Some new characterizations of (b, c)-inverses and Bott-Duffin (e, f)-inverses

Hua Yao ${ }^{\text {a,c }, ~ R u j u ~ Z h a o ~}{ }^{\text {b,c }}$, Long Wang ${ }^{\text {c }}$, Junchao Wei ${ }^{\text {c }}$
${ }^{a}$ School of Mathematics and Statistics, Huanghuai University, Zhumadian, Henan 463000, P. R. China
${ }^{b}$ College of Science, Beibu Gulf University, Qinzhou, Guangxi 535011, P. R. China
${ }^{\text {c }}$ School of Mathematical Sciences, Yangzhou University, Yangzhou, Jiangsu 225002, P. R. China

Abstract

The (b, c)-inverse and the Bott-Duffin (e, f)-inverse are two classes of outer inverses, a few characterizations of which have been presented by certain researchers. In this paper, we give some new characterizations of (b, c)-inverses and Bott-Duffin (e, f)-inverses. First, we present a number of ring theoretic characterizations of (b, c)-inverses. Then we characterize (b, c)-inverses by equations. Finally, we present some characterizations of Bott-Duffin (e, f)-inverses. More specifically, we use Bott-Duffin (e, f)inverses to characterize some classes of rings, such as directly finite rings, Abelian rings and left min-abel rings.

1. Introduction

Let R be an associative ring with unity 1 and $b, c \in R$. An element $a \in R$ is said to be (b, c)-invertible if there exists $y \in R$ such that $y \in b R y \cap y R c, y a b=b$, and cay $=c$. If such a y exists, it is unique and is called the (b, c)-inverse of a, denoted by $a^{\| l(b, c)}$.

As a new class of outer inverse, the concept of the (b, c)-inverse was for the first time introduced by Drazin in [2, Definition 1.3] in the setting of rings, which generalized the group inverse, the Drazin inverse, the Moore-Penrose inverse, the Chipman's weighted inverse and the Bott-Duffin inverse. Afterwards, certain researchers further studied and generalized it. Rakić et al. [9] connected the core and dual core inverses with the (b, c)-inverse. Wang et al. [11] gave some characterizations of the (b, c)-inverse, in terms of the direct sum decomposition, the annihilator and the invertible elements. Ke et al. [7] investigated the existence and the expression of the (b, c)-inverse in a ring with an involution. Boasso and KantúnMontiel [1] presented some other conditions for the existence of the (b, c)-inverse in rings, proving that the conditions which ensure the existence of the (b, c)-inverse, of the annihilator (b, c)-inverse and of the hybrid (b, c)-inverse are equivalent. For more results on (b, c)-inverses, we refer to [3, 4, 6, 8, 10].

In [2], Drazin introduced another outer generalized inverse which intermediates between the BottDuffin inverse and the (b, c)-inverse. This class of generalized inverses is called Bott-Duffin (e, f)-inverses, where $e, f \in R$ are idempotents. Recall that the Bott-Duffin (e, f)-inverse of $a \in R$ is the element $y \in R$ which

[^0]satisfies $y=e y=y f$, yae $=e$, and $f a y=f$. If the Bott-Duffin (e, f)-inverse of a exists, it is unique and denoted by $a^{B D(e, f)}$. The Bott-Duffin (e, f)-inverse and the (b, c)-inverse are formally very similar. It is not difficult to find that a (b, c)-inverse y of a is a Bott-Duffin (e, f)-inverse of a if and only if b and c are both idempotents. Conversely, if y is the (b, c)-inverse of a, then y is also the Bott-Duffin (ya,ay)-inverse of a [2, Proposition 3.3]. More properties and applications of the Bott-Duffin (e, f)-inverse are studied by Ke and Chen in [5].

In this paper, we present some new characterizations of (b, c)-inverses and Bott-Duffin (e, f)-inverses. First, we give certain ring theoretic characterizations of the (b, c)-inverse of an element $a \in R$. The following conditions are proved to be equivalent: (a) a is (b, c)-invertible; (b) $c \in c a b R c$ and $R=b R \oplus r(a b)$; (c) $r(a b)=r(b)$, $l(c a b)=l(c)$, and $a b$ is right c-regular. Next, we characterize (b, c)-inverses by equations. It is showed that a is (b, c)-invertible if and only if the equation $b x a b=b$ has solution x_{0} in $R c$ and its every solution is similar to x_{0}. Finally, we give some characterizations of Bott-Duffin (e, f)-inverses. To be specific, we use Bott-Duffin (e, f)-inverses to characterize directly finite rings, Abelian rings and left min-abel rings.

2. Ring theoretic characterizations of (b, c)-inverses

In this section, we will characterize (b, c)-inverses in ring theory. First, we have the following proposition.
Proposition 2.1. Let $a, b, c \in R$. Then a is (b, c)-invertible if and only if $b \in b R c a b$ and $c \in c a b R$.
Proof. " \Leftarrow " Let $b=b u c a b$ and $c=c a b v$, where $u, v \in R$. Take $y=b u c$ and $x=b v$. Then $b=y a b$ and $c=c a x$. Moreover, yay $=y a b u c=b u c=y$. By

$$
y=b u c=b u c a b v=y a b v=y a x, \text { and } x=b v=b u c a b v=y a b v=y a x,
$$

we obtain $x=y$ and $c=c a x=c a y$. So

$$
y=y a b u c \in y R c \text { and } y=b u c a y \in b R y .
$$

Then $a^{\|(b, c)}=y=b u c=x=b v$.
" \Rightarrow " Let $y=a^{\|(l b, c)}$. Then $y \in b R y \cap y R c, y a b=b$, and cay $=c$. Write $y=b r_{1} y=y r_{2} c$, where $r_{1}, r_{2} \in R$. Then we have

$$
b=y a b=b r_{1} y a b=b r_{1} y r_{2} c a b=b\left(r_{1} y r_{2}\right) c a b \in b R c a b,
$$

and

$$
c=c a y=c a\left(b r_{1} y\right)=(c a b) r_{1} y \in c a b R .
$$

Note that $c=c a y=c a\left(b r_{1} y\right)=c a b r_{1}\left(y r_{2} c\right) \in c a b R c$. Hence, we get the following corollary from Proposition 2.1.

Corollary 2.2. Let $a, b, c \in R$. Then a is (b, c)-invertible if and only if $b \in b R c a b$ and $c \in c a b R c$.
Similarly, we have the following proposition.
Proposition 2.3. Suppose that $a, b, c \in R$. Then the following conditions are equivalent:
(1) a is (b, c-invertible;
(2) $b \in R c a b$ and $c \in c a b R c$;
(3) $b \in b R c a b$ and $c \in(c a b R)^{2}$.

Proof. (1) and (2) are equivalent by Proposition 2.1.
" $(3) \Rightarrow(1)$ " Since $c \in(c a b R)^{2}=c a b R c a b R \subseteq c a b R$, it is obvious from Proposition 2.1.
" $(1) \Rightarrow(3)$ " It follows from Corollary 2.2 that $c \in c a b R c$. Let $c=c a b v c$, where $v \in R$. Then we have $c=c a b v c a b v \in c a b R c a b R=(c a b R)^{2}$.

For any $x \in R$, define $l(x):=\{y \in R \mid y x=0\}$. Then we can characterize (b, c)-inverses using direct sum decomposition of rings.

Proposition 2.4. Let $a, b, c \in R$. Then a is (b, c)-invertible if and only if $b \in b R c a b$ and $R=R c \oplus l(a b)$.
Proof. " \Rightarrow " From Proposition 2.1, we know that $b \in b R c a b$. Let $y=a^{\|(b, c)}$. Then we have

$$
y \in b R y \cap y R c, y a b=b, c a y=c, \text { and } y a y=y .
$$

Notice that $y=b r_{1} y=y r_{2} c$, where $r_{1}, r_{2} \in R$. For every $x \in R c \cap l(a b)$, one has that $x a b=0$. Let $x=u c$, where $u \in R$. Then

$$
x=u(c a y)=u c a\left(b r_{1} y\right)=(u c) a b r_{1} y=x a b r_{1} y=0 r_{1} y=0
$$

Hence, $R c \cap l(a b)=\{0\}$. Since

$$
b=y a b=\left(b r_{1} y\right) a b=b r_{1}\left(y r_{2} c\right) a b,
$$

it follows that $a b=a b r_{1} y r_{2} c a b$. Moreover, $\left(1-a b r_{1} y r_{2} c\right) a b=0$, i.e., $1-a b r_{1} y r_{2} c \in l(a b)$. Next, let

$$
1-a b r_{1} y r_{2} c=t \in l(a b)
$$

Then

$$
1=a b r_{1} y r_{2} c+t \in R c+l(a b)
$$

Therefore, $R=R c \oplus l(a b)$.
" \Leftarrow " Since $b \in b R c a b$, there exists some $v \in R$ such that $b=b v c a b$. Write $y=b v c$. Then $b=y a b$ and yay $=y$. Thus, $y \in b R y \cap y R c$. Next we let $1=w c+f$, where $w \in R, f \in l(a b)$, for $R=R c \oplus l(a b)$. Then we get

$$
\begin{gathered}
a b=1 a b=w c a b+f a b=w c a b, \\
b=y a b=y w c a b,
\end{gathered}
$$

and

$$
c a b=c a(y w c a b)=c a(y a y) w c a b=c a y a(y w c a b)=c a y a b .
$$

Moreover, $(c-c a y) a b=0$, i.e., $c-c a y \in l(a b)$. Since $c-c a y \in R c$, it follows that $c-c a y \in R c \cap l(a b)=\{0\}$. Therefore, $c=$ cay. Thus, a is (b, c)-invertible.

For any $x \in R$, define $r(x):=\{y \in R \mid x y=0\}$, a right ideal of R. Using the same argument as in the proof of Proposition 2.4, we get the following proposition.

Proposition 2.5. Let $a, b, c \in R$. Then a is (b, c)-invertible if and only if $c \in c a b R c$ and $R=b R \oplus r(c a)$.
Definition 2.6. Let $d, c \in R$. Element d is said to be right (left) c-regular, if there exists an element $x \in R$, such that $d=d x c d(d=d c x d)$.

Proposition 2.7. Let $a, b, c \in R$. Then a is (b, c)-invertible if and only if $r(a b)=r(b), l(c a b)=l(c)$, and ab is right c-regular.

Proof. " \Leftarrow " Since $a b$ is a right c-regular, there exists an element $x \in R$, such that $a b=a b x c a b$. Thus,

$$
a b(1-x c a b)=0,1-x c a b \in r(a b)=r(b)
$$

and

$$
b(1-x c a b)=0, \text { and } b=b x c a b \in b R c a b
$$

Notice that $c a b=c a b x c a b$. We obtain that

$$
(1-c a b x) c a b=0,1-c a b x \in l(c a b)=l(c), \text { and }(1-c a b x) c=0 .
$$

Therefore, $c=c a b x c \in c a b R$. From Proposition 2.1, we know that a is (b, c)-invertible.
$" \Rightarrow$ " Let $y=a^{\|(b, c)}$. Then

$$
y a b=b, c a y=c, \text { yay }=y, y=b r_{1} y, \text { and } y=y r_{2} c, \text { where } r_{1}, r_{2} \in R .
$$

Obviously, $r(b) \subseteq r(a b)$. Now, for any $x \in r(a b)$, one gets that

$$
a b x=0, b x=(y a b) x=y(a b x)=0, \text { and } x \in r(b) .
$$

Therefore, $r(a b) \subseteq r(b)$. It is straightforward that $l(c) \subseteq l(c a b)$. Conversely, let $x \in l(c a b)$. Then

$$
x c a b=0, x c=x c a y=x c a\left(b r_{1} y\right)=x c a b\left(r_{1} y\right)=0, x \in l(c), \text { and } l(c a b) \subseteq l(c) .
$$

Therefore, $l(c a b)=l(c)$. Since

$$
a b=a(y a b)=a\left(b r_{1} y\right) a b=a b r_{1}\left(y r_{2} c\right) a b=a b\left(r_{1} y r_{2}\right) c a b
$$

we have that $a b$ is a right c-regular.
Similarly, we get the following proposition.
Proposition 2.8. Let $a, b, c \in R$. Then a is (b, c)-invertible if and only if

$$
r(c a b)=r(b), l(c a)=l(c),
$$

and ca is left b-regular.
Corollary 2.9. Let $a, b, c \in R$. Then the following conditions are equivalent:
(1) a is (b, c)-invertible;
(2) $r(b)=r(c a b), l(c)=l(c a b)$, and $a b$ is right $c-r e g u l a r$;
(3) $r(b)=r(c a b), l(c)=l(c a b)$, and ca is left $b-r e g u l a r$.

Recall that an element $a \in R$ is regular if there exists $x \in R$ satisfying axa=a. In this case, x is a regular (or inner) inverse of a.

Proposition 2.10. Let $a, b, c \in R$. Then the following conditions are equivalent:
(1) a is (b, c-invertible;
(2) $R b=R c a b, c R=c a b R$, and $a b$ is right c-regular;
(3) $R b=R c a b, c R=c a b R$, and $c a b$ is regular;
(4) $R b=R c a b, c R=c a b R$, and $c a$ is left $b-r e g u l a r$.

Proof. " $(1) \Rightarrow(2)$ " It follows from Propositions 2.1 and 2.7.
" $(2) \Rightarrow(3)$ " and " $(4) \Rightarrow(3)$ " are obvious.
" $(1) \Rightarrow(4)$ " It follows from Propositions 2.1 and 2.8.
$"(3) \Rightarrow(1)$ " Let $c a b=c a b w c a b, b=v c a b$, and $c=c a b s$. Then

$$
b=v c a b=v c a b w c a b=b w c a b \in b R c a b,
$$

and

$$
c=c a b s=c a b w c a b s=c a b w c \in c a b R c .
$$

By Proposition 2.1, the assertion holds.
Corollary 2.11. Let $a, b, c \in R$. Then the following conditions are equivalent:
(1) a is (b, c)-invertible;
(2) there exists some $x \in R$ such that $x a x=x, x R=b R$ and $R x=R c$.

Proof. " $(1) \Rightarrow(2)$ " In view of Proposition 2.10, we know that $b=v c a b, c=c a b s$, and $c a b=c a b w c a b$. Then

$$
b=v c a b=v c a b w c a b=b w c a b,
$$

and

$$
c=c a b s=c a b w c a b s=c a b w c .
$$

Take $x=b w c$. Then

$$
b=x a b, c=c a x, \text { and } x a x=x a b w c=b w c=x .
$$

Thus

$$
x R=b R \text { and } R x=R c .
$$

" $(2) \Rightarrow(1)$ " Since $1-x a \in l(x)=l(b)$ and $1-a x \in r(x)=r(c)$, one has that $b=x a b$ and $c=c a x$. Denote $x=b s=t c$. Then $x=x a x=b s a x \in b R x$, and

$$
x=x a x=x a t c \in x R c .
$$

Thus $a^{\|(b, c)}=x$.

3. Characterizing (b, c)-inverses by equations

In this section, we characterize (b, c)-inverses by equations. Let $a, b, c \in R$. If there exists an element $u \in R c$, such that $b u a b=b$, then $x=u$ is said to be a solution of the equation $b x a b=b$ in $R c$.

Definition 3.1. Suppose that x_{1} and x_{2} are two solutions of the equation bxab $=b$. If $x_{2}=x_{2} a b x_{1}$ and $x_{1}=x_{1} a b x_{2}$, then x_{2} is said to be similar to x_{1}.

Proposition 3.2. Let $a, b, c \in R$. Then a is (b, c)-invertible if and only if the equation $b x a b=b$ has solution x_{0} in $R c$ and its every solution is similar to x_{0}.

Proof. " \Rightarrow " Let $a^{\|(b, c)}=y$. Then we have

$$
y=b r_{1} y=y r_{2} c, y a b=b, c a y=c, \text { and } y a y=y, \text { where } r_{1}, r_{2} \in R .
$$

Moreover,

$$
b\left(r_{1} y r_{2} c\right) a b=y r_{2} c a b=y a b=b .
$$

Thus, $x_{0}=r_{1} y r_{2} c$ is a solution of the equation $b x a b=b$ in $R c$. Next we suppose that $x=u c$ is a solution of the equation $b x a b=b$ in Rc. Then $b(u c) a b=b$. Since

$$
r_{1} y r_{2}=r_{1}\left(b r_{1} y\right) r_{2}=r_{1}(b u c a b) r_{1} y r_{2}=r_{1} b u c a y r_{2}
$$

we have

$$
\begin{gathered}
r_{1} y r_{2} c=r_{1} b u c a y r_{2} c=r_{1} b u c a y=r_{1} b u c, \\
b=b\left(r_{1} y r_{2} c\right) a b=b\left(r_{1} b u c\right) a b=b r_{1} b, \\
y=b r_{1} y=b r_{1} y r_{2} c=b\left(r_{1} y r_{2} c\right)=b r_{1} b u c=b u c, \\
u c=u c a y=u c a b r_{1} y=u c a b r_{1} y r_{2} c=u c(a b)\left(r_{1} y r_{2} c\right)=u c a b x_{0},
\end{gathered}
$$

and

$$
\begin{aligned}
x_{0} & =r_{1} y r_{2} c=r_{1} y r_{2} c a y=r_{1} y r_{2} c a b r_{1} y=r_{1} y r_{2} c a(y a b) r_{1} y \\
& =r_{1} y r_{2} c a(b u c) a b r_{1} y=x_{0} a b u c a y=x_{0} a b(u c) .
\end{aligned}
$$

Thus, $x=u c$ is similar to x_{0}.
" \Leftarrow " Assume that $x_{0}=u c$ is a solution of the equation $b x a b=b$ in $R c$. Then we have $b u c a b=b$. Let $y=b u c$. Then $b=y a b$ and yay $=y a b u c=b u c=y$. Take

$$
v=u c+(1-c a b u) c=u c+c-c a b u c=u c+c-c a y \in R c .
$$

Then

$$
b v a b=b(u c+c-c a y) a b=b u c a b+b c a b-b c a y a b=b+b c a b-b c a b=b .
$$

Thus, $x=v$ is also a solution of the equation $b x a b=b$ in $R c$. From the assumption, we know that v is similar to $x_{0}=u c$. Moreover,

$$
\begin{aligned}
v & =v a b u c=v a y=(u c+c-c a y) a y=u c a y+c a y-c a y a y \\
& =u c a y+c a y-c a y=u c a y,
\end{aligned}
$$

then ucay is also a solution of the equation $b x a b=b$ in $R c$. From the definition of the similarity of solutions, we have

$$
u c=x_{0}=x_{0} a b u c a y=\text { ucabucay }=\text { ucayay }=u c a y=v=u c+c-c a y .
$$

That is, $c=c a y, y=y a y=b u c a y \in b R y$, and

$$
y=y a y=y a b u c \in y R c .
$$

Hence, y is the (b, c)-inverse of a, i.e., $a^{\|(b, c)}=y$.
Let $a \in R$. It is well known that the regular inverse of a, if there is one, is not always unique. We denote a^{-}the set of all regular inverse of a. For convenience, a^{-}also indicates an arbitrary regular inverse of a when no confusion can arise.

Proposition 3.3. Let $a, b, c \in R, e, f \in E(R), b R=e R$, and $R c=R f$. Then the following are equivalent:
(1) a is (b, c-invertible;
(2) The system of equations

$$
\left\{\begin{array}{l}
b x c a e=e \tag{1}\\
f a b x c=f
\end{array}\right.
$$

is solvable;
(3) cae and fab are regular, $e=b b^{-} e(c a e)^{-}($cae $)$, and $f=f a b(f a b)^{-} f c^{-} c$.

Proof. " $(1) \Rightarrow(2)$ " Let $a^{\|(b, c)}=y, e=b d$ and $f=t c$, where $d, t \in R$. Then

$$
y a b=b, c a y=c, \text { and } y=b r_{1} y=y r_{2} c, \text { where } r_{1}, r_{2} \in R .
$$

Since $b=e b$ and $c=c f$, one has that

$$
y=b r_{1} y=e b r_{1} y=e y, y=y r_{2} c=y r_{2} c f=y f, e=b d=y a b d=y a e,
$$

and

$$
f=t c=t c a y=\text { fay } .
$$

Thus

$$
e=y a e=b r_{1} y a e=b r_{1} y r_{2} c a e=b\left(r_{1} y r_{2}\right) c a e,
$$

and

$$
f=f a y=f a b r_{1} y=f a b r_{1} y r_{2} c=f a b\left(r_{1} y r_{2}\right) c .
$$

Hence the system of equations (1) admits a solution $x=r_{1} y r_{2}$.
" $(2) \Rightarrow(3)$ " Let $x=u$ be a solution of the system of equations (1). Then

$$
\text { bucae }=e \text { and } f a b u c=f .
$$

Hence

$$
c a e=c a e e=c a e(b u c a e)=\text { caebucae }
$$

Thus cae is regular. Then (cae $)^{-}$exists. Similarly, we can prove that (fab) exists. Denote

$$
e=b d \text { and } f=t c, \text { where } d, t \in R .
$$

Then $b=e b=b d b$, and $c=c f=c t c$. Thus both b^{-}and c^{-}exist. Moreover,

$$
\begin{aligned}
b b^{-} e(c a e)^{-} c a e & =b b^{-} b d(c a e)^{-} c a e=b d(c a e)^{-} c a e=e(c a e)^{-} c a e \\
& =\text { bucae }(c a e)^{-} c a e=b u c a e=e .
\end{aligned}
$$

Similarly, one can prove that $f a b(f a b)^{-} f c^{-} c=f$.
" $(3) \Rightarrow(1)$ " We know that

$$
b=e b=b b^{-} e(c a e)^{-} c a e b=b\left(b^{-} e(c a e)^{-}\right) c a b \in b R c a b,
$$

and

$$
c=c f=c f a b(f a b)^{-} f c^{-} c=c a b\left((f a b)^{-} f c^{-}\right) c \in c a b R c \subseteq c a b R .
$$

By Proposition 2.1, one obtains that a is (b, c)-invertible.

4. Characterizations of Bott-Duffin (e, f)-inverses

As we know Bott-Duffin (e, f)-inverses are particular (b, c)-inverses. They, however, has its own research significance. Some results and approaches of (b, c)-inverses can be borrowed from to study Bott-Duffin (e, f)-inverses. In this section, we give some characterizations of Bott-Duffin (e, f)-inverses. Mainly, we use Bott-Duffin (e, f)-inverses to characterize some classes of rings. First, we have the following proposition similar to Proposition 3.3. It is the basis of some propositions in this section.
Proposition 4.1. Let $a \in R$ and $e, f \in E(R)$. Then the following are equivalent:
(1) a is Bott-Duffin (e, f)-invertible;
(2) The system of equations

$$
\left\{\begin{array}{l}
\text { exfae }=e \tag{2}\\
\text { faexf }=f
\end{array}\right.
$$

is solvable;
(3) fae is regular, $e=e(f a e)^{-} f a e$, and $f=f a e(f a e)^{-} f$.

Proof. It follows from Proposition 3.3 by taking $b=e$ and $c=f$.
Recall that a ring R is said to be Abelian if $E(R) \subseteq C(R)$.
Lemma 4.2. A ring R is an Abelian ring if and only if $(1-e) R e=0$ for all $e \in E(R)$.
Proof. " \Rightarrow " Since $e \in E(R)$, one has that $(1-e) R e=(1-e) e R=0$.
$" \Leftarrow "$ Suppose that $(1-e) R e=0$ for any $e \in E(R)$. Since $1-e \in E(R)$, we have that $[1-(1-e)] R(1-e)=0$,
that is $e R(1-e)=0$. Thus for any $a \in R$, it follows that $e a(1-e)=0=(1-e) a e$. This gives ea $=e a e=a e$. Hence R is an Abelian ring.

Proposition 4.3. The following conditions are equivalent:
(1) R is an Abelian ring;
(2) for any $a \in R$ and any $e, f \in E(R)$, if a is Bott-Duffin (e, f)-invertible, then $e=f$.

Proof. " $(1) \Rightarrow(2)$ " Let R be an Abelian ring, and a be Bott-Duffin ($e, f)$-invertible. By Proposition 4.1, we have that

$$
e=e(f a e)^{-} f a e, \text { and } f=f a e(f a e)^{-} f
$$

Since R is an Abelian ring, one has that $f, e \in C(R)$. Hence

$$
e=e(f a e)^{-} f a e f=e f, \text { and } f=e f a e(f a e)^{-} f=e f
$$

Thus $e=f$.
" $(2) \Rightarrow(1)$ " Suppose that R is not Abelian. Then $(1-e) R e \neq 0$ for some $e \in E(R)$. By Lemma 4.2, there exists some $a \in R$ such that $(1-e) a e \neq 0$. Write $g=e+(1-e) a e$. Then

$$
e g=e, g e=e+(1-e) a e=g, \text { and } g^{2}=g g=(g e) g=g(e g)=g e=g .
$$

Hence $g \in E(R)$. It can easily be verified that $e^{B D(g, e)}=g$. Hence $g=e$ by hypothesis, it follows that $(1-e) a e=0$, a contradiction. Then $(1-e) R e=0$, and R is an Abelian ring.

Recall that a ring R is directly finite, if for any $a, b \in R, a b=1$ implies $b a=1$. Clearly, Abelian rings are directly finite.

Proposition 4.4. The following conditions are equivalent:
(1) R is a directly finite ring;
(2) for any right invertible element $a \in R$ and any $e \in E(R)$, if a is Bott-Duffin $(e, 1)$-invertible, then $e=1$.

Proof. " $(1) \Rightarrow(2)$ " Let a be a right invertible element in R, and $e \in E(R)$, such that a is Bott-Duffin ($e, 1)$ invertible. By Proposition 4.1, we have that

$$
1=a e(a e)^{-}, \text {and } e=e(a e)^{-} a e
$$

Since R is a directly finite ring and a a right invertible element, one has that a is invertible. Hence, there exists some $b \in R$ such that $b a=1=a b$. Thus

$$
e=1 e=b a e, \text { and } b=b 1=b a e(a e)^{-}=e(a e)^{-}
$$

Therefore

$$
(1-e) b=(1-e) e(a e)^{-}=0
$$

so

$$
(1-e)=(1-e) 1=(1-e) b a=0
$$

Then $e=1$.
" $(2) \Rightarrow(1)$ " Let $a, b \in R$ such that $a b=1$. Denote $e=b a$. Then

$$
a e=a(b a)=(a b) a=1 a=a, e b=(b a) b=b(a b)=b 1=b,
$$

and

$$
e^{2}=e e=e b a=b a=e
$$

It is obvious that $a^{B D(e, 1)}=b$. Then by hypothesis, we obtain that $e=1$, namely $b a=1$. Hence R is a directly finite ring.

Recall that an idempotent e of a ring R is called left minimal idempotent, if $R e$ is a minimal left ideal of R. Denote by $M E_{l}(R)$ the set of all left minimal idempotent elements of R.

Let $e \in E(R)$. If $(1-e) R e=0$, we call e a left semi-central idempotent element of R.
Recall that a ring R is said to be left min-abel [12] if either $M E_{l}(R)=\emptyset$, or every element of $M E_{l}(R)$ is a left semi-central idempotent element.

Proposition 4.5. The following conditions are equivalent:
(1) R is a left min-abel ring;
(2) for any $a \in R, e \in M E_{l}(R)$ and $g \in E(R)$, if a is Bott-Duffin (g, e)-invertible, then $e=g e$.

Proof. " $(1) \Rightarrow(2)$ " Suppose a is Bott-Duffin (g, e)-invertible. Then by Proposition 4.1, we have that

$$
g=g(e a g)^{-} e a g, \text { and } e=e a g(e a g)^{-} g .
$$

Since R is a left min-abel ring, and e is a left semi-central element, one has that

$$
g(e a g)^{-} e=e\left(g(e a g)^{-}\right) e
$$

Note that $g=e g(e a g)^{-} e a g=e g$. Then $l(e) \subseteq l(g)$. Define

$$
f: R e \rightarrow R e g=R g, x e \mapsto x e g .
$$

It is easy to verify that f is a left R-module map. Since $r g=r e g$ for any $r g \in R g$, one has that $f(r e)=r e g=r g$. Thus f is surjective. Hence $R g \cong \operatorname{Re} / \operatorname{Ker} f$, so Kerf is a submodule of left $R-$ module $R e$, i.e., Kerf is a left ideal of R contained in the minimal left ideal Re. If $\operatorname{Kerf} \neq 0$, we have $\operatorname{Kerf}=\operatorname{Re}$. This gives $\operatorname{Rg} \cong \operatorname{Re} / \operatorname{Kerf}=0$, so $g=0$ and therefore $e=0$, which contradicts that $R e$ is a minimal left ideal of R. Then $\operatorname{Kerf}=0$, and $R g \cong \operatorname{Re}$. Hence $R g$ is also a minimal left ideal of R, so $g \in M E_{l}(R)$. Since R is a left min-abel ring, one has that g is a left semi-central element. Then

$$
\left.e a g(e a g)^{-} g=\text { geag(eag }\right)^{-} g=g e, \text { and } e=e a g(e a g)^{-} g=\text { geag }(e a g)^{-} g=g e .
$$

" $(2) \Rightarrow(1)$ " If $M E_{l}(R)=\emptyset$, we know that R is a left min-abel ring. We suppose $M E_{l}(R) \neq \emptyset$ below. Assume that there exist some $e \in M E_{l}(R)$ and some $a \in R$ such that $(1-e) a e \neq 0$. Then $0 \neq R(1-e) a e \subseteq \operatorname{Re}$. Since Re is a minimal left ideal, one has that $R(1-e) a e=R e$. Write $h=(1-e) a e$. One obtains that $R h=R e$. Denote $e=c h$, where $c \in R$. We get that

$$
h=(1-e) a e=(1-e) a e e=h e=h c h .
$$

Put $g=h c$. Then $h=g h$, and $g^{2}=h c h c=h c=g$, so $g \in E(R)$. It is easy to check that $c^{B D(g, e)}=h$. By hypothesis, one has that

$$
e=g e=h c e, \text { and } e=e e=e h c e=e(1-e) \text { aece }=0,
$$

a contradiction. Thus $(1-e) R e=0$, so R is a left min-abel ring.
Recall that a ring R is a strongly left min-abel ring [13] if either $M E_{l}(R)=\emptyset$, or every element of $M E_{l}(R)$ is a right semi-central element.

Proposition 4.6. The following conditions are equivalent:
(1) R is a strongly left min-abel ring;
(2) for any $a \in R, e \in M E_{l}(R)$ and $g \in E(R)$, if a is Bott-Duffin (e, g)-invertible, then ge $=g$.

Proof. " $(1) \Rightarrow(2)$ " Let a be Bott-Duffin (e, g)-invertible. Then

$$
e=e(g a e)^{-} g a e, \text { and } g=\text { gae }(g a e)^{-} g .
$$

Since R is a strongly left min-abel ring, one gets that e is a right semi-central element. Thus $g=g e$.
" $(2) \Rightarrow(1)$ " Suppose there exist some $e \in M E_{l}(R)$ and $a \in R$ such that $e a(1-e) \neq 0$. Denote $g=e+e a(1-e)$. Then

$$
e g=g, g e=e, \text { and } g^{2}=g
$$

It can easily be verified that $e^{B D(e, g)}=g$. By hypothesis, we obtain that $g=g e=e$, so $e a(1-e)=0$, a contradiction. Thus, we have $e R(1-e)=0$, and therefore, R is a strongly left min-abel ring.

References

[1] E. Boasso, G. Kantun-Montiel, The (b, c)-inverse in rings and in the Banach context, Mediterranean Journal of Mathematics 14(3) (2017) 112.
[2] M. P. Drazin, A class of outer generalized inverses, Linear Algebra and its Applications 436(7) (2012) 1909-1923.
[3] M. P. Drazin, Commuting properties of generalized inverses, Linear and Multilinear Algebra 61(12) (2013) 1675-1681.
[4] M. P. Drazin, Generalized inverses: Uniqueness proofs and three new classes, Linear Algebra and its Applications 449 (2014) 402-416.
[5] Y. Y. Ke, J. L. Chen, The Bott-Duffin (e, f)-inverses and their applications, Linear Algebra and its Applications 489 (2016) 61-74.
[6] Y. Y. Ke, D. S. Cvetkovićllić, J. L. Chen, J. Višnjić, New results on (b, c)-inverses, Linear and Multilinear Algebra 66(3) (2018) 447-458.
[7] Y. Y. Ke, Y. F. Gao, J. L. Chen, Representations of the (b, c)-inverses in rings with involution, Filomat 31(9) (2017) 2867-2875.
[8] Y. Y. Ke, Z. Wang, J. L. Chen, The (b, c)-inverse for products and lower triangular matrices, Journal of Algebra and its Applications 16(12) (2017) 1750222, 17 pp.
[9] D. S. Rakić, N. Č. Dinčić, D. S. Djordjević, Group, Moore-Penrose, core and dual core inverse in rings with involution, Linear Algebra and its Applications 463 (2014) 115-133.
[10] N. Castro-González, J. L. Chen, L. Wang, Characterizations of outer generalized inverses, Canadian Mathematical Bulletin 60(14) (2017) 861-871.
[11] L. Wang, J. L. Chen, N. Castro-González, Characterizations of the (b, c)-inverse in a ring, arXiv: 1507.01446 (2015).
[12] J. C. Wei, Generalized weakly symmetric rings, Journal of Pure and Applied Algebra 218 (2014) 1594-1603.
[13] J. C. Wei, Certain rings whose simple singular modules are nil-injective, Turkish Journal of Mathematics 32 (2008) 393-406.

[^0]: 2020 Mathematics Subject Classification. 15A09; 16B99; 16U99.
 Keywords. (b, c)-inverse; Bott-Duffin (e, f)-inverse; Abelian ring; Directly finite ring; Left min-abel ring.
 Received: 08 March 2018; Accepted: 11 June 2022
 Communicated by Dragan S. Djordjević
 Research supported by Natural Science Foundation of Henan Province of China under Grant No. 222300420499.
 Email addresses: dalarston@126.com (Hua Yao), zrj0115@126.com (Ruju Zhao), lwangmath@yzu.edu.cn (Long Wang), jcweiyz@126.com (Junchao Wei)

