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Abstract. In this paper, using the expression form of the group inverse and Moore-Penrose inverse for the
product of two elements, we present some new characterizations of EP elements, partial isometries, SEP
elements, normal elements and hermitian elements in a ring with involution.

1. Introduction

EP elements, partial isometries, SEP elements, normal elements and Hermitian elements in rings with
involution are characterized by many authors such as [2, 13–23]. For complex matrices, in term of the
rank of a matrix, or other finite dimensional methods, these related matrices are discussed [1, 3]. Also,
the operator analogues of these notions are explored [4, 5]. In [6], products of EP operators on Hilbert
spaces has been studied. In [7], products of EP matrices has been discussed. In [10], products of EP
elements in semigroup has been studied. In this paper, we discuss the expression form of group inverse
and Moore-Penrose inverse for the product of two elements taken from a given set. Using these group
inverses and Moore-Penrose inverses, we give some new and interesting characterizations of EP elements,
partial isometries, SEP elements, normal elements and Hermitian elements.

Let R be a ring and a ∈ R. If there exists a#
∈ R such that

aa#a = a, a#aa# = a#, aa# = a#a.

The element a is called a group invertible element and a# is called a group inverse of a [9, 12, 13], and it is
uniquely determined by these equations. We write R# to denote the set of all group invertible elements of
R.

If a map ∗ : R→ R satisfies

(a∗)∗ = a, (a + b)∗ = a∗ + b∗, (ab)∗ = b∗a∗.

Then R is said to be an involution ring or a ∗−ring.
Let R be a ∗-ring and a ∈ R. If there exists a+ ∈ R such that

a = aa+a, a+ = a+aa+, (aa+)∗ = aa+, (a+a)∗ = a+a.
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Then a is called a Moore Penrose invertible element, and a+ is called the Moore Penrese inverse of a [8, 11].
Let R+ denote the set of all Moore Penrese invertible elements of R.

If a ∈ R#
∩ R+ and a# = a+, then a is called an EP element.

If a = aa∗a, then a is called partial isometry [20]. It is known that a ∈ R+ is partial isometry if and only if
a∗ = a+ [15].

The element a ∈ R#
∩ R+ is called a SEP element [23] if a# = a+ = a∗. Clearly, a ∈ R#

∩ R+ is SEP if and
only a ∈ REP and a ∈ RPI. Where REP , RPI and RSEP are denoted the set of all EP elements, all PI elements
and all SEP elements of R respectively.

If aa∗ = a∗a, then a is called normal. In [15], it is shown that a ∈ R#
∩R+ is normal if and only if a+a∗ = a∗a+

and a ∈ REP if and only if a∗a# = a#a∗. We denote the set of all normal elements of R by RNor.
If a = a∗, then a is called Hermitian. According to [15], a ∈ R#

∩ R+ is Hermitian if and only if (a#)∗ = a#.
We denote the set of all Hermitian elements of R by RHer.

2. The group inverse and Moore-Penrose inverse of product of elements

Let a ∈ R#
∩ R+. Taking τa = {a, a#, (a+)∗}, γa = {a+, a∗, (a#)∗} and χa = τa ∪ γa. Clearly, we have

(a#)+ = a+a3a+ and (a+)# = (aa#)∗a(aa#)∗. The following theorem gives the group inverse and Moore-Penrose
inverse of product of two elements in χa.

Theorem 2.1. Let a ∈ R#
∩ R+. Then

(1) If x ∈ τa, then (xy)+ = y+x#aa+ for each y ∈ χa.
(2) If x ∈ γa, then (xy)+ = y+x#a+a for each y ∈ χa.

(3) (xy)# =


y#x+aa# , x, y ∈ τa

y+x#aa+ , x ∈ τa, y ∈ γa

y+x#a+a , x ∈ γa, y ∈ τa

y#x+(aa#)∗, x, y ∈ γa

.

Proof. (1) Noting that yy+ =
{

aa+, y ∈ τa

a+a, y ∈ γa
,

xaa+x# = xa+ax# = aa# = x#aa+x, aa+x = x,

and
a+ay+ = y+, f or each y ∈ τa,

aa+y+ = y+, f or each y ∈ γa.

Then

(xy)(y+x#aa+) = x(yy+)x#aa+ =

xaa+x#aa+, y ∈ τa

xa+ax#aa+, y ∈ γa
= aa#aa+ = aa+,

(xy)(y+x#aa+)(xy) = aa+xy = xy,

(y+x#aa+)(xy) = y+(x#aa+x)y = y+aa#y =
{

a+a, y ∈ τa

aa+, y ∈ γa
,

(y+x#aa+)(xy)(y+x#aa+) =

a+ay+x#aa+, y ∈ τa

aa+y+x#aa+, y ∈ γa
= y+x#aa+.

Hence (xy)+ = y+x#aa+ for each y ∈ χa.
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(2) Noting that xaa+x# = xa+ax# = (aa#)∗ = x#a+ax for each x ∈ γa. Then

(xy)(y+x#a+a) = x(yy+)x#a+a =

xaa+x#a+a, y ∈ τa

xa+ax#a+a, y ∈ γa
= (aa#)∗a+a = a+a,

(xy)(y+x#a+a)(xy) = a+a(xy) = xy,

(y+x#a+a)(xy) = y+(x#a+ax)y = y+(aa#)∗y =
{

a+a, y ∈ τa

aa+, y ∈ γa
,

(y+x#a+a)(xy)(y+x#a+a) =

a+ay+x#a+a, y ∈ τa

aa+y+x#a+a, y ∈ γa
= y+x#a+a.

Hence (xy)+ = y+x#a+a for each y ∈ χa.
(3) If x, y ∈ τa, then

(xy)(y#x+aa#) = x(yy#)x+aa# = (xaa#x+)aa# = aa+aa# = aa#,

(xy)(y#x+aa#)(xy) = aa#xy = xy,

(y#x+aa#)(xy) = y#(x+aa#x)y = y#a+ay = a#a,

(y#x+aa#)(xy)(y#x+aa#) = a#ay#x+aa# = y#x+aa#.

Hence (xy)# = y#x+aa#.
If x ∈ τa, y ∈ γa, then the proof of (1) implies (xy)# = y+x#aa+.
If x ∈ γa, y ∈ τa, then the proof of (2) implies (xy)# = y+x#a+a.
If x, y ∈ γa, then x(aa#)∗ = x = (aa#)∗x, x# = (aa#)∗x# and xx+ = a+a, this gives

(xy)(y#x+(aa#)∗) = x(yy#)x+(aa#)∗ = x(aa#)∗x+(aa#)∗ = (aa#)∗,

(y#x+(aa#)∗)(xy) = y#(x+(aa#)∗x)y = y#aa+y = (aa#)∗,

(xy)(y#x+(aa#)∗)(xy) = (aa#)∗(xy) = xy,

(y#x+(aa#)∗)(xy)(y#x+(aa#)∗) = (aa#)∗y#x+(aa#)∗ = y#x+(aa#)∗.

Hence (xy)# = y#x+(aa#)∗.

Using Theorem 2.1, the following theorem gives a new form characterization of generalized inverses.

Theorem 2.2. Let a ∈ R#
∩ R+. Then

(1) a ∈ REP if and only if (xy)+ = y+x#a+a for some x ∈ τa and y ∈ χa.
(2) a ∈ RPI if and only if (xy)+ = y+x#aa∗ for some x ∈ τa and y ∈ χa.
(3) a ∈ RSEP if and only if (xy)+ = y+x#a∗a for some x ∈ τa and y ∈ χa.
(4) a ∈ RNor if and only if (xy)+ = y+x#(a+)∗a+a∗a for some x ∈ τa and y ∈ χa.
(5) a ∈ RHer if and only if (xy)+ = y+x#a(a+)∗ for some x ∈ τa and y ∈ χa.

Proof. (1) =⇒ Assume that a ∈ REP. Then aa+ = a+a. By Theorem 2.1(1), we have (xy)+ = y+x#aa+ = y+x#a+a
for all x ∈ τa and all y ∈ χa.
⇐= From the assumption and Theorem 2.1(1), we have

y+x#aa+ = y+x#a+a, f or some x ∈ τa and y ∈ χa.

If y ∈ τa, then

(aa+)x#aa+ = (yy+)x#aa+ = y(y+x#aa+) = y(y+x#a+a) = (yy+)(x#a+a) = aa+x#a+a,
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aa+ = aa#aa+ = (xaa+x#)aa+ = x(aa+x#aa+) = x(aa+x#a+a) = (xaa+x#)a+a = aa#a+a = aa#.

Hence a ∈ REP.
If y ∈ γa, then

a+ax#aa+ = (yy+)x#aa+ = y(y+x#aa+) = y(y+x#a+a) = a+ax#a+a,

aa+ = aa#aa+ = (xa+ax#)aa+ = x(a+ax#aa+) = x(a+ax#a+a) = (xa+ax#)a+a = aa#a+a = aa#.

Hence a ∈ REP.
(2)=⇒ Suppose that a ∈ RPI. Then a+ = a∗. It follows from Theorem 2.1(1), that (xy)+ = y+x#aa+ = y+x#aa∗

for all x ∈ τa and all y ∈ χa.
⇐= By Theorem 2.1(1) and the assumption, one has

y+x#aa+ = y+x#aa∗, f or some x ∈ τa and y ∈ χa.

Noting that x ∈ τa. Then

xyy+x# =

xaa+x#, y ∈ τa

xa+ax#, y ∈ γa
= aa#.

This gives

aa+ = aa#aa+ = xyy+x#aa+ = xy(y+x#aa+) = xy(y+x#aa∗) = (xyy+x#)aa∗ = aa#aa∗ = aa∗.

Hence a ∈ RPI by [15, Theorem 1.5.2].
(3) =⇒ Since a ∈ RSEP, a# = a∗ = a+ and a∗a = aa+ by [15, Theorem 1.5.3]. Hence (xy)+ = y+x#a∗a by

Theorem 2.1(1) for all x ∈ τa and all y ∈ χa.
⇐= Using the assumption (xy)+ = y+x#a∗a and Theorem 2.1(1), we have

y+x#aa+ = y+x#a∗a, f or some x ∈ τa and y ∈ χa.

This gives
aa+ = aa#aa+ = (xyy+x#)aa+ = xy(y+x#aa+) = xy(y+x#a∗a)

= (xyy+x#)a∗a = aa#a∗a = (aa#a∗a)a+a = aa+a+a.

Hence a ∈ REP, one gets
aa+ = aa#a∗a = a#aa∗a = a+aa∗a = a∗a.

Thus a ∈ RSEP by [15, Theorem 1.5.3].
(4) =⇒ From a ∈ RNor, we have aa∗ = a∗a and a ∈ REP. This gives

(a+)∗a+a∗a = (a+)∗a+aa∗ = (a+)∗a∗ = aa+.

Hence, by Theorem 2.1(1), (xy)+ = y+x#aa+ = y+x#(a+)∗a+a∗a for x ∈ τa and y ∈ χa.
⇐= The assumption and Theorem 2.1(1) give y+x#aa+ = y+x#(a+)∗a+a∗a for some x ∈ τa and some y ∈ χa.

It follows that
aa+ = aa#aa+ = (xyy+x#)aa+ = xy(y+x#aa+) = xy(y+x#(a+)∗a+a∗a)

= (xyy+x#)(a+)∗a+a∗a = aa#(a+)∗a+a∗a = (a+)∗a+a∗a

and
a∗ = a∗aa+ = a∗(a+)∗a+a∗a = a+a∗a.

Hence a ∈ RNor by [15, Theorem 1.3.2].
(5) =⇒ Since a ∈ RHer, a+ = a# = (a#)∗ = (a+)∗. Hence, by Theorem 2.1(1), one has (xy)+ = y+x#aa+ =

y+x#a(a+)∗ for all x ∈ τa and all y ∈ χa.
⇐= The hypothesis and Theorem 2.1(1) imply

y+x#aa+ = y+x#a(a+)∗, f or some x ∈ τa and y ∈ χa.
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This induces
aa+ = aa#aa+ = (xyy+x#)aa+ = xy(y+x#a(a+)∗) = aa#a(a+)∗ = a(a+)∗.

Applying the involution on the equality, one gets

aa+ = a+a∗ = a+a(a+a∗) = a+a(aa+) = a+a2a+,

a = aa+a = a+a2a+a = a+a2.

Hence a ∈ REP, this induces aa+ = a+a∗ = a#a∗. Thus a ∈ RHer by [15, Theorem 1.4.2].

Corollary 2.3. Let a ∈ R#
∩ R+. Then

(1) a ∈ REP if and only if aa+a∗a+ = a∗a#aa+.
(2) a ∈ RSEP if and only if aa+a∗a+ = a+a#aa+.
(3) a ∈ RPI if and only if a+a+a+ = a+a∗a+.
(4) a ∈ RHer if and only if aa+a∗a+ = a+a2a+.
(5) a ∈ RNor if and only if aa+a∗a+ = a+a∗a+a.

Proof. (1) =⇒ Since a ∈ REP, aa+ = a+a, a# = a+, it follows that

aa+a∗a+ = a+aa∗a+ = a∗a+ = a∗a+aa+ = a∗a#aa+.

⇐= By Theorem 2.1(1), we have

(a(a#)∗)+ = ((a#)∗)+a#aa+ = ((a#)+)∗a#aa+

= (a+a3a+)∗a#aa+ = aa+a∗a+aa#aa+ = aa+a∗a+

and
(a(a+)∗)+ = ((a+)∗)+a#aa+ = a∗a#aa+.

From the assumption, we have (a(a#)∗)+ = (a(a+)∗)+, this gives a(a#)∗ = a(a+)∗. Applying the involution on
the equality, one has a#a∗ = a+a∗. Hence a ∈ REP by [15, Theorem 1.2.1].

(2) =⇒ From a ∈ RSEP, we have a# = a∗ = a+ and aa+ = a+a. This gives aa+a∗a+ = aa+a#a+ = a+aa#a+ =
a+a#aa+.
⇐= Noting that

(a2)+ = a+a#aa+ and (a(a#)∗)+ = aa+a∗a+.

Hence by the assumption, we have (a2)+ = (a(a#)∗)+, this gives

a2 = a(a#)∗, a+a2 = a+a(a#)∗ = (a#)∗, a# = (a+a2)∗ = a∗a+a.

Hence a ∈ RSEP by [15, Theorem 1.5.3].
(3) =⇒ Since a ∈ RPI, a+ = a∗. This implies that a+a+a+ = a+a∗a+.
⇐= Assume that a+a+a+ = a+a∗a+. Then aa+a+a+ = aa+a∗a+, one gets

(aa+a+a+)+ = (aa+a∗a+)+.

Since
(a(a+)#)+ = (a(aa#)∗a(aa#)∗)+ = aa+a+a+ and (a(a#)∗)+ = aa+a∗a+.

We yield a(a+)# = a(a#)∗, that is,
a(aa#)∗a(aa#)∗ = a(a#)∗.

Multiplying the equality on the left by a+, one has (aa#)∗a(aa#)∗ = (a#)∗. This induces (a+)# = (a#)∗ = (a∗)#, so
a+ = a∗. Thus a ∈ RPI.

(4) =⇒ From a ∈ RHer, we have a = a∗ and a ∈ REP. This gives aa+a∗a+ = aa+aa+ = aa+ = a+a2a+.
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⇐= Suppose that aa+a∗a+ = a+a2a+. Multiplying the equality on the left by (aa#)∗, we get

a∗a+ = aa+a∗a+.

Again multiply the last equality on the right by aa∗, we have

a∗a∗ = aa+a∗a∗.

This implies that a2 = a3a+. Hence a ∈ REP by [15, Theorem 1.2.2]. It follows that

aa+a∗a+ = a+aa∗a+ = a∗a+ and a+a2a+ = aa+ = aa#.

So a∗a+ = aa#. Hence a ∈ RHer by [15, Theorem 1.4.2].
(5) =⇒ By the hypothesis, we get aa∗ = a∗a and a ∈ REP. This induces aa+a∗a+ = a+aa∗a+ = a+a∗aa+ =

a+a∗a+a.
⇐= Since aa+a∗a+ = a+a∗a+a, by Theorem 2.1(1) and (2), we have

(a(a#)∗)+ = ((a#)∗a)+.

This gives a(a#)∗ = (a#)∗a. So a#a∗ = a∗a#. Thus a ∈ RNor.

Theorem 2.4. Let a ∈ R#
∩ R+. Then

(1) a ∈ REP if and only if xy ∈ REP for some x, y ∈ τa.
(2) a ∈ REP if and only if xy ∈ REP for some x, y ∈ γa.
(3) If a ∈ RSEP, then xy ∈ RSEP for any x, y ∈ τa.
(4) If a ∈ RSEP, then xy ∈ RSEP for any x, y ∈ γa.

Proof. (1) =⇒ Assume that a ∈ REP and x, y ∈ τa. Then

y+x#aa+ = y+x#aa# = y+x#

and
y#x+aa# = y#x+.

We claim that y+x# = y#x+.
In fact a+ = a#, this gives ((a+)∗)# = ((a+)#)∗ = ((a#)#)∗ = a∗. Hence

y+ =


a+ , y = a

(a#)+ , y = a#

((a+)∗)+, y = (a+)∗
=


a#, y = a

a , y = a#

a∗ , y = (a+)∗
= y#.

and x# = x+. This implies (xy)+ = y+x#aa+ = y+x# = y#x+ = y#x+aa# = (xy)#. Hence xy ∈ REP.
⇐= Suppose that xy ∈ REP. Then (xy)+ = (xy)#. Since x, y ∈ τa, by Theorem 2.1(1) and (3), we have

y+x#aa+ = y#x+aa#.

This induces
aa+ = aa#aa+ = (xyy+x#)aa+ = xy(y+x#aa+) = xy(y#x+aa#)

= (xyy#x+)aa# = aa#aa# = aa#.

Hence a ∈ REP.
(2) =⇒ From a ∈ REP and x, y ∈ γa, we have

a+a = aa+ = (aa+)∗ = (aa#)∗



A. Li, J. Wei / Filomat 37:15 (2023), 5017–5025 5023

and

y+ =


a , y = a+

(a∗)+ , y = a∗

((a#)∗)+, y = (a#)∗
=


(a+)#, y = a+

(a∗)#, y = a∗

a∗ , y = (a#)∗
= y#.

This gives
(xy)+ = y+x#a+a = y#x+(aa#)∗ = (xy)#.

Hence xy ∈ REP.
⇐= The assumption and Theorem 2.1(2), (3) imply

y+x#a+a = y#x+(aa#)∗.

It follows that
a+a = (aa#)∗a+a = (xyy+x#)a+a = (xy)y+x#a+a

= (xy)y#x+(aa#)∗ = (xyy#x+)(aa#)∗ = (aa#)∗(aa#)∗ = (aa#)∗.

Hence a ∈ REP.
(3) Since a ∈ RSEP, τa ⊆ RSEP. This implies for any x, y ∈ τa, we have

x∗ = x+, y# = y∗.

Noting that a+ = a# = a∗. Then
(xy)# = y#x+aa# = y#x+ = y∗x∗ = (xy)∗.

Hence xy ∈ RSEP.
(4) From a ∈ RSEP, we have γa ⊆ RSEP. This induces that

x∗ = x+, y# = y∗ f or any x, y ∈ γa.

Hence
(xy)# = y#x+(aa#)∗ = y#x+ = y∗x∗ = (xy)∗.

Thus xy ∈ RSEP.

Let a ∈ REP. Then it is known that a + 1 − aa#
∈ R−1 and (a + 1 − aa#)−1 = a# + 1 − aa#.

Theorem 2.5. Let a ∈ R#
∩ R+. Then

(1) xy + 1 − aa#
∈ R−1 and (xy + 1 − aa#)−1 = y#x+aa# + 1 − aa#, where x, y ∈ τa.

(2) a ∈ RPI if and only if (xy + 1 − aa#)−1 = y#x+aa#a∗a + 1 − aa# for some x, y ∈ τa.
(3) a ∈ REP if and only if (xy + 1 − aa#)−1 = y#x+aa+ + 1 − aa# for some x, y ∈ τa.
(4) a ∈ RSEP if and only if (xy + 1 − aa#)−1 = y#x+aa∗ + 1 − aa# for some x, y ∈ τa.
(5) a ∈ RHer if and only if (xy + 1 − aa#)−1 = y#x+a(a#)∗ + 1 − aa# for some x, y ∈ τa.
(6) a ∈ RNor if and only if (xy + 1 − aa#)−1 = y#x+aa∗a#(a#)∗ + 1 − aa# for some x, y ∈ τa.

Proof. (1) Since x, y ∈ τa, (xy)# = y#x+aa# and (xy)(xy)# = aa# by Theorem 2.1(3). Hence (xy + 1 − aa#)−1 =
y#x+aa# + 1 − aa#.

(2) =⇒ Suppose that a ∈ RPI. Then a# = a#a∗a by [15, Theorem 1.5.2]. It follows from (1) that (xy + 1 −
aa#)−1 = y#x+aa# + 1 − aa# = y#x+aa#a∗a + 1 − aa# for all x, y ∈ τa.
⇐= From the assumption and (1), we have

y#x+aa#a∗a + 1 − aa# = (xy + 1 − aa#)−1 = y#x+aa# + 1 − aa# f or some x, y ∈ τa.

This gives
y#x+aa#a∗a = y#x+aa# f or some x, y ∈ τa.
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Since x, y ∈ τa, xyy#x+ = xaa#x+ = aa+, one gets

aa+aa#a∗a = (xyy#x+)aa#a∗a = xy(y#x+aa#a∗a) = xy(y#x+aa#)

= (xyy#x+)aa# = aa+aa# = aa#,

e.g.,
aa#a∗a = aa# and a = a2a# = a2a#a∗a = aa∗a.

Hence a ∈ RPI.
(3) =⇒ The condition a ∈ REP implies aa+ = aa#. Hence, by (1),

(xy + 1 − aa#)−1 = y#x+aa+ + 1 − aa# f or all x, y ∈ τa.

⇐= From the assumption and (1), we have

y#x+aa+ + 1 − aa# = (xy + 1 − aa#)−1 = y#x+aa# + 1 − aa# f or some x, y ∈ τa,

e.g.,
y#x+aa+ = y#x+aa# f or some x, y ∈ τa.

This infers
aa+ = aa#aa+ = (xyy#x+)aa+ = xy(y#x+aa+) = xy(y#x+aa#)

= (xyy#x+)aa# = aa#aa# = aa#.

Hence a ∈ REP.
(4) =⇒ From a ∈ RSEP, we have aa# = aa∗ by [15, Theorem 1.5.3]. Hence (xy+ 1− aa#)−1 = y#x+aa∗ + 1− aa#

for all x, y ∈ τa by (1).
⇐= The assumption and (1) imply

y#x+aa# + 1 − aa# = (xy + 1 − aa#)−1 = y#x+aa∗ + 1 − aa# f or some x, y ∈ τa,

e.g.,
y#x+aa# = y#x+aa∗ f or some x, y ∈ τa.

This induces
aa# = aa#aa# = (xyy#x+)aa# = xy(y#x+aa#) = xy(y#x+aa∗)

= (xyy#x+)aa∗ = aa#aa∗ = aa∗.

Hence a ∈ RSEP by [15, Theorem 1.5.3].
(5) =⇒ Since a ∈ RHer, a# = (a#)∗. By (1), we have

(xy + 1 − aa#)−1 = y#x+aa# + 1 − aa# = y#x+a(a#)∗ + 1 − aa#.

⇐= By the hypothesis and (1), one yields

y#x+a(a#)∗ = y#x+aa# f or some x, y ∈ τa.

Multiplying the equality on the left by xy, one gets

a(a#)∗ = aa#.

Noting that (a#)∗ = a+a(a#)∗aa+. Then we have

a+ = a+aa#aa+ = a+a(a#)∗aa+ = (a#)∗

and aa+ = a(a#)∗ = aa#. So a ∈ REP and a# = a+ = (a#)∗. Thus a ∈ RHer.
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(6) =⇒ Suppose that a ∈ RNor. Then a ∈ REP and aa∗ = a∗a, this leads to

aa∗a#(a#)∗ = a∗aa+(a+)∗ = a+a = aa+ = aa#.

Hence, by (1), we are done.
⇐= From the (1) and the assumption, one obtains

y#x+aa∗a#(a#)∗ = y#x+aa# f or some x, y ∈ τa.

Multiplying the equality on the left by xy, one gets

aa∗a#(a#)∗ = aa#.

Multiplying the last equality on the right by aa+, one has aa# = aa+. Hence a ∈ REP and

a+ = a+aa+ = a+aa# = a+(aa∗a#(a#)∗) = a∗a#(a#)∗,

a#a∗ = a+a∗ = a∗a#(a#)∗a∗ = a∗a+(aa#)∗ = a∗a+ = a∗a#.

Thus a ∈ RNor.
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