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On the Enestrom-Kakeya theorem for quaternionic polynomial

Adil Hussain?

*Department of Mathematics, University of Kashmir, Srinagar-190006, Jammu and Kashmir, India

Abstract. The main purpose of this paper is to extend various results of Enestrdm-Kakeya type from the
complex to quaternionic setting by virtue of a maximum modulus theorem and the structure of the zero
sets in the newly developed theory of regular functions and polynomials of a quaternionic variable. Our

findings generalise several newly proven conclusions concerning the distribution of zeros of a quaternionic
polynomial.

1. Introduction

In mathematics, polynomial zeros have a long and illustrious history. The study of zeros of complex
polynomials is an old theme in analytic theory of polynomials, has spawned a vast amount of research
over the past millennium includes its applications both within and outside of mathematics. In addition to
having numerous applications, this study has been the inspiration for much theoretical research (including
being the initial motivation for modern algebra). Algebraic and analytic methods for finding zeros of a
polynomial, in general, can be quite complicated, so it is desirable to put some restrictions on polynomials.
This motivated the study of identifying suitable regions in the complex plane containing the zeros of a
polynomial when their coefficients are restricted with special conditions. The subject dates back to around
the time when the geometric representation of complex numbers was introduced into mathematics, and
the first contributors to the subject were Gauss and Cauchy. The following elegant result concerning

the distribution of zeros of a polynomial when its coefficients are restricted is known in the literature as
Enestrom-Kakeya theorem (see [4], [11], [14]).

n
Theorem 1.1. If p(z) = ), a,z°, is a polynomial of degree n (where z is a complex variable) with real coefficients
v=0
satisfying
Ay > 0y_1 2 ...20a1=>0a9 >0,
then all the zeros of p(z) lie in

|z| < 1.
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When G. Enestrom was researching an issue in the theory of pension funds, it appears that he was the
first to come to a conclusion of this kind. In essence, the aforementioned discovery was published for the
first time in a little paper by Enestrém [3]. Later, Enestrom made the significant parts of his earlier paper
accessible to the international mathematical community and mentioned it in his publications of 1893-95.
Independently, in 1912, the result was obtained by S. Kakeya [10] with a purely geometrical approach and
in a more general form. Kakeya precisely established the more general conclusion that is listed below.

Theorem 1.2. If p(z) = Y.1_,a,2° is a polynomial of degree n with real and positive coefficients, then all the zeros of
p(z) lie in the annulus
R1 < |z| £ Ry,

where

Ri = min a,/a,1
0<v<n-1

and
Ry, = max a,/ay41.
O0<v<n-1

The Enestrom-Kakeya theorem has been expanded in a number of ways, including to complex coefficients
with constrained arguments, and is particularly significant in the research of the stability of numerical
methods for differential equations. In the literature, for example see ([1], [8], [9]), there exist various
extensions and generalizations of the Enestrom-Kakeya theorem. We refer the reader to the comprehensive
books of Marden [11] and Milovanovi¢ et al. [14] for an exhaustive survey of extensions and refinements of
this well-known result. In 1967, Joyal et al. [9] published a result which might be considered the foundation
of the studies which we are currently studying. According to Theorem 1.1, the Enestrom-Kakeya theorem
applies to polynomials with non-negative coeficients that form a monotone sequence. By eliminating the
non-negativity condition, Joyal et al. generalised Theorem 1.1 retaining monotonicity. They did this by
showing the following outcome.

Theorem 1.3. If p(z) = i a,z°, is a polynomial of degree n (where z is a complex variable) with real coefficients
satisfying .

Ay 20y = ... = a1 = Ay,
then all the zeros of p(z) lie in

a, — ag + lag|

lz| <
|,

Of course, when a9 > 0, Theorem 1.3 reduces to Theorem 1.1. Since the second half of the 19th century,
numerous estimates for the placement of zeros in terms of coefficients have been thoroughly researched,
with a focus on the distribution of zeros of the algebraic polynomials with restricted coefficients and
significant advancements have been made. The Enestrom-Kakeya theorem and its various generalizations
as mentioned above are the classic and significant examples of this kind. Provided such a richness of the
complex setting, a natural question is to ask what kind of results in the quaternionic setting can be obtained.
In this paper we consider this problem and present extensions to the quaternionic setting of some classical
results of Enestrom-Kakeya type as discussed above.

2. Background

Let’s introduce some introductory information on quaternions that will be helpful in the follow-up in order
to introduce the framework in which we will operate. Quaternions are essentially a four-dimensional ex-
tension of complex numbers (one real and three imaginary parts) which Sir Rowan William Hamilton first
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examined and perfected in 1843. This number system of quaternions is denoted by IH in honor of Hamilton.
This theory of quaternions is by now very well developed in many different directions, and we refer the
reader to [7], [12], [13] and [15] for the basic features of quaternions and quaternionic functions. Before we
proceed further, we need to introduce some preliminaries on quaternions. The set of quaternions denoted
by H is a noncommutative division ring. It consists of elements of the form g = a+fi+yj+06k, a,5,7,6 € R,
where the imaginary units i, j, k satisfy i = j2 = k* = ijk = -1, ij = —ji = k, jk = —kj = i,ki = —ik = |.
Every element g = a + i + yj + 0k € H is composed by the real part Re(g) = a and the imaginary part
Im(q) = Bi + yj + 6k. The conjugate of g is denoted by 7 and is defined as § = a — i — yj — 6k and the norm

of gis gl = /g5 = vJa% + B2 + )2 + 62. The inverse of each non zero element g of H is given by g = |g|%7.

Very recently, Carney etal. [2] demonstrated the following generalisation of Theorem 1.1 for the quaternionic
polynomial p(g). They proved the following outcome more succinctly.
Theorem 2.1. Ifp(q) = ). q°ay, is a polynomial of degree n (where q is a quaternionic variable) with real coefficients
0=0
satisfying
Ay > 0y1 > ..2a1>0a9 >0,
then all the zeros of p(q) lie in
lql < 1.

They also demonstrated the following result, which is identical to Theorem 1.3 but instead of polynomials
with monotone increasing real coefficients, it considers quaternionic polynomials with monotone increasing
real and imaginary parts and thus giving the quaternionic analogue of Theorem 1.3.

n
Theorem 2.2. If p(q) = Y. q°ay, is a polynomial of degree n (where q is a quaternionic variable) with quaternionic
=0
coefficients, where a, = a, + Boi + Yo + 0ok for v =0,1,2, ..., n, satisfying
Ay 2 Q1 2 ... 201 = Qp,
Bn = Pr-1= ... 2 p1 2= Po,

Vi 2 V-1 2 e 271 2 Y0,
Op = 0p1 = ... 201 = 0,

then all the zeros of p(q) lie in

(laol = ao + an) + (1Bol = Bo + Br) + (Iyol = Yo + V) + (100] = 00 + On)
|| ’

gl <

Additionally, they demonstrated the following outcome using Lemma 4.2:
n
Theorem 2.3. If p(q) = Y. q%ay is a polynomial of degree n with quaternionic coefficients and quaternionic variable.

V=
Let b be a non-zero quaternion and suppose £(a,,b) < 0 < 1/2 for some O and v =0,1,2,...,n. Assume

|an| 2 |an-1] = ... = laol,

then all the zeros of p(q) lie in

. -1
. 2sin 6 y

lgl < cosB +sin6 + o] E |ay).

n v=0
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Meanwhile, Tripathi [16] established the following generalisation of Theorem 2.2 in addition to demon-
strating a few additional results.

n
Theorem 2.4. Let p(q) = Y., q°ay, be a polynomial of degree n (where q is a quaternionic variable) with quaternionic
0v=0

coefficients, where a, = ay + Boi + yuj + 0ok forv=0,1,2, ..., n, satisfying

Ay = Oy—1 = ... 2 Oy,
ﬁn > ,Bn—l > .2 ,Bl/

Vn > Vn-1 2.2 Vi,
O0p > 06p1 2 ... 20,

for 0 <1 < n. Then all the zeros of p(q) lie in

la| < ﬁ[m +[Bol + ol + 180l + (@ = ) + (B = Bi) + (v = 1) + (60 — &) + Mi],

1
where My = Y Ity = @oal + |Bo = Boral + [yo = Yol + 160 = 6l

v=1
3. Main Results

In this section, we state our main results. We begin with the following result:

n
Theorem 3.1. If p(q) = ). q°av, is a quaternionic polynomial of degree n with real coefficients a,, v = 0,1,2,...,n
v=0
and for some k, >0, v=0,1,2,..,r, 0 <r <n—1, we have

ko+a,>ki+a,1>2ky+a, 0> ...>2k +a,_,>a,,1>..>a1 >4,

then all the zeros of p lie in

1 T
gl < W{Za ko — kout] + (ko + @) — a0 + |ao|}.

If we takek, =0, v =0,1,2,..,rand r = n — 1 in Theorem 3.1, we obtain the following result which is an
extension of Theorem 1.3 from the complex to quaternionic setting.
n
Corollary 3.2. If p(q) = Y. q°ay, is a quaternionic polynomial of degree n with real coefficients a,, v =10,1,2,...,n,
v=0
and satisfying
Ay 2 Ap-1 2 Ap-2 = ... 2 a1 2 Ay,

then all the zeros of p lie in

1
gl < m(ﬂn — ag + |agl).
n

Setting ap > 0in Corollary 3.2, we get Theorem 2.1. It can been easily seen that Corollary 3.2 is also obtained
in the form of a result (see [13], Corollary 1 (for u=1)).
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Theorem 3.3. If p(q) = Z q°a,, is a quaternionic polynomial of degree n with quaternionic coefficients a, =

ozv+ﬁvz+)/v]+6kforv—012 ,n, and for somek, >0, v=0,1,2,..,1,0 <r <n -1, we have
kh+ta,>2ki+a,1>2k+a,0>.. 2k +a,r > ap_-1>...2 01 = Qg,
then all the zeros of p lie in

gl < {(ko + ay) — ao + lagl + Bol + [yol + |60l + Z lky — koi1] + L},
|,

v=0

where

>_a

n—

L= {|ﬁv+l Bl 4 Vot — Vol + 16011 = |}

%

Il
o

Applying Theorem 3.3 to the polynomial p(q) having real coefficients, i.e., f = y = 6 = 0, we get Theorem
3.1.

n
Theorem 3.4. If p(q) = Y. q°a, is a polynomial of degree n with quaternionic coefficients and quaternionic variable.
v=0

Let b be a non-zero quaternion and suppose L(a,,b) < 0 < 1/2 for some 6, v = 0,1,2,...,n and for some number
k,>0,v=0,1,2,...,7, 0<r <n-—1. Assume

IkO + an| 2 |k1 + an—1| 2 |k2 + an—Zl > .2 |kr + an—r| 2 |an—r—1| =2 |ﬂ1| 2 |a0|/
then all the zeros of p lie in

n
< {|ao|+2|k Kol + (Ko + au] = o)) <05 0 + (o + 2| + ac) sin 6 + 25in 0 Y " [k, + -0l

v=1

If we take k, =0, v =0,1,2,...,r and ¥ = n — 1 in Theorem 3.4, we obtain the following result similar to
Theorem 2.3.

n
Corollary 3.5. If p(q) = Y. q°a, is a polynomial of degree n with quaternionic coefficients and quaternionic variable.
v=0
Let b be a non-zero quaternion and suppose £(a,,b) < 6 < 1/2 for some 6,v =0,1,2, ..., n. Assume
|anl = lan-1| = lan-a| = ... = lar| = laol,

then all the zeros of p lie in

1 n

91 ool + (sl = I <05 6 + (] + Il sin &+ 25in 0 ) e, .

I v=1
It can been easily seen that Corollary 3.5 is also obtained in the form of a result (see [13], Theorem 2 for
(u=1))-
4. Auxiliary Results

We need the following lemmas for the proofs of the main results. The first lemma is due to Gentili and
Stoppato [5].
Lemma 4.1. If f(q) = Y. §°a, and g(q) = Y. q°b, be two given quaternionic power series with radii of convergence
0=0 =0

greater than R. The regular product of f(q) and g(q) is defined as (f x g)(q) = Z q°cy, where ¢, = Z agby_i. Let
k 0

Ig0] < R, then (f * g)(qo) = 0 if and only if either f(qo) = 0 or f(qo) # 0 implies g(f q0)” qof(qo)) =
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The following lemma is due to Carney et al. [2].

Lemma 4.2. Let q1, g2 € H, where q1 = a1 +if1 + jy1 + kb1 and qz = ax + i + jy2 + kO, £(q1,q2) = 20" < 20,
and |q1| < |qal, then

lg2 — g1 < (Ig2] = 1911) cos 0 + (I92| + |g1]) sin O.

5. Proof of Main Results

Proof of Theorem 3.1. Consider the polynomial
f@= Z q°(ay — ay-1) + ap.
v=1

Let p(g) x (1 — q) = f(q) — 9"*'a,, therefore by Lemma 4.1, p(q) * (1 —¢q) = 0 if and only if either p(q) = 0 or
p(q) # 0 implies p(q)'gp(g) — 1 = 0, that is, p(q)'qp(q) = 1. If p(g) # 0, then g = 1. Therefore, the only zeros
of p(q) x (1 — g) are g = 1 and the zeros of p(g).

For |g| = 1, we have

f@l =19"@an — an=1) + .. + "7 (@n—r — Guey—) + ... + g(a1 — ao) + aol
g"[ (ko + ) = ( +am) = (ko = k)| + 4"kt + a30) = (ka + 002) = (k1 = ko)

o g2 (ke + Byre2) = (et + Bnri) = (2 = )

0" (et + i) = G+ ) = (ra = k)]

+ qn_r[(kr + Lln—r) - (k‘r+1 + ﬂn—r—l) - (k‘r - k7+1)] tot q(ﬂ1 - Llo) +4do

: ‘ = " (ko — k1) + 4" (ko + @) = (k1 + @ 0)] + 4" (s + 30m1) = (ko + ,0)

A e Y R L [P P Y (Y MY

— g2 (kg = k1) + 4"t + A1) = (e + )] = 47 o — )

+ qn_r[(kr + an—r) - (kr+1 + an—r—l)] - qn_r(kr - kr+1) +..+ q(al - ﬂo) +4dp
< lko — k1| + (ko + an) — (k1 + an-1) + (k1 + an-1) — (ko + ay—2) + k1 — ko
+..+ (kr—Z + an—r+2) - (kr—l + an—r+1) + |kr—2 - kr—ll + (kr—l + an—r+l) - (k/ + an—r)
+ |kr—1 - krl + (kr + an—r) - (kr+1 + an—r—l) + Ikr - kr+1| +..+ax—ay+ay—ap+ |€lo|
= Y ko = Koual + (ko + ) — g + laol.
v=0
Since

max
lgl=1

q" * f(%)‘ = max |f(1)' = max |f(q)l,

lg1=1 q lg1=1

therefore, g % f(%) has the same bound on |g| = 1 as f(g), that is

1 r
qn*f(a)|SZ(;VCU—kv+1|+(ko+ﬂn)—ﬂ0+|ﬂ0| for lgl=1.
V=l
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Applying maximum modulus theorem ([6], Theorem 3.4), it follows that

| 2|k ~ Kool + (ko + ) a0 +lao for Igl <1.

Replacing q by %, we get for |g| > 1

T

@ < {)" o = Kol + (ko + 22) = a0 + bl M

v=0

But [p(q) * (1 = q)l = |f(9) — """ aul > laullgl™" = 1f(q)I-
Using (1), we have for |g| > 1

Ip@) % (1= 1= g™ = { Y ko = Koral + ko + ) = a0 + ol "
v=0

This implies that |[p(g) x (1 —¢q)| > 0, i.e., p(q) * (1 —q) # 0 if

gl > —{Z o = Koral + (Ko + a2) = a0 + Il

|2,

Since the only zeros of p(q) * (1 — g) are g = 1 and the zeros of p(g). Therefore, p(q) # 0 for

> |{Z oo = Kot + (ko + ) = 0 + ol

Hence all the zeros of p(q) lie in

1 T
gl < W{Z; ey — kst + (ko + @) — a0 + |ao|}.

This completes the proof of Theorem 3.1.
Proof of Theorem 3.3. Consider the polynomial

f@) =) 1@ —a.1) +ap.
v=1

Let p(q) x (1 —q) = f(q) — q"*'a,, therefore by Lemma 4.1, p(q) * (1 —q) = 0 if and only if either p(q) = 0 or
p(q) # 0 implies p(9)~'qp(q) — 1 = 0, that is, p(9)"'qp(g) = 1. If p(g) # 0, then q = 1. Therefore, the only zeros
of p(7) x (1 —q) are g = 1 and the zeros of p(q).

For |g| = 1, we have

If (@)l =

g oy — ap-1) + oo + 4" (Ao — Ap—p—1) + ... + glan — ag) + o

+ l{qn(ﬁn - ﬁn—l) + qnil(ﬁn—l - ,BH—Z) +..t EI(,Bl - ,BO) + ,BO}
+ {00 = yuet) 4 077 e = a2 + e+ 001 = 70) + 70

+ k{q"(én )+ 4" (St = Buos) + oo+ (61 — B0) + 50}




A. Hussain / Filomat 37:15 (2023), 4981-4990 4988

= ‘ — (ko = k1) + 7" (ko + @) = (k1 + )] + 477 K1 + @ucr) = (k2 + )|

_ q"_l (ki —k2) + ... + qn_Hz[(kr—Z + prs2) = (k-1 + a”’”l)] h qn_Hz(kV?z k1)
+ qn—r+1 [(kr—l + ay_ri1) — (k + an_r)] _ qn—r+1 (kr—1 — k)

+ qnir[(kr + ) — (kp1 + an—r—l)] - qnir(kr — k1) + .t glar — ap) + ag
#l" B o) + 4" Brr = Bu) + o (61— o) + o)

+ ]'{qn()/n = V1) + 4" et = Yn2) + o+ q(1 = y0) + VO}

+ k{q”(én )+ 4" (St = Bos) + o+ (61 — B0) + 50}

< ko =kl + (ko + @) — (k1 + an-1) + (k1 + an-1) — (k2 + an-2) + k1 — k2
+..t (kr—Z + an—r+2) - (kr—l + an—r+1) + |kr—2 - kr—1| + (kr—l + an—r+1) - (kr + an—r)
+ |kr—1 - krl + (kr + an—r) - (kr+1 - O(n—r—l) + |kr - kr+1| tax—m

Far— o+ laol + {wn — Buctl + 1Bt — ol + o+ 11— ol + Iﬁol}
+ {m el + ot = Ynal oo+ Iyt — ol + I)/ol}

4 {|6,, ]+ But = Soal + e 4 161 — S| + |50|}

n—1
= (ko + i) = @ -+ a0l + [fol + [yol +160] + Y {1Bost = Bl + Drost = ol + [6uen = 8
v=0

+ Z |kv - kv+1|
v=0

= (ko + an) — o + latol + Bol + yol + 1801 + Y Ik = kosa| + L,

v=0
where
n—1
L= {lﬁv+1 - ﬁvl + |Vv+1 - Vvl + [0p11 — 6v|}
v=0
Since
max |q" *f(l)’ = max |f(1)' = max|f(q)l,
lgl=1 q lg1=1 q lg1=1

therefore, g x f(%) has the same bound on |g| = 1 as f(g), that is

1 14
q" *f(a)’ < (ko + @) = o + latol + |Bol + lyol 180 + Y ko = kot + L for Igl =1.
=0

After few steps as in the proof of Theorem 3.1, we conclude that all the zeros of p(g) lie in

1 r
1< {00+ ) = a0 + bl + Il + ol + o0l + ) o — kol + L.
n v=0
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This completes the proof of Theorem 3.3.
Proof of Theorem 3.4. Consider the polynomial

f@) =) 4@~ au) + ap.

v=1

Let p(q) x (1 —q) = f(q) — 9" a,, therefore by Lemma 4.1, p(q) * (1 —q) = 0 if and only if either p(q) = 0 or
p(q) # 0 implies p(q)'gp(q) — 1 = 0, that is, p(q) *qp(q) = 1. If p(g) # 0, then g = 1. Therefore, the only zeros
of p(q) * (1 — g) are g = 1 and the zeros of p(g).

For |g| = 1, we have

|f(‘1)| = |qn(an - an—l) +...t qn_r(an—r - an—r—l) + ..+ q(al - ﬂo) + aOl
q"[ (ko +@0) = (k1 + ay1) = (ko = k)| + 4" (k1 + ay1) = G + 402) = (k= )]

+..t qn_Hz[(kr—Z + an—r+2) - (kr—l + an—r+1) - (kr—Z - kr—l)]

4t + Gumran) = (e 20 = (it = K)|

+ qn—r[(kr +ay_y) — (kpy1 +ay_p1) — (k, — kr+1)] + ...+ l](lh —dap) + ap

= [~ atto =)+ [+ a0 = o+ a0 ) = G+ )

3 qn71 (k1 _ kz) R qn—r+2[(kr_2 + ﬂn—r+2) — (kr—l + ﬂn—r+1)] - qn—r+2(kr—2 - kr—l)
" qn—r+1 [(kr—l + Apr1) — (ke + an_r)] _ q”‘“’l(kr—l —k)

+ qn_r[(kr + ﬂn—r) - (kr+1 + an—r—l)] - qu—V(kr - kr+1) +..t q(ﬂl - 110) + o

< lko — k1| + (ko + an) — (k1 + an-1)| + (k1 + an-1) — (k2 + ay-2)|

+ k1 = kol + oo + |(kr—2 + @n—rs2) = (k=1 + @n—rs1)| + lky—2 — ky1l

+ (k1 + ap—rs1) — (ke + an—p)| + k-1 — kil

+ 1k + an—y) — (kye1 + an—r-1)l + 1Ky = Kra| + laz — a1| + |ar — aol + laol.

Now using Lemma 4.2, it follows that

r
|f(q)| < Z Ikv - kv+1| + (|k0 + anl - |k1 + an—ll) cos O + (|k0 + anl + |k1 + an—ll) sin 0
v=0

+ (Jk1 + ay—1] — ko + a,—2]) cos O + (|k1 + a,_1| + lkp + a,-2])sin O + ...

+ (lky—2 + ay—ys2| = lky-1 + ay—r41]) cos 0 + (lky—2 + ay—rs2| + lky-1 + ay—r41]) sin O
+ (Jky—1 + ay—r1| — lky + ay—r|) cos 6 + (k-1 + ap—rs1| + |ky + a,—,]) sin 6

+ (|ky + ap—y| = lkr1 + ap—r-11) cos 6 + (|k; + a,—r| + [ky11 + a,—,|) sin O

+ (la2] — |a1]) cos 6 + (laz| + |a1]) sin 6 + (la1| — laol) cos O + (la1| + laol) sin O + |ag|

r n
= laol + Y Iy = Koal + (ko + @l = lagl) cos 0 + (ko + @yl + lao]) sin € +2sin 0 Y |k, + @,

v=0 v=1

Since

max
lgl=1

q *f(%)l = max |f(%)' = max If (@),
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therefore, g x f(%) has the same bound on |g| = 1 as f(g), that is

f*ﬂb

T n
< laol + Y ko = Kowal + (ko + @yl = lagl) cos 0 + (ko + ayl + lao]) sin € +2sin 0 ) [k, + 2.
=0

v=1

Now, proceeding similarly as in the proof of Theorem 3.1, it follows that all the zeros of p(q) lie in

1 r n
gl < m{w + ) ko = Kosal + (ko + @l = [a9]) c0s O + (ko + @] + lagl) sin 6 +25in 6 Y " ke, + a,,_v|}.
n 0v=0

v=1

This completes the proof of Theorem 3.4.

6. Conclusions

Some fresh finidings on the Enestrom-Kakeya theorem for quaternionic polynomials has been estab-
lished that are benefical in determining the regions containing all the zeros of a polynomial.
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