Filomat 37:14 (2023), 4809–4832 https://doi.org/10.2298/FIL2314809E

Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

An *L*-fuzzy rough set model based on *L*-double fuzzy generalized neighborhood systems

Kamal El-Saady^a, Ayat A. Temraz^a

^aDepartment of Mathematics, Faculty of Science at Qena, South Valley University, Qena 83523, EGYPT.

Abstract. In this paper, we consider a commutative quantale *L* as the truth value table to introduce the notion of *L*-double fuzzy generalized neighborhood (*L*-DFGN for short) systems. In addition, we specify and study a pair of *L*-double rough approximation operators based on *L*-DFGN systems. Moreover, we study and characterize the related *L*-double rough approximation (*L*-DRApprox for short) operators when the *L*-DFGN system satisfies the conditions of seriality, reflexivity, transitivity, and being unary, respectively. Furthermore, we define and study the measure of *L*-DRApprox, which characterizes the quality of the obtained approximation. Finally, we interpret the operators of double measures of *L*-double fuzzy lower and upper approximation as an *L*-double fuzzy topology and an *L*-double fuzzy co-topology on a set *X*, respectively.

1. Introduction

Pawlak [33, 34] established the rough set theory, which is an important technique that deals with inexact, ambiguous, or uncertain data. It's been used in a variety of fields like machine learning, knowledge discovery, data mining, expert systems, pattern recognition, granular computing, graph theory, algebraic systems, and partially ordered sets [9, 16, 18, 25, 35, 43].

The majority of rough-set studies and their beginnings have focused on constructive techniques. Equivalence relation was a strict condition and primitive concept in Pawlak's rough set model [32]. Thus, the classical rough model has been extended to include binary relations [8, 60, 61] and coverings [52, 54, 59] and generalized neighborhood systems [54, 57].

According to the development of fuzzy mathematics, the concept of Pawlak's rough set models has been generalized to a fuzzy environment. Dubois and Prade [15] firstly proposed fuzzy generalizations of rough sets. Several authors have studied the generalization of rough sets; for instance, Radzikowska and Kerre [38] examined fuzzy rough sets models based on *L*-fuzzy relations.

The notion of *L*-fuzzy generalized neighborhood (*L*-FGN for short) systems was offered in [56]. It was shown that the *L*-FGN systems based on approximation operators included the notions of generalized neighborhood system [48, 54, 57] (resp., *L*-fuzzy relation [22, 44] and *L*-fuzzy covering [28, 29]) based approximation operators as their special cases.

²⁰²⁰ Mathematics Subject Classification. 06A06, 54A10, 54A40

Keywords. L-DFGN systems, L-DRApprox operators, measure of L-DRApprox, L-double fuzzy topology, L-double fuzzy co-topology.

Received: 05 August 2022; Revised: 03 November 2022; Accepted: 10 January 2023

Communicated by Santi Spadaro

Email address: ayat.tmraz@sci.svu.edu.eg (Ayat A. Temraz)

Recently, there has been an increased interest in studying the link between fuzzy rough sets and *L*-topology **[23, 36, 49, 53]**. In 2014, Sostak **[46]** proposed an interpretation of measures of rough approximation based on transitive, and reflexive *L*-relation in terms of *L*-fuzzy topologies **[26, 47]**.

On the other hand, the notion of an intuitionistic fuzzy set [2, 3] appeared as a useful tool for dealing with imprecise, and imperfect data. One of the most important applications of intuitionistic fuzzy is the area of multi-attribute decision making (see [30, 50, 51]). Combining intuitionistic fuzzy set theory and rough set theory could be a fascinating field worth further investigation. Concerning this subject, some studies have already been done [24, 37, 41]. Çoker [12], for example, was the first to establish a link between intuitionistic fuzzy set theory and the theory of rough set, demonstrating that a fuzzy rough set was actually an intuitionistic *L*-fuzzy set.

Using intuitionistic (which is named *L*-double [19]) fuzzy sets, Çoker and his colleagues [11, 13] established the notion of intuitionistic fuzzy topology. As a generalization of *L*-fuzzy topology [47] and intuitionistic fuzzy topology [11], Samanta and Mondal [31] developed the notion of intuitionistic gradation of openness (which is called *L*-double fuzzy topology [19]).

In 2016, as *L* is a completely distributive lattice with an order reversing involution ' : $L \rightarrow L$, Abd el-Latif and A. Ramadan [1] used the notion of Goguen *L*-fuzzy sets [21] to define the concept of *L*-double relation, and they used it as a tool to define and study *L*-double fuzzy rough set models. Recently, there have been some other generalized fuzzy neighborhood system-base rough sets, for example [17, 27].

In this paper, assuming that L is a commutative quantale, we propose the notion of L-DFGN systems as a generalization of L-FGN systems [55, 56] and then a pair of L-double rough approximation operators based on it and study some of the properties. Also, it is illustrated that L-double relation-based approximation operators [1] can be considered as special L-DFGN system-based approximation operators. Finally, we interpret the operators of double measures of L-double fuzzy lower and upper approximation as an L-double fuzzy topology and an L-double fuzzy co-topology on a set X, respectively.

The following is a description of the paper's structure. Some concepts and results from this study are reviewed in Section 2. In Section 3, we define the concept of *L*-DFGN systems and utilize it to introduce a pair of *L*-double rough approximation operators and study some of their properties. In Section 4, through the constructive approach, we study and characterize the related *L*-DRApprox operators when the *L*-DFGN system is seriality, reflexivity, transitivity, and unary, respectively. Also, we define the double measure of *L*-DRApprox, which characterizes the quality of the obtained approximation. Accordingly some properties of such double measures are established. In Section 5, from *L*-DRApprox operators, we generate the concepts of *L*-double fuzzy topology and *L*-double fuzzy co-topology, respectively.

2. Preliminaries

A complete lattice $(L, \leq, \lor, \land, \top_L, \bot_L)$ endowed with a binary operation $\otimes : L \times L \longrightarrow L$ and denoted by a semi-quantale $L = (L, \leq, \otimes)$ [39]. Also, we called

(1) *L* is a unital [39] when \otimes has element $e \in L$, with $e \otimes u = u \otimes e = u$, $\forall u \in L$. If $e = \top_L$ is defined to be a strictly two-sided (st-s for short) semi-quantale.

(2) *L* is a commutative [39] when $u \otimes v = v \otimes u, \forall u, v \in L$.

(3) *L* is a quantale [40] when \otimes is a associative and

$$u \otimes (\bigvee_{j \in J} v_j) = \bigvee_{j \in J} (u \otimes v_j) \text{ and } (\bigvee_{j \in J} v_j) \otimes u = \bigvee_{j \in J} (v_j \otimes u) \text{ for all } u \in L, \{v_j : j \in J\} \subseteq L.$$

In a commutative quantale (L, \leq, \otimes) the function $u \otimes (-) : L \longrightarrow L$ has a right adjoint $u \rightarrow (-) : L \longrightarrow L$ specified by $u \rightarrow v = \bigvee \{c : u \otimes c \leq v\}$. The residual $\rightarrow : L \times L \rightarrow L$ fulfilling the next axiom

$$u \otimes v \leq c \Leftrightarrow u \leq v \to c.$$

Now, *L* is always taken to be a commutative quantale with the double negation law through this paper, unless otherwise stated.

Suppose that *X* is a non-empty set and *L* is a semi-quantale. The family of all *L*- subsets on *X* denoted by L^X . The smallest and largest elements in L^X are denoted by $\underline{\perp}$ and $\underline{\top}$, respectively. The operators $\otimes, \bigvee, \rightarrow$ on *L* can be interpreted onto L^X in a pointed wise as follows:

$$(A \otimes B)(x) = A(x) \otimes B(x), x \in X,$$
$$(\bigvee_{j \in J} A_j)(x) = \bigvee_{j \in J} A_j(x),$$
$$(A \to B)(x) = A(x) \to B(x),$$

where $A, B, A_i \in L^X$. One can see that (L^X, \otimes, \bigvee) is a semi-quantale.

Lemma 2.1. [5, 7, 20, 40, 45] For all $u, v, w \in L$ and $\{u_i, v_i : i \in J\} \subseteq L$, the next properties are achieved:

- (1) $u \otimes (u \rightarrow v) \leq v$, and $v \leq u \rightarrow (u \otimes v)$;
- (2) If (L, \leq, \otimes) is st-s, then $u \rightarrow v = \top_L$ whenever $u \leq v$;

$$(3) (\bigvee_{j \in I} v_j) \to w = \bigwedge_{j \in I} (v_j \to w);$$

- (4) $u \to (\bigwedge_{j \in J} v_j) = \bigwedge_{j \in J} (u \to v_j)$, and $u \otimes (\bigwedge_{j \in J} v_j) \le \bigwedge_{j \in J} (u \otimes v_j)$;
- (5) $u \otimes (v \to w) \le v \to (u \otimes w);$

(6)
$$\bigvee_{i \in I} (u \to v_j) \le u \to (\bigvee_{i \in I} v_j);$$

- (7) $(\bigvee_{i \in I} u_i) \otimes v = \bigvee_{i \in I} (u_i \otimes v);$
- (8) $\bigwedge_{i \in I} (u_j \to v_j) \le (\bigvee_{i \in I} u_j) \to (\bigvee_{i \in I} v_j) \text{ and } \bigwedge_{i \in I} (u_j \to v_j) \le (\bigwedge_{i \in I} u_j) \to (\bigwedge_{i \in I} v_j).$

L is said to fulfill the double negation if

$$(u \to \bot) \to \bot = u, \forall u \in L.$$

Additionally, we denote $u \oplus v = \neg(\neg u \otimes \neg v)$ for every $u, v \in L$, where $\neg u$ is used to denote $u \to \bot$.

Proposition 2.2. [14] For all $u, v \in L$ and $\{u_j : j \in J\} \subseteq L$, the next properties are achieved by satisfying the law of double negation:

- (1) $u \rightarrow v = \neg(u \otimes \neg v);$
- (2) $u \rightarrow (\neg v) = v \rightarrow (\neg u);$
- (3) $\neg(\bigvee_{j\in J} u_j) = \bigwedge_{j\in J} \neg(u_j);$
- (4) $u \leq v$ implies $\neg v \leq \neg u$.

The subsethood degree $S : L^X \times L^X \longrightarrow L$ [6] and the intersection degree $T : L^X \times L^X \longrightarrow L$ [10], of any two *L*-subsets *P*, $Q \in L^X$, are given by

$$S(P,Q) = \bigwedge_{x \in X} (P(x) \to Q(x)) \text{ and } T(P,Q) = \bigvee_{x \in X} (P(x) \otimes Q(x))$$

respectively.

Lemma 2.3. [5, 6, 10] For all $P, Q, D, E \in L^X$, $\alpha \in L$ and $\{P_j, Q_j : j \in J\} \subseteq L^X$, the next properties are achieved:

- (1) $P \le Q \Rightarrow S(D, P) \le S(D, Q)$ and $S(Q, D) \le S(P, D)$;
- (2) $S(P,Q) \otimes S(Q,D) \leq S(P,D);$

- (3) $S(P,Q) \otimes S(D,E) \leq S(P \otimes D,Q \otimes E);$
- (4) $S(P, \bigwedge_{i \in I} Q_i) = \bigwedge_{i \in I} S(P, Q_i)$ and $S(\bigvee_{i \in I} P_i, Q) = \bigwedge_{i \in I} S(P_i, Q);$
- (5) $T(P, \bigvee_{i \in I} Q_i) = \bigvee_{i \in I} T(P, Q_i) \text{ and } T(P, \bigwedge_{i \in I} Q_i) \le \bigwedge_{i \in I} T(P, Q_i);$
- (6) If *L* satisfies the double negation law then $S(P,Q) = S(\neg Q, \neg P)$.

Definition 2.4. [38, 44] An L-relation $\mathcal{R} \in L^{X \times X}$, is called:

- (1) serial when $\bigvee_{y \in X} \mathcal{R}(x, y) = \top, \forall x \in X$,
- (2) reflexive when $\mathcal{R}(x, x) = \top, \forall x \in X$,
- (3) *transitive when* $\mathcal{R}(x, y) \otimes \mathcal{R}(y, z) \leq \mathcal{R}(x, z), \forall x, y, z \in X.$

Definition 2.5. [38, 44] For an L-relation $\mathcal{R} \in L^{X \times X}$ and $A \in L^X$, the upper and lower approximation operators are given as follows:

$$\mathcal{R}(A)(x) = T(\mathcal{R}(x, -), A) = \bigvee_{y \in X} (\mathcal{R}(x, y) \otimes A(y)).$$
$$\underline{\mathcal{R}}(A)(x) = S(\mathcal{R}(x, -), A) = \bigwedge_{y \in X} (\mathcal{R}(x, y) \to A(y)),$$

respectively.

Definition 2.6. [55, 56, 58] By an L-FGN system operator on a universe of discourse X, we mean a function $N : X \longrightarrow L^{L^X}$, if N(x) is non-empty, i.e., $\bigvee_{A \in L^X} N(x)(A) = \top_L, \forall x \in X$.

Definition 2.7. [55, 56, 58] For an L-FGN system operator $\mathcal{N} : X \longrightarrow L^{L^X}$ and $A \in L^X$, the lower and upper approximation operators $\mathcal{N}(A)$ and $\overline{\mathcal{N}}(A)$ are given by:

$$\underline{\mathcal{N}}(A)(x) = \bigvee_{K \in L^{X}} (\mathcal{N}(x)(K) \otimes S(K, A)),$$
$$\overline{\mathcal{N}}(A)(x) = \bigwedge_{K \in L^{X}} (\mathcal{N}(x)(K) \to T(K, A)).$$

Definition 2.8. Let X be an arbitrary sets. The pair $(\mathcal{R}, \mathcal{R}^*)$ of maps $\mathcal{R}, \mathcal{R}^* : X \times X \longrightarrow L$ is called an L-double relation (or L-double fuzzy relation) on X, if $\mathcal{R}(x, y) \leq \neg(\mathcal{R}^*(x, y)), \forall (x, y) \in X \times X$. $\mathcal{R}(x, y)$ (resp., $\mathcal{R}^*(x, y)$), referred to as the degree of relation (resp., non-relation) between x and y.

If $L = (L, \land, \lor, ', 0_L, 1_L)$ is taken to an order reversed completely distributive lattice then the above definition coincided with the definition of [1].

3. A double rough approximation operators

Through this section, we will introduce the notion of *L*-DFGN systems, and use it to define a pair of *L*-DRApprox operators, and study some of their properties. Also, we show that *L*-double relation-based approximation operators [1] can be considered as special cases of the above *L*-DFGN system-based approximation operators.

Definition 3.1. Assume that X is the universe of discourse. The pair (N, N^*) of maps $N, N^* : X \longrightarrow L^{L^X}$ is said to be an L-DFGN system operator on X, if for any $x \in X$, $\bigvee_{A \in L^X} N(x)(D) = \top_L$ and $N(x)(D) \le \neg(N^*(x)(D))$. The triplet

 $(X, \mathcal{N}, \mathcal{N}^*)$ is said to be an L-DFGN space.

Usually, the pair $(N(x), N^*(x))$ is said to be an L-DFGN system of x and N(x)(D) (resp., $N^*(x)(D)$) is interpreted as the degree of neighborhood (resp., non-neighborhood) of x.

In what follow, we shall establish an example of an *L*-DFGN system operator.

Example 3.2. Assume that $X = \{x\}$ is a single point set, and L = [0, 1] is the usual unit interval. Define an L-DFGN system operator $N, N^* : X \longrightarrow L^{L^X}$ by

$$\mathcal{N}(x)(D) = \begin{cases} 1 & for \ D = 1_X; \\ \frac{1}{2} & for \ D = x_{\frac{1}{2}}; \\ 0 & otherwise. \end{cases} \qquad \qquad \mathcal{N}^*(x)(D) = \begin{cases} 0 & for \ D = 1_X; \\ \frac{2}{5} & for \ D = x_{\frac{1}{2}}; \\ 1 & otherwise. \end{cases}$$

It is easy to have that $N, N^* : X \longrightarrow L^{L^X}$ is an L-DFGN system operator.

Remark 3.3. Assume that X is the universe of discourse and $N : X \longrightarrow L^{L^X}$ be an L-DFGN system operator on X. Define a map $N^* : X \longrightarrow L^{L^X}$ by $N^*(x) = \neg N(x) \forall x \in X$, then the pair (N, N^*) is an L-DFGN system. Therefore every L-FGN system operator [55, 56] corresponds to the following L-DFGN system operator $(N, \neg N)$ and we can say that an L-DFGN system is a generalization of L-FGN system [55, 56].

Definition 3.4. Let (N, N^*) be an L-DFGN system operator. Define two mappings $\underline{N}, \underline{N}^* : L^X \longrightarrow L^X$ as follows: $\underline{N}(x)(A) = \bigvee_{K \in L^X} (N(x)(K) \otimes S(K, A)),$

$$\underline{\mathcal{N}}^*(x)(A) = \bigwedge_{K \in L^X} (\neg \mathcal{N}^*(x)(K) \to T(K, \neg A)),$$

where $x \in X$, and $A \in L^X$.

The pair $(\underline{N}, \underline{N}^*)$ *is said to be an L-double fuzzy lower approximation* (L-DFLApprox for short) operator and the triplets $(X, \underline{N}, \underline{N}^*)$ *is called an L-DFLApprox space.*

Remark 3.5. Assume that $N : X \longrightarrow L^{L^X}$ is an L-DFGN system operator on X and $\underline{N} : L^X \longrightarrow L^X$ be a lower approximation operator [55, 56]. Define a map $\underline{N}^* : L^X \longrightarrow L^X$ by

$$\underline{\mathcal{N}}^*(x)(A) = \neg \underline{\mathcal{N}}(x)(A) \ \forall x \in X \ and \ A \in L^X.$$

Then the pair $(\underline{N}, \neg \underline{N})$ is an L-DFLApprox operator. Therefore every lower approximation operator $\underline{N} : L^X \longrightarrow L^X$ [55, 56] corresponds to the following L-DFLApprox operators $(\underline{N}, \neg \underline{N})$.

Definition 3.6. Assume that (N, N^*) is an L-DFGN system operator. Define two mappings $\overline{N}, \overline{N}^* : L^X \longrightarrow L^X$ as follows:

$$\overline{\mathcal{N}}(x)(A) = \bigwedge_{K \in L^{X}} (\mathcal{N}(x)(K) \to T(K, A)),$$

$$\overline{\mathcal{N}}^{*}(x)(A) = \bigvee_{K \in L^{X}} (\neg \mathcal{N}^{*}(x)(K) \otimes S(K, \neg A))$$

where $x \in X$, and $A \in L^X$.

The pair $(\overline{N}, \overline{N})$ *is called an* L-double *fuzzy upper approximation* (L-DFUApprox for short) operator and the triplets $(X, \overline{N}, \overline{N}^*)$ *is said to be an* L-DFUApprox *space.*

Similarly to what given in **Remark 3.5**, we can say that every upper approximation operator $\overline{N} : L^X \longrightarrow L^X$ [55, 56] corresponds to the following *L*-DFUApprox operator having the form $(\overline{N}, \neg \overline{N})$.

Definition 3.7. Let $(X, \mathcal{N}, \mathcal{N}^*)$ be an L-DFGN space. Then the quaternary $(\underline{\mathcal{N}}, \underline{\mathcal{N}}^* \overline{\mathcal{N}}, \overline{\mathcal{N}}^*)$ is said to be L-double fuzzy rough set.

Example 3.8. Suppose that $X = \{x\}$ is a single point set and L = [0, 1] with the adjoint pair $(*, \rightarrow)$ on [0, 1] defined as follows for all $\varepsilon, \theta \in L$,

 $\varepsilon * \theta = \max\{0, \varepsilon + \theta - 1\}, \ \varepsilon \to \theta = \min\{1, 1 - \varepsilon + \theta\}.$

For L-DFGN system operator (N, N^*) , given in **Example 3.2**, an L-DFLApprox operator $\underline{N}, \underline{N}^*$ given by: For $A = x_{\frac{1}{2}}$

$$\underbrace{\underline{N}(x)(x_{\frac{1}{3}}) = \bigvee (N_{x}(K) * S(K, x_{\frac{1}{3}})) \\
= (N_{x}(1_{X}) * S(1_{X}, x_{\frac{1}{3}})) \lor (N_{x}(x_{\frac{1}{2}}) * S(x_{\frac{1}{2}}, x_{\frac{1}{3}})) \\
= (1 * (1 \to \frac{1}{3})) \lor (\frac{1}{2} * (\frac{1}{2} \to \frac{1}{3})) \\
= (1 * \frac{1}{3}) \lor (\frac{1}{2} * \frac{5}{6}) \\
= \frac{1}{3} \lor (\frac{1}{2} - \frac{1}{6}) \\
= \frac{1}{3} \lor (\frac{1}{3} - \frac{1}{3}) \\
\underbrace{\underline{N}^{*}(x)(x_{\frac{1}{3}}) = \bigwedge (\neg N^{*}(K)(x) \to T(K, \neg (x_{\frac{1}{3}}))) \\
= (1 \to (1 * \frac{2}{3})) \land (\frac{3}{5} \to (\frac{1}{2} * \frac{2}{3})) \\
= (1 \to (1 * \frac{2}{3})) \land (\frac{3}{5} \to \frac{1}{2} + \frac{2}{3})) \\
= (1 \to 2^{-1} + 2^{-1$$

$$\mathcal{N}(x)(x_{\frac{2}{3}}) = \bigwedge_{K \in L^{X}} (\mathcal{N}(x)(K) \to T(K, x_{\frac{2}{3}}))$$

$$= (\mathcal{N}(x)(1_{X}) \to T(1_{X}, x_{\frac{2}{3}})) \land (\mathcal{N}(x)(x_{\frac{1}{2}}) \to T(x_{\frac{1}{2}}, x_{\frac{2}{3}}))$$

$$= (1 \to (1 * \frac{2}{3})) \land (\frac{1}{2} \to (\frac{1}{2} * \frac{2}{3}))$$

$$= (1 \to \frac{2}{3}) \land (\frac{1}{2} \to \frac{1}{6})$$

$$= \frac{2}{3} \land \frac{2}{3} = \frac{2}{3}.$$

$$\overline{\mathcal{N}}^{*}(x)(x_{\frac{2}{3}}) = \bigvee_{K \in L^{X}} (\neg \mathcal{N}^{*}(x)(K) * S(K, \neg(x_{\frac{2}{3}})))$$

$$= (\neg \mathcal{N}^{*}(x)(1_{X}) * S(1_{X}, \neg(x_{\frac{2}{3}}))) \lor (\neg \mathcal{N}^{*}(x)(x_{\frac{1}{2}}) * S(\frac{1}{2}, \neg(x_{\frac{2}{3}})))$$

$$= (1 * (1 \to \frac{1}{3})) \lor (\frac{3}{5} * (\frac{1}{2} \to \frac{1}{3}))$$

$$= (1 * \frac{1}{3}) \lor (\frac{3}{5} * \frac{5}{6})$$

$$= \frac{1}{3} \lor \frac{13}{30} = \frac{13}{30}.$$

In the sequel, we will prove that the L-DFGN system has quantale-valued (or L-double) relation-based approximation operators [1] as a special case. Before going to the end, we give the following definition:

Definition 3.9. Assume that $(\mathcal{R}, \mathcal{R}^*)$ is an L-double relation on X. Define four mappings $\underline{\mathcal{R}}, \underline{\mathcal{R}}^*, \overline{\mathcal{R}}, \overline{\mathcal{R}}^* : L^X \to L^X$ as follows

(i)
$$\underline{\mathcal{R}}(A)(x) = S(\mathcal{R}(x, -), A) = \bigwedge_{y \in X} (\mathcal{R}(x, y) \to A(y)), and$$

 $\underline{\mathcal{R}}^*(A)(x) = T(\neg \mathcal{R}^*(x, -), \neg A) = \bigvee_{y \in X} (\neg \mathcal{R}^*(x, y) \otimes \neg A(y)),$

(ii)
$$\overline{\mathcal{R}}(A)(x) = T(\mathcal{R}(x, -), A) = \bigvee_{y \in X} (\mathcal{R}(x, y) \otimes A(y)), and$$

 $\overline{\mathcal{R}}^*(A)(x) = S(\neg \mathcal{R}^*(x, -), \neg A) = \bigwedge_{y \in X} (\neg \mathcal{R}^*(x, y) \to \neg A(y)),$

where $x \in X$ and $A \in L^X$. The pairs $(\underline{\mathcal{R}}, \underline{\mathcal{R}}^*)$ and $(\overline{\mathcal{R}}, \overline{\mathcal{R}}^*)$ are said to be L-DFLApprox and L-DFUApprox operators, respectively, and the triplets $(X, \mathcal{R}, \mathcal{R}^*), (X, \overline{\mathcal{R}}, \overline{\mathcal{R}}^*)$ are said to be L-DFLApprox and L-DFUApprox spaces, respectively.

Example 3.10. According to Remark 3.5, we have the following:

(1) Every lower L-fuzzy rough approximation operator $\underline{\mathcal{R}}: L^X \longrightarrow L^X$ [38] can be recognized with an L-DFLApprox operator in the form $(\underline{\mathcal{R}}, \neg \underline{\mathcal{R}})$.

(2) Every upper L-fuzzy rough approximation operator $\overline{\mathcal{R}} : L^X \longrightarrow L^X$ [38] can be recognized with an L-DFUApprox operator in the form $(\overline{\mathcal{R}}, \neg \overline{\mathcal{R}})$.

Now, it is time to explain that an *L*-DRApprox operator based on an *L*-double relation [1] is a special case of an *L*-DRApprox operator based on *L*-DFGN systems.

Lemma 3.11. Let (L, \leq, \otimes) be a st-s, and let $\mathcal{R}, \mathcal{R}^* : X \times X \longrightarrow L$ be an L-double relation on a set X. We define an L-DFGN system operator $\mathcal{N}_{\mathcal{R}}, \mathcal{N}_{\mathcal{R}^*}^*$ as follows: For any $x \in X, K \in L^X$,

$$\mathcal{N}_{\mathcal{R}}(x)(K) = \begin{cases} \top_L, & K = R(x, -); \\ \bot_L, & otherwise. \end{cases} \qquad \mathcal{N}^*_{\mathcal{R}^*}(x)(K) = \begin{cases} \bot_L, & K = \neg R^*(x, -); \\ \top_L, & otherwise. \end{cases}$$

Then, $\underline{N}_{\mathcal{R}}(A) = \underline{\mathcal{R}}(A), \underline{N}_{\mathcal{R}^*}^*(A) = \underline{\mathcal{R}}^*(A) \text{ and } \overline{\mathcal{N}}_{\mathcal{R}}(A) = \overline{\mathcal{R}}(A), \overline{\mathcal{N}}_{\mathcal{R}^*}^*(A) = \overline{\mathcal{R}}^*(A).$

Proof. For any $x \in X$, we have

$$\bigvee_{K \in L^{X}} \mathcal{N}_{\mathcal{R}}(x)(K) \geq \mathcal{N}_{\mathcal{R}}(x)(\mathcal{R}(x, -)) = \top_{L}, \quad \bigwedge_{K \in L^{X}} \mathcal{N}_{\mathcal{R}^{*}}^{*}(x)(K) \leq \mathcal{N}_{\mathcal{R}^{*}}^{*}(x)(\neg \mathcal{R}^{*}(x, -)) = \bot_{L}.$$

Hence $N_{\mathcal{R}}$, $N_{\mathcal{R}^*}^*$ is an *L*-DFGN system operator. Then for any $A \in L^X$ and $x \in X$. By the definition of $N_{\mathcal{R}}$, $N_{\mathcal{R}^*}^*$, we get

$$\underline{\mathcal{N}}_{\mathcal{R}}(x)(A) = \bigvee_{K \in L^{X}} (\mathcal{N}_{\mathcal{R}}(x)(K) \otimes S(K,A)) = \top_{L} \otimes S(\mathcal{R}(x,-),A) = \underline{\mathcal{R}}(A)(x),$$

$$\underline{\mathcal{N}}_{\mathcal{R}^{*}}^{*}(x)(A) = \bigwedge_{K \in L^{X}} (\neg \mathcal{N}_{\mathcal{R}^{*}}^{*}(K) \to T(K,\neg A)) = \neg \perp_{L} \to T(\neg \mathcal{R}^{*}(x,-),\neg A) = \underline{\mathcal{R}}^{*}(x)(A),$$

$$\overline{\mathcal{N}}_{\mathcal{R}}(x)(A) = \bigwedge_{K \in L^{X}} (\mathcal{N}_{\mathcal{R}}(x)(K) \to T(K,A)) = \top_{L} \to T(\mathcal{R}(x,-),A) = \overline{\mathcal{R}}(x)(A),$$

$$\overline{\mathcal{N}}_{\mathcal{R}^{*}}^{*}(x)(A) = \bigvee_{K \in L^{X}} (\neg \mathcal{N}_{\mathcal{R}^{*}}^{*}(x)(K) \otimes S(K,\neg A)) = \neg \perp_{L} \otimes S(\neg \mathcal{R}^{*}(x,-),\neg A) = \overline{\mathcal{R}}^{*}(x)(A).$$

Hence, $\underline{N}_{\mathcal{R}}(A) = \underline{\mathcal{R}}(A)$, $\underline{N}_{\mathcal{R}^*}^*(A) = \underline{\mathcal{R}}^*(A)$, and $\overline{\mathcal{N}}_{\mathcal{R}}(A) = \overline{\mathcal{R}}(A)$, $\overline{\mathcal{N}}_{\mathcal{R}^*}^*(A) = \overline{\mathcal{R}}^*(A)$ for any $A \in L^X$. \Box

Theorem 3.12. Let (N, N^*) be an L-DFGN system operator on X. Then the L-DFLApprox operator $(\underline{N}, \underline{N}^*)$ satisfies the next properties: For all $A, B \in L^X$, and $A_i \subseteq L^X$,

(1) $\underline{N}(x)(A) \leq \neg \underline{N}^*(x)(A);$

(2) (i)
$$\underline{N}(x)(\bigwedge_{i\in I} A_i) \leq \bigwedge_{i\in I} \underline{N}(x)(A_i)$$
; and (ii) $\underline{N}^*(x)(\bigwedge_{i\in I} A_i) \geq \bigvee_{i\in I} \underline{N}^*(x)(A_i)$;

- (3) (i) $\underline{N}(x)(\bigvee_{i\in I}A_i) \ge \bigvee_{i\in I}\underline{N}(x)(A_i)$; and (ii) $\underline{N}^*(x)(\bigvee_{i\in I}A_i) \le \bigwedge_{i\in I}\underline{N}^*(x)(A_i)$;
- (4) If L is st-s (sometimes called integral), then (i) $\underline{N}(\underline{\top}) = \underline{\top}$; and
- (5) If $A \le B$, then (i) $\mathcal{N}(x)(A) \le \mathcal{N}(x)(B)$; and (ii)

(6) (i)
$$\underline{N}(x)(A) = \neg \overline{N}(x)(\neg A);$$
 and (ii) $\underline{N}^*(x)(A)$

(ii)
$$\underline{N}^*(\underline{T}) = \underline{\bot};$$

(*ii*)
$$\underline{\mathcal{N}}^*(x)(A) \ge \underline{\mathcal{N}}^*(x)(B);$$

(*ii*) $\underline{\mathcal{N}}^*(x)(A) = \neg \overline{\mathcal{N}}^*(x)(\neg A).$

Proof. (1)
$$\underline{\mathcal{N}}(x)(A) = \bigvee_{K \in L^X} (\mathcal{N}(x)(K) \otimes S(K, A))$$

 $\leq \bigvee_{K \in L^X} (\neg \mathcal{N}^*(x)(K) \otimes S(K, A))$
 $= \bigvee_{K \in L^X} (\neg \mathcal{N}^*(x)(K) \otimes \neg T(K, \neg A)) \text{ (by Proposition 2.2 (1))}$
 $= \bigvee_{K \in L^X} \neg (\neg \mathcal{N}^*(x)(K) \to T(K, \neg A))$
 $= \neg (\bigwedge_{K \in L^X} (\neg \mathcal{N}^*(x)(K) \to T(K, \neg A))) \text{ (by Proposition 2.2 (3))}$
 $= \neg \underline{\mathcal{N}}^*(x)(A).$

(2) For all $\{A_i : i \in I\} \subseteq L^X$, we get

(i)
$$\underline{\mathcal{N}}(x)(\bigwedge_{i\in I} A_i) = \bigwedge_{K\in L^X} (\mathcal{N}(x)(K) \otimes S(K, \bigwedge_{i\in I} A_i))$$

$$= \bigwedge_{K\in L^X} (\mathcal{N}(x)(K) \otimes \bigwedge_{i\in I} S(K, A_i)) \text{ (by Lemma 2.3 (4))}$$

$$\leq \bigwedge_{i\in I} (\bigwedge_{K\in L^X} (\mathcal{N}(x)(K) \otimes S(K, A_i))) \text{ (by Lemma 2.3 (5))}$$

$$= \bigwedge_{i\in I} \underline{\mathcal{N}}(x)(A_i).$$
(ii) $\underline{\mathcal{N}}^*(x)(\bigwedge_{i\in I} A_i) = \bigwedge_{K\in L^X} (\neg \mathcal{N}^*(x)(K) \rightarrow T(K, \neg \bigwedge_{i\in I} A_i))$

$$= \bigwedge_{K\in L^X} (\neg \mathcal{N}^*(x)(K) \rightarrow T(K, \bigvee_{i\in I} \neg A_i))$$

$$= \bigwedge_{K\in L^X} (\neg \mathcal{N}^*(x)(K) \rightarrow \bigvee_{i\in I} T(K, \neg A_i)) \text{ (by Lemma 2.3 (5))}$$

$$\geq \bigvee_{i\in I} (\bigwedge_{K\in L^X} (\neg \mathcal{N}^*(x)(K) \rightarrow T(K, \neg A_i))) \text{ (by Lemma 2.1 (6))}$$

$$= \bigvee_{i\in I} \underline{\mathcal{N}}^*(x)(A_i).$$

(3) For all $\{A_i : i \in I\} \subseteq L^X$, we have

(i)
$$\underline{N}(x)(\bigvee_{i\in I} A_i) = \bigvee_{K\in L^X} (\mathcal{N}(x)(K) \otimes S(K, \bigvee_{i\in I} A_i))$$

$$\geq \bigvee_{K\in L^X} (\mathcal{N}(x)(K) \otimes \bigvee_{i\in I} S(K, A_i)) \text{ (by Lemma 2.1 (6))}$$

$$= \bigvee_{i\in I} (\bigvee_{K\in L^X} (\mathcal{N}(x)(K) \otimes S(K, A_i))) \text{ (by Lemma 2.3 (5))}$$

$$= \bigvee_{i\in I} \underline{N}(x)(A_i).$$
(ii) $\underline{N}^*(x)(\bigvee_{i\in I} A_i) = \bigwedge_{K\in L^X} (\neg \mathcal{N}^*(x)(K) \rightarrow T(K, \neg \bigvee_{i\in I} A_i))$

$$= \bigwedge_{K\in L^X} (\neg \mathcal{N}^*(x)(K) \rightarrow T(K, \bigwedge_{i\in I} \neg A_i))$$

$$\leq \bigwedge_{K\in L^X} (\neg \mathcal{N}^*(x)(K) \rightarrow \bigwedge_{i\in I} T(K, \neg A_i)) \text{ (by Lemma 2.3 (5))}$$

$$= \bigwedge_{i\in I} (\bigwedge_{K\in L^X} (\neg \mathcal{N}^*(x)(K) \rightarrow T(K, \neg A_i))) \text{ (by Lemma 2.3 (4))}$$

$$= \bigwedge_{i\in I} \underline{N}^*(x)(A_i).$$

For the items (4) - (6), we prove only the second part (ii), since the proof of the first part (i) is the same as given in [56].

(4) Suppose that *L* is st-s quantale, then

$$\underline{\mathcal{N}}^{*}(x)(\top) = \bigwedge_{K \in L^{X}} (\neg \mathcal{N}^{*}(x)(K) \to T(K, \neg \underline{\top}))$$

$$= \bigwedge_{K \in L^{X}} (\neg \mathcal{N}^{*}(x)(K) \to T(K, \underline{\perp}))$$

$$= \bigwedge_{K \in L^{X}} (\neg \mathcal{N}^{*}(x)(K) \to \bot)$$

$$= \bigvee_{K \in L^{X}} (\neg \mathcal{N}^{*}(x)(K)) \to \bot \text{ (by Lemma 2.1 (3))}$$

$$= \neg (\bigwedge_{K \in L^{X}} \mathcal{N}^{*}(x)(K)) \to \bot$$

$$= \neg \bot \to \bot = \top \to \bot = \bot_{I}.$$

(5) $\forall A, B \in L^X$, with $A \leq B$, we find

$$\underline{\mathcal{N}}^*(x)(A) = \bigwedge_{K \in L^X} (\neg \mathcal{N}^*(x)(K) \to T(K, \neg A))$$

$$\geq \bigwedge_{K \in L^{X}} (\neg \mathcal{N}^{*}(x)(K) \to T(K, \neg B)) \text{ (by Lemma 2.3 (1))}$$

$$= \underline{\mathcal{N}}^{*}(x)(B).$$
(6) $\neg \overline{\mathcal{N}}^{*}(x)(\neg A) = \neg \bigvee_{K \in L^{X}} (\neg \mathcal{N}^{*}(x)(K) \otimes S(K, A))$

$$= \bigwedge_{K \in L^{X}} \neg (\neg \mathcal{N}^{*}(x)(K) \to \neg S(K, A)) \text{ (by Proposition 2.2 (1))}$$

$$= \bigwedge_{K \in L^{X}} (\neg \mathcal{N}^{*}(x)(K) \to T(K, \neg A))$$

$$= \underline{\mathcal{N}}^{*}(x)(A).$$

Theorem 3.13. Let (N, N^*) be an L-DFGN system operator on X. Then the L-DFUApprox operator $(\overline{N}, \overline{N}^*)$ satisfies the next properties:

(1) $\overline{\mathcal{N}}(x)(A) \ge \overline{\mathcal{N}}^{*}(x)(A);$ (2) (i) $\overline{\mathcal{N}}(x)(\bigwedge_{i\in I} A_{i}) \le \bigwedge_{i\in I} \overline{\mathcal{N}}(x)(A_{i}); and$ (ii) $\overline{\mathcal{N}}^{*}(x)(\bigwedge_{i\in I} A_{i}) \ge \bigvee_{i\in I} \overline{\mathcal{N}}^{*}(x)(A_{i});$ (3) (i) $\overline{\mathcal{N}}(x)(\bigvee_{i\in I} A_{i}) \ge \bigvee_{i\in I} \overline{\mathcal{N}}(x)(A_{i}); and$ (ii) $\overline{\mathcal{N}}^{*}(x)(\bigvee_{i\in I} A_{i}) \le \bigwedge_{i\in I} \overline{\mathcal{N}}^{*}(x)(A_{i});$ (4) If L is st-s (sometimes called integral), then (i) $\overline{\mathcal{N}}(\underline{+}) = \underline{+}; and$ (ii) $\overline{\mathcal{N}}^{*}(\underline{+}) = \underline{+};$ (5) If $A \le B$, then (i) $\overline{\mathcal{N}}(x)(A) \le \overline{\mathcal{N}}(x)(B); and$ (ii) $\overline{\mathcal{N}}^{*}(x)(A) \ge \overline{\mathcal{N}}^{*}(x)(B);$ (6) (i) $\overline{\mathcal{N}}(x)(A) = \neg \underline{\mathcal{N}}(x)(\neg A); and$ (ii) $\overline{\mathcal{N}}^{*}(x)(A) = \neg \underline{\mathcal{N}}^{*}(x)(\neg A),$

where $A, B \in L^X$, and $A_i \subseteq L^X$.

Proof. (1)
$$\neg \overline{\mathcal{N}}(x)(A) = \neg \bigvee_{K \in L^X} (\neg \mathcal{N}^*(x)(K) \otimes S(K, \neg A))$$

$$= \bigwedge_{K \in L^X} \neg (\neg \mathcal{N}^*(x)(K) \otimes S(K, \neg A)) \text{ (by Proposition 2.2 (3))}$$

$$= \bigwedge_{K \in L^X} (\neg \mathcal{N}^*(x)(K) \rightarrow \neg S(K, \neg A)) \text{ (by Proposition 2.2 (1))}$$

$$\leq \bigwedge_{K \in L^X} (\mathcal{N}(x)(K) \rightarrow T(K, A))$$

$$= \overline{\mathcal{N}}(x)(A).$$

(2) For all $\{A_i : i \in I\} \subseteq L^X$, we have

(i)
$$\overline{\mathcal{N}}(x)(\bigwedge_{i\in I} A_i) = \bigwedge_{K\in L^X} (\mathcal{N}(x)(K) \to T(K, \bigwedge_{i\in I} A_i))$$

 $\leq \bigvee_{i\in I} \bigvee_{K\in L^X} (\mathcal{N}(x)(K) \to \bigwedge_{i\in I} T(K, A_i)) \text{ (by Lemma 2.3 (5))}$
 $= \bigwedge_{i\in I} (\bigvee_{K\in L^X} (\mathcal{N}(x)(K) \to T(K, A_i))) \text{ (by Lemma 2.3 (4))}$
 $= \bigwedge_{i\in I} \overline{\mathcal{N}}(x)(A_i).$

(*ii*)
$$\overline{\mathcal{N}}(x)(\bigwedge_{i\in I} A_i) = \bigvee_{\substack{K\in L^X\\K\in L^X}} (\neg \mathcal{N}^*(x)(K) \otimes S(K, \neg \bigwedge_{i\in I} A_i))$$

$$= \bigvee_{\substack{K\in L^X\\K\in L^X}} (\neg \mathcal{N}^*(x)(K) \otimes S(K, \bigvee_{i\in I} \neg A_i)) \text{ (by Lemma 2.1 (6))}$$
$$= \bigvee_{\substack{i\in I\\K\in L^X}} (\neg \mathcal{N}^*(x)(K) \otimes S(K, \neg A_i)) \text{ (by Lemma 2.1 (7))}$$
$$= \bigvee_{i\in I} \overline{\mathcal{N}}^*(x)(A_i).$$

(3) For all $\{A_i : i \in I\} \subseteq L^X$, we have

(i)
$$\overline{\mathcal{N}}(x)(\bigvee_{i\in I} A_i) = \bigwedge_{K\in L^X} (\mathcal{N}(x)(K) \to T(K, \bigvee_{i\in I} A_i))$$

$$= \bigwedge_{K\in L^X} (\mathcal{N}(x)(K) \to \bigvee_{i\in I} T(K, A_i)) \text{ (by Lemma 2.3 (5))}$$

$$\geq \bigvee_{i\in I} (\bigwedge_{K\in L^X} (\mathcal{N}(x)(K) \to T(K, A_i))) \text{ (by Lemma 2.1 (6))}$$

$$= \bigvee_{i\in I} \overline{\mathcal{N}}(x)(A_i).$$
(ii) $\overline{\mathcal{N}}^*(x)(\bigvee_{i\in I} A_i) = \bigvee_{K\in L^X} (\neg \mathcal{N}^*(x)(K) \otimes S(K, \neg \bigvee_{i\in I} A_i))$

$$= \bigvee_{K\in L^X} (\neg \mathcal{N}^*(x)(K) \otimes S(K, \wedge_{i\in I} \neg A_i))$$

$$= \bigvee_{K\in L^X} (\neg \mathcal{N}^*(x)(K) \otimes \wedge_{i\in I} S(K, \neg A_i)) \text{ (by Lemma 2.3 (4))}$$

$$\leq \bigwedge_{i\in I} (\bigvee_{K\in L^X} (\neg \mathcal{N}^*(x)(K) \otimes S(K, \neg A_i))) \text{ (by Lemma 2.3 (5))}$$

$$= \bigwedge_{i\in I} \overline{\mathcal{N}}^*(x)(A_i).$$

For the items (4) - (6), we prove only the second part (ii), since the proof of the first part (i) is the same as given in [56].

(4) Suppose that L is st-s quantale, then

$$\overline{\mathcal{N}}^{*}(x)(\bot) = \bigvee_{K \in L^{X}} (\neg \mathcal{N}^{*}(x)(K) \otimes S(K, \neg \bot))$$

$$= \bigvee_{K \in L^{X}} (\neg \mathcal{N}^{*}(x)(K) \otimes S(K, \underline{\top}))$$

$$= \bigvee_{K \in L^{X}} (\neg \mathcal{N}^{*}(x)(K) \otimes \top) \text{ (by Lemma 2.1 (2))}$$

$$= \bigvee_{K \in L^{X}} (\neg \mathcal{N}^{*}(x)(K)) \otimes \top \text{ (by Lemma 2.1 (7))}$$

$$= \neg (\bigwedge_{K \in L^{X}} \mathcal{N}^{*}(x)(K)) \otimes \top$$

$$= \neg \bot \otimes \top = \top \otimes \top = \top_{L}.$$

(5) $\forall A, B \in L^X$, with $A \leq B$, we find

$$\overline{\mathcal{N}}^{*}(x)(A) = \bigvee_{K \in L^{X}} (\neg \mathcal{N}^{*}(x)(K) \otimes S(K, \neg A))$$

$$\geq \bigvee_{K \in L^{X}} (\neg \mathcal{N}^{*}(x)(K) \otimes S(K, \neg B)) \text{ (by Lemma 2.3 (1))}$$

$$= \overline{\mathcal{N}}^{*}(x)(B).$$

(6)
$$\neg \underline{\mathcal{N}}^*(x)(\neg A) = \neg (\bigwedge_{K \in L^X} (\neg \mathcal{N}^*(x)(K) \to T(K, A)))$$

 $= \bigvee_{K \in L^X} \neg (\neg \mathcal{N}^*(x)(K) \to T(K, A)))$
 $= \bigvee_{K \in L^X} (\neg \mathcal{N}^*(x)(K) \otimes \neg T(K, A))) \text{ (by Proposition 2.2 (1))}$
 $= \bigvee_{K \in L^X} (\neg \mathcal{N}^*(x)(K) \otimes S(K, \neg A))$
 $= \overline{\mathcal{N}}^*(x)(A).$

Let (N, N^*) be an *L*-DFGN system operator on *X*. The *L*-double measure of roughness of *L*-DFUApprox $(\mathcal{U}_N, \mathcal{U}_N)$, of an $A \in L^X$, given by:

$$\mathcal{U}_{N}(A) = S(\overline{\mathcal{N}}(A), A), \quad \mathcal{U}_{N^{*}}(A) = T(\neg \overline{\mathcal{N}}^{*}(A), \neg A),$$

and the *L*-double measure of roughness of *L*-DFUApprox ($\mathcal{L}_{N}, \mathcal{L}_{N^{*}}$) by

$$\mathcal{L}_{N}(A) = S(A, \underline{\mathcal{N}}(A)), \quad \mathcal{L}_{N^{*}}(A) = T(A, \underline{\mathcal{N}}^{*}(A)).$$

By the above definition, we can denote the double measures of roughness of *L*-DFLApprox and *L*-DFUApprox by the following mapping:

$$\mathcal{U}_{N}, \mathcal{U}_{N^{*}}: L^{X} \longrightarrow L \text{ and } \mathcal{L}_{N}, \mathcal{L}_{N^{*}}: L^{X} \longrightarrow L_{N}$$

respectively.

In the following corollary, we give some properties of the *L*-double operator of *L*-DFLApprox and *L*-DFUApprox $\mathcal{L}_{N}, \mathcal{L}_{N^*}: L^X \longrightarrow L$, and $\mathcal{U}_{N}, \mathcal{U}_{N^*}: L^X \longrightarrow L$, respectively.

Corollary 3.14. An L-double measure of roughness of L-DFLApprox \mathcal{L}_{N} , \mathcal{L}_{N^*} : $L^X \longrightarrow L$ satisfies the next properties:

(1) If L is st-s, then (i) $\mathcal{L}_{N}(\underline{T}) = \top_{L'}$ and (ii) $\mathcal{L}_{N^{*}}(\underline{T}) = \bot_{L'}$ (2) (i) $\mathcal{L}_{N}(\bigvee_{i\in I} A_{i}) \ge \bigwedge_{i\in I} \mathcal{L}_{N}(A_{i})$, and (ii) $\mathcal{L}_{N^{*}}(\bigvee_{i\in I} A_{i}) \le \bigvee_{i\in I} \mathcal{L}_{N^{*}}(A_{i})$.

Proof. (1) If L is st-s, then

(i)
$$\mathcal{L}_{N}(\underline{\mathsf{T}}) = S(\underline{\mathsf{T}}, \underline{N}(\underline{\mathsf{T}})) = S(\underline{\mathsf{T}}, \underline{\mathsf{T}}) = \mathsf{T}_{L}.$$

(ii) $\mathcal{L}_{N^{*}}(\underline{\mathsf{T}}) = T(\underline{\mathsf{T}}, \underline{N}^{*}(\underline{\mathsf{T}})) = T(\underline{\mathsf{T}}, \underline{\bot}) = \bot_{L}.$

(2) (i)
$$\mathcal{L}_{N}(\bigvee A_{i}) = S(\bigvee A_{i}, \underline{N}(\bigvee A_{i}))$$

$$\geq S(\bigvee A_{i}, \bigvee \underline{N}(A_{i})) \text{ (by Theorem 3.12(3))}$$

$$\geq \bigwedge S(A_{i}, \underline{N}(A_{i})) \text{ (by Lemma 2.1 (8))}$$

$$= \bigwedge \mathcal{L}_{N^{*}}(A_{i}).$$
(ii) $\mathcal{L}_{N^{*}}(\bigvee A_{i}) = T(\bigvee A_{i}, \underline{N}^{*}(\bigvee A_{i}))$

$$\leq T(\bigvee A_{i}, \bigwedge \underline{N}^{*}(A_{i})) \text{ (by Theorem 3.12(5))}$$

$$\leq T(\bigvee A_{i}, \underline{N}^{*}(A_{i})) \text{ (by Theorem 3.12(5))}$$

$$\leq T(\bigvee A_{i}, \underline{N}^{*}(A_{i}))$$

$$= \bigvee T(A_{i}, \underline{N}^{*}(A_{i})) \text{ (by Lemma 2.1 (7))}$$

$$= \bigvee T(A_{i}, \underline{N}^{*}(A_{i})).$$

Corollary 3.15. An L-double measure of roughness of L-DFUApprox $\mathcal{U}_{N'}, \mathcal{U}_{N^*} : L^X \longrightarrow L$ satisfies the next properties:

(1) (i)
$$\mathcal{U}_{N}(\underline{\perp}) = \top_{L}$$
, and
(ii) $\mathcal{U}_{N^{*}}(\underline{\perp}) = \perp_{L}$,
(2) (i) $\mathcal{U}_{N}(\bigwedge A_{i}) \ge \bigwedge_{i \in I} \mathcal{U}_{N}(A_{i})$, and
(ii) $\mathcal{U}_{N^{*}}(\bigwedge A_{i}) \le \bigvee_{i \in I} \mathcal{U}_{N^{*}}(A_{i})$.

Proof. (1) (i)
$$\mathcal{U}_{N}(\underline{\perp}) = S(\mathcal{N}(\underline{\perp}), \underline{\perp}) = S(\underline{\perp}, \underline{\perp}) = \top_{L}$$
.
(ii) $\mathcal{U}_{N^{*}}(\underline{\perp}) = T(\neg \overline{\mathcal{N}}^{*}(\underline{\perp}), \neg \underline{\perp}) = T(\neg \underline{\top}, \underline{\top}) = T(\underline{\perp}, \underline{\top}) = \perp_{L}$.

(2) (i)
$$\mathcal{U}_{N}(\bigwedge_{i\in I} A_{i}) = S(\mathcal{N}(\bigwedge_{i\in I} A_{i}), \bigwedge_{i\in I} A_{i})$$

$$\geq S(\bigwedge_{i\in I} \overline{\mathcal{N}}(A_{i}), \bigwedge_{i\in I} A_{i}) \text{ (by Theorem 3.13(2))}$$

$$\geq \bigwedge_{i\in I} S(\overline{\mathcal{N}}(A_{i}), A_{i}) \text{ (by Lemma 2.1 (8))}$$

$$= \bigwedge_{i\in I} \mathcal{U}_{N}(A_{i}).$$

(ii)
$$\mathcal{U}_{N^{*}}(\bigwedge_{i\in I} A_{i}) = T(\neg \overline{\mathcal{N}}(\bigwedge_{i\in I} A_{i}), \neg \bigwedge_{i\in I} A_{i})$$

 $\leq T(\neg \bigvee_{i\in I} \overline{\mathcal{N}}^{*}(A_{i}), \bigvee_{i\in I} \neg A_{i}) \text{ (by Theorem 3.13(4))}$
 $= T(\bigwedge_{i\in I} \neg \overline{\mathcal{N}}^{*}(A_{i}), \bigvee_{i\in I} \neg A_{i}) \text{ (by Proposition 2.2(3))}$
 $\leq T(\neg \overline{\mathcal{N}}^{*}(A_{i}), \bigvee_{i\in I} \neg A_{i})$
 $= \bigvee_{i\in I} T(\neg \overline{\mathcal{N}}^{*}(A_{i}), \neg A_{i}) \text{ (by Lemma 2.3(5))}$
 $= \bigvee_{i\in I} \mathcal{U}_{N^{*}}(A_{i}).$

Corollary 3.16. For an L-double measures of roughness of L-DFLApprox and L-DFUApprox $\mathcal{L}_{N}, \mathcal{L}_{N^*}, \mathcal{U}_{N}, \mathcal{U}_{N^*} : L^X \longrightarrow L$, we have

(i)
$$\mathcal{L}_{N}(\neg D) = \mathcal{U}_{N}(D)$$
 and $\mathcal{U}_{N}(\neg D) = \mathcal{L}_{N}(D)$,

(*ii*)
$$\mathcal{L}_{N^*}(\neg D) = \mathcal{U}_{N^*}(D)$$
 and $\mathcal{U}_{N^*}(\neg D) = \mathcal{L}_{N^*}(D)$, for all $D \in L^X$.

Proof. (i)
$$\mathcal{L}_{N}(\neg D) = S(\neg D, \underline{N}(\neg D))$$

= $S(\neg D, \neg \overline{N}(D))$
= $S(\overline{N}(D), D)$ (by Proposition 2.2(2))
= $\mathcal{U}_{N}(D)$.

Now, we prove the second part, $\mathcal{U}_{N}(\neg D) = S(\overline{\mathcal{N}}(\neg D), \neg D)$ = $S(\neg \underline{\mathcal{N}}(D), \neg D)$ = $S(D, \underline{\mathcal{N}}(D))$ (by **Proposition 2.2(2)**) = $\mathcal{L}_{N}(D)$.

(ii)
$$\mathcal{L}_{N^*}(\neg D) = T(\neg D, \underline{N}^*(\neg D))$$

 $= T(\neg D, \neg \overline{N}^*(D))$
 $= T(\neg \overline{N}^*(D), \neg D)$
 $= \mathcal{U}_{N^*}(D).$
Now, we prove the second part, $\mathcal{U}_{N^*}(\neg D) = T(\neg \overline{N}^*(\neg D), \neg(\neg D))$
 $= T(\underline{N}^*(D), D)$
 $= T(D, \underline{N}^*(D))$
 $= \mathcal{L}_{N^*}(D).$

4. Special *L*-double fuzzy generalized neighborhood systems and related *L*-double rough approximation operators

Some special *L*-DFGN systems and related *L*-DRApprox operators will be proposed in this section. Also, we shall show that different *L*-DRApprox operators correspond to different modal logic systems, respectively.

4.1. Serial L-DFGN systems

The concept of serial *L*-DFGN system operators will be introduced and we will discuss their related *L*-DRApprox operators

Definition 4.1. An L-DFGN system operator (N, N^*) is called a serial, if

 $(SE) \ \mathcal{N}(x)(A) \le \bigvee_{y \in X} A(y), and \qquad (SE^*) \ \mathcal{N}^*(x)(A) \ge \bigwedge_{y \in X} (\neg A(y)),$

where $x \in X$, $A \in L^X$.

Remark 4.2. Every serial L-FGN system operator $\mathcal{N} : X \longrightarrow L^{L^{\times}}$ [56], can be identified with a serial L-DFGN system operator of the form $(\mathcal{N}, \neg \mathcal{N})$. Thus, the serial condition in L-DFGN system operator is an extension of the corresponding condition in L-FGN system operator. Moreover, it is easily observed that: for an L-double relation $(\mathcal{R}, \mathcal{R}^*)$ [1], $(\mathcal{N}_{\mathcal{R}}, \mathcal{N}_{\mathcal{R}^*})$ is serial iff $(\mathcal{R}, \mathcal{R}^*)$ is serial. Where $(\mathcal{N}_{\mathcal{R}}, \mathcal{N}_{\mathcal{R}^*}^*)$ is defined in Lemma 3.11.

Proposition 4.3. Let (L, \leq, \otimes) be st-s. Then (N, N^*) is serial iff

(i)
$$\underline{\mathcal{N}}(\underline{\perp}) = \underline{\perp}$$
, and $\mathcal{N}(\underline{\top}) = \underline{\top}$,

(ii) $\underline{N}^*(\underline{\bot}) = \underline{\top}$, and $\overline{N}^*(\underline{\top}) = \underline{\bot}$.

Proof. Let (N, N^*) be a serial *L*-DFGN system operator , then:

(*i*) By Propositions **4.2** and **4.3** of **[56]**, we have:

$$\mathcal{N}(x)(A) \leq \bigvee_{y \in X} A(y) \Leftrightarrow \underline{\mathcal{N}}(\underline{\perp}) = \underline{\perp}, \text{ and } \mathcal{N}(\underline{\perp}) = \underline{\perp}.$$

(*ii*) Let $\mathcal{N}^*(x)(A) \ge \bigwedge_{y \in X} (\neg A(y))$, then for any $x \in X$, we have that

$$\underline{\mathcal{N}}^{*}(x)(\bot) = \bigwedge_{K \in L^{X}} (\neg \mathcal{N}^{*}(x)(K) \to T(K, \neg \underline{\bot}))$$
$$= \bigwedge_{K \in L^{X}} (\neg \mathcal{N}^{*}(x)(K) \to T(K, \underline{\top}))$$

$$= \bigwedge_{K \in L^{X}} (\neg \mathcal{N}^{*}(x)(K) \rightarrow \bigvee_{y \in X} (K(y) \otimes \top_{L}))$$

$$= \bigwedge_{K \in L^{X}} (\neg \mathcal{N}^{*}(x)(K) \rightarrow ([\bigvee_{y \in X} K(y)] \otimes \top_{L})) \text{ (by Lemma 2.1 (7))}$$

$$\stackrel{SE^{*}}{\geq} \bigwedge_{K \in L^{X}} ([\bigvee_{y \in X} K(y)] \rightarrow ([\bigvee_{y \in X} K(y)] \otimes \top_{L}))$$

$$\geq \top_{L} \text{ (by Lemma 2.1 (1)).}$$

Hence, $\underline{N}^*(\underline{\bot}) = \underline{\top}$.

We prove the second part,

$$\overline{\mathcal{N}}(x)(\top) = \bigvee_{K \in L^{X}} (\neg \mathcal{N}^{*}(x)(K) \otimes S(K, \neg \underline{\top}))$$

$$= \bigvee_{K \in L^{X}} (\neg \mathcal{N}^{*}(x)(K) \otimes S(K, \underline{\perp}))$$

$$= \bigvee_{K \in L^{X}} (\neg \mathcal{N}^{*}(x)(K) \otimes \bigwedge_{y \in X} (K(y) \to \bot_{L}))$$

$$\stackrel{SE^{*}}{\leq} \bigvee_{K \in L^{X}} [(\bigvee_{y \in X} K(y)) \otimes ((\bigvee_{y \in X} K(y)) \to \bot_{L})] (\text{by Lemma 2.1 (4)})$$

$$\leq \bot_{L} (\text{by Lemma 2.1 (1)}).$$

So, $\overline{\mathcal{N}}^*(\underline{\top}) = \underline{\bot}$.

Conversely, suppose that $\underline{N}^*(x)(\bot) = \top$. Then, for any $x \in X$, we get

$$\underline{\mathcal{N}}^*(x)(\bot) = \bigwedge_{K \in L^X} (\neg \mathcal{N}^*(x)(K) \to T(K, \neg \underline{\bot})) = \top.$$

It follows that, for any $K \in L^X$,

$$\neg \mathcal{N}^{*}(x)(K) \rightarrow T(K, \neg \underline{+}) \geq \underline{+} \Rightarrow \underline{+} \otimes \neg \mathcal{N}^{*}(x)(K) \leq T(K, \neg \underline{+})$$

$$\Rightarrow \neg \mathcal{N}^{*}(x)(K) \leq T(K, \underline{+})$$

$$\Rightarrow \neg \mathcal{N}^{*}(x)(K) \leq \bigvee_{y \in X} (K(y) \otimes \underline{+}_{L})$$

$$\Rightarrow \neg \mathcal{N}^{*}(x)(K) \leq (\bigvee_{y \in X} K(y)) \otimes \underline{+}_{L} \text{ (by Lemma 2.1 (7))}$$

$$\Rightarrow \neg \mathcal{N}^{*}(x)(K) \leq \bigvee_{y \in X} K(y)$$

$$\Rightarrow \mathcal{N}^{*}(x)(K) \geq \neg \bigvee_{y \in X} K(y) \text{ (by Proposition 2.2(4))}$$

$$\Rightarrow \mathcal{N}^{*}(x)(K) \geq \bigwedge_{y \in X} \neg K(y) \text{ (by Proposition 2.2(3))}.$$

And, suppose that $\overline{\mathcal{N}}(x)(\top) = \bot$. Then, for any $x \in X$, we get

$$\overline{\mathcal{N}}^{*}(x)(\top) = \bigvee_{K \in L^{X}} (\neg \mathcal{N}^{*}(x)(K) \otimes S(K, \neg \underline{\top})) = \bot. \text{ It follows that for any } K \in L^{X},$$

$$\neg \mathcal{N}^{*}(x)(K) \otimes S(K, \neg \underline{\top}) \leq \bot \Rightarrow \neg \mathcal{N}^{*}(x)(K) \leq S(K, \underline{\bot}) \to \bot$$

$$\Rightarrow \neg \mathcal{N}^{*}(x)(K) \leq \bigwedge_{y \in X} (K(y) \to \bot) \to \bot$$

$$\Rightarrow \neg \mathcal{N}^{*}(x)(K) \leq ((\bigvee_{y \in X} K(y)) \to \bot) \to \bot (by \text{ Lemma2.1(3)})$$

$$\Rightarrow \neg \mathcal{N}^{*}(x)(K) \leq \bigvee_{y \in X} K(y)$$

$$\Rightarrow \mathcal{N}^{*}(x)(K) \geq \neg \bigvee_{y \in X} K(y) \text{ (by Proposition 2.2(4))}$$
$$\Rightarrow \mathcal{N}^{*}(x)(K) \geq \bigwedge_{y \in X} \neg K(y) \text{ (by Proposition 2.2(3))}.$$

4.2. Reflexive L-DFGN systems

The concept of reflexive *L*-DFGN system operators will be introduced and we will discuss their related *L*-DRApprox operators.

Definition 4.4. An L-DFGN system operator (N, N^*) is called a reflexive, if (RE) $N(x)(A) \le A(x)$, and (RE*) $N^*(x)(A) \ge \neg A(x)$,

where $x \in X$, $A \in L^X$.

Remark 4.5. Every reflexive L-FGN system operator $N : X \longrightarrow L^{L^X}$ [56], can be identified with a reflexive L-DFGN system operator of the form $(N, \neg N)$. Thus, the reflexive condition in L-DFGN system operator is an extension of the corresponding condition in L-FGN system operator. Moreover, it is easily observed that: for an L-double relation $(\mathcal{R}, \mathcal{R}^*)$ [1], $(\mathcal{N}_{\mathcal{R}}, \mathcal{N}_{\mathcal{R}}^*)$ is reflexive iff $(\mathcal{R}, \mathcal{R}^*)$ is reflexive. Where $(\mathcal{N}_{\mathcal{R}}, \mathcal{N}_{\mathcal{R}}^*)$ is defined in Lemma 3.11.

Proposition 4.6. Let (N, N^*) be an L-DFGN system operator on X. If (N, N^*) is reflexive, then for each $A \in L^X$.

(*i*) $\underline{N}(x)(A) \le A(x)$, and and the opposite is true if (L, \le, \otimes) is st-s. (*ii*) $\underline{N}^*(x)(A) \ge \neg A(x)$,

Proof. Let (N, N^*) be reflexive, then:

(*i*) By [[**56**], Proposition **4.5**], we have:

$$\mathcal{N}(x)(A) \leq A(x) \Leftrightarrow \mathcal{N}(x)(A) \leq A(x).$$

(*ii*) Let $\mathcal{N}^*(x)(A) \ge \neg A(x)$, then

$$\underline{\mathcal{N}}^{*}(x)(A) = \bigwedge_{K \in L^{X}} [\neg \mathcal{N}^{*}(x)(K) \to T(K, \neg A)]$$

$$= \bigwedge_{K \in L^{X}} [\neg \mathcal{N}^{*}(x)(K) \to \bigvee_{x \in X} (K(x) \otimes \neg A(x))]$$

$$\geq \bigwedge_{K \in L^{X}} [\neg \mathcal{N}^{*}(x)(K) \to (K(x) \otimes \neg A(x))]$$

$$\overset{RE^{*}}{\geq} \bigwedge_{K \in L^{X}} [K(x) \to (K(x) \otimes \neg A(x))]$$

$$\geq \neg A(x) \text{ (by Lemma 2.1 (1)).}$$

Conversely, suppose that (L, \leq, \otimes) is st-s and $\underline{N}^*(x)(A) \geq \neg A(x)$ for each $A \in L^X$. For any $x \in X$, we get

$$\bigwedge_{K \in L^{X}} [\neg \mathcal{N}^{*}(x)(K) \to T(K, \neg A)] \ge \neg A(x)$$

$$\Rightarrow \bigwedge_{K \in L^{X}} [\neg T(K, \neg A) \to \mathcal{N}^{*}(x)(K)] \ge \neg A(x)$$

$$\Rightarrow \bigwedge_{K \in L^{X}} [S(K, A) \to \mathcal{N}^{*}(x)(K)] \ge \neg A(x)$$

$$\Rightarrow S(K, A) \to \mathcal{N}^{*}(x)(K) \ge \neg A(x).$$

Taking K = A, we get

K. El-Saady, A. A. Temraz / Filomat 37:14 (2023), 4809-4832

$$S(A, A) \to \mathcal{N}^*(x)(A) \ge \neg A(x)$$
$$\Rightarrow \top_L \to \mathcal{N}^*(x)(K) \ge \neg A(x)$$
$$\Rightarrow \mathcal{N}^*(x)(K) \ge \neg A(x).$$

Proposition 4.7. Let (N, N^*) be an L-DFGN system operator on X. Then (N, N^*) is reflexive iff

(i)
$$\overline{\mathcal{N}}(x)(A) \ge A(x)$$
, and (ii) $\overline{\mathcal{N}}^*(x)(A) \le \neg A(x)$ for each $A \in L^X$.

Proof. Let (N, N^*) is reflexive, then:

(*i*) By [[56], Proposition 4.6], we have that

$$\mathcal{N}(x)(A) \le A(x) \Leftrightarrow \overline{\mathcal{N}}(x)(A) \ge A(x).$$

(*ii*) Let $\mathcal{N}^*(x)(A) \ge \neg A(x)$, then

$$\overline{\mathcal{N}}^{*}(x)(A) = \bigvee_{K \in L^{X}} [\neg \mathcal{N}^{*}(x)(K) \otimes S(K, \neg A)]$$

$$= \bigvee_{K \in L^{X}} [\neg \mathcal{N}^{*}(x)(K) \otimes \bigwedge_{x \in X} (K(x) \to \neg A(x))]$$

$$\leq \bigvee_{K \in L^{X}} [\neg \mathcal{N}^{*}(x)(K) \otimes (K(x) \to \neg A(x))]$$

$$\overset{RE^{*}}{\leq} \bigvee_{K \in L^{X}} [K(x) \otimes (K(x) \to \neg A(x))] \leq \neg A(x) \text{ (by Lemma 2.1 (1)).}$$

Conversely, suppose that $\overline{\mathcal{N}}^*(x)(A) \leq \neg A(x)$, for $A \in L^X$. Then for any $x \in X$, we get

$$\overline{\mathcal{N}}^{*}(x)(\neg A) \leq A(x), \text{ i.e., } \neg \overline{\mathcal{N}}^{*}(x)(\neg A) \geq \neg A(x)$$
$$\Rightarrow \underline{\mathcal{N}}^{*}(x)(A) \geq \neg A(x)$$

From **Theorems 3.13** and **4.6**, we get $\mathcal{N}^*(x)(A) \ge \neg A(x)$.

4.3. Transitive L-DFGN systems

The concept of transitive *L*-DFGN system operators will be introduced and we will establish their related *L*-DRApprox operators.

Definition 4.8. An L-DFGN system operator (N, N^*) is called a transitive, if

$$(TR) \quad \mathcal{N}(x)(A) \leq \bigvee_{B \in L^{X}} \{\mathcal{N}_{x}(B) \otimes \bigwedge_{y \in X} (B(y) \to \bigvee_{B_{y} \in L^{X}} (\mathcal{N}_{y}(B_{y}) \otimes S(B_{y}, A)))\}, and$$
$$(TR^{*}) \quad \mathcal{N}^{*}(x)(A) \geq \bigwedge_{B \in L^{X}} \{\neg \mathcal{N}^{*}(x)(B) \to \bigvee_{y \in X} (B(y) \otimes \bigwedge_{B_{y} \in L^{X}} (\neg \mathcal{N}^{*}(y)(B_{y}) \to T(B_{y}, \neg A)))\},$$

where $x \in X$, $A \in L^X$.

Remark 4.9. Every transitive L-FGN system operator $N : X \longrightarrow L^{L^X}$ [56], can be identified with a reflexive L-DFGN system operator of the form $(N, \neg N)$. Thus, the transitive condition in L-DFGN system operator is an extension of the corresponding condition in L-FGN system operator. Moreover, it is easily observed that: for an L-double relation $(\mathcal{R}, \mathcal{R}^*)$ [1], $(\mathcal{N}_{\mathcal{R}}, \mathcal{N}^*_{\mathcal{R}^*})$ is transitive iff $(\mathcal{R}, \mathcal{R}^*)$ is transitive Where $(\mathcal{N}_{\mathcal{R}}, \mathcal{N}^*_{\mathcal{R}^*})$ is defined in Lemma 3.11.

Proposition 4.10. Let (N, N^*) be an L-DFGN system operator on X. If (N, N^*) is transitive, then

(*i*) $\underline{N}(x)(A) \leq \underline{N}(x)(\underline{N}(A))$, and (*ii*) $\underline{N}^*(x)(A) \geq \underline{N}^*(x)(\neg \underline{N}^*(A))$ for each $A \in L^X$,

and the opposite is true if (L, \leq, \otimes) is st-s.

Proof. Let (N, N^*) is transitive, then:

(i) By [[56], Proposition 4.5], we have:

$$N(x)(A) \leq \bigvee_{B \in L^{X}} (N_{x}(B) \otimes \bigwedge_{y \in X} (B(y) \to \bigvee_{B_{y} \in L^{X}} (N_{y}(B_{y}) \otimes S(B_{y}, A)))] \Leftrightarrow \underline{N}(x)(A) \leq \underline{N}(x)(\underline{N}(A)).$$

$$(ii) \text{ Let } N^{*}(x)(A) \geq \bigwedge_{A \in L^{X}} (\neg^{*}(x)(B) \to \bigvee_{y \in X} (B(y) \otimes \bigwedge_{B_{y} \in L^{X}} (\neg^{*}N^{*}(y)(B_{y}) \to T(B_{y}, \neg A)))), \text{ then }$$

$$\underline{N}^{*}(x)(A) = \bigwedge_{A \in L^{X}} (-N^{*}(x)(K) \to T(K, \neg A))$$

$$\overset{TW}{=} \sum_{K \in L^{X}} (-(\bigwedge_{L} \neg N^{*}(x)(K) \to \bigvee_{y \in X} (B(y) \otimes \bigwedge_{B_{y} \in L^{X}} (\neg^{*}N^{*}(y)(B_{y}) \to T(B_{y}, \neg K))))] \to T(K, \neg A))$$

$$= \bigwedge_{K \in L^{X}} B_{E \in L^{X}} (\neg^{*}(x)(B) \to \bigvee_{y \in X} (B(y) \otimes \bigwedge_{B_{y} \in L^{X}} (\neg^{*}N^{*}(y)(B_{y}) \to T(B_{y}, \neg K))))] \to T(K, \neg A)) (by Proposition 2.2(3))$$

$$= \bigwedge_{K \in L^{X}} \{-(\neg^{*}(x)(B) \to \bigvee_{y \in X} (B(y) \otimes \bigwedge_{B_{y} \in L^{X}} (\neg^{*}(y)(B_{y}) \to T(B_{y}, \neg K))))] \to T(K, \neg A)] (by Proposition 2.2(1))$$

$$= \bigwedge_{L \in L^{X}} \{-(\neg^{*}(x)(B) \otimes (\bigvee_{Y \in X} (G_{Y} \otimes \bigwedge_{B_{y} \in L^{X}} (\neg^{*}(y)(B_{y}) \to T(B_{y}, \neg K))))) \to T(K, \neg A)] (by Proposition 2.2(1))$$

$$= \bigwedge_{L \in L^{X}} \{-(\neg^{*}(x)(B) \otimes (\bigvee_{Y \in X} (B(y) \to (\neg^{*}(n^{*}(y)(B_{y}) \otimes T(B_{y}, \neg K))))) \to T(K, \neg A)] (by Proposition 2.2(1))$$

$$= \bigwedge_{L \in L^{X}} \{-(\neg^{*}(x)(B) \otimes (\bigoplus_{Y \in X} (B(y) \to (\neg^{*}(n^{*}(y)(B_{y}) \otimes T(B_{y}, \neg K))))) \to T(K, \neg A)] (by Proposition 2.2(1))$$

$$= \bigwedge_{L \in L^{X}} \{-(\neg^{*}(x)(B) \otimes (B(y) \to (\neg^{*}(n^{*}(y)(B_{y}) \otimes S(B_{y}, K))))) \to T(K, \neg A)] (by Proposition 2.2(1))$$

$$= \bigwedge_{L \in L^{X}} (-(\neg^{*}(x)(B) \otimes (B(y) \to (\neg^{*}(n^{*}(y)(B_{y}) \otimes S(B_{y}, K))))) \to T(K, \neg A)] (by Proposition 2.2(1))$$

$$= \bigwedge_{L \in L^{X}} (-(\neg^{*}(x)(B) \otimes (S(B(y) \to (\neg^{*}(n^{*}(y)(B_{y}) \otimes S(B_{y}, K))))) \to T(K, \neg A)] (by Proposition 2.2(1))$$

$$= \bigwedge_{L \in L^{X}} (-(\neg^{*}(x)(B) \otimes (S(B(y) \to (\neg^{*}(n^{*}(y)(B_{y}) \otimes S(B_{y}, K)))) \otimes T(K, \neg A)] (by Proposition 2.2(1))$$

$$= \bigwedge_{L \in L^{X}} (-(\neg^{*}(x)(B) \otimes (S(B(Y) \to (\bigcirc^{*}(n^{*}(y)(B_{y}) \otimes S(B_{y}, K)))) \otimes S(K, A)]$$

$$= \bigwedge_{L \in L^{X}} (-(\neg^{*}(x)(B) \otimes (S(B(Y) \to (\bigcirc^{*}(n^{*}(y)(B_{y}) \otimes S(B_{y}, K)))) \otimes S(K, A)]$$

$$= \bigwedge_{L \in L^{X}} (-(\neg^{*}(x)(B) \otimes (S(B(Y) \to (\bigcirc^{*}(n^{*}(y)(B_{y}) \otimes S(B_{y}, K))))) (by Lemma 2.1 (5))$$

$$= \bigwedge_{L \in L$$

Conversely, Let $\underline{N}^*(A) \ge \underline{N}^*(\neg \underline{N}^*(A))$ for each $A \in L^X$. Then for any $x \in X$, we get $\underline{N}^*(x)(A) \ge \underline{N}^*(x)(\neg \underline{N}^*(A))$ and this lead to

$$\bigwedge_{K \in L^{X}} \{\neg \mathcal{N}^{*}(x)(K) \to T(K, \neg A)\} \geq \bigwedge_{B \in L^{X}} \{\neg \mathcal{N}^{*}(x)(B) \to T(B, \underline{\mathcal{N}}^{*}(A))\}.$$
 So, we find:
$$\neg \mathcal{N}^{*}(x)(K) \to T(K, \neg A) \geq \bigwedge_{B \in L^{X}} \{\neg \mathcal{N}^{*}(x)(B) \to T(B, \underline{\mathcal{N}}^{*}(A))\}$$

i.e., $\neg (\neg \mathcal{N}^{*}(x)(K) \otimes S(K, A)) \geq \bigwedge_{B \in L^{X}} \{\neg \mathcal{N}^{*}(x)(B) \to T(B, \underline{\mathcal{N}}^{*}(A))\}.$

taking K = A, we get

$$\neg (\neg \mathcal{N}^*(x)(A) \otimes \underline{\top}) \geq \bigwedge_{B \in L^X} \{\neg \mathcal{N}^*(x)(B) \to T(B, \underline{\mathcal{N}}^*(A))\}$$

$$\Rightarrow \neg (\neg \mathcal{N}^*(x)(A)) \geq \bigwedge_{B \in L^X} \{\neg \mathcal{N}^*(x)(B) \to T(B, \underline{\mathcal{N}}^*(A))\}$$

$$\Rightarrow \mathcal{N}^*(x)(A) \geq \bigwedge_{B \in L^X} \{\neg \mathcal{N}^*(x)(B) \to \bigvee_{y \in X} (B(y) \otimes \underline{\mathcal{N}}^*(A))\}$$

$$\geq \bigwedge_{B \in L^X} \{\neg \mathcal{N}^*(x)(B) \to \bigvee_{y \in X} (B(y) \otimes \bigwedge_{B_y \in L^X} (\neg \mathcal{N}^*(y)(B_y) \to T(B_y, \neg A))))\}.$$

From (*i*) and (*ii*), we find ($\mathcal{N}, \mathcal{N}^*$) is a transitive. \Box

Proposition 4.11. Let (N, N^*) be an L-DFGN system operator. Then (N, N^*) is a transitive iff

(*i*)
$$\overline{\mathcal{N}}(A) \ge \overline{\mathcal{N}}(\overline{\mathcal{N}}(A))$$
, and (*ii*) $\overline{\mathcal{N}}^*(A) \le \overline{\mathcal{N}}^*(\neg \overline{\mathcal{N}}^*(A))$ for each $A \in L^X$

Proof. Suppose that (N, N^*) is a transitive, then for any $A \in L^X$ and for any $x \in X$,

(*i*) By [[56], Proposition 4.12], we have that for any $A \in L^X$, $\mathcal{N}(x)(A) \leq \bigvee_{B \in L^X} \{\mathcal{N}_x(B) \otimes \bigwedge_{y \in X} (B(y) \to \bigvee_{B_y \in L^X} (\mathcal{N}_y(B_y) \otimes S(B_y, A)))\} \Leftrightarrow \overline{\mathcal{N}}(x)(A) \geq \overline{\mathcal{N}}(x)(\overline{\mathcal{N}}(A)).$

(*ii*) Let
$$\mathcal{N}^*(x)(A) \ge \bigwedge_{B \in L^X} \{\neg \mathcal{N}^*(x)(B) \to \bigvee_{y \in X} (B(y) \otimes \bigwedge_{B_y \in L^X} (\neg \mathcal{N}^*(y)(B_y) \to T(B_y, \neg A)))\}$$
, then

 $\overline{\mathcal{N}}^{*}(A) = \neg(\underline{\mathcal{N}}^{*}(\neg A)) \text{ (by Theorem 3.13)}$ $\leq \neg \underline{\mathcal{N}}^{*}(\neg \underline{\mathcal{N}}^{*}(\neg A)) \text{ (by Proposition 4.10)}$ $= \neg \underline{\mathcal{N}}^{*}(\neg(\neg \overline{\mathcal{N}}^{*}(A)))$ $= \overline{\mathcal{N}}^{*}(\neg \overline{\mathcal{N}}^{*}(A)).$

Conversely, it follows by Theorem 3.13 and Propositions 4.10.

From (*i*) and (*ii*), we find ($\mathcal{N}, \mathcal{N}^*$) is a transitive. \Box

4.4. Unary L-DFGN systems

The concept of unary *L*-DFGN system operators will be introduced and we will establish their related *L*-DRApprox operators.

Definition 4.12. An L-DFGN system operator (N, N^*) is called unary, if

$$(UN) \quad \mathcal{N}(x)(A) \otimes \mathcal{N}(x)(B) \leq \bigvee_{K \in L^{X}} (\mathcal{N}(x)(K) \otimes S(K, A \otimes B)),$$
$$(UN^{*}) \quad \mathcal{N}^{*}(x)(A) \oplus \mathcal{N}^{*}(x)(B) \geq \bigwedge_{K \in L^{X}} (\neg \mathcal{N}^{*}(x)(K) \to T(K, \neg (A \otimes B)),$$

where $x \in X$ and $A, B \in L^X$.

Remark 4.13. Every unary L-FGN system operator $N : X \longrightarrow L^{L^X}$ [56], can be identified with a unary L-DFGN system operator of the form $(N, \neg N)$.

Proposition 4.14. Let (N, N^*) be an L-DFGN system operator on X. Then if (N, N^*) is unary, then

- (i) $\underline{N}(x)(A) \otimes \underline{N}(x)(B) \leq \underline{N}(x)(A \otimes B)$, and
- (*ii*) $\underline{N}^*(x)(A) \oplus \underline{N}^*(x)(B) \ge \underline{N}^*(x)(A \otimes B)$ for each $A, B \in L^X$.

The opposite is true if L is st-s.

Proof. Suppose that (N, N^*) is a unary. Then for any $x \in X$ and $A, B \in L^X$,

- (*i*) By [[56], Proposition 4.8], we get $\mathcal{N}(x)(A) \otimes \mathcal{N}(x)(B) \leq \bigvee_{K \in L^X} (\mathcal{N}(x)(K) \otimes S(K, A \otimes B)) \Leftrightarrow \underline{\mathcal{N}}(x)(A) \otimes \underline{\mathcal{N}}(x)(B) \leq \underline{\mathcal{N}}(x)(A \otimes B)$ whenever *L* is st-s.
- (*ii*) Suppose that $\mathcal{N}^*(x)(A) \oplus \mathcal{N}^*(x)(B) \ge \bigwedge_{K \in I^X} (\neg \mathcal{N}^*(x)(K) \to T(K, \neg (A \otimes B)))$, then

$$\underbrace{\underline{N}^{*}(A) \oplus \underline{N}^{*}(B)}_{K \in L^{X}} = \neg(\neg \underline{N}^{*}(A) \otimes \neg \underline{N}^{*}(B)) \\
= \neg(\neg \bigwedge_{K \in L^{X}} [\neg N^{*}(x)(K) \to T(K, \neg A)] \otimes \neg \bigwedge_{V \in L^{X}} [\neg N^{*}(x)(V) \to T(V, \neg B)] \\
= \neg(\bigvee_{K \in L^{X}} [\neg N^{*}(x)(K) \otimes S(K, A)] \otimes \bigvee_{V \in L^{X}} [\neg N^{*}(x)(V) \otimes S(V, B)] \\
= \neg(\bigvee_{K, V \in L^{X}} [\neg N^{*}(x)(K) \otimes \neg N^{*}(x)(V) \otimes S(K, A) \otimes S(V, B)]) \\
\geq \neg(\bigvee_{K, V \in L^{X}} [\neg(N^{*}(x)(K) \oplus N^{*}(x)(V)) \otimes S(K \otimes V, A \otimes B)]) (\text{ by Lemma 2.3(3)}) \\
\overset{UN^{*}}{\stackrel{\geq}{}} \neg(\bigvee_{K, V \in L^{X}} \neg (\bigwedge_{U \in L^{X}} \neg N^{*}(x)(U) \to T(U, \neg(K \otimes V))) \otimes S(K \otimes V, A \otimes B)) \\
= \neg(\bigvee_{K, V \in L^{X}} \cup_{U \in L^{X}} \neg N^{*}(x)(U) \otimes S(U, K \otimes V)) \otimes S(K \otimes V, A \otimes B)) \\
= \neg(\bigvee_{K, V \in L^{X}} \cup_{U \in L^{X}} \neg N^{*}(x)(U) \otimes S(U, K \otimes V)) \otimes S(K \otimes V, A \otimes B)) \\
= \neg(\bigvee_{U \in L^{X}} \neg N^{*}(x)(U) \otimes S(U, A \otimes B)) (\text{ by Lemma 2.3 (2)}) \\
= \bigwedge_{U \in L^{X}} (\neg N^{*}(x)(U) \to T(U, \neg(A \otimes B))) \\
= \underbrace{N^{*}_{*}(A \otimes B).
\end{aligned}$$

Conversely, suppose that *L* is a st-s (integral) quantale and $\underline{N}^*(A \otimes B) \leq \underline{N}^*(A) \oplus \underline{N}^*(B)$. For any $x \in X$, we get $\underline{N}^*(A \otimes B) \leq \underline{N}^*(A) \oplus \underline{N}^*(B)$. So, it follows:

$$\bigwedge_{U \in L^{\times}} [\neg \mathcal{N}^{*}(x)(U) \to T(U, \neg(A \otimes B))]$$

$$\leq [\neg \mathcal{N}^{*}(x)(K) \to T(K, \neg(A)] \oplus [\neg \mathcal{N}^{*}(x)(V) \to T(V, \neg(B)]]$$

$$= \neg (\neg [\neg \mathcal{N}^{*}(x)(K) \to T(K, \neg(A))] \otimes \neg [\neg \mathcal{N}^{*}(x)(V) \to T(V, \neg(B))])$$

$$= \neg ([\neg \mathcal{N}^{*}(x)(K) \otimes S(K, A)] \otimes [\neg \mathcal{N}^{*}(x)(V) \otimes S(V, B)]).$$
By taking $K = A$ and $V = B$ in the above inequality we find
$$= \neg [(\neg \mathcal{N}^{*}(x)(A) \otimes \top_{L}) \otimes (\neg \mathcal{N}^{*}(x)(B) \otimes \top_{L})]$$

$$= \neg [\neg \mathcal{N}^{*}(x)(A) \otimes \neg \mathcal{N}^{*}(x)(B)]$$

 $= \mathcal{N}^*(x)(A) \oplus \mathcal{N}^*(x)(B).$ From (*i*) and (*ii*), the proof completed. \Box

The relationship between the double measures of roughness of their *L*-DFLApprox and an unary *L*-DFGN system operators is given in the next lemma:

Lemma 4.15. Let (N, N^*) be a unary L-DFGN system operator on X. Then the L-double measure of roughness of L-DFLApprox $\mathcal{L}_N, \mathcal{L}_{N^*}: L^X \longrightarrow L$ has the next properties:

- (i) $\mathcal{L}_{N}(A \otimes B) \geq \mathcal{L}_{N}(A) \otimes \mathcal{L}_{N}(B)$, and
- (*ii*) $\mathcal{L}_{N^*}(A \otimes B) \leq \mathcal{L}_{N^*}(A) \oplus \mathcal{L}_{N^*}(B)$ for all $A, B \in L^X$.

Proof. (i) $\mathcal{L}_{N^*}(A \otimes B) = S(A \otimes B, \underline{N}(A \otimes B))$ $\geq S(A \otimes B, \underline{N}(A) \otimes \underline{N}(B))$ $\geq S(A, \underline{N}(A)) \otimes S(B, \underline{N}(B))$ $= \mathcal{L}_{N}(A) \otimes \mathcal{L}_{N}(B)$

(*ii*)
$$\mathcal{L}_{N^*}(A \otimes B) = T(A \otimes B, \underline{N}^*(A \otimes B))$$

 $\leq T(A \otimes B, \underline{N}^*(A) \oplus \underline{N}^*(B))$
 $\leq T(A, \underline{N}^*(A)) \oplus T(B, \underline{N}^*(B))$
 $= \mathcal{L}_{N^*}(A) \oplus \mathcal{L}_{N^*}(B).$

Proposition 4.16. Let (N, N^*) be an L-DFGN system operator on X. If (N, N^*) is a unary, then

- (i) $\overline{\mathcal{N}}(A \oplus B) \leq \overline{\mathcal{N}}(A) \oplus \overline{\mathcal{N}}(B)$, and
- (*ii*) $\overline{\mathcal{N}}^*(A \oplus B) \ge \overline{\mathcal{N}}^*(A) \otimes \overline{\mathcal{N}}^*(B)$ for each $A, B \in L^X$.

The opposite is true if L is st-s.

Proof. Assume that (N, N^*) is a unary. For any $x \in X$ and $A, B \in L^X$, then

(*i*) By **[[56]**, Proposition **4.9**], we have:

 $\mathcal{N}(x)(A) \otimes \mathcal{N}(x)(B) \leq \bigvee_{K \in L^{X}} (\mathcal{N}(x)(K) \otimes S(K, A \otimes B)) \Leftrightarrow \overline{\mathcal{N}}(x)(A) \oplus \overline{\mathcal{N}}(x)(B) \geq \overline{\mathcal{N}}(x)(A \oplus B)$ whenever *L* is st-s.

(*ii*) (\Rightarrow) Let $\mathcal{N}^*(x)(A) \oplus \mathcal{N}^*(x)(B) \ge \bigwedge_{K \in L^X} (\neg \mathcal{N}^*(x)(K) \to T(K, \neg(A \otimes B)))$, then $\overline{\mathcal{N}}^*(A) \otimes \overline{\mathcal{N}}^*(B) = [\neg \underline{\mathcal{N}}^*(\neg A) \otimes \neg \underline{\mathcal{N}}^*(\neg B)]$ (by **Theorem 3.13**) $= \neg [\underline{\mathcal{N}}^*(\neg A) \oplus \underline{\mathcal{N}}^*(\neg B)]$ $\le \neg (\underline{\mathcal{N}}^*(\neg A \otimes \neg B))$ (by **Proposition 4.14**) $= \neg (\underline{\mathcal{N}}^*(\neg(A \oplus B)))$ $= \overline{\mathcal{N}}^*(A \oplus B).$

(⇐) It follows by **Theorem 3.13** and **Proposition 4.14**. From (*i*) and (*ii*), the proof completed.

The relationship between unary *L*-DFGN system operators and the double measures of roughness of their *L*-DFUApprox is given in the next lemma:

Lemma 4.17. Let (N, N^*) be a unary L-DFGN system operator on X. Then the double measure of roughness of L-DFUApprox $\mathcal{U}_N, \mathcal{U}_N^* : L^X \longrightarrow L$ has the next properties:

- (i) $\mathcal{U}_{N}(A \oplus B) \geq \mathcal{U}_{N}(A) \otimes \mathcal{U}_{N}(B)$, and
- (*ii*) $\mathcal{U}_{N^*}(A \oplus B) \leq \mathcal{U}_{N^*}(A) \oplus \mathcal{U}_{N^*}(B), \forall A, B \in L^X.$

Proof. (i)
$$\mathcal{U}_{N}(A \oplus B) = S(\mathcal{N}(A \oplus B), A \oplus B)$$

$$\geq S((\overline{\mathcal{N}}(A) \oplus \overline{\mathcal{N}}(B)), A \oplus B)$$

$$= S(\neg(\neg \overline{\mathcal{N}}(A) \otimes \neg \overline{\mathcal{N}}(B)), \neg(\neg A \otimes \neg B))$$

$$= S(\neg A \otimes \neg B, \neg \overline{\mathcal{N}}(A) \otimes \neg \overline{\mathcal{N}}(B)) \text{ (by Lemma 2.3 (6))}$$

$$\geq S(\neg A, \neg \overline{\mathcal{N}}(A)) \otimes S(\neg B, \neg \overline{\mathcal{N}}(B)) \text{ (by Lemma 2.3 (3))}$$

$$= S(\overline{\mathcal{N}}(A), A) \otimes S(\overline{\mathcal{N}}(B), B) \text{ (by Lemma 2.3 (6))}$$

$$= \mathcal{U}_{N}(A) \otimes \mathcal{U}_{N}(B).$$

(ii)
$$\mathcal{U}_{N^*}(A \oplus B) = T(\neg \overline{\mathcal{N}} (A \oplus B), \neg (A \oplus B))$$

 $\leq T(\neg (\overline{\mathcal{N}}^*(A) \otimes \overline{\mathcal{N}}^*(B)), \neg A \otimes \neg B)$
 $= T(\neg A \otimes \neg B, \neg \overline{\mathcal{N}}^*(A) \oplus \neg \overline{\mathcal{N}}^*(B))$
 $\leq T(\neg A, \neg \overline{\mathcal{N}}^*(A)) \oplus T(\neg B, \neg \overline{\mathcal{N}}^*(B))$
 $= T(\neg \overline{\mathcal{N}}^*(A), \neg A) \oplus T(\neg \overline{\mathcal{N}}^*(B), \neg B)$
 $= \mathcal{U}_{N^*}(A) \oplus \mathcal{U}_{N^*}(B).$

5. Relationships between L-double fuzzy topologies and L-double rough approximation operators

In this section, we shall study the relationship between *L*-DFUApprox operators based on *L*-DFGN system operator and *L*-double fuzzy topologies . In **[31, 42]**, we offered the notion of *L*-double fuzzy topology. For (L, \leq, \otimes) is semi-quantales and *X* a non-empty set. The pair $(\mathcal{T}, \mathcal{T}^*)$ of maps $\mathcal{T}, \mathcal{T}^* : L^X \longrightarrow L$ is said to be an *L*-double fuzzy topology on *X* **[4]** if it satisfies the next conditions: For all $A, B \in L^X$ and for every family $\{A_j : j \in J\} \subseteq L^X$,

$(T_1) \ \mathcal{T}(A) \leq \neg(\mathcal{T}^*(A)),$	
$(T_2) \ \mathcal{T}(\underline{\perp}) = \mathcal{T}(\underline{\top}) = \top_L$, and	$(T_2^*)\mathcal{T}^*(\underline{\bot})=\mathcal{T}^*(\underline{\top})=\bot_L,$
$(T_3) \ \mathcal{T}(A) \otimes \mathcal{T}(B) \leq \mathcal{T}(A \otimes B)$, and	$(T_3^*)\mathcal{T}^*(A)\oplus\mathcal{T}^*(B)\geq\mathcal{T}^*(A\otimes B),$
$(T_4) \bigwedge_{j \in J} \mathcal{T}(A_j) \leq \mathcal{T}(\bigvee_{j \in J} A_j), \text{ and }$	$(T_4^*) \bigvee_{j \in J} \mathcal{T}^*(A_j) \geq \mathcal{T}^*(\bigvee_{j \in J} A_j),$

The triple $(X, \mathcal{T}, \mathcal{T}^*)$ is called an *L*-double fuzzy topological space.

Example 5.1. [4] Suppose that $X = \{c, d\}$ is a set, L = M = [0, 1] and $c \otimes d = \max\{0, c + d - 1\}, c \oplus d = \min\{1, c + d\}$. Then $([0, 1], \leq, \otimes)$ is a left-continuous t-norm with an order-reversing involution defined by $c' = \min\{1 - c, 1\}$. Let

 $\delta, \gamma \in [0,1]^X$ be defined as follows: $\delta(c) = 0.6, \delta(d) = 0.3, \gamma(c) = 0.5, \gamma(d) = 0.7$. Define $\tau, \tau^* : [0,1]^X \rightarrow [0,1]$ as follows:

 $\tau(\eta) = \begin{cases} 1, & if \ \eta = \underline{0}, \underline{1}; \\ 0.8, & if \ \eta = \delta; \\ 0.3, & if \ \eta = \gamma; \\ 0.7, & if \ \eta = \delta \lor \gamma; \\ 0.2, & if \ \eta = \delta \land \gamma; \\ 0, & otherwise. \end{cases} \quad \tau^*(\eta) = \begin{cases} 0, & if \ \eta = \underline{0}, \underline{1} \\ 0.2, & if \ \eta = \delta; \\ 0.7, & if \ \eta = \gamma; \\ 0.3, & if \ \eta = \delta \lor \gamma; \\ 0.8, & if \ \eta = \delta \land \gamma; \\ 1, & otherwise. \end{cases}$

Then, the pair (τ, τ^*) *is an* (L, M)*-double fuzzy topology on* X*.*

Definition 5.2. For (L, \leq, \otimes) is semi-quantales and X a non-empty set. The pair $(\mathcal{K}, \mathcal{K}^*)$ of maps $\mathcal{K}, \mathcal{K}^* : L^X \longrightarrow L$ is called an L-double fuzzy co-topology on X **[31, 42]** if it satisfies the next conditions: For all $A, B \in L^X$ and for every family $\{A_j : j \in J\} \subseteq L^X$,

 (COT_1) $\mathcal{K}(A) \leq \neg(\mathcal{K}^*(A))$

(COT_2) $\mathcal{K}(\underline{\perp}) = \mathcal{K}(\underline{\top}) = \top_L$, and	$(COT_2^*) \mathcal{K}^*(\underline{\bot}) = \mathcal{K}^*(\underline{\top}) = \bot_L,$
(COT ₃) $\mathcal{K}(A) \otimes \mathcal{K}(B) \leq \mathcal{K}(A \oplus B)$, and	$(COT_3^*) \mathcal{K}^*(A) \oplus \mathcal{T}^*(B) \ge \mathcal{K}^*(A \oplus B),$
$(COT_4) \ \bigwedge_{j \in J} \mathcal{K}(A_j) \leq \mathcal{K}(\bigwedge_{j \in J} A_j), and$	$(COT_4^*) \bigvee_{j \in J} \mathcal{K}^*(A_j) \ge \mathcal{K}^*(\bigwedge_{j \in J} A_j),$

The triple $(X, \mathcal{K}, \mathcal{K}^*)$ is said to be an L-double fuzzy co-topological space, \mathcal{K} and \mathcal{K}^* may be interpreted as gradation of closedness and gradation of non closedness, respectively.

According to Lemma 4.15 and Corollary 3.14, we get the next result:

Theorem 5.3. An L-double measure of roughness of L-DFLApprox \mathcal{L}_N , \mathcal{L}_N , \mathcal{L}_N \longrightarrow L has the next properties: For all $A, B \in L^X$ and for every family $\{A_i : i \in I\} \subseteq L^X$;

- (1) If *L* is st-s, then (*i*) $\mathcal{L}_{N}(\underline{T}) = T_{L}$, and (*ii*) $\mathcal{L}_{N^{*}}(\underline{T}) = \bot_{L}$, (2) (*i*) $\mathcal{L}_{N}(\bigvee_{i \in I} A_{i}) \ge \bigwedge_{i \in I} \mathcal{L}_{N}(A_{i})$, and (*ii*) $\mathcal{L}_{N^{*}}(\bigvee_{i \in I} A_{i}) \le \bigvee_{i \in I} \mathcal{L}_{N^{*}}(A_{i})$,
- (3) (i) $\mathcal{L}_{N}(A \otimes B) \geq \mathcal{L}_{N}(A) \otimes \mathcal{L}_{N}(B)$, and (ii) $\mathcal{L}_{N^{*}}(A \otimes B) \leq \mathcal{L}_{N^{*}}(A) \oplus \mathcal{L}_{N^{*}}(B)$.

The statements of such theorem means that the operators $\mathcal{L}_N, \mathcal{L}_N : L^X \longrightarrow L$ constitute an *L*-double fuzzy topology on *X*.

According to Corollary 3.15, and Lemma 4.17, we can conclude that:

Theorem 5.4. An L-double measure of roughness of L-DFUApprox $\mathcal{U}_N, \mathcal{U}_N : L^X \longrightarrow L$ has the next properties: For all $A, B \in L^X$ and for every family $\{A_i : i \in I\} \subseteq L^X$;

- (1) (i) $\mathcal{U}_{N}(\underline{\perp}) = \top_{L'}$ and (ii) $\mathcal{U}_{N^*}(\underline{\perp}) = \perp_{L'}$
- (2) (i) $\mathcal{U}_{N}(\bigwedge_{i\in I} A_{i}) \geq \bigwedge_{i\in I} \mathcal{U}_{N}(A_{i}), and$ (ii) $\mathcal{U}_{N^{*}}(\bigwedge_{i\in I} A_{i}) \leq \bigvee_{i\in I} \mathcal{U}_{N^{*}}(A_{i}),$
- (3) (i) $\mathcal{U}_{N}(A \oplus B) \geq \mathcal{U}_{N}(A) \otimes \mathcal{U}_{N}(B)$, and (ii) $\mathcal{U}_{N^{*}}(A \oplus B) \leq \mathcal{U}_{N^{*}}(A) \oplus \mathcal{U}_{N^{*}}(B)$.

What was stated in the previous theorem means that the operators $\mathcal{U}_N, \mathcal{U}_N, \mathcal{U}_N \to L$ constitute an *L*-double fuzzy co-topology on *X*.

6. Conclusions

In this paper, we have defined and studied the notion of *L*-DFGN systems as a generalization of *L*-FGN systems [55, 56]. Additionally, a pair of L-DFLApprox and L-DFUApprox operators based on L-DFGN systems have been proposed. Their respective double measure of roughness has been given. As L is a quantale, we have redefined the L-double relation [1] and used it to define the quantale-valued double fuzzy rough set. In addition, it has been proved that L-DFGN system-based approximation operators has L-double relation as a special case. Furthermore, different kinds of L-DRApprox operators corresponding to the different special L-DFGN system have been presented and studied. Finally, we have interpreted the operators of double measures of L-DFLApprox and L-DFUApprox as an L-double fuzzy topology and an L-double fuzzy co-topology on a set X, respectively. In the future, we will attempt to consider some potential applications of the L-double fuzzy rough set theory of multi-attribute decision making.

References

- [1] A. A. Abd El-latif, A. A. Ramadan, On L-double fuzzy rough sets, Iranian Journal of Fuzzy Systems, 13 (3), (2016), 125-142.
- [2] K. Atanassov, Intuitionistic fuzzy sets. In Intuitionistic fuzzy sets: theory and applications, Physica, Heidelberg, (1999), 1-137. [3] K. Atanassov, Intuitionistic fuzzy sets, Fuzzy Sets and Systems, 20 (1) (1986), 87-96.
- [4] H. Aygün, V. Cetkin and S. E. Abbas, On (L, M)-fuzzy closure spaces, Iranian Journal of Fuzzy Systems, 9 (5), (2012), 41-62.
- [5] R. Bělohlávek, Fuzzy relational systems, Foundations and Principles, Kluwer Academic Publishers, New York, (2002).
- [6] R. Bělohlávek, Fuzzy closure operators II: Induced relations, representation, and examples, Soft Computing, 7 (1) (2002), 53-64.
- [7] K. Blount, C. Tsinakis, The structure of residuated lattices, International Journal of Algebra and Computation, 13 (2003), 437-461.
- [8] R. A. Borzooei, A. A. Estaji, M. Mobini, On the category of rough sets, Soft Computing, 21 (9) (2017), 2201-2214.
- [9] J. K. Chen and J. J. Li, An application of rough sets to graph theory, Information Sciences, 201 (2012), 114-127.
- [10] X. Y. Chen, Q. G. Li, Construction of rough approximations in fuzzy setting, Fuzzy Sets and Systems, 158 (2007), 641-653.
- [11] D. Çoker and M. Demirci, An introduction to intuitionistic fuzzy topological spaces in Sostak's sense, Busefal, 67 (1996), 67-76.
- [12] D. Çoker, Fuzzy rough sets are intuitionistic L-fuzzy sets, Fuzzy Sets and Systems, 96 (3) (1998), 381-383.
- [13] D. Çoker, An introduction to intuitionistic fuzzy topological spaces, Fuzzy Sets and Systems, 88 (1997), 81-89.
- [14] M. Demirci, On the convergence structure of L-topological spaces and the continuity in L-topological spaces, New Mathematics and Natural Computation, 3 (1) (2007), 1-25.
- [15] D. Dubois and H. Prade, Rough fuzzy sets and fuzzy rough sets, International Journal of General System, 17 (1990), 191-208.
- [16] A. Skowron and S. Dutta, Rough sets: past, present, and future, Natural Computing 17(2018), 855-876.
- [17] K. El-Saady, H. S. Hussein and A. A. Temraz, A rough set model based on (L, M)-fuzzy generalized neighborhood systems: A constructive approach, International Journal of General Systems 51(5) (2022), 441-473.
- [18] A. A. Estaji, M. R. Hooshmandasl and B. Davvaz, Rough set theory applied to lattice theory, Information Sciences, 200 (2012), 108-122.
- [19] J. G. Garcia and S. E. Rodabaugh, Order-theoretic, topological, categorical redundancides of intervalvalued sets, grey sets, vague sets, interval-valued intuitionistic sets, intuitionistic fuzzy sets and topologies, Fuzzy Sets and Systems, 156 (2005), 445-484.
- [20] G. Georgescu and A. Popescu, Non-commutative fuzzy Galois connections, Soft Computing, 7 (2003), 458-467.
- [21] J. A. Goguen, L-fuzzy sets, Journal of Mathematical Analysis and Applications, 18 (1967), 145-174.
- [22] J. Hao, S. S. Huang, Topological similarity of L-relations, Iranian Journal of Fuzzy Systems, 14 (4) (2017), 99-115.
- [23] J. Hao and Q. G. Li, The relationship between L-fuzzy rough set and L-topology, Fuzzy Sets and Systems, 178 (2011), 74-83.
- [24] S. P. Jena and S. K. Ghosh, Intuitionistic fuzzy rough sets, Notes on Intuitionistic Fuzzy Sets, 8 (2002), 1-18.
- [25] Y. B. Jun, Roughness of ideals in BCK-algebras, Scientiae Mathematicae Japonicae, 75 (1) (2003), 165-169.
- [26] T. Kubiak, On fuzzy topologies, Ph.D. Thesis, Adam Mickiewicz, Poznan, Poland, (1985).
- [27] L. Q. Li, B. X. Yao, J. M. Zhan, and Q. Jin, L-fuzzifying approximation operators derived from general L-fuzzifying neighborhood systems, International Journal of Machine Learning and Cybernetics, 12 (5) (2021), 1343-1367.
- [28] L. Q. Li, Q. Jin, K. Hu and F. F. Zhao, The axiomatic characterizations on L-fuzzy covering-based approximation operators, International Journal of General Systems, 46 (4) (2017), 332-353.
- [29] T. J. Li, Y. Leung, W. X. Zhang, Generalized fuzzy rough approximation operators based on fuzzy coverings, International Journal of Approximate Reasoning, **48** (2008), 836-856.
- [30] L. Lin, X. H. Yuan and Z. Q. Xia, Multicriteria fuzzy decision-making methods based on intuitionistic fuzzy sets, Journal of Computer and System Sciences, 73 (1) (2007), 84-88.
- [31] T. K. Mondal, S. K. Samanta, On intuitionistic gradation of openness, Fuzzy Sets and Systems, 131 (2002), 323-336.
- [32] Z. Pawlak. Rough Sets: Theoretical Aspects of Reasoning about Data. Springer Science & Business Media, (1991).
- [33] Z. Pawlak, Rough sets, International Journal of Computer and Information Sciences, 11 (1982), 341-356.
- [34] Z. Pawlak, Information system theoretical foundations, Information Sciences, 6 (1981), 205-218.
- [35] W. Pedrycz, Granular computing: analysis and design of intelligent systems, CRC Press, Boca Raton, (2013).
- [36] K. Qin and Z. Pei, On the topological properties of fuzzy rough sets, Fuzzy Sets and Systmes, 151 (2005), 601-613.
- [37] A. M. Radzikowska, Rough approximation operations based on IF sets, Lecture Notes in Computer Science , 4029 (2006), 528-537.
- [38] A. M. Radzikowska and E. E. Kerre, Fuzzy rough sets based on residuated lattices, Transactions on Rough Sets, Lecture Notes in Computer Sciences, 3135 (2004), 278-296.

- [39] S. E. Rodabaugh, Relationship of Algebraic Theories to Powerset Theories and Fuzzy Topological Theories for Lattice-Valued Mathematics. International Journal of Mathematics and Mathematical Sciences, 2007 (2007), 1-71, Article ID 43645.
- [40] K. I. Rosenthal, *Quantales and Their Applications*, New York: Longman Scientific and Technical, (1990).
- [41] S. K. Samanta and T. K. Mondal, Intuitionistic fuzzy rough sets and rough intuitionistic fuzzy sets, Journal of Fuzzy Mathematics, 9 (2001), 561-582.
- [42] S. K. Samanta and T. K. Mondal, Intuitionistic gradation of openness: Intuitionistic fuzzy topology, Busefal, 73 (1997), 8-17
- [43] M. H. Shahzamanian, M. Shirmohammadi and B. Davvaz, Roughness in Cayley graphs, Information Sciences, 180 (2010), 3362-3372.
- [44] Y. H. She, G. J. Wang, An axiomatic approach of fuzzy rough sets based on residuated lattices, Computers and Mathematics with Applications, 58 (2009), 189-201.
- [45] S. Solovyov, Lattice-valued topological systems as a framework for lattice-valued formal concept analysis, Journal of Mathematics, 2013 (2013), 1-35, Article ID 506275.
- [46] A. Šostak, Measure of Roughness for Rough Approximation of Fuzzy Sets and Its Topological Interpretation. In Proceedings of the International Conference on Fuzzy Computation Theory and Applications (FCTA-2014) (2014), 61-67.
- [47] A. P. Sostak, On a fuzzy topological structure. In Proceedings of the 13th Winter School on Abstract Analysis. Circolo Matematico di Palermo, 11 (1985), 89-103.
- [48] Y. R. Syau, E. B. Lin, Neighborhood systems and covering approximation spaces, Knowledge-Based Systems, 66 (2014), 61-67.
- [49] S. P. Tiwari and A. K. Srivastava, Fuzzy rough sets, fuzzy preorders and fuzzy topologies, Fuzzy Sets and Systems, 210 (2013), 63-68.
- [50] L. K. Vlachos and G. D. Sergiadis, Intuitionistic fuzzy information–applications to pattern recognition, Pattern Recognition Letters, 28 (2) (2007), 197-206.
- [51] Z. S. Xu, Intuitionistic preference relations and their application in group decision making, Information Sciences, 177 (11) (2007), 2363-2379.
- [52] Y. Y. Yao, B. X. Yao, Covering based rough set approximations, Information Sciences, 200 (2012), 91-107.
- [53] D. S. Yeung, D. Chen, E. C. Tsang, J. W. Lee and X. Z. Wang, On the generalization of fuzzy rough sets, IEEE Transactions on fuzzy systems, 13 (3) (2005), 343-361.
- [54] Y. L. Zhang, C. Q. Li, M. L. Lin, Y. J. Lin, Relationships between generalized rough sets based on covering and reflexive neighborhood system, Information Sciences, 319 (2015), 56-67.
- [55] F. F. Zhao, Q. Jin and L. Q. Li, The axiomatic characterizations on L-generalized fuzzy neighborhood system-based approximation operators, International Journal of General Systems, 47 (2018), 155-173.
- [56] F. F. Zhao, L. Q. Li, S. B. Sun and Q. Jin, Rough approximation operators based on quantale-valued fuzzy generalized neighborhood systems, Iranian Journal of Fuzzy Systems, 16 (6) (2019), 53-63.
- [57] F. F. Zhao, L. Q. Li, Axiomatization on generalized neighborhood system-based rough sets, Soft Computing, 22 (18) (2018), 6099-6110.
- [58] F. F. Zhao and F. G. Shi, L-fuzzy generalized neighborhood system operator-based L-fuzzy approximation operators, International Journal of General Systems, 50 (4) (2021), 458-484.
- [59] W. Zhu, *Topological approaches to covering rough sets*, Information Sciences, **177** (2007), 1499-1508.
- [60] W. Zhu, Generalized rough sets based on relations, Information Sciences, 177 (2007), 4997-5011.
- [61] W. Zhu, Relationship between generalized rough sets based on binary relation and covering, Information Science, 179 (2009), 210-225.