∣
δ

ω (δ) .

Applying the operator B(α)
n ( f ) to the above inequality we obtain∣∣∣B(α)

n
(

f ; x
)
− f (x)

∣∣∣ ≤ (
1 +

1
δ

B(α)
n

(∣∣∣∣∣ t
1 + t

−
x

1 + x

∣∣∣∣∣ ; x
))
ω (δ) .

The Cauchy-Schwarz inequality leads to the following inequality,

∣∣∣B(α)
n

(
f ; x

)
− f (x)

∣∣∣ ≤ 1 +
1
δ

[
B(α)

n

(( t
1 + t

−
x

1 + x

)2
; x

)]1/2
ω (δ)

from which, letting νn(x) = −n−1+2α
(n+1)2

x2

(1+x)2 +
n+2−2α
(n+1)2

x
1+x , and choosing δ = (νn(x))1/2, we get the desired result.
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Now, we will investigate the rate of convergence of the operators with the aid of of Lipschitz-type
maximal functions [16]. The space of general Lipschitz type maximal functions space on U ⊂ R+ is denoted
by W̃γ,U and defined as,

W̃γ,U =

{
f : sup (1 + x)γ f̃γ(x, y) ≤M

1(
1 + y

)γ , x ≥ 0, y ∈ U
}

where f is a bounded and continuous function on R+ , M > 0 is a constant, 0 < γ ≤ 1 and f̃γ(x) is the
function given by:

f̃γ(x, t) =

∣∣∣ f (t) − f (x)
∣∣∣

|x − t|γ
.

Let also d(x,U) be the distance between x and U, that is

d(x,U) = inf
{∣∣∣x − y

∣∣∣ : y ∈ U
}
.

Theorem 3.4. Let B(α)
n f be the operator defined in (2). Then for any f ∈ W̃γ,U∣∣∣B(α)

n
(

f ; x
)
− f (x)

∣∣∣ ≤M
(
νγ/2n (x) + 2 (d(x,U))γ

)
(18)

where νn(x) is defined in (17).

Proof. If Ū denotes the closure of the set U, then there exists an x0 ∈ Ū such that |x − x0| = d(x,U), where
x ∈ R+.We now write the inequality∣∣∣ f − f (x)

∣∣∣ ≤ ∣∣∣ f − f (x0)
∣∣∣ + ∣∣∣ f (x0) − f (x)

∣∣∣ .
Since B(α)

n f is a linear positive operator and f ∈ W̃γ,U, applying B(α)
n to the above inequality, we get∣∣∣B(α)

n
(

f ; x
)
− f (x)

∣∣∣ ≤ B(α)
n

(∣∣∣ f − f (x0)
∣∣∣ ; x

)
+

∣∣∣ f (x0) − f (x)
∣∣∣

≤ MB(α)
n

(∣∣∣∣∣ t
1 + t

−
x0

1 + x0

∣∣∣∣∣γ ; x
)
+M

|x − x0|
γ

(1 + x0)γ (1 + x)γ
. (19)

With the help of the basic inequality (a + b)γ ≤ aγ + bγ for a ≥ 0 and b ≥ 0, for 0 < γ ≤ 1 and t ∈ R+, we can
write ∣∣∣∣∣ t

1 + t
−

x0

1 + x0

∣∣∣∣∣γ ≤ ∣∣∣∣∣ t
1 + t

−
x

1 + x

∣∣∣∣∣γ + ∣∣∣∣∣ x
1 + x

−
x0

1 + x0

∣∣∣∣∣γ .
Hence we obtain

B(α)
n

(∣∣∣∣∣ t
1 + t

−
x0

1 + x0

∣∣∣∣∣γ ; x
)
≤ B(α)

n

(∣∣∣∣∣ t
1 + t

−
x

1 + x

∣∣∣∣∣γ ; x
)
+

|x − x0|
γ

(1 + x0)γ (1 + x)γ
.

Applying Hölder’s inequality with p = 2/γ and q = 2/
(
2 − γ

)
to the first term on the right hand side of the

above inequality, we get

B(α)
n

(∣∣∣∣∣ t
1 + t

−
x0

1 + x0

∣∣∣∣∣γ ; x
)
≤ B(α)

n

(( t
1 + t

−
x

1 + x

)2
; x

)γ/2
+

|x − x0|
γ

(1 + x0)γ (1 + x)γ

where we have used the equality B(α)
n (1; x) = 1. Thus substituting the last inequality into (19), we finally

obtain (18).



Ö. Dalmanoğlu / Filomat 37:14 (2023), 4703–4714 4711

4. Voronovskaya theorem

This part is devoted to the Voronovskaya-type asymptotic formula for the operators B(α)
n .

Theorem 4.1. Suppose that f ′
( x

1 + x

)
and f ′′

( x
1 + x

)
exist for x ≥ 0. We have,

lim
n→∞

(n + 1)
(
B(α)

n

(
f
( t

1 + t

)
; x

)
− f

( x
1 + x

))
=
−x

1 + x
f !

( x
1 + x

)
+

1
2

[
−

( x
1 + x

)2
+

x
1 + x

]
f
′′

( x
1 + x

)
.

Proof. Using Taylor’s Theorem we can write

f (η) = f (t) + (η − t) f ′(t) +
(η − t)2

2
f ′′(t) + (η − t)2φ(η − t)

where
∣∣∣φ(h)

∣∣∣ ≤ H for all h and lim
h→0
φ(h) = 0. Taking η = k

n+1 and t = x
1+x in Taylor’s formula, we obtain

f
(

k
n + 1

)
= f

( x
1 + x

)
+

(
k

n + 1
−

x
1 + x

)
f ′

( x
1 + x

)
+

(
k

n+1 −
x

1+x

)2

2
f ′′

( x
1 + x

)
+

(
k

n + 1
−

x
1 + x

)2

φ(
k

n + 1
−

x
1 + x

).

Applying the operators B(α)
n to the equality above, one gets

B(α)
n

(
f
( t

1 + t

)
; x

)
− f

( x
1 + x

)
= f ′

( x
1 + x

)
B(α)

n

( t
1 + t

−
x

1 + x
; x

)
+

1
2

f ′′
( x

1 + x

)
B(α)

n

(( t
1 + t

−
x

1 + x

)2
; x

)
+ B(α)

n

(( t
1 + t

−
x

1 + x

)2
φ(

k
n + 1

−
x

1 + x
); x

)
.

From Corollary (2.4), we can write

B(α)
n

(
f
( t

1 + t

)
; x

)
− f

( x
1 + x

)
=
−1

n + 1
x

1 + x
f ′

( x
1 + x

)
+

1
2

[
−n − 1 + 2α

(n + 1)2

x2

(1 + x)2 +
n + 2 − 2α

(n + 1)2

x
1 + x

]
f ′′

( x
1 + x

)
+ B(α)

n

(( t
1 + t

−
x

1 + x

)2
φ(

k
n + 1

−
x

1 + x
); x

)
. (20)

Multiplying both sides of 20 by (n + 1) and then taking the limit as n→∞,we get

lim
n→∞

(n + 1)
(
B(α)

n

(
f
( t

1 + t

)
; x

)
− f

( x
1 + x

))
=
−x

1 + x
f ′

( x
1 + x

)
+

1
2

[
−

( x
1 + x

)2
+

x
1 + x

]
f ′′

( x
1 + x

)
+ lim

n→∞
(n + 1) B(α)

n

(( t
1 + t

−
x

1 + x

)2
φ(

t
1 + t

−
x

1 + x
); x

)
. (21)

We will apply Cauchy-Schwarz inequality for the last term on the right hand side of the above inequality,
from which we get

(n + 1) B(α)
n

(( t
1 + t

−
x

1 + x

)2
φ(

t
1 + t

−
x

1 + x
); x

)
≤

[
(n + 1)2 B(α)

n

(( t
1 + t

−
x

1 + x

)4
; x

)]1/2

(22)

×

[
B(α)

n

(
φ2(

t
1 + t

−
x

1 + x
); x

)]1/2
.
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After some simple-yet complicated-calculations, we get,

B(α)
n

(( t
1 + t

−
x

1 + x

)4
; x

)
=

1

(x + 1)4

1

(n + 1)4

×

[
x4 + (11n + 50(1 − α))x3 +

(
3n2 + 4(1 − 3α)n − 68(1 − α)

)
x2 + (n + 14(1 − α)) x

]
with the aid of Corollary (2.4). Now it is obvious that,

lim
n→∞

(n + 1)2 B(α)
n

(( t
1 + t

−
x

1 + x

)4
; x

)
=

3x2

(x + 1)4 . (23)

We also have

lim
n→∞

B(α)
n

(
φ2(

t
1 + t

−
x

1 + x
); x

)
= 0. (24)

Hence taking the positivity of the operator B(α)
n into account and using the equations (23) and (24), from

(22), we can write

lim
n→∞

(n + 1) B(α)
n

(( t
1 + t

−
x

1 + x

)2
φ(

t
1 + t

−
x

1 + x
); x

)
= 0. (25)

Substitution of (25) into (21) gives the desired result of the theorem.

5. Graphical illustrations

In this part, by using Maple software, we present some graphical examples related to our operator.
In Figure 1, we approximate the function f (x) = x(x + 1

2 ) on the interval [0, 2] with the newly defined
operators B(α)

n . In Fig.1a, we fixed the value of the parameter α as α = 0.5 and choose different n values,
n = 10, 20, 50. In Fig.1b we choose n, as n = 50 and observe the graphs for different choices of α values.
In Figure 2, we take the function f (x) = e

−x
5 on the interval [0, 3]. In Fig.2a, similarly as in Fig.1a, we fixed

the value of the parameter α as α = 0.5 and choose different n values, n = 10, 20, 50. In Fig.2b we choose n,
as n = 5 and investigate the graphs for different choices of α values.
In both figures we observe that, as the value of n gets larger the graphs of the operators gets closer to the
graphs of the given functions, implying that we get better convergence for larger n values. We also observe
that in Figure 1, for fixed n = 10, the best approximation is carried out when α = 0.9, while in Figure 2 it is
achieved when α = 0.1 with n = 5 is fixed.
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Figure 1: Approximation of f (x) = x(x + 1
2 ) by α − BBH Operators

Figure 2: Approximation of f (x) = exp −x
5 by α − BBH Operators
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