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Abstract. Recently, some randomized iterative methods are proposed to solve large-scale factorised
linear systems. In this paper, we present two randomized average block iterative methods which still
take advantage of the factored form and need not perform the entire matrix. The new methods are
pseudoinverse-free and can be implemented for parallel computation. Furthermore, we analyze their
convergence behaviors and obtain the exponential convergence rate. Finally, some numerical examples are
carried out to show the effectiveness of our new methods.

1. Introduction

Some science and engineering applications, such as recommender systems in machine learning [1–5],
topic modeling of text data and linear regression from statistics [6], require the solution of the large-scale
factorised linear system

UVβ = y, (1)

where U ∈ Cm×k, V ∈ Ck×n, β ∈ Cn and y ∈ Cm. If we set X = UV ∈ Cm×n, then we obtain the full linear system
Xβ = y. We know that a system is consistent if it has at least one solution (and inconsistent otherwise), and
for more theoretical analysis and practical applications, we refer to [7] and the references therein. Recently,
instead of solving the full linear system Xβ = y, randomized iterative methods for solving the individual
subsystems

Ux = y (2)

and

Vβ = x (3)
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in an alternating fashion have been established.
Recently, the randomized Kaczmarz (RK) method [8] which converges in expectation to the solution of

the consistent linear systems has been successfully applied in many practical applications and reignited
many researches. The RK method was generalized to solve inconsistent, underdetermined or rank-deficient
linear systems [9–11], and some acceleration strategies, such as greedy techniques and matrix sketching [12–
16], were studied. The randomized coordinate descent (RCD) method presented by Leventhal and Lewis
[17] is another basic randomized iterative method for solving overdetermined linear systems. However,
RCD does not converge to the least norm solution of the underdetermined linear systems. To overcome these
drawbacks, Zouzias, Freris and Ma et al. proposed the randomized extended Kaczmarz (REK) method [18]
and the randomized extended Gauss-Seidel (REGS) method [10], respectively. The convergence properties
of RK, RGS, REK and REGS for linear system Xβ = y with full rank is summarized in the following Table
1 [7, 10]. In Table 1, we let βuniq, βLN and βLS denote the optimal unique solution, the least Euclidean norm
solution and the ordinary least squares solution, respectively.

Table 1: (Table 1 in [7, 10])Summary of convergence properties of RK, RGS, REK and REGS for linear system Xβ = y with full rank

Method Overdetermined, Overdetermined,
consistent: inconsistent: Underdetermined:

convergence to βuniq? convergence to βLS? convergence to βLN?
RK Yes[8] No[9] Yes[10]

REK Yes[18] Yes[18] Yes[10]
RGS Yes[17] Yes[17] No[10]

REGS Yes[10] Yes[10] Yes[10]

The projection-based block variants of basic Kaczmarz method, such as the block Kaczmarz (BK) [19]
method, the randomized block Kaczmarz (RBK) method [20] and the randomized double BK (RDBK)
method [21], have been developed to solve consistent or inconsistent linear systems and numerical results
demonstrate that the convergence rate can be significantly accelerated if appropriate blocks of the coefficient
matrix are provided. However, these projection-based block methods are difficult to parallelize and are
required to compute the Pseudoinverse or solve the least-square problems. In [22], Necoara developed a
randomized average block Kaczmarz (RaBK) method and the kth iteration xk is computed by

xk = xk−1 + αk

∑
l∈Ii

ωl
bi − Al,:xk−1

∥Al,:∥
2
2

(Al,:)T

 , k ≥ 0,

where the weights ωl ∈ (0, 1] such that
∑

l∈Ii

ωl = 1 and the stepsize αk > 0. RaBK is a pseudoinverse-

free method and very effective if a good sampling of the rows introduced into well-conditioned blocks.
Motivated by RaBK, Du et al. [23] presented a simple randomized extended average block Kaczmarz
(REABK) method which works for all types of linear systems and demonstrates remarkable convergence
properties in terms of computing time. Other pseudoinverse-free block methods, we refer to [24–26] and
the references therein.

In [7, 27], Ma et al. proposed RK-RK and REK-RK to solve the factorised systems with consistent or
inconsistent full linear system. Recently, inspired by the effectiveness of RGS, Zhao, Wang and Zhang
[28] established RGS-RK which interlaces the RGS iterates to solve subsystem (2) and the RK iterates
to solve subsystem (3). Recently, the relaxed GRK-GRK and GRGS-GRK methods [29] based on the
greedy randomized Kaczmarz (GRK) method and the greedy randomized Gauss-Seidel (GRGS) method
are developed. Du introduce regularized randomized iterative algorithms [30] for factorised linear systems.
In this paper, inspired by the works in [23], we also propose pseudoinverse-free block extension of RK-RK
(BRK-RK) and REK-RK (BREK-RK), respectively. In addition, we establish their convergence theories and
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provide some numerical examples to illustrate that BRK-RK and BREK-RK outperform the corresponding
RK-RK and REK-RK in terms of computing time, respectively.

Here and throughout the paper, we adopt the same notations introduced in [7]. For example for a

matrix X = (xi j) ∈ Cm×n, X( j), X(i) and ∥X∥F =

√
m∑

i=1

n∑
j=1
|xi j|

2 denote its jth column, ith row and Frobenius

norm, respectively. We use σmax(·) and σmin(·) to denote the largest and the smallest nonzero singular value
of matrix and λmin(·) to denote the smallest nonzero eigenvalue of matrix. For index setI ⊆ [m] andJ ⊆ [k],
we use AI,: and A:,J to denote the row submatrix indexed by I and the column submatrix indexed by J ,
respectively. In addition, we use (xt)I to denote the subvector indexed by I at tth iteration. Similar to [7],
for simplicity, we also refer to the matrix X of a linear system as consistent or inconsistent when the system
itself is consistent or inconsistent.

We denote by Et−1 the expected value conditional on the first t − 1 iterations, that is,

Et−1[·] = E[· | j1, i1, · · · , jt−1, it−1],

where jl is the lth column chosen and il is the lth row chosen. Then, based on the law of iterated expectations,
we obtain

E[Et−1[·]] = E[·].

For more details, see [23, 28].
The paper is organized as follows. In Section 2, we introduce some necessary preliminaries and review

RK-RK and REK-RK, respectively. In Section 3, we propose the randomized average block Kaczmarz
(REBK) method and give its convergence theory. In section 4, we present BRK-RK and BREK-RK and study
their convergence property. In Section 5, we test some numerical examples. Finally, we give some brief
concluding remarks in Section 6.

2. Preliminaries and the REK-RK method

In this paper, we set X be rank deficient and assume that U and V are of full rank. For simplicity in
notation, Table 2 in [7] summarizes the optimal solution of (1), (2) and (3). For overdetermined consistent,
underdetermined and overdetermined inconsistent linear systems, the optimal solution for (2) and (3)
denotes the unique, least norm, or the least squares solution, respectively.

Table 2: (Table 2 in [7])Summary of notation for linear systems discussed and their solutions

Linear system Optimal solution
Xβ = y (1) β∗
Ux = y (2) x∗
Vb = x (3) b∗

In [7], Ma et al. showed that when U is overdetermined and consistent or X is inconsistent and V is
underdetermined, solving subsystems (2) and (3) will converge to the optimal solution of the full system.
Other scenarios are fully explained in Table 3 of [7]. In this paper, we only focus on the case in which
k < m,n.

For the consistent or inconsistent setting, Ma et al. proposed RK-RK and REK-RK [7] for solving the
factorised linear systems, respectively. RK-RK and REK-RK are outlined in Algorithm 1 and Algorithm 2,
respectively.
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Algorithm 1 RK-RK
1: Input: U, V, y, x0, b0;
2: Output: the last bt.
3: Set t = 1;
4: While stopping criteria not reached do

5: Choose row U(i) with probability
∥U(i)
∥

2
2

∥U∥2F
;

6: Update xt = xt−1 +
(y(i)
−U(i)xt−1)
∥U(i)∥22

(U(i))∗;

7: Choose row V(p) with probability
∥V(p)

∥
2
2

∥V∥2F
;

8: Update bt = bt−1 +
(x(p)

t −V(p)bt−1)
∥V(p)∥22

(V(p))∗;
9: Update t = t + 1;

10: End

Algorithm 2 REK-RK
1: Input: U, V, y, z0, x0, b0;
2: Output: the last bt.
3: Set t = 1;
4: While stopping criteria not reached do

5: Choose row U(i) with probability
∥U(i)
∥

2
2

∥U∥2F
;

6: Choose column U( j) with probability
∥U( j)∥

2
2

∥U∥2F
;

7: Update zt = zt−1 −
U∗( j)zt−1

∥U( j)∥
2
2

U( j);

8: Update xt = xt−1 +
(y(i)
−z(i)

t −U(i)xt−1)
∥U(i)∥22

(U(i))∗;

9: Choose row V(p) with probability
∥V(p)

∥
2
2

∥V∥2F
;

10: Update bt = bt−1 +
(x(p)

t −V(p)bt−1)
∥V(p)∥22

(V(p))∗;
11: Update t = t + 1;
12: End
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For the convergence property of RK-RK and REK-RK, Ma et al. gave the following theorem.

Theorem 2.1. (Theorem 1 in [27]) Let X = UV, where U ∈ Cm×k and V ∈ Ck×n are of full rank, and the systems
Xβ = y, Ux = y, and Vb = x have the optimal solutions β∗, x∗ and b∗, respectively. Set b0 = 0 and assume that
k < m,n.
(a) If Xβ = y is consistent, then b∗ = β∗ and RK-RK converges with expected error

E∥bt − β∗∥
2
≤


αt

V∥b∗∥
2 + (1 − γ1)−1αt

max
∥x∗∥2

∥V∥2F
, i f αU , αV

αt
V∥b∗∥

2 + tαt
max
∥x∗∥2

∥V∥2F
, else

(4)

where αU = 1 −
σ2

min(U)
∥U∥2F

, αV = 1 −
σ2

min(V)
∥V∥2F

, αmax = max{αU, αV} and γ1 = min{αU
αV
, αV
αU
}.

(b) If Xβ = y is inconsistent, then b∗ = β∗ and REK-RK converges with expected error

E∥bt − β∗∥
2
≤


αt

V∥b∗∥
2 + (1 − γ2)−1α̃t−1

max

(1 + 2κ2
U)∥x∗∥2

∥V∥2F
, i f

√
αU , αV

αt
V∥b∗∥

2 + tα̃t−1
max

(1 + 2κ2
U)∥x∗∥2

∥V∥2F
, else

(5)

where αU = 1 −
σ2

min(U)
∥U∥2F

, αV = 1 −
σ2

min(V)
∥V∥2F

, α̃max = max{
√
αU, αV}, γ2 = min{

√
αU

αV
, αV
√
αU
} and κ2

U =
σ2

max(U)
σ2

min(U) .

3. The RABK method

In this section, adopting the same techniques introduced in [23], we propose the randomized average
block Kaczmarz (RABK) method for solving consistent linear system Ax = b, where A ∈ Cm×n and b ∈ Cm.
RABK is outlined in Algorithm 3.

Algorithm 3 The randomized average block Kaczmarz (RABK) method
1: Let {I1,I2, . . . ,Is} be partitions of [m];
2: Let α̃ > 0 and initialize x0 ∈ Rn

3: For k = 1, 2, . . . , do
4: Choose index i ∈ [s] with probability

∥AIi ,:∥
2
F

∥A∥2F
;

5: Update xk = xk−1 −
α̃

∥AIi ,:∥
2
F
(AIi,:)

∗(AIi,:xk−1 − bIi );

6: Endfor

We note that RABK can be obtained from the DSBGS method proposed in [26] by settingJ = 1, 2, · · · ,n.

In addition, if we set ωl =
∥Al,:∥

2
2

∥AIi ,:∥
2
F
, we can also obtain RABK from RaBK presented by Necoara [22]. Similar

to Theorem 2.7 in [23], for the convergence property of RABK, we can establish the following theorem.

Theorem 3.1. Assume that the matrix A ∈ Cm×n, b ∈ Cm and 0 < α̃ < 2/β̃Imax. Then, the iteration sequence {xk}
∞

k=0
generated by RABK starting from any initial guess x0 ∈ range(A∗) exists and converges to the unique least-norm
solution x∗ = A†b of the consistent linear system Ax = b. Moreover, it holds that

E[∥xk − x∗∥22] ≤ ρ̃k
∥x0 − x∗∥22, (6)

where ρ̃ = 1 −
(2α̃−α̃2β̃Imax)σ2

min(A)
∥A∥2F

and β̃Imax = max
i∈[s]

σ2
max(AIi ,:)

∥AIi ,:∥
2
F
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Proof. From Algorithm 3, we have

xk − x∗ = xk−1 − x∗ −
α̃

∥AIi,:∥
2
F

(AIi,:)
∗(AIi,:xk−1 − bIi ). (7)

By direct computations, we obtain

∥xk − x∗∥22 = ∥xk−1 − x∗∥22 −
2α̃
∥AIi,:∥

2
F

∥AIi,:(xk−1 − x∗)∥22 + α̃
2
∥(

AIi,:

∥AIi,:∥
2
F

)∗(
AIi,:

∥AIi,:∥
2
F

)(xk−1 − x∗)∥22. (8)

Using Lemma 2.5 in [23], it holds that

∥xk − x∗∥22 ≤ ∥xk−1 − x∗∥22 − (2α̃ −
α̃2σ2

max(AIi,:)
∥AIi,:∥

2
F

)
∥AIi,:(xk−1 − x∗)∥22

∥AIi,:∥
2
F

≤ ∥xk−1 − x∗∥22 − (2α̃ − α̃2β̃Imax)
∥AIi,:(xk−1 − x∗)∥22

∥AIi,:∥
2
F

. (9)

From (9) and the definition of conditional expectation conditioned on the first k − 1 iterations, we have

Ek−1[∥xk − x∗∥22] ≤ ∥xk−1 − x∗∥22 − (2α̃ − α̃2β̃Imax)
∥A(xk−1 − x∗)∥22

∥A∥2F

≤ ∥xk−1 − x∗∥22 − (2α̃ − α̃2β̃Imax)
σ2

min(A)∥(xk−1 − x∗)∥22
∥A∥2F

(0 < α̃ < 2/β̃Imax)

= ρ̃∥xk−1 − x∗∥22. (10)

Then, we obtain

E[∥xk − x∗∥22] ≤ ρ̃E[∥xk−1 − x∗∥22] ≤ ρ̃k
∥x0 − x∗∥22.□

4. The BRK-RK and BREK-RK method

Algorithm 4 The BRK-RK method
1: Let {I1,I2, . . . ,Is} and {J1,J2, . . . ,Jv} be partitions of [m] and [k], respectively;
2: Input: U, V, y, z0, x0, b0;
3: Output: the last bt.
4: Set t = 1 and α > 0;
5: While stopping criteria not reached do

6: Choose index i ∈ [s] with probability
∥UIi ,:∥

2
F

∥U∥2F
;

7: Update xt = xt−1 +
α

∥UIi ,:∥
2
F
(UIi,:)

∗(yIi −UIi,:xt−1);

8: Choose index j ∈ [v] with probability
∥VJ j ,:∥

2
F

∥V∥2F
;

9: Update bt = bt−1 +
α

∥VJ j ,:∥
2
F
(VJ j,:)

∗((xt)J j − VJ j,:bt−1);

10: Update t = t + 1;
11: End

Inspired by the works in [23], we propose simple average block RK-RK (BRK-RK) method and block
REK-RK (BREK-RK) method which interlace the RABK or REABK iterates to solve subsystem (2) and the
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Algorithm 5 The BREK-RK method
1: Let {I1,I2, . . . ,Is} and {J1,J2, . . . ,Jv} be partitions of [m] and [k], respectively;
2: Input: U, V, y, z0, x0, b0;
3: Output: the last bt.
4: Set t = 1 and α > 0;
5: While stopping criteria not reached do

6: Choose index i ∈ [s] with probability
∥UIi ,:∥

2
F

∥U∥2F
;

7: Choose index j ∈ [v] with probability
∥U:,J j ∥

2
F

∥U∥2F
;

8: Update zt = zt−1 −
α

∥U:,J j ∥
2
F
(U:,J j )(U:,J j )

∗zt−1;

9: Update xt = xt−1 +
α

∥UIi ,:∥
2
F
(UIi,:)

∗(yIi − (zt)Ii −UIi,:xt−1);

10: Choose column j ∈ [v] with probability
∥VJ j ,:∥

2
F

∥V∥2F
;

11: Update bt = bt−1 +
α

∥VJ j ,:∥
2
F
(VJ j,:)

∗((xt)J j − VJ j,:bt−1);

12: Update t = t + 1;
13: End

RABK iterates to solve subsystem (3). We note that BRK-RK and BREK-RK are pseudoinverse-free block
randomized iterative methods and can be implemented for parallel computation. The BRK-RK method
and the BREK-RK method are outlined in Algorithm 4 and Algorithm 5, respectively.

Next, we give our convergence results of BRK-RK and BREK-RK.

Theorem 4.1. Let X = UV, where U ∈ Cm×k and V ∈ Ck×n are of full rank, and the full system Xβ = y, the
subsystem Ux = y and the subsystem Vb = x have optimal solutions β∗, x∗ and b∗, respectively. Set x0 and b0 be two
zero vectors and k < m,n.
(a) Assume that 0 < α < 2/max(βImax, β

J

max). If Xβ = y is consistent, then we have b∗ = β∗ and BRK-RK converges
with the average error

E∥bt − β∗∥
2
2 ≤ (1 +

1
ε

)
α2βJmax

∥V∥2F
∥x∗∥22

t−1∑
l=0

ρt−l(1 + ε)lηl + (1 + ε)lηl
∥b∗∥22

≤ (1 + ε)tρ̂t

∥b∗∥22 + (1 + ε)α2βJmax∥x∗∥22
ε2∥V∥2F

 , (11)

where ρ = 1 −
(2α−α2βImax)σ2

min(U)
∥U∥2F

, η = 1 −
(2α−α2βJmax)σ2

min(V)
∥V∥2F

, βImax = max
i∈[s]

σ2
max(UIi ,:)

∥UIi ,:∥
2
F

, βJmax = max
j∈[v]

σ2
max(VJ j ,:)

∥VJ j ,:∥
2
F

and ρ̂ =

max{ρ, η}.
(b) Assume that 0 < α < 2/max(β̃Imax, β̃

J

max, β
J

max). If Xβ = y is inconsistent, then we have b∗ = β∗ and BREK-RK
converges with the average error

E∥bt − β∗∥
2
≤ (1 + ε)tρ̂t

∥b∗∥22 + (1 + ε)α2βJmax∥x∗∥22
ε2∥V∥2F

(1 +
(1 + ε)α2β̃Imaxσ

2
max(U)

ε2∥U∥2F
)

 (12)

where ρ̃ = 1−
(2α−α2β̃Jmax)σ2

min(U)
∥U∥2F

, η̃ = 1−
(2α−α2β̃Imax)σ2

min(U)
∥U∥2F

, β̃Imax = max
i∈[s]

σ2
max(UIi ,:)

∥UIi ,:∥
2
F

, β̃Jmax = max
j∈[v]

σ2
max(UJ j ,:)

∥UJ j ,:∥
2
F

, ˜̂ρ = max{ρ̃, η̃}

and ρ̂ = max{(1 + ε)̃ρ̂, η}.

Proof. We define b̃t by

b̃t = bt−1 +
α

∥VJ j,:∥
2
F

(VJ j,:)
∗((x∗)J j − VJ j,:bt−1), (13)
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which is the one-step RABK update for the exact linear system Vb = x∗ from bt−1. From (13), we have

b̃t − b∗ = bt−1 − b∗ −
α

∥VJ j,:∥
2
F

(VJ j,:)
∗(VJ j,:bt−1 − (x∗)J j ). (14)

From step 9) of BRK-RK or step 11) of BREK-RK, we obtain

bt = bt−1 +
α

∥VJ j,:∥
2
F

(VJ j,:)
∗((xt)J j − VJ j,:bt−1). (15)

From (13) and (15), it holds that

bt − b̃t =
α

∥VJ j,:∥
2
F

(VJ j,:)
∗((xt)J j − (x∗)J j ). (16)

From (14) and by direct computations, we have

∥̃bt − b∗∥22 = ∥bt−1 − b∗∥22 −
2α

∥VJ j,:∥
2
F

∥VJ j,:(bt−1 − b∗)∥22 + α
2
∥(

VJ j,:

∥VJ j,:∥F
)∗

VJ j,:

∥VJ j,:∥F
(bt−1 − b∗)∥22

≤ ∥bt−1 − b∗∥22 − (2α −
α2σ2

max(VJ j,:)

∥VJ j,:∥
2
F

)
∥VJ j,:(bt−1 − b∗)∥22

∥VJ j,:∥
2
F

≤ ∥bt−1 − b∗∥22 −
(2α − α2βJmax)∥VJ j,:(bt−1 − b∗)∥22

∥VJ j,:∥
2
F

, (βJmax = max
j∈[v]

σ2
max(VJ j,:)

∥VJ j,:∥
2
F

). (17)

From (17) and the definition of conditional expectation conditioned on the first t − 1 iterations, we have

Et−1[∥̃bt − b∗∥22] ≤ ∥bt−1 − b∗∥22 −
(2α − α2βJmax)∥V(bt−1 − b∗)∥22

∥V∥2F

≤ ∥bt−1 − b∗∥22 −
(2α − α2βJmax)σ2

min(V)∥bt−1 − b∗∥22
∥V∥2F

= η∥bt−1 − b∗∥22. (0 < α < 2/βJmax, η = 1 −
(2α − α2βJmax)σ2

min(V)

∥V∥2F
) (18)

Therefore, from (18) we have

E[∥̃bt − b∗∥22] ≤ ηE[∥bt−1 − b∗∥22]. (19)

From (16), by direct computations we can get

∥bt − b̃t∥
2
2 =

α2

∥VJ j,:∥
4
F

∥(VJ j,:)
∗((xt)J j − (x∗)J j )∥

2
2

≤
α2

∥VJ j,:∥
2
F

σ2
max(VJ j,:)

∥VJ j,:∥
2
F

∥(xt)J j − (x∗)J j∥
2
2

≤
α2βJmax

∥VJ j,:∥
2
F

∥(xt)J j − (x∗)J j∥
2
2. (20)

Similar to (18), we have

Et−1[∥bt − b̃t∥
2
2] = Et−1[[E j

t−1[∥bt − b̃t∥
2
2]]

≤ Et−1[[E j
t−1[
α2βJmax

∥VJ j,:∥
2
F

∥(xt)J j − (x∗)J j∥
2
2]]

= Et−1[
α2βJmax

∥V∥2F
∥xt − x∗∥22]. (21)
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Then, we also have

E[∥bt − b̃t∥
2
2] = E[[Et−1[∥bt − b̃t∥

2
2]]

≤
α2βJmax

∥V∥2F
E[∥xt − x∗∥22]. (22)

For any ε > 0, we obtain the following mean inequality

1
ε
∥bt − b̃t∥

2
2 + ε∥̃bt − b∗∥22 ≥ 2∥bt − b̃t∥2∥̃bt − b∗∥2. (23)

From (23), by direct computations we obtain

∥bt − b∗∥22 = ∥bt − b̃t + b̃t − b∗∥22
≤ (∥bt − b̃t∥2 + ∥̃bt − b∗∥2)2

≤ ∥bt − b̃t∥
2
2 + ∥̃bt − b∗∥22 + 2∥bt − b̃t∥2∥̃bt − b∗∥2

≤ (1 + 1/ε)∥bt − b̃t∥
2
2 + (1 + ε)∥̃bt − b∗∥22. (24)

Then, we can get

E[∥bt − b∗∥22] ≤ (1 + 1/ε)E∥bt − b̃t∥
2
2 + (1 + ε)E∥̃bt − b∗∥22. (25)

From (19) and (22), it holds that

E[∥bt − b∗∥22] ≤ (1 + 1/ε)
α2βJmax

∥V∥2F
E∥xt − x∗∥22 + (1 + ε)ηE∥bt−1 − b∗∥22. (26)

(a) For Algorithm 4, plugging Theorem 3.1 into (26), we immediately get

E[∥bt − b∗∥22] ≤ (1 + 1/ε)
α2βJmax

∥V∥2F
ρt
∥x∗∥22 + (1 + ε)ηE∥bt−1 − b∗∥22

≤ (1 + 1/ε)
α2βJmax∥x∗∥22
∥V∥2F

[ρt + ρt−1(1 + ε)η] + (1 + ε)2η2E∥bt−2 − b∗∥22 (27)

≤ · · · ≤ (1 +
1
ε

)
α2βJmax∥x∗∥22
∥V∥2F

t−1∑
l=0

ρt−l(1 + ε)lηl + (1 + ε)tηt
∥b∗∥22. (28)

where ρ = 1 −
(2α−α2βImax)σ2

min(U)
∥U∥2F

. If we set ρ̂ = max{ρ, η}, then by direct computations we have

E[∥bt − b∗∥22] ≤ (1 +
1
ε

)
α2βJmax∥x∗∥22
∥V∥2F

ρ̂t
t−1∑
l=0

(1 + ε)l + (1 + ε)tρ̂t
∥b∗∥22

≤ (1 + ε)tρ̂t

∥b∗∥22 + (1 + ε)α2βJmax∥x∗∥22
ε2∥V∥2F

 . (29)
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(b) For Algorithm 5, plugging Theorem 2.7 in [23] into (26), we have

E[∥bt − b∗∥22] ≤ (1 + ε)ηE∥bt−1 − b∗∥22 + (1 + 1/ε)
α2βJmax

∥V∥2F

[
(1 + ε)tη̃t

∥x0 − x∗∥22

+ (1 + 1/ε)
α2β̃Imax∥z0 − y⊥∥22

∥U∥2F

t−1∑
l=0

ρ̃t−l(1 + ε)lη̃l
]
(z0 = y)

≤ (1 + ε)ηE∥bt−1 − b∗∥22 + (1 + 1/ε)
α2βJmax

∥V∥2F
(1 + ε)t˜̂ρt[

∥x∗∥22 +
(1 + ε)α2β̃Imax∥z0 − y⊥∥

ε2∥U∥2F

]
≤ (1 + ε)ηE∥bt−1 − b∗∥22 + (1 + 1/ε)

α2βJmax

∥V∥2F
(1 + ε)t˜̂ρt[

∥x∗∥22 +
(1 + ε)α2β̃Imaxσ

2
max(U)∥x∗∥22

ε2∥U∥2F

]
≤ (1 + ε)ηE∥bt−1 − b∗∥22 + (1 + 1/ε)

α2βJmax∥x∗∥22
∥V∥2F

(1 + ε)t˜̂ρt[
1 +

(1 + ε)α2β̃Imaxσ
2
max(U)

ε2∥U∥2F

]
≤ (1 + ε)2η2E∥bt−2 − b∗∥22 + (1 + 1/ε)

α2βJmax∥x∗∥22
∥V∥2F

[
((1 + ε)̃ρ̂)t + ((1 + ε)̃ρ̂)t−1(1 + ε)η

]
[
1 +

(1 + ε)α2β̃Imaxσ
2
max(U)

ε2∥U∥2F

]
≤ · · · ≤ (1 +

1
ε

)
α2βJmax∥x∗∥22
∥V∥2F

[
1 +

(1 + ε)α2β̃Imaxσ
2
max(U)

ε2∥U∥2F

]
(30)

t−1∑
l=0

((1 + ε)̃ρ̂)t−l(1 + ε)lηl + (1 + ε)tηt
∥b∗∥22.

Let ρ̂ = max{η, (1 + ε)̃ρ̂}, and then we have

E∥bt − β∗∥
2
≤ (1 + ε)tρ̂t

∥b∗∥22 + (1 + ε)α2βJmax∥x∗∥22
ε2∥V∥2F

(1 +
(1 + ε)α2β̃Imaxσ

2
max(U)

ε2∥U∥2F
)

 . (31)

Then, we complete the proof of Theorem 4.1. □

Remark 4.2. For BRK-RK, if s = m, v = k and α = 1, then we have βImax = β
J

max = 1. In addition, we obtain

η = 1 −
σ2

min(V)
∥V∥2F

= αV and ρ = 1 −
σ2

min(U)
∥U∥2F

= αU. Similar to the works in [23], we have

∥bt − b∗∥22 = ∥bt − b̃t∥
2
2 + ∥̃bt − b∗∥22. (32)

Therefore, by direct computations we have

E[∥bt − b∗∥22] ≤ αt
V∥b∗∥

2
2 +
∥x∗∥22
∥V∥2F

t−1∑
l=0

αt−l
U α

h
V, (33)

which is the same as the conclusion proposed in [7, 27].

Remark 4.3. For BREK-RK, if s = m, v = k and α = 1, then we have β̃Imax = β̃
J

max = 1. In addition, we obtain

η̃ = 1 −
σ2

min(U)
∥U∥2F

= αU and ρ̃ = 1 −
σ2

min(U)
∥U∥2F

= αU, respectively. Similar to the works in Remark 4.2, we obtain

E[∥bt − b∗∥22] ≤ αVE[∥bt − b∗∥22] +
1
∥V∥2F

[
αt

U∥x∗∥
2
2 +
∥z0 − y⊥∥22
∥U∥2F

t−1∑
l=0

αt−l
U α

l
U

]
. (34)
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Using the fact that ∥z0 − y⊥∥22 ≤ σ
2
max(U)∥x∗∥22, we obtain

E[∥bt − b∗∥22] ≤ αVE[∥bt − b∗∥22] +
1
∥V∥2F

[
αt

U∥x∗∥
2
2 +
σ2

max(U)∥x∗∥22
∥U∥2F

t−1∑
l=0

αt
U

]
. (35)

By direct computations, we obtain

E[∥bt − b∗∥22] ≤ αVE[∥bt − b∗∥22] +
∥x∗∥22
∥V∥2F

[
αt

U +
tαt

Uσ
2
max(U)

∥U∥2F

]
< αVE[∥bt − b∗∥22] +

∥x∗∥22
∥V∥2F

α⌊t/2⌋U

[
1 + 2⌈t/2⌉αt−⌊t/2⌋

U

σ2
max(U)
∥U∥2F

]
< αVE[∥bt − b∗∥22] +

∥x∗∥22
∥V∥2F

α⌊t/2⌋U

[
1 + 2

σ2
max(U)
∥U∥2F

∞∑
l=0

αl
U

]
= αVE[∥bt − b∗∥22] +

∥x∗∥22
∥V∥2F

α⌊t/2⌋U

[
1 + 2

σ2
max(U)
∥U∥2F

1
1 − αU

]
= αVE[∥bt − b∗∥22] +

∥x∗∥22
∥V∥2F

α⌊t/2⌋U

[
1 + 2κ2

U

]
, (36)

where κ2
U =

σ2
max(U)
σ2

min(U) . Therefore, from (36) and Theorem 1 in [7, 27], we observe that BREK-RK converges faster than
REK-RK. Numerical results in Section 5 will assert this conclusion.

5. Numerical examples

In this section, some numerical examples are tested to compare the effectiveness of RK-RK, REK-RK,
BRK-RK and BREK-RK for solving different types of factorised linear systems. We note that IT and CPU
denote the medians of the required iterations steps and the elapsed computing time (in seconds) averaged
over 50 runs. Note that all experiments are performed in MATLAB (version R2019a) on a computer with an
Intel Core i7-7700 processor at 3.60 GHz and 32 GB RAM. In our implementations, solving subsystem (2)
and subsystem (3) is started from the initial guess x0 = zeros(k, 1) and b0 = zeros(n, 1), respectively. We note
that the MATLAB function randn creates a random matrix with coefficients subject to the standard normal
distribution N(0, 1). When X is overdetermined and consistent, we consider different parameter values k
and set y = Xβ, where β is generated by using the MATLAB function randn. On the other hand, when X
is overdetermined and inconsistent, we consider different parameter values k, set y = Xβ + r0 and z0 = y,
where r0 ∈ null(X∗) (computed in MATLAB using the null function ) and β is also generated by using the
MATLAB function randn. We test two types of coefficient matrices. For type I, we set U = randn(m, k) and
V = randn(k,n). For type II, we consider U = U1 × D and V = VT

1 , where the matrices D, U1 and V1 are
generated as follows:

[U1,∼] = qr(randn(m, r), 0), [V1,∼] = qr(randn(n, r), 0)

and

D = diag(1 + (κ − 1). ∗ rand(r, 1)),

see [23] for more details. We adopt the same row partition and column partition introduced in [23]. For
row partition {Ii}

s
i=1, we let

Ii = {(i − 1)τ + 1, (i − 1)τ + 2, . . . , iτ}, i = 1, 2, . . . , s − 1,
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and

Is = {(s − 1)τ + 1, (s − 1)τ + 2, . . . ,m}, |Is| ≤ τ.

For column partition {J j}
v
j=1, we let

J j = {( j − 1)τ + 1, ( j − 1)τ + 2, . . . , jτ}, j = 1, 2, . . . , v − 1,

and

Jv = {(v − 1)τ + 1, (v − 1)τ + 2, . . . , k}, |Jv| ≤ τ.

We set the stopping criterion be RSE =
∥bk−β∗∥22
∥β∗∥22

≤ 10−6, or the maximum iteration steps be 100000, where
RSE denotes the relative solution error. The speed-up of BRK-RK against RK-RK and the speed-up1 of
BREK-RK against REK-RK are defined by

speed-up =
CPU of RK-RK

CPU of BRK-RK

and
speed-up1 =

CPU of REK-RK
CPU of BREK-RK

,

respectively.
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Figure 1: log10(RSE) versus IT for BRK-RK when X = randn(500, 250), k = 100 (left) and X = UDVT ,m = 500,n = 250, r = 150, κ = 2
(right)

In Figure 1, we plot the RSE of BRK-RK with a fixed block size (τ = 10) and different stepsizes (α from
0.75/βmax to 2.25/βmax) for two consistent linear systems with coefficient matrices of Type I (m = 500,n =
250, k = 100) and Type II (m = 500,n = 250, r = 150, κ = 2). In Figure 2, we also plot the RSE of BREK-RK
with a fixed block size (τ = 10) and different stepsizes (α from 0.75/βmax to 2.0/βmax or 2.25/βmax) for two
inconsistent linear systems with coefficient matrices of Type I (m = 500,n = 250, k = 100) and Type II
(m = 2000,n = 200, r = 100, κ = 2). From Figure 1 on the left and Figure 2 on the left, we see that the
convergence rate of BRK-RK or BREK-RK becomes faster with an increase in stepsize. From Figure 1 on the
right and Figure 2 on the right, we see that the convergence rate of BRK-RK or BREK-RK becomes faster
with an increase in stepsize and then slows down after reaching the fastest rate.

In Figure 3, we plot the computing time of BRK-RK with different block sizesτ = 5, 10, 15, 20, 25, 30, 35, 40,
45, 50 and fixed stepsize α = 1.75/βmax for two consistent linear systems with coefficient matrices of Type I
(A = randn(20000, 1000), k = 300) and Type II (A = UDVTwith m = 2000,n = 1000, r = 500, κ = 2). From
Figure 3, we see that the CPU value reaches the minimum value at τ = 10. In Tables 3-5, we give the
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Figure 2: log10(RSE) versus IT for BREK-RK when X = randn(500, 250), k = 100 (left) and X = UDVT ,m = 2000,n = 200, r = 100, κ = 2
(right)

Table 3: IT and CPU of RK-RK and BRK-RK for consistent X, where U = randn(m, k) and V = randn(k,n) with different k

m × n Method k 100 200 300 400 500 600
20000 × 1000 RK-RK IT 1712.0 4157.6 7743.3 14274.0 25624.0 52396.0

CPU 1.387 3.362 6.371 11.920 22.193 44.945
BRK-RK IT 177.2 399.9 723.3 1226.0 2147.8 4184.8

CPU 0.088 0.121 0.178 0.279 0.536 1.039
speed-up 15.76 27.79 35.79 42.72 41.40 43.26

20000 × 2000 RK-RK IT 1598.0 3460.5 5601.0 8225.0 11582.0 16053.0
CPU 1.349 3.042 5.081 7.673 10.869 15.481

BRK-RK IT 164.9 338.9 535.1 785.2 1085.9 1397.7
CPU 0.168 0.405 0.787 1.367 2.069 2.978

speed-up 8.03 7.51 6.46 5.61 5.25 5.20
20000 × 3000 RK-RK IT 1595.0 3338.6 5239.5 7319.6 9624.9 12460.0

CPU 2.122 4.827 7.891 11.293 14.845 19.572
BRK-RK IT 164.1 332.1 538.7 729.5 948.5 1215.8

CPU 0.230 0.653 1.239 1.861 2.613 3.478
speed-up 9.23 7.39 6.37 6.07 5.68 5.63

Table 4: IT and CPU of RK-RK and BRK-RK for consistent X, where U = randn(m, k) and V = randn(k,n) with k = 500

m × n RK-RK BRK-RK speed-up

IT CPU IT CPU

2000 × 1000 1712.0 1.387 177.2 0.088 15.76
3000 × 1000 26444.0 29.309 2188.7 0.587 49.93
4000 × 1000 28351.0 38.434 2340.5 2.200 17.47
5000 × 1000 25225.0 41.223 2111.5 2.183 18.88
6000 × 1000 25650.0 48.302 2145.8 2.303 20.93
7000 × 1000 25251.0 54.644 2172.9 2.445 22.35
8000 × 1000 26793.0 63.815 2246.6 2.724 23.43
9000 × 1000 23938.0 60.781 2091.6 2.641 23.01
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Table 5: IT and CPU of RK-RK and BRK-RK for consistent X, where U = U1 ×D and V = VT
1

m × n Rank κ RK-RK BRK-RK speed-up

IT CPU IT CPU

2000 × 1000 500 2 9119.0 0.817 974.4 0.263 3.11
6 35751.0 3.332 2940.9 0.693 4.81

4000 × 1000 500 2 9058.6 3.948 940.9 0.276 14.30
6 33823.0 12.757 2961.9 0.713 17.89

6000 × 1000 500 2 9181.6 4.164 930.3 0.266 15.65
6 35490.0 17.654 3075.2 0.753 23.44

8000 × 1000 500 2 9118.0 5.105 944.3 0.245 20.84
6 33246.0 15.831 2798.9 0.587 26.97

10000 × 1000 500 2 9251.1 5.449 916.2 0.242 22.52
6 34539.0 20.207 2975.3 0.706 28.62

12000 × 1000 500 2 9171.5 5.945 928.3 0.249 23.88
6 33871.0 21.198 2966.8 0.643 32.99

14000 × 1000 500 2 9047.8 6.139 912.1 0.245 25.06
6 31385.0 20.958 2734.0 0.621 33.75

16000 × 1000 500 2 9057.3 6.543 942.1 0.265 24.69
6 30715.0 21.879 2708.8 0.624 35.06

numerical results of RK-RK and BRK-RK with two different types of coefficient matrices. Here, we use a
fixed block size τ = 10 and stepsize α = 1.75/βmax. From Tables 3-5, we can conclude several observations.
First, RK-RK and BRK-RK are effective to solve the factorised linear systems. Second, BRK-RK outperforms
RK-RK in terms of both iteration steps and computing time. Third, for Type I, the minimum of speed-ups
is 5.20 and the maximum is 49.93. For type II, the minimum of speed-ups is 3.11 and the maximum is 35.06.
In addition, for the fixed n, r and κ, the speed-up is increasing with respect to the increase of m. For the
fixed m, r and n, the speed-up is increasing with respect to the increase of κ. In addition, from Figure 4, we
observe that BRK-RK outperforms RK-RK in terms of computing time.

In Table 6, we report the numerical results of RK-RK and BRK-RK for extremely large standard Gaussian
matrices U and V. We see that RK-RK and BRK-RK are effective to solve the linear system UVβ = y without
computing the entire matrix. BRK-RK outperforms RK-RK in terms of both iteration steps and computing
time, the minimum of speed-ups is 3.95 and the RK-RK method fails to converge with k = 4000 and 5000.

Table 6: IT and CPU of RK-RK and BRK-RK for consistent X, where U = randn(105, k) and V = randn(k, 104) with different k

m × n k RK-RK BRK-RK speed-up

IT CPU IT CPU

105
× 104 1000 17737.0 80.249 1955.7 18.435 4.35

2000 41612.0 219.823 4547.4 55.631 3.95
3000 79133.0 446.798 7874.1 106.817 4.18
4000 – – 12148.0 187.921 –
5000 – – 3944.1 63.856 –

In Figure 5, we plot the computing time of BREK-RK with different block sizesτ = 5, 10, 15, 20, 25, 30, 35, 40, 45, 50
and fixed stepsize α = 1.75/βmax for two inconsistent linear systems with coefficient matrices of Type I
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Figure 3: The average CPU of BRK-RK with different block sizes τ = 5, 10, 15, 20, 25, 30, 35, 40, 45, 50 and stepsize α = 1.75/βmax for
consistent linear systems. Left: X = randn(20000, 1000), k = 300. Right: X = UDVT ,m = 2000,n = 1000, r = 500, κ = 2.
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Table 7: IT and CPU of REK-RK and BREK-RK for inconsistent X, where U = randn(m, k) and V = randn(k,n) with different k

m × n Method k 100 200 300 400 500
10000 × 1000 REK-RK IT 1940.0 4557.0 8410.3 15175.0 28734.0

CPU 2.301 5.266 9.941 18.529 35.035
BREK-RK IT 194.0 424.6 761.3 1302.5 2318.8

CPU 0.501 1.125 2.125 3.821 6.937
speed-up 4.59 4.68 4.68 4.85 5.05

12000 × 1000 REK-RK IT 1904.8 4444.0 8748.2 15539.0 27665.0
CPU 2.671 5.991 12.026 22.123 38.621

BREK-RK IT 191.8 416.7 778.5 1346.4 2254.4
CPU 0.582 1.207 2.454 4.507 7.559

speed-up 4.59 4.96 4.90 4.91 5.11
14000 × 1000 REK-RK IT 1908.8 4459.8 8258.2 14874.0 26574.0

CPU 2.721 7.372 14.182 26.013 40.014
BREK-RK IT 191.7 421.1 752.6 1314.6 2262.5

CPU 1.097 2.657 4.715 8.703 14.127
speed-up 2.48 2.77 3.01 2.99 2.83

16000 × 1000 REK-RK IT 1884.8 4581.3 8433.0 15512.0 26565.0
CPU 3.337 7.652 14.367 27.392 49.337

BREK-RK IT 187.8 420.7 758.3 1346.4 2235.5
CPU 1.211 2.837 5.489 9.499 16.165

speed-up 2.76 2.70 2.62 2.88 3.05
18000 × 1000 REK-RK IT 1866.8 4438.8 8419.8 14636.0 27948.0

CPU 3.252 6.237 12.500 23.735 53.362
BREK-RK IT 199.9 416.7 772.9 1276.0 2307.4

CPU 1.423 2.634 4.978 8.788 17.729
speed-up 2.29 2.37 2.51 2.70 3.01

Table 8: IT and CPU of REK-RK and BREK-RK for inconsistent X, where U = U1 ×D and V = VT
1

m × n Rank κ REK-RK BREK-RK speed-up

IT CPU IT CPU

4000 × 1000 100 2 2072.8 1.875 99.4 0.288 6.51
100 6 6958.9 6.299 505.6 1.471 4.28

6000 × 1000 100 2 2245.6 2.421 117.1 0.641 3.78
100 6 7652.7 8.711 590.1 4.106 2.12

8000 × 1000 100 2 2095.0 2.546 107.4 0.913 2.79
100 6 9429.3 11.292 671.4 5.267 2.14

10000 × 1000 100 2 2261.5 3.078 130.4 1.330 2.31
100 6 7889.1 10.618 578.6 5.372 1.98

12000 × 1000 100 2 2174.5 3.195 109.9 1.232 2.59
100 6 9017.4 13.129 641.5 6.781 1.94

(A = randn(10000, 1000), k = 300) and Type II (A = UDVTwith m = 2000,n = 500, r = 200, κ = 2). From
Figure 5, we see that the CPU value reaches the minimum value at τ = 10 for Type I, and the CPU value
reaches the minimum value at τ = 25 for Type II. In Tables 7-9, we report the numerical results of REK-RK
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Table 9: IT and CPU of REK-RK and BREK-RK for consistent X, where U = randn(3000, k) and V = randn(k, 100) with different k

Method k 200 300 400 500 600 700 800
REK-RK IT 5284.9 5868.7 8378.5 11542.0 15166.0 19353.0 24588.0

CPU 2.718 3.088 4.664 6.655 9.110 11.645 15.636
BREK-RK IT 242.9 266.7 395.5 557.8 769.6 986.5 1193.7

CPU 0.409 0.494 0.798 1.154 1.769 2.321 3.061
speed-up 6.65 6.25 5.84 5.77 5.15 5.02 5.10

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8
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Figure 6: The average CPU of REK-RK, BREK-RK (τ = 10, 25 and stepsize α = 1.75/βmax) for inconsistent linear systems. Left:
X = randn(m, 1000),m = 10000, · · · , 18000, k = 200. Right: X = UDVT ,m = 4000, · · · , 12000,n = 1000, r = 200, κ = 2.

and BREK-RK with two different types of coefficient matrices. Here, we use a fixed stepsize α = 1.75/βmax.
A fixed block size τ = 10 is used in Table 7 and a fixed block size τ = 25 is used in Tables 8-9. From Tables 7-9,
we can conclude several observations. First, REK-RK and BREK-RK are effective to solve the factorised lin-
ear systems. Second, BREK-RK outperforms REK-RK in terms of both iteration steps and computing time.
Third, for Type I, the minimum of speed-ups is 2.29 and the maximum is 6.65, the speed-up is increasing
with respect to the increase of k. For Type II, the minimum of speed-ups is 1.94 and the maximum is 6.51.
Finally, from Table 9, we also see that BREK-RK converge faster than REK-RK for solving the consistent
linear system with n < k < m. In addition, from Figure 6, we also observe that BREK-RK outperforms
REK-RK for solving two inconsistent linear systems with different coefficient matrices.

6. Conclusion

We have presented two pseudoinverse-free block methods which intertwine RABK or BREK and RABK
for solving the factorised linear systems. The convergence theories of two new block iterative methods are
also analyzed. Numerical results are provided to confirm the theoretical results and the effectiveness of the
new methods. Accelerated variants and extensions will be the future work.
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