Filomat 37:15 (2023), 4833–4842 https://doi.org/10.2298/FIL2315833Y

Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

Some new characterizations of (*b*, *c*)-inverses and Bott-Duffin (*e*, *f*)-inverses

Hua Yao^{a,c}, Ruju Zhao^{b,c}, Long Wang^c, Junchao Wei^c

^aSchool of Mathematics and Statistics, Huanghuai University, Zhumadian, Henan 463000, P. R. China ^bCollege of Science, Beibu Gulf University, Qinzhou, Guangxi 535011, P. R. China ^cSchool of Mathematical Sciences, Yangzhou University, Yangzhou, Jiangsu 225002, P. R. China

Abstract. The (b, c)-inverse and the Bott-Duffin (e, f)-inverse are two classes of outer inverses, a few characterizations of which have been presented by certain researchers. In this paper, we give some new characterizations of (b, c)-inverses and Bott-Duffin (e, f)-inverses. First, we present a number of ring theoretic characterizations of (b, c)-inverses. Then we characterize (b, c)-inverses by equations. Finally, we present some characterizations of Bott-Duffin (e, f)-inverses. More specifically, we use Bott-Duffin (e, f)-inverses to characterize some classes of rings, such as directly finite rings, Abelian rings and left min-abel rings.

1. Introduction

Let *R* be an associative ring with unity 1 and $b, c \in R$. An element $a \in R$ is said to be (b, c)-invertible if there exists $y \in R$ such that $y \in bRy \cap yRc$, yab = b, and cay = c. If such a *y* exists, it is unique and is called the (b, c)-inverse of *a*, denoted by $a^{\parallel (b,c)}$.

As a new class of outer inverse, the concept of the (b, c)-inverse was for the first time introduced by Drazin in [2, Definition 1.3] in the setting of rings, which generalized the group inverse, the Drazin inverse, the Moore-Penrose inverse, the Chipman's weighted inverse and the Bott-Duffin inverse. Afterwards, certain researchers further studied and generalized it. Rakić et al. [9] connected the core and dual core inverses with the (b, c)-inverse. Wang et al. [11] gave some characterizations of the (b, c)-inverse, in terms of the direct sum decomposition, the annihilator and the invertible elements. Ke et al. [7] investigated the existence and the expression of the (b, c)-inverse in a ring with an involution. Boasso and Kantún-Montiel [1] presented some other conditions for the existence of the (b, c)-inverse and of the hybrid (b, c)-inverse are equivalent. For more results on (b, c)-inverse, we refer to [3, 4, 6, 8, 10].

In [2], Drazin introduced another outer generalized inverse which intermediates between the Bott-Duffin inverse and the (b, c)-inverse. This class of generalized inverses is called Bott-Duffin (e, f)-inverses, where $e, f \in R$ are idempotents. Recall that the Bott-Duffin (e, f)-inverse of $a \in R$ is the element $y \in R$ which

Keywords. (b, c)-inverse; Bott-Duffin (e, f)-inverse; Abelian ring; Directly finite ring; Left min-abel ring.

Research supported by Natural Science Foundation of Henan Province of China under Grant No. 222300420499.

Email addresses: dalarston@126.com (Hua Yao), zrj@115@126.com (Ruju Zhao), lwangmath@yzu.edu.cn (Long Wang), jcweiyz@126.com (Junchao Wei)

²⁰²⁰ Mathematics Subject Classification. 15A09; 16B99; 16U99.

Received: 08 March 2018; Accepted: 11 June 2022

Communicated by Dragan S. Djordjević

satisfies y = ey = yf, yae = e, and fay = f. If the Bott-Duffin (e, f)-inverse of a exists, it is unique and denoted by $a^{BD(e,f)}$. The Bott-Duffin (e, f)-inverse and the (b, c)-inverse are formally very similar. It is not difficult to find that a (b, c)-inverse y of a is a Bott-Duffin (e, f)-inverse of a if and only if b and c are both idempotents. Conversely, if y is the (b, c)-inverse of a, then y is also the Bott-Duffin (ya, ay)-inverse of a [2, Proposition 3.3]. More properties and applications of the Bott-Duffin (e, f)-inverse are studied by Ke and Chen in [5].

In this paper, we present some new characterizations of (b, c)-inverses and Bott-Duffin (e, f)-inverses. First, we give certain ring theoretic characterizations of the (b, c)-inverse of an element $a \in R$. The following conditions are proved to be equivalent: (a) a is (b, c)-invertible; (b) $c \in cabRc$ and $R = bR \oplus r(ab)$; (c) r(ab) = r(b), l(cab) = l(c), and ab is right c-regular. Next, we characterize (b, c)-inverses by equations. It is showed that ais (b, c)-invertible if and only if the equation bxab = b has solution x_0 in Rc and its every solution is similar to x_0 . Finally, we give some characterizations of Bott-Duffin (e, f)-inverses. To be specific, we use Bott-Duffin (e, f)-inverses to characterize directly finite rings, Abelian rings and left min-abel rings.

2. Ring theoretic characterizations of (*b*, *c*)-inverses

In this section, we will characterize (*b*, *c*)-inverses in ring theory. First, we have the following proposition.

Proposition 2.1. Let $a, b, c \in R$. Then a is (b, c)-invertible if and only if $b \in bRcab$ and $c \in cabR$.

Proof. " \leftarrow " Let b = bucab and c = cabv, where $u, v \in R$. Take y = buc and x = bv. Then b = yab and c = cax. Moreover, yay = yabuc = buc = y. By

y = buc = bucabv = yabv = yax, and x = bv = bucabv = yabv = yax,

we obtain x = y and c = cax = cay. So

$$y = yabuc \in yRc$$
 and $y = bucay \in bRy$.

Then $a^{\parallel (b,c)} = y = buc = x = bv$.

"⇒" Let $y = a^{\parallel (b,c)}$. Then $y \in bRy \cap yRc$, yab = b, and cay = c. Write $y = br_1y = yr_2c$, where $r_1, r_2 \in R$. Then we have

$$b = yab = br_1yab = br_1yr_2cab = b(r_1yr_2)cab \in bRcab,$$

and

$$c = cay = ca(br_1y) = (cab)r_1y \in cabR.$$

Note that $c = cay = ca(br_1y) = cabr_1(yr_2c) \in cabRc$. Hence, we get the following corollary from Proposition 2.1.

Corollary 2.2. Let $a, b, c \in R$. Then a is (b, c)-invertible if and only if $b \in bRcab$ and $c \in cabRc$.

Similarly, we have the following proposition.

Proposition 2.3. *Suppose that a, b, c* \in *R. Then the following conditions are equivalent:*

(1) a is (b, c)-invertible; (2) $b \in Rcab$ and $c \in cabRc$; (3) $b \in bRcab$ and $c \in (cabR)^2$.

Proof. (1) and (2) are equivalent by Proposition 2.1. "(3) \Rightarrow (1)" Since $c \in (cabR)^2 = cabRcabR \subseteq cabR$, it is obvious from Proposition 2.1. "(1) \Rightarrow (3)" It follows from Corollary 2.2 that $c \in cabRc$. Let c = cabvc, where $v \in R$. Then we have $c = cabvcabv \in cabRcabR = (cabR)^2$. \Box For any $x \in R$, define $l(x) := \{y \in R \mid yx = 0\}$. Then we can characterize (b, c)-inverses using direct sum decomposition of rings.

Proposition 2.4. Let $a, b, c \in R$. Then a is (b, c)-invertible if and only if $b \in bRcab$ and $R = Rc \oplus l(ab)$.

Proof. " \Rightarrow " From Proposition 2.1, we know that $b \in bRcab$. Let $y = a^{\parallel (b,c)}$. Then we have

$$y \in bRy \cap yRc$$
, $yab = b$, $cay = c$, and $yay = y$.

Notice that $y = br_1y = yr_2c$, where $r_1, r_2 \in R$. For every $x \in Rc \cap l(ab)$, one has that xab = 0. Let x = uc, where $u \in R$. Then

$$x = u(cay) = uca(br_1y) = (uc)abr_1y = xabr_1y = 0r_1y = 0$$

Hence, $Rc \cap l(ab) = \{0\}$. Since

$$b = yab = (br_1y)ab = br_1(yr_2c)ab$$

it follows that $ab = abr_1yr_2cab$. Moreover, $(1 - abr_1yr_2c)ab = 0$, i.e., $1 - abr_1yr_2c \in l(ab)$. Next, let

$$1 - abr_1 yr_2 c = t \in l(ab).$$

Then

$$1 = abr_1yr_2c + t \in Rc + l(ab).$$

Therefore, $R = Rc \oplus l(ab)$.

"⇐" Since $b \in bRcab$, there exists some $v \in R$ such that b = bvcab. Write y = bvc. Then b = yab and yay = y. Thus, $y \in bRy \cap yRc$. Next we let 1 = wc + f, where $w \in R$, $f \in l(ab)$, for $R = Rc \oplus l(ab)$. Then we get

$$ab = 1ab = wcab + fab = wcab,$$

 $b = yab = ywcab,$

and

$$cab = ca(ywcab) = ca(yay)wcab = caya(ywcab) = cayab.$$

Moreover, (c - cay)ab = 0, i.e., $c - cay \in l(ab)$. Since $c - cay \in Rc$, it follows that $c - cay \in Rc \cap l(ab) = \{0\}$. Therefore, c = cay. Thus, a is (b, c)-invertible. \Box

For any $x \in R$, define $r(x) := \{y \in R \mid xy = 0\}$, a right ideal of *R*. Using the same argument as in the proof of Proposition 2.4, we get the following proposition.

Proposition 2.5. Let $a, b, c \in R$. Then a is (b, c)-invertible if and only if $c \in cabRc$ and $R = bR \oplus r(ca)$.

Definition 2.6. *Let* $d, c \in R$. *Element* d *is said to be right (left) c-regular, if there exists an element* $x \in R$, *such that* d = dxcd (d = dcxd).

Proposition 2.7. Let $a, b, c \in R$. Then a is (b, c)-invertible if and only if r(ab) = r(b), l(cab) = l(c), and ab is right *c*-regular.

Proof. " \Leftarrow " Since *ab* is a right *c*-regular, there exists an element $x \in R$, such that ab = abxcab. Thus,

$$ab(1 - xcab) = 0, 1 - xcab \in r(ab) = r(b),$$

and

$$b(1 - xcab) = 0$$
, and $b = bxcab \in bRcab$.

Notice that *cab* = *cabxcab*. We obtain that

(1 - cabx)cab = 0, $1 - cabx \in l(cab) = l(c)$, and (1 - cabx)c = 0.

Therefore, $c = cabxc \in cabR$. From Proposition 2.1, we know that *a* is (b, c)-invertible. " \Rightarrow " Let $y = a^{\parallel (b,c)}$. Then

yab = b, cay = c, yay = y, $y = br_1y$, and $y = yr_2c$, where $r_1, r_2 \in R$.

Obviously, $r(b) \subseteq r(ab)$. Now, for any $x \in r(ab)$, one gets that

abx = 0, bx = (yab)x = y(abx) = 0, and $x \in r(b)$.

Therefore, $r(ab) \subseteq r(b)$. It is straightforward that $l(c) \subseteq l(cab)$. Conversely, let $x \in l(cab)$. Then

xcab = 0, $xc = xcay = xca(br_1y) = xcab(r_1y) = 0$, $x \in l(c)$, and $l(cab) \subseteq l(c)$.

Therefore, l(cab) = l(c). Since

 $ab = a(yab) = a(br_1y)ab = abr_1(yr_2c)ab = ab(r_1yr_2)cab$,

we have that *ab* is a right *c*-regular. \Box

Similarly, we get the following proposition.

Proposition 2.8. Let $a, b, c \in R$. Then a is (b, c)-invertible if and only if

$$r(cab) = r(b), \ l(ca) = l(c),$$

and ca is left b-regular.

Corollary 2.9. Let $a, b, c \in \mathbb{R}$. Then the following conditions are equivalent:

(1) *a* is (*b*, *c*)-invertible; (2) r(b) = r(cab), l(c) = l(cab), and *ab* is right *c*-regular; (3) r(b) = r(cab), l(c) = l(cab), and *ca* is left *b*-regular.

Recall that an element $a \in R$ is regular if there exists $x \in R$ satisfying axa = a. In this case, x is a regular (or inner) inverse of a.

Proposition 2.10. *Let* $a, b, c \in R$. *Then the following conditions are equivalent:*

(1) a is (b, c)-invertible;
(2) Rb = Rcab, cR = cabR, and ab is right c-regular;
(3) Rb = Rcab, cR = cabR, and cab is regular;
(4) Rb = Rcab, cR = cabR, and ca is left b-regular.

Proof. "(1) \Rightarrow (2)" It follows from Propositions 2.1 and 2.7. "(2) \Rightarrow (3)" and "(4) \Rightarrow (3)" are obvious. "(1) \Rightarrow (4)" It follows from Propositions 2.1 and 2.8. "(3) \Rightarrow (1)" Let *cab* = *cabwcab*, *b* = *vcab*, and *c* = *cabs*. Then

 $b = vcab = vcabwcab = bwcab \in bRcab$,

and

 $c = cabs = cabwcabs = cabwc \in cabRc.$

By Proposition 2.1, the assertion holds. \Box

Corollary 2.11. *Let* $a, b, c \in \mathbb{R}$ *. Then the following conditions are equivalent:*

(1) a is (b, c)-invertible;

(2) there exists some $x \in R$ such that xax = x, xR = bR and Rx = Rc.

Proof. "(1) \Rightarrow (2)" In view of Proposition 2.10, we know that b = vcab, c = cabs, and cab = cabwcab. Then

$$b = vcab = vcabwcab = bwcab,$$

and

$$c = cabs = cabwcabs = cabwc.$$

Take x = bwc. Then

$$b = xab, c = cax$$
, and $xax = xabwc = bwc = x$.

Thus

$$xR = bR$$
 and $Rx = Rc$.

"(2) \Rightarrow (1)" Since $1 - xa \in l(x) = l(b)$ and $1 - ax \in r(x) = r(c)$, one has that b = xab and c = cax. Denote x = bs = tc. Then $x = xax = bsax \in bRx$, and

$$x = xax = xatc \in xRc.$$

Thus $a^{\parallel(b,c)} = x$. \Box

3. Characterizing (*b*, *c*)-inverses by equations

In this section, we characterize (b, c)-inverses by equations. Let $a, b, c \in R$. If there exists an element $u \in Rc$, such that buab = b, then x = u is said to be a solution of the equation bxab = b in Rc.

Definition 3.1. Suppose that x_1 and x_2 are two solutions of the equation bxab = b. If $x_2 = x_2abx_1$ and $x_1 = x_1abx_2$, then x_2 is said to be similar to x_1 .

Proposition 3.2. Let $a, b, c \in R$. Then a is (b, c)-invertible if and only if the equation bxab = b has solution x_0 in Rc and its every solution is similar to x_0 .

Proof. " \Rightarrow " Let $a^{\parallel(b,c)} = y$. Then we have

 $y = br_1y = yr_2c$, yab = b, cay = c, and yay = y, where $r_1, r_2 \in R$.

Moreover,

$$b(r_1yr_2c)ab = yr_2cab = yab = b.$$

Thus, $x_0 = r_1 y r_2 c$ is a solution of the equation bxab = b in Rc. Next we suppose that x = uc is a solution of the equation bxab = b in Rc. Then b(uc)ab = b. Since

 $r_1yr_2 = r_1(br_1y)r_2 = r_1(bucab)r_1yr_2 = r_1bucayr_2$

we have

$$r_1yr_2c = r_1bucayr_2c = r_1bucay = r_1buc,$$

$$b = b(r_1yr_2c)ab = b(r_1buc)ab = br_1b,$$

$$y = br_1y = br_1yr_2c = b(r_1yr_2c) = br_1buc = buc,$$

$$uc = ucay = ucabr_1y = ucabr_1yr_2c = uc(ab)(r_1yr_2c) = ucabx_0,$$

and

 $x_0 = r_1yr_2c = r_1yr_2cay = r_1yr_2cabr_1y = r_1yr_2ca(yab)r_1y$ = $r_1yr_2ca(buc)abr_1y = x_0abucay = x_0ab(uc).$

Thus, x = uc is similar to x_0 .

" \leftarrow " Assume that $x_0 = uc$ is a solution of the equation bxab = b in Rc. Then we have bucab = b. Let y = buc. Then b = yab and yay = yabuc = buc = y. Take

$$v = uc + (1 - cabu)c = uc + c - cabuc = uc + c - cay \in Rc.$$

Then

$$bvab = b(uc + c - cay)ab = bucab + bcab - bcayab = b + bcab - bcab = b.$$

Thus, x = v is also a solution of the equation bxab = b in Rc. From the assumption, we know that v is similar to $x_0 = uc$. Moreover,

$$v = vabuc = vay = (uc + c - cay)ay = ucay + cay - cayay$$
$$= ucay + cay - cay = ucay,$$

then *ucay* is also a solution of the equation bxab = b in *Rc*. From the definition of the similarity of solutions, we have

 $uc = x_0 = x_0abucay = ucabucay = ucayay = ucay = v = uc + c - cay.$

That is, c = cay, $y = yay = bucay \in bRy$, and

$$y = yay = yabuc \in yRc.$$

Hence, *y* is the (*b*, *c*)-inverse of *a*, i.e., $a^{\parallel(b,c)} = y$.

Let $a \in R$. It is well known that the regular inverse of a, if there is one, is not always unique. We denote a^- the set of all regular inverse of a. For convenience, a^- also indicates an arbitrary regular inverse of a when no confusion can arise.

Proposition 3.3. Let $a, b, c \in R$, $e, f \in E(R)$, bR = eR, and Rc = Rf. Then the following are equivalent:

(1) a is (b, c)-invertible;(2) The system of equations

$$bxcae = e$$

 $fabxc = f$

is solvable; (3) cae and fab are regular, $e = bb^-e(cae)^-(cae)$, and $f = fab(fab)^-fc^-c$.

Proof. "(1) \Rightarrow (2)" Let $a^{\parallel(b,c)} = y$, e = bd and f = tc, where $d, t \in R$. Then

$$yab = b$$
, $cay = c$, and $y = br_1y = yr_2c$, where $r_1, r_2 \in R$

Since b = eb and c = cf, one has that

$$y = br_1y = ebr_1y = ey$$
, $y = yr_2c = yr_2cf = yf$, $e = bd = yabd = yae$,

and

$$f = tc = tcay = fay.$$

Thus

 $e = yae = br_1yae = br_1yr_2cae = b(r_1yr_2)cae$,

and

$$f = fay = fabr_1y = fabr_1yr_2c = fab(r_1yr_2)c$$

Hence the system of equations (1) admits a solution $x = r_1 y r_2$.

"(2) \Rightarrow (3)" Let *x* = *u* be a solution of the system of equations (1). Then

(1)

bucae = e and fabuc = f.

Hence

Thus *cae* is regular. Then $(cae)^-$ exists. Similarly, we can prove that $(fab)^-$ exists. Denote

e = bd and f = tc, where $d, t \in R$.

Then b = eb = bdb, and c = cf = ctc. Thus both b^- and c^- exist. Moreover,

 $bb^{-}e(cae)^{-}cae = bb^{-}bd(cae)^{-}cae = bd(cae)^{-}cae = e(cae)^{-}cae$ = $bucae(cae)^{-}cae = bucae = e.$

Similarly, one can prove that $fab(fab)^{-}fc^{-}c = f$.

"(3) \Rightarrow (1)" We know that

 $b = eb = bb^{-}e(cae)^{-}caeb = b(b^{-}e(cae)^{-})cab \in bRcab$,

and

 $c = cf = cfab(fab)^{-}fc^{-}c = cab((fab)^{-}fc^{-})c \in cabRc \subseteq cabR.$

By Proposition 2.1, one obtains that *a* is (b, c)-invertible. \Box

4. Characterizations of Bott-Duffin (e, f)-inverses

As we know Bott-Duffin (e, f)-inverses are particular (b, c)-inverses. They, however, has its own research significance. Some results and approaches of (b, c)-inverses can be borrowed from to study Bott-Duffin (e, f)-inverses. In this section, we give some characterizations of Bott-Duffin (e, f)-inverses. Mainly, we use Bott-Duffin (e, f)-inverses to characterize some classes of rings. First, we have the following proposition similar to Proposition 3.3. It is the basis of some propositions in this section.

Proposition 4.1. Let $a \in R$ and $e, f \in E(R)$. Then the following are equivalent:

(1) a is Bott-Duffin (e, f)-invertible;(2) The system of equations

$$\begin{cases} exfae = e \\ faexf = f \end{cases}$$

is solvable;

(3) fae is regular, $e = e(fae)^{-} fae$, and $f = fae(fae)^{-} f$.

Proof. It follows from Proposition 3.3 by taking b = e and c = f. \Box

Recall that a ring *R* is said to be Abelian if $E(R) \subseteq C(R)$.

Lemma 4.2. A ring R is an Abelian ring if and only if (1 - e)Re = 0 for all $e \in E(R)$.

Proof. " \Rightarrow " Since $e \in E(R)$, one has that (1 - e)Re = (1 - e)eR = 0.

"⇐" Suppose that (1 - e)Re = 0 for any $e \in E(R)$. Since $1 - e \in E(R)$, we have that [1 - (1 - e)]R(1 - e) = 0, that is eR(1 - e) = 0. Thus for any $a \in R$, it follows that ea(1 - e) = 0 = (1 - e)ae. This gives ea = eae = ae. Hence *R* is an Abelian ring. \Box

Proposition 4.3. *The following conditions are equivalent:*

(1) R is an Abelian ring;

(2) for any $a \in R$ and any $e, f \in E(R)$, if a is Bott-Duffin (e, f)-invertible, then e = f.

4839

(2)

Proof. "(1) \Rightarrow (2)" Let *R* be an Abelian ring, and *a* be Bott-Duffin (*e*, *f*)-invertible. By Proposition 4.1, we have that

$$e = e(fae)^{-} fae$$
, and $f = fae(fae)^{-} fae$

Since *R* is an Abelian ring, one has that $f, e \in C(R)$. Hence

$$e = e(fae)^{-}faef = ef$$
, and $f = efae(fae)^{-}f = ef$.

Thus e = f.

"(2) \Rightarrow (1)" Suppose that *R* is not Abelian. Then $(1 - e)Re \neq 0$ for some $e \in E(R)$. By Lemma 4.2, there exists some $a \in R$ such that $(1 - e)ae \neq 0$. Write g = e + (1 - e)ae. Then

$$eg = e, ge = e + (1 - e)ae = g, and g^2 = gg = (ge)g = g(eg) = ge = g.$$

Hence $g \in E(R)$. It can easily be verified that $e^{BD(g,e)} = g$. Hence g = e by hypothesis, it follows that (1 - e)ae = 0, a contradiction. Then (1 - e)Re = 0, and R is an Abelian ring. \Box

Recall that a ring *R* is directly finite, if for any $a, b \in R$, ab = 1 implies ba = 1. Clearly, Abelian rings are directly finite.

Proposition 4.4. *The following conditions are equivalent:*

(1) *R* is a directly finite ring;

(2) for any right invertible element $a \in R$ and any $e \in E(R)$, if a is Bott-Duffin (e, 1)-invertible, then e = 1.

Proof. "(1) \Rightarrow (2)" Let *a* be a right invertible element in *R*, and $e \in E(R)$, such that *a* is Bott-Duffin (*e*, 1)-invertible. By Proposition 4.1, we have that

$$1 = ae(ae)^{-}$$
, and $e = e(ae)^{-}ae$

Since *R* is a directly finite ring and *a* a right invertible element, one has that *a* is invertible. Hence, there exists some $b \in R$ such that ba = 1 = ab. Thus

$$e = 1e = bae$$
, and $b = b1 = bae(ae)^{-} = e(ae)^{-}$.

Therefore

 $(1-e)b = (1-e)e(ae)^{-} = 0,$

so

$$(1-e) = (1-e)1 = (1-e)ba = 0.$$

Then e = 1.

"(2) \Rightarrow (1)" Let $a, b \in R$ such that ab = 1. Denote e = ba. Then

ae = a(ba) = (ab)a = 1a = a, eb = (ba)b = b(ab) = b1 = b,

and

$$e^2 = ee = eba = ba = e.$$

It is obvious that $a^{BD(e,1)} = b$. Then by hypothesis, we obtain that e = 1, namely ba = 1. Hence *R* is a directly finite ring.

Recall that an idempotent *e* of a ring *R* is called left minimal idempotent, if *Re* is a minimal left ideal of *R*. Denote by $ME_l(R)$ the set of all left minimal idempotent elements of *R*.

Let $e \in E(R)$. If (1 - e)Re = 0, we call e a left semi-central idempotent element of R.

Recall that a ring *R* is said to be left min-abel [12] if either $ME_l(R) = \emptyset$, or every element of $ME_l(R)$ is a left semi-central idempotent element.

Proposition 4.5. *The following conditions are equivalent:*

(1)*R* is a left min-abel ring; (2) for any $a \in R$, $e \in ME_l(R)$ and $g \in E(R)$, if a is Bott-Duffin (g, e)-invertible, then e = ge.

Proof. "(1) \Rightarrow (2)" Suppose *a* is Bott-Duffin (*g*, *e*)-invertible. Then by Proposition 4.1, we have that

 $g = g(eag)^{-}eag$, and $e = eag(eag)^{-}g$.

Since *R* is a left min-abel ring, and *e* is a left semi-central element, one has that

$$g(eag)^{-}e = e(g(eag)^{-})e.$$

Note that $g = eg(eag)^-eag = eg$. Then $l(e) \subseteq l(g)$. Define

$$f: Re \rightarrow Reg = Rg, xe \mapsto xeg.$$

It is easy to verify that f is a left R-module map. Since rg = reg for any $rg \in Rg$, one has that f(re) = reg = rg. Thus f is surjective. Hence $Rg \cong Re/Kerf$, so Kerf is a submodule of left R-module Re, i.e., Kerf is a left ideal of R contained in the minimal left ideal Re. If $Kerf \neq 0$, we have Kerf = Re. This gives $Rg \cong Re/Kerf = 0$, so g = 0 and therefore e = 0, which contradicts that Re is a minimal left ideal of R. Then Kerf = 0, and $Rg \cong Re$. Hence Rg is also a minimal left ideal of R, so $g \in ME_l(R)$. Since R is a left min-abel ring, one has that g is a left semi-central element. Then

$$eag(eag)^{-}g = geag(eag)^{-}g = ge$$
, and $e = eag(eag)^{-}g = geag(eag)^{-}g = ge$.

"(2) \Rightarrow (1)" If $ME_l(R) = \emptyset$, we know that *R* is a left min-abel ring. We suppose $ME_l(R) \neq \emptyset$ below. Assume that there exist some $e \in ME_l(R)$ and some $a \in R$ such that $(1 - e)ae \neq 0$. Then $0 \neq R(1 - e)ae \subseteq Re$. Since *Re* is a minimal left ideal, one has that R(1 - e)ae = Re. Write h = (1 - e)ae. One obtains that Rh = Re. Denote e = ch, where $c \in R$. We get that

$$h = (1 - e)ae = (1 - e)aee = he = hch.$$

Put g = hc. Then h = gh, and $g^2 = hchc = hc = g$, so $g \in E(R)$. It is easy to check that $c^{BD(g,e)} = h$. By hypothesis, one has that

$$e = ge = hce$$
, and $e = ee = ehce = e(1 - e)aece = 0$,

a contradiction. Thus (1 - e)Re = 0, so *R* is a left min-abel ring. \Box

Recall that a ring *R* is a strongly left min-abel ring [13] if either $ME_l(R) = \emptyset$, or every element of $ME_l(R)$ is a right semi-central element.

Proposition 4.6. *The following conditions are equivalent:*

(1) *R* is a strongly left min-abel ring; (2) for any $a \in R$, $e \in ME_l(R)$ and $g \in E(R)$, if a is Bott-Duffin (e, g)-invertible, then ge = g.

Proof. "(1) \Rightarrow (2)" Let *a* be Bott-Duffin (*e*, *g*)-invertible. Then

$$e = e(gae)^{-}gae$$
, and $g = gae(gae)^{-}g$.

Since *R* is a strongly left min-abel ring, one gets that *e* is a right semi-central element. Thus g = ge.

"(2) \Rightarrow (1)" Suppose there exist some $e \in ME_l(R)$ and $a \in R$ such that $ea(1-e) \neq 0$. Denote g = e + ea(1-e). Then

$$eg = g$$
, $ge = e$, and $g^2 = g$.

It can easily be verified that $e^{BD(e,g)} = g$. By hypothesis, we obtain that g = ge = e, so ea(1 - e) = 0, a contradiction. Thus, we have eR(1 - e) = 0, and therefore, *R* is a strongly left min-abel ring.

4841

References

- [1] E. Boasso, G. Kantun-Montiel, The (*b*, *c*)-inverse in rings and in the Banach context, Mediterranean Journal of Mathematics 14(3) (2017) 112.
- [2] M. P. Drazin, A class of outer generalized inverses, Linear Algebra and its Applications 436(7) (2012) 1909-1923.
- [3] M. P. Drazin, Commuting properties of generalized inverses, Linear and Multilinear Algebra 61(12) (2013) 1675-1681.
- [4] M. P. Drazin, Generalized inverses: Uniqueness proofs and three new classes, Linear Algebra and its Applications 449 (2014) 402-416.
- [5] Y. Y. Ke, J. L. Chen, The Bott-Duffin (e, f)-inverses and their applications, Linear Algebra and its Applications 489 (2016) 61-74.
- [6] Y. Y. Ke, D. S. Cvetkovićllić, J. L. Chen, J. Višnjić, New results on (b, c)-inverses, Linear and Multilinear Algebra 66(3) (2018) 447-458.
- [7] Y. Y. Ke, Y. F. Gao, J. L. Chen, Representations of the (b, c)-inverses in rings with involution, Filomat 31(9) (2017) 2867-2875.
- [8] Y. Y. Ke, Z. Wang, J. L. Chen, The (b, c)-inverse for products and lower triangular matrices, Journal of Algebra and its Applications 16(12) (2017) 1750222, 17 pp.
- [9] D. S. Rakić, N. Č. Dinčić, D. S. Djordjević, Group, Moore-Penrose, core and dual core inverse in rings with involution, Linear Algebra and its Applications 463 (2014) 115-133.
- [10] N. Castro-González, J. L. Chen, L. Wang, Characterizations of outer generalized inverses, Canadian Mathematical Bulletin 60(14) (2017) 861-871.
- [11] L. Wang, J. L. Chen, N. Castro-González, Characterizations of the (b, c)-inverse in a ring, arXiv: 1507.01446 (2015).
- [12] J. C. Wei, Generalized weakly symmetric rings, Journal of Pure and Applied Algebra 218 (2014) 1594-1603.
- [13] J. C. Wei, Certain rings whose simple singular modules are nil-injective, Turkish Journal of Mathematics 32 (2008) 393-406.