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Abstract. The Sombor index SO(G) of a graph G is defined as SO(G) =
∑

uv∈E(G)
(dG(u)2 + dG(v)2)

1
2 , while the

Merrifield-Simmons index i(G) of a graph G is defined as i(G) =
∑
k≥0

i(G; k), where dG(x) is the degree of any one

given vertex x in G and i(G; k) denotes the number of k-membered independent sets of G. In this paper, we
investigate the relations between the Sombor index and Merrifield-Simmons index. First, we compare the
Sombor index with Merrifield-Simmons index for some special graph families, including chemical graphs,
bipartite graphs, graphs with restricted number of edges or cut vertices and power graphs, and so on.
Second, we determine sharp bounds on the difference between Sombor index and Merrifield-Simmons
index for general graphs, connected graphs and some special connected graphs, including self-centered
graphs and graphs with given independence number.

1. Introduction

Throughout this paper we consider only simple graphs. For a graph G = (V, E) with vertex set V = V(G)
and edge set E = E(G), the degree of a vertex v in G, denoted by dG(v), is the number of edges incident with
v. The open neighborhood of a vertex v, denoted by NG(v), is the set of vertices adjacent to v in G. The close
neighborhood of a vertex v, denoted by NG[v], is equal to NG(v) ∪ {v}. Let G be a graph. A subset S of V(G)
is called an independent set of G if the subgraph induced by S has no edges.

A topological index is a number, which represents a chemical structure in a graph-theoretical manner
through the molecular graph, if this number correlates with a molecular property. Usually, topological
indices can be used to understand physicochemical properties of chemical compounds. Till now, hundreds
of topological indices have been introduced, studied and recognized to be useful tools in chemical re-
searches. Those topological indices which gained much popularity during the past decades are the Randić
connectivity index, the Zagreb indices, Wiener index and Merrifield-Simmons index.

The Merrifield-Simmons index of G, denoted by i(G), is defined to be the total number of independent
subsets, that is,

i(G) =
∑
k≥0

i(G; k),
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where i(G; k) denotes the number of k-membered independent sets of G for k ≥ 1 and i(G; 0) = 1. The
relationships between the Merrifield-Simmons index and other graph invariants and topological indices
have been investigated by Hua et al. [16, 17] and Xu et al. [29]. For relationships between other graph
invariants, the readers are referred to [2, 6, 7, 14, 15, 18].

More recently, a new degree-based topological indices named the Sombor index, was proposed by Gutman
in [10]. The Sombor index is defined for a graph G as

SO(G) =
∑

uv∈E(G)

√
dG(u)2 + dG(v)2,

where dG(u) and dG(v) are degrees of vertices u and v, respectively. For recent results on Sombor index, the
readers are referred to [4, 5, 9, 19–22, 27].

In this paper, we investigate the relations between the Sombor index and Merrifield-Simmons index.
First, we compare the Sombor index with Merrifield-Simmons index for some special graph families.
Second, we determine sharp bounds on the difference between Sombor index and Merrifield-Simmons
index for general graphs, connected graphs and some special connected graphs.

2. Preliminary results

In this section, we give some preliminary results for Sombor index and the Merrifield-Simmons index.
We first give two lemmas concerning Merrifield-Simmons index that will be used in the proof of our

results.

Lemma 2.1 ([11]). Let G be a graph.

(a) If u is a vertex in G, then i(G) = i(G − u) + i(G −NG[u]);
(b) If xy is an edge in G, then i(G) = i(G − xy) − i(G − {NG[x] ∪NG[y]}).

Lemma 2.1 (b) implies the following result.

Lemma 2.2. Let G be a non-complete graph. Then

i(G) > i(G + e),

where e is an edge in E(G).

The following result is obvious from the definition of Sombor index.

Lemma 2.3. Let G be a non-complete graph. Then

SO(G) < SO(G + e),

where e ∈ E(G).

According to Lemmas 2.2 and 2.3, we have the following result.

Lemma 2.4. Let G be a non-complete graph. Then

i(G) − SO(G) > i(G + e) − SO(G + e),

where e ∈ E(G).

More recently, Gutman proved the following result on the Sombor index.
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Theorem 2.5 ([10]). Let T be a tree of order n. Then

SO(T) ≥ 2(n − 3)
√

2 + 2
√

5

with equality if and only if T � Pn.

Let Fn be the nth Fibonacci number, satisfying that F0 = 1, F1 = 1 and Fn = Fn−1 + Fn−2 for n ≥ 2. By the
definition of Fibonacci number and Merrifield-Simmons index, we have i(Pn) = Fn+1.

We recall some established results on the Merrifield-Simmon index.

Theorem 2.6 ([12]). Let G be a 2-edge-connected graph of order n ≥ 4. Then

i(G) ≤ 2n−2 + 3

with equality if and only if G � K2,n−2 or C5.

Theorem 2.7 ([13]). Let G be a connected graph of order n ≥ 4 and k cut vertices. Then

i(G) ≥ (n − k)Fk+1 + Fk

with equality if and only if G � KPn, k, where KPn, k is the graph obtained by connecting an edge between one pendent
vertex of Pk and one vertex of the complete graph Kn−k.

Theorem 2.8 ([25]). Let T be a tree on n vertices with diameter d. Then

i(T) ≤ Fd+2 + (2n−d−1
− 1)F2Fd

with equality if and only if T �Wn, d, 1, where Wn, d, 1 is the tree of diameter d obtained by attaching n− d− 1 pendent
vertices to v1 (or vd−1) of the path Pd+1 = v0v1 · · · vd−1vd.

The following result identifies the tree with the second largest Merrifield-Simmons index.

Theorem 2.9. Let T be a tree of order n ≥ 4. If T � Sn, then

i(G) ≤ 3 · 2n−3 + 2

with equality if and only if T � S1,n−3.

Proof. Let d be the diameter of T. Since T � Sn, we have d ≥ 3. If d = 3, then T is the double star Sa, b for
1 ≤ a, b ≤ n − 3 and a + b = n − 2. By Lemma 2.1(a), i(Sa, b) = 2a(2b + 1) + 2b = 2n−2 + 2a + 2b

≤ 2n−2 + 2n−3 + 2
with equality if and only if (a, b) = (1, n − 3) or (b, a) = (1, n − 3), i.e., T � S1,n−3.

From Theorem 2.8 and a result in [16] (Lemma 3.8), we know that for d ≥ 4, we have i(T) ≤ i(Wn, d, 1) ≤
i(Wn, 4, 1) = 5 · 2n−4 + 3. So, i(T) ≤ 5 · 2n−4 + 3 < 3 · 2n−3 + 2 = i(S1,n−3).

This completes the proof.

3. The relations between Sombor index and Merrifield-Simmons index

In this section, we investigate the relations between Sombor index and the Merrifield-Simmons index.
We will proceed by dividing our discussions into two subsections.
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3.1. Comparison between the Sombor index and Merrifield-Simmons index
In this subsection, we compare the Sombor index with Merrifield-Simmons index. We consider the

following two examples.

Example 3.1. For complete graph Kn, we have SO(Kn) =
√

2n(n−1)2

2 > n + 1 = i(Kn) for n ≥ 3.

Example 3.2. For star graph Sn, we have SO(Sn) = (n − 1)
√

n2 − 2n + 2 < n(n − 1) < 2n−1 + 1 = i(Sn) for n ≥ 6,
while SO(S4) = 3

√
10 > 9 = i(S4) .

Two examples given above indicate that the Sombor index and Merrifield-Simmons index are incom-
parable for general connected graphs, even for trees. So, we aim to find that the relationship between the
Merrifield-Simmons index and Sombor index for some special graph families.

We first give an upper bound for the Sombox index of graphs.

Proposition 3.3 ([23, 24]). Let G be graph of order n and size m with maximum degree △. Then

SO(G) ≤
√

2△m.

Next, we provide some present comparative results for the Sombor index and Merrifield-Simmons
index.

Theorem 3.4. Let G be a graph of order n and size m. If m ≤ n
2 , then

i(G) > SO(G).

Proof. Let △ be the maximum degree of G. Then △ ≤ n
2 . By assumption and Proposition 3.3, we have

SO(G) ≤
√

2m△ ≤
√

2n2

4
<

n2

2
.

Note that i(G; 2) = 1
2

∑
v∈V(G)

(n − 1 − dG(v)) = 1
2 n(n − 1) −m. Thus,

i(G) ≥ i(G; 0) + i(G; 1) + i(G; 2)

= 1 + n +
1
2

n(n − 1) −m

≥ 1 + n +
1
2

n(n − 1) −
n
2

= 1 +
n2

2
.

So, i(G) > SO(G), as desired.

A graph is said to be a chemical graph if the maximum degree of this graph is no more than 4.

Theorem 3.5. Let G be a connected chemical graph with at least 26 vertices. Then

i(G) > SO(G).

Proof. Let n and m be the order and size of G, respectively. According to the definition of chemical graph,
we have m ≤ 2n. Also, for each edge uv, we have

√
dG(u)2 + dG(v)2 ≤ 4

√
2. Thus, SO(G) ≤ 8

√
2n. Similar to

the proof of Theorem 3.4, we have

i(G) ≥ 1 + n +
1
2

n(n − 1) −m ≥ 1 + n +
1
2

n(n − 1) − 2n >
1
2

n(n − 3).

Since n ≥ 26, we have i(G) > SO(G), as desired.
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For a graph G with X ⊆ V(G) and Y ⊆ V(G) such that X ∩ Y = ∅, we let e(X,Y) be the number of edges
whose two end-vertices are in X and Y, respectively. Also, we let α(G[X]) and α(G[Y]) be the independence
number of the subgraphs of G induced by X and Y, respectively.

Theorem 3.6. Let G be a graph of order n ≥ 24 with independence number α. If G satisfies
(1) e(X, V(G) \ X) ≤ α(G[X]) + α(G[V(G) \ X]) − 1 for any vertex subset X ⊆ V(G), and
(2) α ≥ n

2 ,

then
i(G) > SO(G).

Proof. Let m be the size of of G. On the one hand, for any given vertex v ∈ V(G), we let X = {v}. By (1), we
have

dG(v) = e(X, V(G) \ X) ≤ 1 + α(G[V(G) \ X]) − 1 = α(G[V(G) \ X]).

Note that α(G[V(G) \ X]) ≤ α(G) = α. So, dG(v) ≤ α for each v ∈ V(G).
On the other hand, for any given vertex v ∈ S, we have dG(v) ≤ n − α, where S is one maximum

independent set in G. Thus, by our assumption that α ≥ n
2 , dG(v) ≤ min{α, n − α} = n − α for each v ∈ S. So

m ≤
1
2

[(n − α)α + α(n − α)] = (n − α)α ≤
n2

4
,

and then SO(G) ≤ n2

4 ·
√

2α =
√

2n2α
4 .

If G � Kn, then i(G) = 2n > 0 = SO(G), as desired. So, we assume that G � Kn. Then i(G) >(α
0
)
+
(α

1
)
+ +
(α

2
)
+ · · · +

(α
α

)
= 2α. Since n ≥ 24, we have α ≥ n

2 ≥ 12. Thus,

i(G) > 2α ≥
√

2α3
≥

√
2n2α
4

≥ SO(G).

This completes the proof.

Theorem 3.7. Let G be a bipartite graph with at least 24 vertices. Then

i(G) > SO(G).

Proof. Let n, m and △ be the order, size and maximum degree of G, respectively. Suppose that S and T are
the bipartite partition sets of V(G), respectively. Let |S| = s and |T| = t. Assume without loss of generality
that t ≥ s. If s = 1, then G � Sn. Since n ≥ 24, by Example 3.2, we have i(G) > SO(G). Now, we assume that
s ≥ 2. Then n = s + t ≥ 4. Since △ ≤ n − 2 and m ≤ st, by Proposition 3.3,

SO(G) ≤

√

2△m

≤

√

2△st

≤

√

2△ ·
( s + t

2

)2
=

√
2△n2

4

≤

√
2(n − 2)n2

4
. (1)

According to Lemma 2.2, adding edges into a graph will decrease the Merrifield-Simmons index. By
Lemma 2.1, we have

i(G) ≥ i(Ks, t)
= 2s + 2t

− 1
≥ 2 · 2

s+t
2 − 1

= 2
n
2+1
− 1. (2)
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By (1) and (2),

i(G) − SO(G) ≥ 2
n
2+1
− 1 −

√
2(n − 2)n2

4
.

Now, we consider the function f (x) = 2
x
2+1
− 1−

√
2(x−2)x2

4 . Then f ′ (x) = ln 2 · 2
x
2 −

√
2

4 (3x2
− 4x) = ln 4 · 2

x
2−1
−

√
2

4 (3x2
−4x) > 2

x
2−1
−(3x2

−4x).Further, we consider the function1(y) = 2y
−12y2

−16y−4. Then1
′

(y) = 2y ln 2−
24y− 16 and 1

′′

(y) = 2y(ln 2)2
− 24 > 2y−2

− 24. It is easy to see that for y ≥ 7, 1
′′

(y) > 2y−2
− 24 > 0. So, when

y ≥ 7, 1
′

(y) is a strictly increasing function, and then 1
′

(y) > 1
′

(9) = 29 ln 2 − 24 × 9 − 16 > 28
− 232 = 24 > 0.

Now, when y ≥ 9, 1(y) is a strictly increasing function, and then 1(y) > 1(11) = 211
−12×112

−16×11−8 > 0.
Therefore, when x ≥ 24, we have f ′ (x) > 2

x
2−1
− (3x2

− 4x) = 1( x
2 − 1) ≥ 1(11) > 0. So, f (x) is a strictly

increasing function when x ≥ 24. Since n ≥ 24,

i(G) − SO(G) ≥ f (n) ≥ f (24) > 0.

This completes the proof.

Theorem 3.8. Let G be a graph with maximum degree△. If there exists a vertex u in G such that i(G−u) ≥ SO(G−u)
and i(G −NG[u]) ≥ (

√
2 + 1)△2, then

i(G) > SO(G).

Proof. Let
Ψ1 =

∑
v∈NG(u)

∑
w∈NG(v)\NG(u)

(√
dG(w)2 + dG(v)2 −

√
dG(w)2 + (dG(v) − 1)2

)
and

Ψ2 =
1
2

∑
v∈NG(u)

∑
w∈NG(v)∩NG(u)

(√
dG(w)2 + dG(v)2 −

√
(dG(w) − 1)2 + (dG(v) − 1)2

)
.

Since √
dG(w)2 + dG(v)2 −

√
dG(w)2 + (dG(v) − 1)2

=
2dG(v) − 1√

dG(w)2 + dG(v)2 +
√

dG(w)2 + (dG(v) − 1)2

<
2dG(v) − 1

dG(v) + (dG(v) − 1)
= 1,

we have
Ψ1 <

∑
v∈NG(u)

∑
w∈NG(v)\NG(u)

1.

Since √
dG(w)2 + dG(v)2 −

√
(dG(w) − 1)2 + (dG(v) − 1)2

=
2(dG(v) + dG(w) − 1)√

dG(w)2 + dG(v)2 +
√

(dG(w) − 1)2 + (dG(v) − 1)2

<
2(dG(v) + dG(w) − 1)
dG(v) + (dG(w) − 1)

= 2,

we have
Ψ2 <

1
2

∑
v∈NG(u)

∑
w∈NG(v)∩NG(u)

2 =
∑

v∈NG(u)

∑
w∈NG(v)∩NG(u)

1.

So
Ψ1 +Ψ2 <

∑
v∈NG(u)

∑
w∈NG(v)\NG(u)

1 +
∑

v∈NG(u)

∑
w∈NG(v)∩NG(u)

1 =
∑

v∈NG(u)

dG(v) ≤ △2.
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Note that SO(G) = SO(G − u) +
∑

v∈NG(u)

√
dG(u)2 + dG(v)2 +Ψ1 +Ψ2. Thus,

SO(G) < SO(G − u) +
∑

v∈NG(u)

√
dG(u)2 + dG(v)2 + △2

≤ SO(G − u) + (
√

2 + 1)△2

≤ i(G − u) + i(G −NG[u])
= i(G),

completing the proof.

Next, we use the number of cut vertices in a graph to give a sufficient condition for a graph having
larger Merrifield-Simmons index than Sombor index.

Theorem 3.9. Let G be a connected graph of order n ≥ 20 and k cut vertices. If k ≥ n
2 , then

i(G) > SO(G).

Proof. By Theorem 2.7, we have i(G) ≥ (n − k)Fk+1 + Fk. Since G has k cut vertices, then △ ≤ n − k. So,√
dG(u)2 + dG(v)2 ≤

√
2(n − k) for each edge uv ∈ E(G). Also, we have 2m ≤ n△ ≤ n(n − k), that is, m ≤ n(n−k)

2 .

Thus, SO(G) ≤
√

2
2 n(n − k)2. Then

i(G) − SO(G) ≥ (n − k)Fk+1 + Fk −

√
2

2
n(n − k)2 > (n − k)Fk+1 −

√
2

2
n(n − k)2.

Since k ≥ n
2 , we have

i(G) − SO(G) > (n − k)Fk+1 −
√

2k(n − k)2. (3)

We have the following claim.

Claim 3.10. For k ≥ 10, Fk+1 ≥
√

2k2.

Proof. We proceed by induction on k. When k = 10, Fk+1 = F11 = 144 >
√

2k2. When k = 11, Fk+1 = F12 =

233 >
√

2k2. Now, we assume that k ≥ 12 and assume that Claim 3.10 holds for smaller values of k. So, by
induction hypothesis, we have

Fk+1 = Fk + Fk−1

≥

√

2(k − 1)2 +
√

2(k − 2)2

>
√

2k2.

This proves the claim.

Since n ≥ 20, we have k ≥ 10. Thus, by Claim 3.10 and (3), we have

i(G) − SO(G) > (n − k)Fk+1 −
√

2k(n − k)2
≥

√

2k(n − k)(2k − n) ≥ 0,

as expected.

At the end of this subsection, we compare the Sombor index with Merrifield-Simmons index for a special
graph family.

For a positive integer k, the kth power of a graph G (see [1]), denoted by Gk, is a graph whose vertex set
is the same as that of G such that two vertices are adjacent in Gk if and only if their distance is at most k in
G. When k = 1, we set Gk = G.
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Theorem 3.11. For any positive integer k, let G be a graph and Gk be the kth power of G. If i(G) < SO(G), then

i(Gk) < SO(Gk).

Proof. By Lemmas 2.2, 2.3 and the definition of the kth power graph, we clearly have i(Gk) < i(G) and
SO(Gk) > SO(G). So, the result follows as expected.

3.2. The difference between the Sombor index and Merrifield-Simmons index
In this subsection, we study the the difference between the Sombor index and Merrifield-Simmons index.
More specifically, we determine sharp bounds on the difference between the Sombor index and Merrifield-
Simmons index for general graphs, connected graphs and some special connected graphs.

We first give sharp bounds on the difference between the Sombor index and Merrifield-Simmons index
of general graphs.

Theorem 3.12. Let G be a graph of order n. Then

n + 1 −

√
2n(n − 1)2

2
≤ i(G) − SO(G) ≤ 2n (4)

with the left-hand side equality if and only if G � Kn, and the right-hand side equality if and only if G � Kn.

Proof. By Lemma 2.4, adding edges into a graph will strictly decrease the value of i(G)−SO(G) and removing
edges from a graph will strictly increase the value of i(G) − SO(G). So, we obtain the desired result.

Second, we give sharp bounds on the difference between Sombor index and Merrifield-Simmons index
of connected graphs.

Theorem 3.13. Let G be a connected graph of order n.

(1) For n ≥ 2,

i(G) − SO(G) ≥ n + 1 −

√
2n(n − 1)2

2
with equality if and only if G � Kn;

(2) For n ≥ 9,
i(G) − SO(G) ≤ 2n−1 + 1 − (n − 1)

√

n2 − 2n + 2

with equality if and only if G � Sn.

Proof. The lower bound is the same as that obtained in Theorem 3.12. Now, we consider the upper bound.
Let G be a graph attaining the maximum value of i(G) − SO(G). We claim that G is a tree. Suppose

to the contrary that G has at least one cycle and let e be any one edge in a cycle of G. By Lemma 2.4,
i(G) − SO(G) < i(G − e) − SO(G − e), a contradiction to our choice of G. So, G is a tree. Next, we shall prove
that if G � Sn, then

i(G) − SO(G) < 2n−1 + 1 − (n − 1)
√

n2 − 2n + 2.

Since G � Sn, we have i(G) ≤ i(S1,n−3) = 3 · 2n−3 + 2 by Theorem 2.9. Also, SO(G) ≥ 2(n − 3)
√

2 + 2
√

5 by
Theorem 2.5. So, for G � Sn,

i(G) − SO(G) ≤ 3 · 2n−3 + 2 − 2(n − 3)
√

2 − 2
√

5.

Now, it suffices to prove that

2n−1 + 1 − (n − 1)
√

n2 − 2n + 2 > 3 · 2n−3 + 2 − 2(n − 3)
√

2 − 2
√

5,

that is,
2n−3
− (n − 1)

√

n2 − 2n + 2 − 1 + 2(n − 3)
√

2 + 2
√

5 > 0.
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Further, as n ≥ 2, we need only to prove that

2n−3
− (n − 1)n − 1 + 2(n − 3)

√

2 + 2
√

5 > 0.

Let f (x) = 2x−3
−(x−1)x−1+2(x−3)

√
2+2
√

5. Then f ′ (x) = 2x−3 ln 2−2x+1+2
√

2, f ′′ (x) = (2 ln 2)2
·2x−3

−2.
When x ≥ 4, f ′′ (x) = (2 ln 2)2

· 2x−3
− 2 > 2x−3

− 2 ≥ 0. So, f ′ (x) is a strictly increasing function on the interval
[4, +∞). When x ≥ 8, f ′ (x) = 2x−3 ln 2 − 2x + 1 + 2

√
2 > 2x−4

− 2x + 1 + 2
√

2 > 0. Then f (x) is a strictly
increasing function on the interval [8, +∞). Thus, f (x) ≥ f (9) = −9+ 12

√
2+ 2

√
5 > 0. Since n ≥ 9, we have

2n−3
− (n − 1)n − 1 + 2(n − 3)

√

2 + 2
√

5 = f (n) ≥ f (9) > 0.

This completes the proof.

Finally, we give sharp bounds on the difference between the Sombor index and Merrifield-Simmons
index of some special connected graphs.

Recall that a self-centered graph has two vertices is just the path P2, and the self-centered graph having
three vertices is just the cycle C3. So, we assume that a self-centered graph has at least four vertices in the
following result.

Theorem 3.14. Let G be a self-centered graph of order n ≥ 4. Then

n + 1 −

√
2n(n − 1)2

2
≤ i(G) − SO(G) ≤ 2n−2 + 3 − 2

√

2n (5)

with the left-hand side equality if and only if G � Kn, and the right-hand side equality if and only if G � C5.

Proof. The lower bound is obvious from Theorem 3.13, as the complete graph Kn is self-centered. Now, we
consider the upper bound.

Since G is a self-centered graph, G has no cut vertex, for otherwise, G is not a self-centered graph, a
contradiction. Since G has no cut vertex, G is a 2-connected. Thus, G is also 2-edge-connected. By Theorem
2.6, i(G) ≤ 2n−2 + 3 with equality if and only if G � K2,n−2 or C5. Let m be the size of G. As G is 2-connected,
the minimum degree of G is at least two, and then SO(G) ≥ 2

√
2m ≥ 2

√
2n = SO(Cn) with equality if and

only if m = n and all vertices of G have degree two, that is, G � Cn. So,

i(G) − SO(G) ≤ 2n−2 + 3 − 2
√

2n

with equality if and only if G � C5.

Theorem 3.15. Let G be a graph of order n with independence number α. Then

i(G) − SO(G) ≥ n + 2α − α − α(n − α)
√

2n2 − 2n(α + 1) + α2 + 1 +

√
2

2
(n − 1)(n − α)(n − α − 1)

with equality if and only if G � Kn−α ∨ αK1.

Proof. Take G to be a graph with the smallest value of i(G) − SO(G). Let S be a maximum independent set
in G. Then |S| = α. By our choice of G, the subgraph G[V(G) \ S] is a complete subgraph, for otherwise, by
Lemma 2.4, adding edges into G[V(G)\S] will decrease the value of i(G)−SO(G), a contradiction. Similarly,
for any u in S and any v in V(G) \ S, there exists an edge connecting u and v. Thus, G � Kn−α ∨ αK1, and

i(G) − SO(G) = n + 2α − α − α(n − α)
√

2n2 − 2n(α + 1) + α2 + 1 +

√
2

2
(n − 1)(n − α)(n − α − 1).

This completes the proof.
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4. Concluding remarks

In this paper, we have investigated the relations between the Sombor index and Merrifield-Simmons
index. First, we compared the Sombor index and Merrifield-Simmons index for some special graphs.
Second, we determined sharp bounds on the difference between Sombor index and Merrifield-Simmons
index for general graphs, connected graphs and some special connected graphs.

Recall that most of our results in Section 2 deal with sufficient conditions for a graph G satisfying the
inequality i(G) > SO(G). We end the paper by proposing the following problem.

Problem 4.1. Find all graphs G such that SO(G) > i(G).
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