Filomat 37:15 (2023), 5017–5025 https://doi.org/10.2298/FIL2315017L

Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

The group inverse and Moore-Penrose inverse of the product of two elements and generalized inverse in a ring with involution

Anqi Li^a, Junchao Wei^a

^aCollege of mathematical science, Yangzhou University, Yangzhou, Jiangsu 225002, P. R. China

Abstract. In this paper, using the expression form of the group inverse and Moore-Penrose inverse for the product of two elements, we present some new characterizations of EP elements, partial isometries, SEP elements, normal elements and hermitian elements in a ring with involution.

1. Introduction

EP elements, partial isometries, SEP elements, normal elements and Hermitian elements in rings with involution are characterized by many authors such as [2, 13–23]. For complex matrices, in term of the rank of a matrix, or other finite dimensional methods, these related matrices are discussed [1, 3]. Also, the operator analogues of these notions are explored [4, 5]. In [6], products of EP operators on Hilbert spaces has been studied. In [7], products of EP matrices has been discussed. In [10], products of EP elements in semigroup has been studied. In this paper, we discuss the expression form of group inverse and Moore-Penrose inverse for the product of two elements taken from a given set. Using these group inverses and Moore-Penrose inverses, we give some new and interesting characterizations of EP elements, partial isometries, SEP elements, normal elements and Hermitian elements.

Let *R* be a ring and $a \in R$. If there exists $a^{\#} \in R$ such that

$$aa^{\#}a = a$$
, $a^{\#}aa^{\#} = a^{\#}$, $aa^{\#} = a^{\#}a$.

The element *a* is called a group invertible element and $a^{\#}$ is called a group inverse of *a* [9, 12, 13], and it is uniquely determined by these equations. We write $R^{\#}$ to denote the set of all group invertible elements of *R*.

If a map $* : R \rightarrow R$ satisfies

$$(a^*)^* = a, (a + b)^* = a^* + b^*, (ab)^* = b^*a^*.$$

Then *R* is said to be an involution ring or a *–ring.

Let *R* be a *-ring and $a \in R$. If there exists $a^+ \in R$ such that

$$a = aa^{+}a, a^{+} = a^{+}aa^{+}, (aa^{+})^{*} = aa^{+}, (a^{+}a)^{*} = a^{+}a.$$

²⁰²⁰ Mathematics Subject Classification. 16B99; 16W10; 46L05.

Keywords. EP element; Partial isometry; SEP element; Normal element; Hhermitian element; Group inverse; Moore-Penrose inverse.

Received: 18 August 2022; Accepted: 05 January 2023

Communicated by Dijana Mosić

Email addresses: angellee_yz@126.com (Anqi Li), jcwei@yzu.edu.cn (Junchao Wei)

Then *a* is called a Moore Penrose invertible element, and a^+ is called the Moore Penrese inverse of *a* [8, 11]. Let R^+ denote the set of all Moore Penrese invertible elements of *R*.

If $a \in R^{\#} \cap R^{+}$ and $a^{\#} = a^{+}$, then *a* is called an EP element.

If $a = aa^*a$, then *a* is called partial isometry [20]. It is known that $a \in R^+$ is partial isometry if and only if $a^* = a^+$ [15].

The element $a \in R^{\#} \cap R^{+}$ is called a SEP element [23] if $a^{\#} = a^{+} = a^{*}$. Clearly, $a \in R^{\#} \cap R^{+}$ is SEP if and only $a \in R^{EP}$ and $a \in R^{PI}$. Where R^{EP} , R^{PI} and R^{SEP} are denoted the set of all EP elements, all PI elements and all SEP elements of *R* respectively.

If $aa^* = a^*a$, then *a* is called normal. In [15], it is shown that $a \in R^{\#} \cap R^+$ is normal if and only if $a^+a^* = a^*a^+$ and $a \in R^{EP}$ if and only if $a^*a^{\#} = a^{\#}a^*$. We denote the set of all normal elements of *R* by R^{Nor} .

If $a = a^*$, then *a* is called Hermitian. According to [15], $a \in R^{\#} \cap R^+$ is Hermitian if and only if $(a^{\#})^* = a^{\#}$. We denote the set of all Hermitian elements of *R* by R^{Her} .

2. The group inverse and Moore-Penrose inverse of product of elements

Let $a \in R^{\#} \cap R^+$. Taking $\tau_a = \{a, a^{\#}, (a^+)^*\}$, $\gamma_a = \{a^+, a^*, (a^{\#})^*\}$ and $\chi_a = \tau_a \cup \gamma_a$. Clearly, we have $(a^{\#})^+ = a^+ a^3 a^+$ and $(a^+)^{\#} = (aa^{\#})^* a(aa^{\#})^*$. The following theorem gives the group inverse and Moore-Penrose inverse of product of two elements in χ_a .

Theorem 2.1. Let $a \in R^{\#} \cap R^{+}$. Then

(1) If $x \in \tau_a$, then $(xy)^+ = y^+ x^{\#}aa^+$ for each $y \in \chi_a$. (2) If $x \in \gamma_a$, then $(xy)^+ = y^+ x^{\#}a^+ a$ for each $y \in \chi_a$. (3) $(xy)^{\#} = \begin{cases} y^{\#}x^+aa^{\#} , x, y \in \tau_a \\ y^+x^{\#}aa^+ , x \in \tau_a, y \in \gamma_a \\ y^+x^{\#}a^+ a , x \in \gamma_a, y \in \tau_a \end{cases}$. $y^{\#}x^+(aa^{\#})^*, x, y \in \gamma_a$

Proof. (1) Noting that $yy^+ = \begin{cases} aa^+, y \in \tau_a \\ a^+a, y \in \gamma_a \end{cases}$

$$xaa^{+}x^{\#} = xa^{+}ax^{\#} = aa^{\#} = x^{\#}aa^{+}x, aa^{+}x = x$$

and

$$a^+ay^+ = y^+$$
, for each $y \in \tau_a$,
 $aa^+y^+ = y^+$, for each $y \in \gamma_a$.

Then

$$(xy)(y^{+}x^{\#}aa^{+}) = x(yy^{+})x^{\#}aa^{+} = \begin{cases} xaa^{+}x^{\#}aa^{+}, \ y \in \tau_{a} \\ xa^{+}ax^{\#}aa^{+}, \ y \in \gamma_{a} \end{cases} = aa^{\#}aa^{+} = aa^{+}.$$

$$(xy)(y^+x^{\#}aa^+)(xy) = aa^+xy = xy,$$

$$(y^{+}x^{\#}aa^{+})(xy) = y^{+}(x^{\#}aa^{+}x)y = y^{+}aa^{\#}y = \begin{cases} a^{+}a, y \in \tau_{a} \\ aa^{+}, y \in \gamma_{a} \end{cases},$$
$$(y^{+}x^{\#}aa^{+})(xy)(y^{+}x^{\#}aa^{+}) = \begin{cases} a^{+}ay^{+}x^{\#}aa^{+}, y \in \tau_{a} \\ aa^{+}y^{+}x^{\#}aa^{+}, y \in \gamma_{a} \end{cases} = y^{+}x^{\#}aa^{+}$$

Hence $(xy)^+ = y^+ x^\# aa^+$ for each $y \in \chi_a$.

(2) Noting that $xaa^+x^\# = xa^+ax^\# = (aa^\#)^* = x^\#a^+ax$ for each $x \in \gamma_a$. Then

$$(xy)(y^{+}x^{\#}a^{+}a) = x(yy^{+})x^{\#}a^{+}a = \begin{cases} xaa^{+}x^{\#}a^{+}a, y \in \tau_{a} \\ xa^{+}ax^{\#}a^{+}a, y \in \gamma_{a} \end{cases} = (aa^{\#})^{*}a^{+}a = a^{+}a,$$
$$(xy)(y^{+}x^{\#}a^{+}a)(xy) = a^{+}a(xy) = xy,$$
$$(y^{+}x^{\#}a^{+}a)(xy) = y^{+}(x^{\#}a^{+}ax)y = y^{+}(aa^{\#})^{*}y = \begin{cases} a^{+}a, y \in \tau_{a} \\ aa^{+}, y \in \gamma_{a} \end{cases},$$
$$(y^{+}x^{\#}a^{+}a)(xy)(y^{+}x^{\#}a^{+}a) = \begin{cases} a^{+}ay^{+}x^{\#}a^{+}a, y \in \tau_{a} \\ aa^{+}y^{+}x^{\#}a^{+}a, y \in \gamma_{a} \end{cases} = y^{+}x^{\#}a^{+}a.$$

Hence $(xy)^+ = y^+ x^\# a^+ a$ for each $y \in \chi_a$.

(3) If $x, y \in \tau_a$, then

$$(xy)(y^{\#}x^{+}aa^{\#}) = x(yy^{\#})x^{+}aa^{\#} = (xaa^{\#}x^{+})aa^{\#} = aa^{+}aa^{\#} = aa^{\#},$$
$$(xy)(y^{\#}x^{+}aa^{\#})(xy) = aa^{\#}xy = xy,$$
$$(y^{\#}x^{+}aa^{\#})(xy) = y^{\#}(x^{+}aa^{\#}x)y = y^{\#}a^{+}ay = a^{\#}a,$$
$$(y^{\#}x^{+}aa^{\#})(xy)(y^{\#}x^{+}aa^{\#}) = a^{\#}ay^{\#}x^{+}aa^{\#} = y^{\#}x^{+}aa^{\#}.$$

Hence $(xy)^{\#} = y^{\#}x^{+}aa^{\#}$.

If $x \in \tau_a$, $y \in \gamma_a$, then the proof of (1) implies $(xy)^{\#} = y^+ x^{\#}aa^+$. If $x \in \gamma_a$, $y \in \tau_a$, then the proof of (2) implies $(xy)^{\#} = y^+ x^{\#}a^+a$. If $x, y \in \gamma_a$, then $x(aa^{\#})^* = x = (aa^{\#})^*x$, $x^{\#} = (aa^{\#})^*x^{\#}$ and $xx^+ = a^+a$, this gives

$$(xy)(y^{\#}x^{+}(aa^{\#})^{*}) = x(yy^{\#})x^{+}(aa^{\#})^{*} = x(aa^{\#})^{*}x^{+}(aa^{\#})^{*} = (aa^{\#})^{*},$$

$$(y^{\#}x^{+}(aa^{\#})^{*})(xy) = y^{\#}(x^{+}(aa^{\#})^{*}x)y = y^{\#}aa^{+}y = (aa^{\#})^{*},$$

$$(xy)(y^{\#}x^{+}(aa^{\#})^{*})(xy) = (aa^{\#})^{*}(xy) = xy,$$

$$(y^{\#}x^{+}(aa^{\#})^{*})(xy)(y^{\#}x^{+}(aa^{\#})^{*}) = (aa^{\#})^{*}y^{\#}x^{+}(aa^{\#})^{*} = y^{\#}x^{+}(aa^{\#})^{*}.$$

Hence $(xy)^{\#} = y^{\#}x^{+}(aa^{\#})^{*}$. \Box

Using Theorem 2.1, the following theorem gives a new form characterization of generalized inverses.

Theorem 2.2. Let $a \in R^{\#} \cap R^{+}$. Then

(1) $a \in \mathbb{R}^{EP}$ if and only if $(xy)^+ = y^+ x^{\#} a^+ a$ for some $x \in \tau_a$ and $y \in \chi_a$. (2) $a \in \mathbb{R}^{PI}$ if and only if $(xy)^+ = y^+ x^{\#} a^a$ for some $x \in \tau_a$ and $y \in \chi_a$. (3) $a \in \mathbb{R}^{SEP}$ if and only if $(xy)^+ = y^+ x^{\#} a^* a$ for some $x \in \tau_a$ and $y \in \chi_a$. (4) $a \in \mathbb{R}^{Nor}$ if and only if $(xy)^+ = y^+ x^{\#} (a^+)^* a^+ a^* a$ for some $x \in \tau_a$ and $y \in \chi_a$.

(4) $u \in \mathbb{R}^{-1}$ if and only if $(xy)^{+} = y^{+}x^{\#}a(a^{+})^{*}$ for some $x \in \tau_{a}$ and $y \in \chi_{a}$.

Proof. (1) \Longrightarrow Assume that $a \in R^{EP}$. Then $aa^+ = a^+a$. By Theorem 2.1(1), we have $(xy)^+ = y^+x^{\#}aa^+ = y^+x^{\#}a^+a$ for all $x \in \tau_a$ and all $y \in \chi_a$.

 \leftarrow From the assumption and Theorem 2.1(1), we have

$$y^+x^{\#}aa^+ = y^+x^{\#}a^+a$$
, for some $x \in \tau_a$ and $y \in \chi_a$.

If $y \in \tau_a$, then

$$(aa^+)x^{\#}aa^+ = (yy^+)x^{\#}aa^+ = y(y^+x^{\#}aa^+) = y(y^+x^{\#}a^+a) = (yy^+)(x^{\#}a^+a) = aa^+x^{\#}a^+a,$$

$$aa^{+} = aa^{\#}aa^{+} = (xaa^{+}x^{\#})aa^{+} = x(aa^{+}x^{\#}aa^{+}) = x(aa^{+}x^{\#}a^{+}a) = (xaa^{+}x^{\#})a^{+}a = aa^{\#}a^{+}a = aa^{\#}a^{+}a$$

Hence $a \in R^{EP}$.

If $y \in \gamma_a$, then

$$a^{+}ax^{\#}aa^{+} = (yy^{+})x^{\#}aa^{+} = y(y^{+}x^{\#}aa^{+}) = y(y^{+}x^{\#}a^{+}a) = a^{+}ax^{\#}a^{+}a,$$

$$aa^{+} = aa^{\#}aa^{+} = (xa^{+}ax^{\#})aa^{+} = x(a^{+}ax^{\#}aa^{+}) = x(a^{+}ax^{\#}a^{+}a) = (xa^{+}ax^{\#})a^{+}a = aa^{\#}a^{+}a = aa^{\#}a^{+}a$$

Hence $a \in R^{EP}$.

(2) \Longrightarrow Suppose that $a \in \mathbb{R}^{Pl}$. Then $a^+ = a^*$. It follows from Theorem 2.1(1), that $(xy)^+ = y^+ x^{\#} a a^+ = y^+ x^{\#} a a^*$ for all $x \in \tau_a$ and all $y \in \chi_a$.

 \Leftarrow By Theorem 2.1(1) and the assumption, one has

$$y^+x^{\#}aa^+ = y^+x^{\#}aa^*$$
, for some $x \in \tau_a$ and $y \in \chi_a$.

Noting that $x \in \tau_a$. Then

$$xyy^{+}x^{\#} = \begin{cases} xaa^{+}x^{\#}, \ y \in \tau_{a} \\ xa^{+}ax^{\#}, \ y \in \gamma_{a} \end{cases} = aa^{\#}$$

This gives

$$aa^{+} = aa^{\#}aa^{+} = xyy^{+}x^{\#}aa^{+} = xy(y^{+}x^{\#}aa^{+}) = xy(y^{+}x^{\#}aa^{*}) = (xyy^{+}x^{\#})aa^{*} = aa^{\#}aa^{*} = aa^{*}aa^{*}aa^{*} = aa^{*}aa^{*}aa^{*} = aa^{*}aa^{*}aa^{*}aa^{*} = aa^{*}aa^{$$

Hence $a \in R^{PI}$ by [15, Theorem 1.5.2].

(3) \implies Since $a \in R^{SEP}$, $a^{\#} = a^* = a^+$ and $a^*a = aa^+$ by [15, Theorem 1.5.3]. Hence $(xy)^+ = y^+ x^{\#} a^* a$ by Theorem 2.1(1) for all $x \in \tau_a$ and all $y \in \chi_a$.

 \Leftarrow Using the assumption $(xy)^+ = y^+ x^{\#} a^* a$ and Theorem 2.1(1), we have

 $y^+x^{\#}aa^+ = y^+x^{\#}a^*a$, for some $x \in \tau_a$ and $y \in \chi_a$.

This gives

$$aa^{+} = aa^{\#}aa^{+} = (xyy^{+}x^{\#})aa^{+} = xy(y^{+}x^{\#}aa^{+}) = xy(y^{+}x^{\#}a^{*}a)$$
$$= (xyy^{+}x^{\#})a^{*}a = aa^{\#}a^{*}a = (aa^{\#}a^{*}a)a^{+}a = aa^{+}a^{+}a.$$

Hence $a \in R^{EP}$, one gets

$$aa^+ = aa^{\#}a^*a = a^{\#}aa^*a = a^+aa^*a = a^*a.$$

Thus $a \in R^{SEP}$ by [15, Theorem 1.5.3].

(4) \implies From $a \in R^{Nor}$, we have $aa^* = a^*a$ and $a \in R^{EP}$. This gives

$$(a^{+})^{*}a^{+}a^{*}a = (a^{+})^{*}a^{+}aa^{*} = (a^{+})^{*}a^{*} = aa^{+}a^{*}a^{*}$$

Hence, by Theorem 2.1(1), $(xy)^+ = y^+ x^\# a a^+ = y^+ x^\# (a^+)^* a^+ a^* a$ for $x \in \tau_a$ and $y \in \chi_a$.

 $= \text{The assumption and Theorem 2.1(1) give } y^+ x^{\#} aa^+ = y^+ x^{\#} (a^+)^* a^+ a^* a \text{ for some } x \in \tau_a \text{ and some } y \in \chi_a.$ It follows that

$$aa^{+} = aa^{\#}aa^{+} = (xyy^{+}x^{\#})aa^{+} = xy(y^{+}x^{\#}aa^{+}) = xy(y^{+}x^{\#}(a^{+})^{*}a^{+}a^{*}a)$$
$$= (xyy^{+}x^{\#})(a^{+})^{*}a^{+}a^{*}a = aa^{\#}(a^{+})^{*}a^{+}a^{*}a = (a^{+})^{*}a^{+}a^{*}a$$

and

$$a^* = a^*aa^+ = a^*(a^+)^*a^+a^*a = a^+a^*a.$$

Hence $a \in R^{Nor}$ by [15, Theorem 1.3.2].

(5) \implies Since $a \in R^{Her}$, $a^+ = a^{\#} = (a^{\#})^* = (a^+)^*$. Hence, by Theorem 2.1(1), one has $(xy)^+ = y^+ x^{\#} a a^+ = y^+ x^{\#} a (a^+)^*$ for all $x \in \tau_a$ and all $y \in \chi_a$.

 \leftarrow The hypothesis and Theorem 2.1(1) imply

$$y^{+}x^{\#}aa^{+} = y^{+}x^{\#}a(a^{+})^{*}$$
, for some $x \in \tau_{a}$ and $y \in \chi_{a}$.

5020

This induces

$$aa^{+} = aa^{\#}aa^{+} = (xyy^{+}x^{\#})aa^{+} = xy(y^{+}x^{\#}a(a^{+})^{*}) = aa^{\#}a(a^{+})^{*} = a(a^{+})^{*}$$

Applying the involution on the equality, one gets

$$aa^{+} = a^{+}a^{*} = a^{+}a(a^{+}a^{*}) = a^{+}a(aa^{+}) = a^{+}a^{2}a^{+}$$

$$a = aa^{+}a = a^{+}a^{2}a^{+}a = a^{+}a^{2}.$$

Hence $a \in R^{EP}$, this induces $aa^+ = a^+a^* = a^\#a^*$. Thus $a \in R^{Her}$ by [15, Theorem 1.4.2]. \Box

Corollary 2.3. Let $a \in R^{\#} \cap R^{+}$. Then (1) $a \in R^{EP}$ if and only if $aa^{+}a^{*}a^{+} = a^{*}a^{\#}aa^{+}$. (2) $a \in R^{SEP}$ if and only if $aa^{+}a^{*}a^{+} = a^{+}a^{\#}aa^{+}$. (3) $a \in R^{PI}$ if and only if $a^{+}a^{+}a^{+} = a^{+}a^{*}a^{+}$. (4) $a \in R^{Her}$ if and only if $aa^{+}a^{*}a^{+} = a^{+}a^{2}a^{+}$.

(5) $a \in R^{Nor}$ if and only if $aa^+a^*a^+ = a^+a^*a^+a$.

Proof. (1) \Longrightarrow Since $a \in \mathbb{R}^{EP}$, $aa^+ = a^+a$, $a^\# = a^+$, it follows that

$$aa^{+}a^{*}a^{+} = a^{+}aa^{*}a^{+} = a^{*}a^{+} = a^{*}a^{+}aa^{+} = a^{*}a^{\#}aa^{+}.$$

 \leftarrow By Theorem 2.1(1), we have

$$(a(a^{\#})^{*})^{+} = ((a^{\#})^{*})^{+}a^{\#}aa^{+} = ((a^{\#})^{+})^{*}a^{\#}aa^{+}$$
$$= (a^{+}a^{3}a^{+})^{*}a^{\#}aa^{+} = aa^{+}a^{*}a^{+}aa^{\#}aa^{+} = aa^{+}a^{*}a^{+}$$

and

$$(a(a^{+})^{*})^{+} = ((a^{+})^{*})^{+}a^{\#}aa^{+} = a^{*}a^{\#}aa^{+}.$$

From the assumption, we have $(a(a^{\#})^*)^+ = (a(a^+)^*)^+$, this gives $a(a^{\#})^* = a(a^+)^*$. Applying the involution on the equality, one has $a^{\#}a^* = a^+a^*$. Hence $a \in R^{EP}$ by [15, Theorem 1.2.1].

 \leftarrow Noting that

 $(a^2)^+ = a^+ a^\# a a^+ and (a(a^\#)^*)^+ = a a^+ a^* a^+.$

Hence by the assumption, we have $(a^2)^+ = (a(a^{\#})^*)^+$, this gives

Hence $a \in R^{SEP}$ by [15, Theorem 1.5.3].

(3) \implies Since $a \in R^{PI}$, $a^+ = a^*$. This implies that $a^+a^+a^+ = a^+a^*a^+$. \iff Assume that $a^+a^+a^+ = a^+a^*a^+$. Then $aa^+a^+a^+ = aa^+a^*a^+$, one gets

$$(aa^+a^+a^+)^+ = (aa^+a^*a^+)^+$$

Since

We yield $a(a^{+})^{\#} = a(a^{\#})^{*}$, that is,

$$a(aa^{\#})^*a(aa^{\#})^* = a(a^{\#})^*.$$

Multiplying the equality on the left by a^+ , one has $(aa^{\#})^* = (a^{\#})^*$. This induces $(a^+)^{\#} = (a^{\#})^* = (a^*)^{\#}$, so $a^+ = a^*$. Thus $a \in \mathbb{R}^{PI}$.

(4) \implies From $a \in R^{Her}$, we have $a = a^*$ and $a \in R^{EP}$. This gives $aa^+a^*a^+ = aa^+aa^+ = aa^+a^2a^+$.

 \Leftarrow Suppose that $aa^+a^*a^+ = a^+a^2a^+$. Multiplying the equality on the left by $(aa^{\#})^*$, we get

$$a^*a^+ = aa^+a^*a^+.$$

Again multiply the last equality on the right by *aa*^{*}, we have

$$a^*a^* = aa^+a^*a^*.$$

This implies that $a^2 = a^3 a^+$. Hence $a \in R^{EP}$ by [15, Theorem 1.2.2]. It follows that

$$aa^{+}a^{*}a^{+} = a^{+}aa^{*}a^{+} = a^{*}a^{+}$$
 and $a^{+}a^{2}a^{+} = aa^{+} = aa^{\#}$.

So $a^*a^+ = aa^{\#}$. Hence $a \in \mathbb{R}^{Her}$ by [15, Theorem 1.4.2].

(5) \implies By the hypothesis, we get $aa^* = a^*a$ and $a \in R^{EP}$. This induces $aa^+a^*a^+ = a^+aa^*a^+ = a^+a^*aa^+ = a^+a^+a^+ = a^+a^+a^+ = a^+a^+a^+ = a^+a^+a^+ = a^+a^+ = a^+a^+ = a$

 \Leftarrow Since $aa^+a^*a^+ = a^+a^*a^+a$, by Theorem 2.1(1) and (2), we have

$$(a(a^{\#})^{*})^{+} = ((a^{\#})^{*}a)^{+}$$

This gives $a(a^{\#})^* = (a^{\#})^*a$. So $a^{\#}a^* = a^*a^{\#}$. Thus $a \in \mathbb{R}^{Nor}$. \Box

Theorem 2.4. Let $a \in R^{\#} \cap R^{+}$. Then

(1) a ∈ R^{EP} if and only if xy ∈ R^{EP} for some x, y ∈ τ_a.
(2) a ∈ R^{EP} if and only if xy ∈ R^{EP} for some x, y ∈ γ_a.
(3) If a ∈ R^{SEP}, then xy ∈ R^{SEP} for any x, y ∈ τ_a.
(4) If a ∈ R^{SEP}, then xy ∈ R^{SEP} for any x, y ∈ γ_a.

Proof. (1) \implies Assume that $a \in R^{EP}$ and $x, y \in \tau_a$. Then

$$y^+ x^{\#} a a^+ = y^+ x^{\#} a a^{\#} = y^+ x^{\#}$$

and

$$y^{\#}x^{+}aa^{\#} = y^{\#}x^{+}.$$

We claim that $y^+x^\# = y^\#x^+$. In fact $a^+ = a^\#$, this gives $((a^+)^*)^\# = ((a^+)^\#)^* = a^*$. Hence

$$y^{+} = \begin{cases} a^{+} , y = a \\ (a^{\#})^{+} , y = a^{\#} \\ ((a^{+})^{*})^{+} , y = (a^{+})^{*} \end{cases} = \begin{cases} a^{\#} , y = a \\ a , y = a^{\#} \\ a^{*} , y = (a^{+})^{*} \end{cases} = y^{\#}.$$

and $x^{\#} = x^{+}$. This implies $(xy)^{+} = y^{+}x^{\#}aa^{+} = y^{+}x^{\#} = y^{\#}x^{+}aa^{\#} = (xy)^{\#}$. Hence $xy \in \mathbb{R}^{EP}$.

 \leftarrow Suppose that $xy \in R^{\check{E}P}$. Then $(xy)^+ = (xy)^{\#}$. Since $x, y \in \tau_a$, by Theorem 2.1(1) and (3), we have

$$y^{+}x^{\#}aa^{+} = y^{\#}x^{+}aa^{\#}$$

This induces

$$aa^{+} = aa^{\#}aa^{+} = (xyy^{+}x^{\#})aa^{+} = xy(y^{+}x^{\#}aa^{+}) = xy(y^{\#}x^{+}aa^{\#})$$
$$= (xyy^{\#}x^{+})aa^{\#} = aa^{\#}aa^{\#} = aa^{\#}.$$

Hence $a \in R^{EP}$.

(2) \implies From $a \in R^{EP}$ and $x, y \in \gamma_a$, we have

$$a^+a = aa^+ = (aa^+)^* = (aa^\#)^*$$

and

$$y^{+} = \begin{cases} a , y = a^{+} \\ (a^{*})^{+} , y = a^{*} \\ ((a^{\#})^{*})^{+} , y = (a^{\#})^{*} \end{cases} = \begin{cases} (a^{+})^{\#} , y = a^{+} \\ (a^{*})^{\#} , y = a^{*} \\ a^{*} , y = (a^{\#})^{*} \end{cases}$$

This gives

$$(xy)^{+} = y^{+}x^{\#}a^{+}a = y^{\#}x^{+}(aa^{\#})^{*} = (xy)^{\#}.$$

Hence $xy \in R^{EP}$.

 \leftarrow The assumption and Theorem 2.1(2), (3) imply

$$y^+ x^\# a^+ a = y^\# x^+ (aa^\#)^*$$

It follows that

$$a^{+}a = (aa^{\#})^{*}a^{+}a = (xyy^{+}x^{\#})a^{+}a = (xy)y^{+}x^{\#}a^{+}a$$
$$= (xy)y^{\#}x^{+}(aa^{\#})^{*} = (xyy^{\#}x^{+})(aa^{\#})^{*} = (aa^{\#})^{*}(aa^{\#})^{*} = (aa^{\#})^{*}.$$

Hence $a \in R^{EP}$.

(3) Since $a \in R^{SEP}$, $\tau_a \subseteq R^{SEP}$. This implies for any $x, y \in \tau_a$, we have

$$x^* = x^+, y^\# = y^*.$$

Noting that $a^+ = a^\# = a^*$. Then

$$(xy)^{\#} = y^{\#}x^{+}aa^{\#} = y^{\#}x^{+} = y^{*}x^{*} = (xy)^{*}$$

Hence $xy \in R^{SEP}$.

(4) From $a \in R^{SEP}$, we have $\gamma_a \subseteq R^{SEP}$. This induces that

$$x^* = x^+, y^{\#} = y^* \text{ for any } x, y \in \gamma_a.$$

Hence

$$(xy)^{\#} = y^{\#}x^{+}(aa^{\#})^{*} = y^{\#}x^{+} = y^{*}x^{*} = (xy)^{*}.$$

Thus $xy \in R^{SEP}$. \Box

Let $a \in R^{EP}$. Then it is known that $a + 1 - aa^{\#} \in R^{-1}$ and $(a + 1 - aa^{\#})^{-1} = a^{\#} + 1 - aa^{\#}$.

Theorem 2.5. Let $a \in R^{\#} \cap R^{+}$. Then

(1) $xy + 1 - aa^{\#} \in R^{-1}$ and $(xy + 1 - aa^{\#})^{-1} = y^{\#}x^{+}aa^{\#} + 1 - aa^{\#}$, where $x, y \in \tau_a$. (2) $a \in R^{PI}$ if and only if $(xy + 1 - aa^{\#})^{-1} = y^{\#}x^{+}aa^{\#}a^{*}a + 1 - aa^{\#}$ for some $x, y \in \tau_{a}$. (3) $a \in R^{EP}$ if and only if $(xy + 1 - aa^{\#})^{-1} = y^{\#}x^{+}aa^{+} + 1 - aa^{\#}$ for some $x, y \in \tau_a$. (4) $a \in R^{SEP}$ if and only if $(xy + 1 - aa^{\#})^{-1} = y^{\#}x^{+}aa^{*} + 1 - aa^{\#}$ for some $x, y \in \tau_{a}$. (5) $a \in R^{Her}$ if and only if $(xy + 1 - aa^{\#})^{-1} = y^{\#}x^{+}a(a^{\#})^{*} + 1 - aa^{\#}$ for some $x, y \in \tau_{a}$. (6) $a \in R^{Nor}$ if and only if $(xy + 1 - aa^{\#})^{-1} = y^{\#}x^{+}aa^{*}a^{\#}(a^{\#})^{*} + 1 - aa^{\#}$ for some $x, y \in \tau_{a}$.

Proof. (1) Since $x, y \in \tau_a$, $(xy)^{\#} = y^{\#}x^+aa^{\#}$ and $(xy)(xy)^{\#} = aa^{\#}$ by Theorem 2.1(3). Hence $(xy + 1 - aa^{\#})^{-1} = aa^{\#}$ $y^{\#}x^{+}aa^{\#}+1-aa^{\#}.$

(2) \implies Suppose that $a \in \mathbb{R}^{PI}$. Then $a^{\#} = a^{\#}a^*a$ by [15, Theorem 1.5.2]. It follows from (1) that $(xy + 1 - 1)^{PI}$ $aa^{\#})^{-1} = y^{\#}x^{+}aa^{\#} + 1 - aa^{\#} = y^{\#}x^{+}aa^{\#}a^{*}a + 1 - aa^{\#}$ for all $x, y \in \tau_{a}$.

 \leftarrow From the assumption and (1), we have

$$y^{\#}x^{+}aa^{\#}a^{*}a + 1 - aa^{\#} = (xy + 1 - aa^{\#})^{-1} = y^{\#}x^{+}aa^{\#} + 1 - aa^{\#}$$
 for some $x, y \in \tau_a$.

This gives

$$y^{\#}x^{+}aa^{\#}a^{*}a = y^{\#}x^{+}aa^{\#}$$
 for some $x, y \in \tau_{a}$.

Since $x, y \in \tau_a$, $xyy^{\#}x^+ = xaa^{\#}x^+ = aa^+$, one gets

$$aa^{+}aa^{\#}a^{*}a = (xyy^{\#}x^{+})aa^{\#}a^{*}a = xy(y^{\#}x^{+}aa^{\#}a^{*}a) = xy(y^{\#}x^{+}aa^{\#})$$
$$= (xyy^{\#}x^{+})aa^{\#} = aa^{+}aa^{\#} = aa^{\#},$$

e.g.,

$$aa^{\#}a^{*}a = aa^{\#} and a = a^{2}a^{\#} = a^{2}a^{\#}a^{*}a = aa^{*}a.$$

Hence $a \in R^{PI}$.

(3) \implies The condition $a \in R^{EP}$ implies $aa^+ = aa^{\#}$. Hence, by (1),

$$(xy + 1 - aa^{\#})^{-1} = y^{\#}x^{+}aa^{+} + 1 - aa^{\#} \text{ for all } x, y \in \tau_{a}.$$

 \leftarrow From the assumption and (1), we have

$$y^{\#}x^{+}aa^{+} + 1 - aa^{\#} = (xy + 1 - aa^{\#})^{-1} = y^{\#}x^{+}aa^{\#} + 1 - aa^{\#} \text{ for some } x, y \in \tau_{a},$$

e.g.,

$$y^{\#}x^{+}aa^{+} = y^{\#}x^{+}aa^{\#}$$
 for some $x, y \in \tau_{a}$.

This infers

$$aa^+ = aa^{\#}aa^+ = (xyy^{\#}x^+)aa^+ = xy(y^{\#}x^+aa^+) = xy(y^{\#}x^+aa^{\#})$$

= $(xyy^{\#}x^+)aa^{\#} = aa^{\#}aa^{\#} = aa^{\#}.$

Hence $a \in R^{EP}$.

(4) \implies From $a \in \mathbb{R}^{SEP}$, we have $aa^{\#} = aa^*$ by [15, Theorem 1.5.3]. Hence $(xy + 1 - aa^{\#})^{-1} = y^{\#}x^+aa^* + 1 - aa^{\#}$ for all $x, y \in \tau_a$ by (1).

 \leftarrow The assumption and (1) imply

$$y^{\#}x^{+}aa^{\#} + 1 - aa^{\#} = (xy + 1 - aa^{\#})^{-1} = y^{\#}x^{+}aa^{*} + 1 - aa^{\#}$$
 for some $x, y \in \tau_a$,

e.g.,

$$y^{\#}x^{+}aa^{\#} = y^{\#}x^{+}aa^{*}$$
 for some $x, y \in \tau_{a}$.

This induces

$$aa^{\#} = aa^{\#}aa^{\#} = (xyy^{\#}x^{+})aa^{\#} = xy(y^{\#}x^{+}aa^{\#}) = xy(y^{\#}x^{+}aa^{*})$$
$$= (xyy^{\#}x^{+})aa^{*} = aa^{\#}aa^{*} = aa^{*}.$$

Hence $a \in R^{SEP}$ by [15, Theorem 1.5.3]. (5) \Longrightarrow Since $a \in R^{Her}$, $a^{\#} = (a^{\#})^*$. By (1), we have

$$(xy + 1 - aa^{\#})^{-1} = y^{\#}x^{+}aa^{\#} + 1 - aa^{\#} = y^{\#}x^{+}a(a^{\#})^{*} + 1 - aa^{\#}$$

 \leftarrow By the hypothesis and (1), one yields

$$y^{\#}x^{+}a(a^{\#})^{*} = y^{\#}x^{+}aa^{\#}$$
 for some $x, y \in \tau_{a}$.

Multiplying the equality on the left by *xy*, one gets

$$a(a^{\#})^* = aa^{\#}$$

Noting that $(a^{\#})^* = a^+ a (a^{\#})^* a a^+$. Then we have

$$a^{+} = a^{+}aa^{\#}aa^{+} = a^{+}a(a^{\#})^{*}aa^{+} = (a^{\#})^{*}aa^{+}$$

and $aa^+ = a(a^{\#})^* = aa^{\#}$. So $a \in R^{EP}$ and $a^{\#} = a^+ = (a^{\#})^*$. Thus $a \in R^{Her}$.

5024

(6) \implies Suppose that $a \in R^{Nor}$. Then $a \in R^{EP}$ and $aa^* = a^*a$, this leads to

 $aa^*a^{\#}(a^{\#})^* = a^*aa^+(a^+)^* = a^+a = aa^+ = aa^{\#}.$

Hence, by (1), we are done.

 \leftarrow From the (1) and the assumption, one obtains

$$y^{\#}x^{+}aa^{*}a^{\#}(a^{\#})^{*} = y^{\#}x^{+}aa^{\#}$$
 for some $x, y \in \tau_{a}$.

Multiplying the equality on the left by *xy*, one gets

$$aa^*a^{\#}(a^{\#})^* = aa^{\#}.$$

Multiplying the last equality on the right by aa^+ , one has $aa^{\#} = aa^+$. Hence $a \in \mathbb{R}^{EP}$ and

$$a^{+} = a^{+}aa^{+} = a^{+}aa^{\#} = a^{+}(aa^{*}a^{\#}(a^{\#})^{*}) = a^{*}a^{\#}(a^{\#})^{*},$$

$$a^{\#}a^{*} = a^{+}a^{*} = a^{*}a^{\#}(a^{\#})^{*}a^{*} = a^{*}a^{+}(aa^{\#})^{*} = a^{*}a^{+} = a^{*}a^{\#}.$$

Thus $a \in \mathbb{R}^{Nor}$. \square

3. Acknowledgement:

The authors would like to thank the referee for the valuable suggestions and comments that improved the presentation of this paper.

References

- [1] O. M. Baksalary, G. Trenkler, Characterizations of EP, normal and Hermitian matrices. Linear and Multilinear Algebra 56 (2006) 299-304.
- [2] W. X. Chen, On EP elements, normal elements and paritial isometries in rings with involution. Electron. J. Linear Algebra 23(2012) 553-561.
- [3] S. Cheng, Y. Tian, Two sets of new characterizations for normal and EP matrices., Linear Algebra Appl. 375 (2003) 181-195.
- [4] D. S. Djordjević, Characterization of normal, hyponormal and EP operators. J. Math. Anal. Appl. 329 (2)(2007) 1181-1190.
- [5] D. S. Djordjević, J. J. Koliha, Characterizing hermitian, normal and EP operators. Filomat 21(1)(2007) 39-54.
- [6] D. S. Djordjević, Products of EP operators on Hilbert spaces. Proc. Amer. Math. Soc. 129(6)(2000) 1727-1731.
- [7] R. E. Hartwig, I.vJ. Katz, On products of EP matrices. Linear Algebra Appl. 252(1997) 339-345.
- [8] R. E. Hartwig, Block generalized inverses. Arch. Retion. Mech. Anal. 61(1976) 197-251.
- [9] R. E. Hartwig, Generalized inverses, EP elements and associates. Rev. Roumaine Math. Pures Appl. 23(1978) 57-60.
- [10] R. E. Hartwig, I. J. Katz, Products of EP elements in reflexive semigroups. Linear Algebra and Appl. 14(1976) 11-19.
- [11] R. E. Harte, M. Mbekhta, On generalized inverses in C*-algebras. Studia Math. 103(1992) 71-77.
- [12] J. J. Koliha. The Drazin and Moore-Penrose inverse in C*-algebras. Math. Proc. R. Ir. Acad. 99A(1999) 17-27.
- [13] J. J. Koliha, D. Cvetković, D. S. Djordjević, Moore-Penrose inverse in rings with involution. Linear Algebra Appl. 426(2007) 371-381.
- [14] J. J. Koliha, P. Patrílcio, Elements of rings with equal spectral idempotents. J. Aust. Math. Soc. 72(2002) 137-152.
- [15] D. Mosić, Generalized inverses, Faculty of Sciences and Mathematics, University of Niš, 2018.
- [16] D. Mosić, D. S. Djordjević, J. J. Koliha, EP elements in rings. Linear Algebra Appl. 431(2009) 527-535.
- [17] D. Mosić, D. S. Djordjević, Moore-Penrose-invertible normal and Hermitian elements in rings. Linear Algebra Appl. 431(2009) 732-745.
- [18] D. Mosić, D. S. Djordjević, New characterizations of EP, generalized normal and generalized Hermitian elements in rings. Appl. Math. Comput. 218(2012) 6702-6710.
- [19] D. Mosić, Dragan S. Djordjević, Further results on partial isometries and EP elements in rings with involution. Math. Comput. Model. 54(2011) 460-465.
- [20] Dijana Mosić, Dragan S. Djordjević, Partial isometries and EP elements in rings with involution. Electron. J. Linear Algebra 18(2009) 761-722.
- [21] Y. C. Qu, J. C. Wei, H. Yao, Characterizations of normal elements in rings with involution. Acta. Math. Hungar. 156(2)(2018) 459-464.
- [22] L. Y. Shi, J. C. Wei, Some new characterizations of normal elements. Filomat 33(13)(2019) 4115-4120.
- [23] D. D. Zhao, J. C. Wei, Strongly EP elements in rings with involution. J. Algebra Appl. (2022), 2250088, 10pages, DOI: 10.1142/S0219498822500888.

5025