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Abstract. A proper ideal I of a ring R is called an r-ideal if, whenever x, y ∈ R with xy ∈ I, we have x ∈ I
or y ∈ Z(R) [R. Mohamadian, r-ideals in commutative rings, Turkish J. Math. 39(5) (2015),733-749]. In this
article, we are interested in a subclass of the class of r-ideals which we call the class of strongly r-ideals.
A proper ideal I of a ring R is called a strongly r-ideal if, whenever x, y ∈ R with xy ∈ I, we have x ∈ I or
y ∈ Z(I). First, we give a basic study of this new concept which includes, among others, characterizations,
properties and examples. After that, we use the introduced concept to characterize rings for which the
diameter of the zero-divisor graph is less than or equal to two, rings for which the annihilator graph is
complete, and rings for which the zero-annihilator graph is empty.

1. Introduction

Throughout, all rings considered are commutative with nonzero unity. Let R be a ring, I be an ideal of
R, and S be a subset of R. Set S∗ := S\{0} and (I : S) := {x ∈ R | xS ⊆ I}. The annihilator of S over R is
defined by annR(S) := (0 : S) = {x ∈ R | xS = (0)}, and the annihilator of S in I is defined by annI(S) =
annR(S)∩ I = {x ∈ I | xS = (0)}. An element a ∈ R is said to be a zero-divisor following I if annI(a) , (0). The
set of zero-divisors following I is denoted by Z(I); that is Z(I) = {x ∈ R | there exists i ∈ I∗ such that xi = 0}.
In particular, Z(R) = {x ∈ R | there exists y ∈ R∗ scuh that xy = 0} is the set of zero-divisors of R. The
set of regular elements following I is Reg(I) = R\Z(I) = {x ∈ R | annI(x) = (0)}, and the set of regular
elements of R is Reg(R) = R\Z(R). The ideal I is said to be proper if I , R. The radical of I is denoted by
√

I := {x ∈ R | xn
∈ I for some integer n ≥ 1}, and the nil-radical of R is denoted by nil(R) :=

√
(0). The total

ring of fractions of R is denoted Q(R) :=
{

a
b | a ∈ R and b ∈ Reg(R)

}
. The ring R is said to be a total fractions

ring if R = Q(R), equivalently, every element in R is either a zero-divisor or a unit.

In [15], Mohamadian introduced the concept of r-ideals. A proper ideal I of a ring R is called an r-ideal if,
whenever x, y ∈ R with xy ∈ I, we have x ∈ I or y ∈ Z(R). Let a ∈ R and set Pa the intersection of all minimal
prime ideals containing a. Following [7], a proper ideal I is said a z0-ideal if, for each a ∈ I, we have Pa ⊆ I.
It is proved that every z0-ideal is an r-ideal, however the two concepts are different ([15]). Let C(X) be the
ring of real valued continuous functions on a Tychonoff space X. In [15, Proposition 5.4], it is proved that,
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over C(X), every r-ideal is a z0-ideal if and only if X is a ∂-space (a space in which the boundary of any
zeroset is contained in a zeroset with empty interior). Several recently introduced notions are related to the
notion of r-ideals (see, for example, [17, 19])

In this paper, we are interested in a subclass of the class of r-ideals which we call the class of strongly
r-ideals. A proper ideal of a ring R is called a strongly r-ideal if, whenever x, y ∈ R with xy ∈ I, we have
x ∈ I or y ∈ Z(I).
Section 2 gives a preliminary study of strongly r-ideals. Among other results, it is proved that an ideal I
is a strongly r-ideal if and only if I is an r-ideal and Z(R) = Z(I) (Theorem 2.2). Other characterizations of
strongly r-ideals are given in Theorem 2.6. Theorem 2.7 gives some characterizations of strongly r-ideal
of Q(R). Theorem 2.13 states that if a minimal prime ideal of a reduced ring R is a strongly r-ideal then
R admits an infinity of minimal prime ideals. Let I be a proper ideal of a reduced ring R. Theorem 2.17
characterizes when I[X] is a strongly r-ideal of R[X].

For a graph G, we set V(G) and E(G) to be the sets of vertices and edges of G, respectively. Two elements
x, y ∈ V(G) are defined to be adjacent, denoted by x − y, if there exists an edge between them. A path
between two elements a1, an ∈ V(G) is an ordered sequence of distinct vertices of G, {a1, a2, ..., an}, such that
ai − ai+1. We say that G is connected if there is a path between any two distinct vertices of G. The length of
a path between x and y is the number of edges crossed to get from x to y in the path. The distance between
x, y ∈ V(G), denoted d(x, y), is the length of a shortest path between x and y, if such a path exists; otherwise,
d(x, y) = ∞. The diameter of a graph is diam(G) = max{d(x, y) | x, y ∈ V(G)}. The graph G is said to be
complete if each pair of distinct vertices forms an edge. For a general background on graph theory, we refer
the reader to [18].
In section 3, we use the concept of strongly r-ideal to study some graphic properties of some well-know
graphs of rings. The zero-divisor graph of a ring R, introduced by Anderson and Livingston in [5] and
denoted by Γ(R), is the simple graph associated to R such that its vertex set is Z(R)∗ and that two distinct
vertices x and y are adjacent if and only if xy = 0. This graph turns out to best exhibit the properties of the
set of zero-divisors of a commutative ring. The zero-divisor graph helps us to study the algebraic properties
of rings using graph theoretical tools. We can translate some algebraic properties of a ring to graph theory
language and then the geometric properties of graphs help us to explore some interesting results in the
algebraic structures of rings. The zero-divisor graphs of commutative rings have attracted the attention
of several researchers. It was proved, among other things, that Γ(R) is connected with diam(Γ(R)) ≤ 3 ([5,
Theorem 2.3]). For a survey and recent results concerning zero-divisor graphs, we refer the reader to [3].
Theorem 3.1 proves that annR(x) is a strongly r-ideal for each x ∈ Z(R)∗ if and only if diam(Γ(R)) ≤ 2 and
Z(R) is an ideal of R. As a consequence, Theorem 3.5 shows that annR[X]( f ) is a strongly r-ideal for each
f ∈ Z(R[X])∗ if and only if R is McCoy and Z(R) is an ideal of R (recall that a ring R is said to be a McCoy
ring if each finitely generated ideal contained in Z(R) has a nonzero annihilator [10] (referred to as Property
A in [11–13])).
In [8], Badawi defined the annihilator graph of a commutative ring R, denoted by AG(R), as a simple graph
whose vertex set is the set of all nonzero zero-divisors of R and two distinct vertices x and y are adjacent if
and only if annR(xy) , annR(x)∪ annR(y). Badawi studied some graph theoretical parameters of this graph
such as diameter and girth. In addition, he studied some conditions under which the annihilator graph
is identical to it’s sub-graph, zero-divisor graph. He also determined when AG(R) is a complete graph
provided R is reduced. Theorem 3.11 and Corollary 3.12 study when AG(R) is a complete graph in the case
when R is non-reduced.

2. Strongly r-ideals in commutative rings

We begin by recalling the key definition of this paper.

Definition 2.1. Let R be a ring. A proper ideal I is called a strongly r-ideal if, whenever a, b ∈ R with ab ∈ I, then
annI(a) , (0) or b ∈ I.
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The following characterization of strongly r-ideals will be used often throughout this article.

Theorem 2.2. Let R be a ring and I be a proper ideal of R. The following are equivalent.

1. I is a strongly r-ideal.
2. I is an r-ideal and Z(I) = Z(R).

Proof. (⇒) It is clear that every strongly r-ideal is an r-ideal. Moreover, the inclusion Z(I) ⊆ Z(R) is always
satisfied for each ideal I of R. Let I be a strongly r-ideal. We need to show now that Z(R) ⊆ Z(I). Let a ∈ Z(R)
and consider b ∈ R∗ such that ab = 0. If b ∈ I then a ∈ Z(I). So, suppose that b < I. Since ab = 0 ∈ I and b < I,
we obtain that annI(a) , (0). Thus, a ∈ Z(I). Accordingly, Z(R) ⊆ Z(I), as desired.
(⇐) Let a, b ∈ R such that ab ∈ I and b < I. Since I is an r-ideal , we have annR(a) , (0). Thus, a ∈ Z(R) = Z(I).
So, annI(a) , (0). Hence, I is a strongly r-ideal of R.

Note that the zero ideal is an r-ideal while it is not a strongly r-ideal.

Proposition 2.3. Let R be a ring and I be a proper ideal of R. If I is a strongly r-ideal then (0) , I ⊆ Z(I). The
equivalence holds if I is prime.

Proof. Let I be a strongly r-ideal of R. Note that (0) is never a strongly r-ideal since Z((0)) = ∅. Hence, I , (0).
On the other hand, since I is an r-ideal, I is consisting entirely of zero-divisors. Thus, I ⊆ Z(R) = Z(I).
Let P be a nonzero prime ideal with P ⊆ Z(P). Let a, b ∈ R with ab ∈ P and b < P. Then, a ∈ P ⊆ Z(P). Hence,
annP(a) , (0). So, P is a strongly r-ideal.

Remarks 2.4.

1. For a ring R, if Z(R) is a nonzero ideal of R, then it is a strongly r-ideal.
2. For a nonzero example of an r-ideal that is not a strongly r-ideal, consider the ring R = Z4 ×Z4 and the ideal

I = 2Z4×(0). It is well known that R is zero-dimensional, and then nonunit elements of R are the zero-divisors of
R. Hence, every ideal of R is an r-ideal. On the other hand, 2Z4×Z4 = Z(I) , Z(R) = (2Z4 ×Z4)∪(Z4 × 2Z4).
Thus, I is not a strongly r-ideal.

Let S be a multiplicatively closed subset of R and consider f : R → S−1R; the natural homomorphism
defined by f (x) = x

1 . Let Jc denote the contraction of J in R, i.e, Jc := f−1(J) =
{
x ∈ R | x

1 ∈ J
}
.

Lemma 2.5. Let S be a multiplicatively closed subset of R. If J is a strongly r-ideal of S−1R, then Jc is a strongly
r-ideal of R. The equivalence holds when S = Reg(R).

Proof. Let a, b ∈ R with ab ∈ Jc and a < Jc. Thus, ab
1 ∈ J and a

1 < J. Then, annJ

(
b
1

)
,
(

0
1

)
. So, there exists

0
1 ,

x
s ∈ J such that xb

s =
0
1 . Hence, 0 , x ∈ Jc (since x

1 =
x
s .

s
1 ∈ J) and xs′ , 0 for each s′ ∈ S. Moreover, there

exists s′′ ∈ S such that xbs′′ = 0. Then, 0 , xs′′ ∈ annJc (b). Therefore, Jc is a strongly r-ideal of R.
Now, suppose that S = Reg(R) and that Jc is a strongly r-ideal of R. Let a

r ,
b
r′ ∈ Q(R) =

(
Reg(R)

)−1 (R) with
a
r .

b
r′ ∈ J and a

r < J. Then, ab ∈ Jc and a < Jc. Thus, there exists a nonzero element x ∈ Jc such that xb = 0.
Hence, 0

1 ,
x
1 ∈ J and x

1 .
b
r′ =

0
1 . So, J is a strongly r-ideal of Q(R).

Let R be a ring and I be a nonzero proper ideal of R. It is easy to see that Reg(I) is a multiplicative closed
subset of R (with 0 < S). So, set QI(R) :=

(
Reg(I)

)−1 R =
{

a
b | a ∈ R and b ∈ Reg(I)

}
.

Next, we give some other characterizations of strongly r-ideals.

Theorem 2.6. Let R be a ring and I be a nonzero proper ideal of R. The following statements are equivalent.

1. I is a strongly r-ideal of R.
2. I = (I : r) for each r ∈ Reg(I).
3. I = Jc for some ideal J of QI(R).
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Proof. (1) ⇒ (2) Let r ∈ Reg(I). By Proposition 2.3, r < I since I ⊆ Z(I). Hence, (I : r) is a proper ideal of R.
Let a ∈ (I : r). We have ar ∈ I and annI(r) = (0). Thus, a ∈ I. Hence, (I : r) ⊆ I. Consequently, I = (I : r) since
the inclusion I ⊆ (I : r) is always satisfied.
(2) ⇒ (3) Set J =

(
Reg(I)

)−1 I. We have I ⊆ Jc. Now, let x ∈ Jc. Then, x
1 ∈ J. Therefore, xr ∈ I for some

r ∈ Reg(I). Hence, x ∈ (I : r) = I. Accordingly, I = Jc.
(3)⇒ (1) Let a, b ∈ R such that ab ∈ I and annI(a) = (0). Then, ab

1 ∈ J and a ∈ Reg(I). Thus, b
1 =

ab
1 .

1
a ∈ J. So,

b ∈ Jc = I.

Let R be a ring. It is clear that every ideal of Q(R) is an r-ideal, and so strongly r-ideals of Q(R) are the ideals
J such that Z(J) = Z(Q(R)).
Next, we characterize strongly r-ideals of Q(R) in terms of strongly r-ideals of R.

Theorem 2.7. Let R be a ring and J be a proper ideal of Q(R). Then, the following are equivalent.

1. J is a strongly r-ideal of Q(R).
2. Jc is a strongly r-ideal of R.
3. Z(Jc) = Z(R).
4. Z(J) = Z(Q(R)).

Proof. The equivalence (1)⇔ (4) follows from Theorem 2.2 since every ideal of Q(R) is an r-ideal.
(1)⇔ (2) Follows from Lemma 2.5.
(2)⇒ (3) Follows from Theorem 2.2.
(3) ⇒ (4) Let x

s ∈ Z(Q(R)). There exists 0
1 ,

y
s′ ∈ Q(R) such that xy

ss′ =
0
1 . Hence, y , 0 and xy = 0. So,

x ∈ Z(R) = Z(Jc). Then, there exists 0 , z ∈ Jc such that xz = 0. So, x
s .

z
1 =

0
1 and 0

1 ,
z
1 ∈ J. Then, x

s ∈ Z(J).
Thus, Z(Q(R)) ⊆ Z(J) and we are done.

Proposition 2.8. Let R be a ring and e , 1 be an idempotent element of R. Then, Re is an r-ideal which is not a
strongly r-ideal.
Consequently, every decomposable ring (in particular, every non-local ring) contains a nonzero r-ideal which is not a
strongly r-ideal.

Proof. Let x, y ∈ R with xy ∈ Re and y < Re. Then, xy(1 − e) = 0 and y(1 − e) = y − ye , 0 since y < Re. Thus,
annR(x) , (0). Hence, Re is an r-ideal. On the other hand, e(1 − e) = 0 ∈ Re, 1 − e < Re, and annRe(e) = (0).
Thus, Re is not a strongly r-ideal.

Proposition 2.9. Let R be a reduced ring and 0 , a ∈ R. Then, Ra is never a strongly r-ideal of R.

Proof. Suppose that Ra is a strongly r-ideal. Then, by Proposition 2.3, 0 , a ∈ Ra ⊆ Z(Ra). Thus, there
exists r ∈ R such that ra , 0 and ra2 = 0. Since R is reduced and (ra)2 = 0, we get ra = 0, which leads to a
contradiction.

Proposition 2.10. Let R be a ring which is not a domain and x ∈ Z(R)∗. Then, the following are equivalent.

1. annR(x) is a strongly r-ideal of R.
2. Z (annR(x)) = Z(R).
3. For each y ∈ Z(R), annR(x) ∩ annR(y) , (0).

Proof. The equivalence (2) ⇔ (3) is clear. Moreover, it is easy to see that annR(x) is an r-ideal. Hence, the
equivalence (1)⇔ (2) follows immediately from Theorem 2.2.

Corollary 2.11. Let R be a non-reduced ring and a ∈ nil(R)∗. If k is the smallest positive integer such that ak = 0
then annR(ak−1) is a strongly r-ideal.
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Proof. Necessarily, k ≥ 2 and annR(ak−1) is proper. Let x ∈ Z(R). There exists y ∈ R∗ such that xy = 0. If
y ∈ annR(ak−1) then x ∈ Z

(
annR(ak−1)

)
. So, assume that y < annR(ak−1). Then, yak−1 , 0 and ya2k−2 = 0

since 2k − 2 ≥ k. Therefore, yak−1
∈ annR(ak−1). Thus, x ∈ Z

(
annR(ak−1)

)
since xyak−1 = 0. Consequently,

Z(R) = Z
(
annR(ak−1)

)
. Thus, annR(ak−1) is a strongly r-ideal (by Proposition 2.10).

Proposition 2.12. Let R be a ring such that Q(R) is von Neumann regular. Then, annR(a) is never a strongly r-ideal
for each a ∈ R.

Proof. Note first that R must be reduced since Q(R) is so. If a = 0 then annR(a) = R, and if a ∈ Reg(R)
then annR(a) = (0). In the both cases, annR(a) is not a strongly r-ideal. So, we may assume that a ∈ Z(R)∗.
Since Q(R) is von Neumann regular, we can write a

1 =
r1
r2

b
r3

with r1
r2

is a unit element of Q(R) and b
r3

is an

idempotent element of Q(R). Since r1
r2

is unit, we have also r1 ∈ Reg(R). Moreover, b(r3−b)
r2

3
= b

r3

(
1
1 −

b
r3

)
= 0

1 .
Thus, ar2r3 = r1b and b(r3 − b) = 0. Hence, ar2r3(r3 − b) = r1b(r3 − b) = 0. So, a(r3 − b) = 0. If r3 = b then
ar2 = r1, and so a is a regular element of R, a contradiction. Thus, x = r3 − b ∈ Z(R)∗. Now, we claim that
annannR(a)(x) = (0). Let α ∈ R such that αa = αx = 0. Hence, αb = 0 since ar2r3 = r1b. Then, αr3 = α(x+ b) = 0,
and so α = 0. Thus, annannR(a)(x) = (0). Finally, we get ax = 0 ∈ annR(a), a < annR(a) and annannR(a)(x) = (0).
Consequently, annR(a) is not a strongly r-ideal.

It is well-known that a reduced ring R with only a finite number of minimal prime ideals (in particular, a
reduced Noetherian ring) has von Neumann regular total ring of fractions Q(R). Propositions 2.9 and 2.12
say that in such rings neither Ra nor annR(a) is a strongly r-ideal for each a ∈ R. The next result shows that
minimal prime ideals are also not strongly r-ideals in such rings.
Let Min(R) denote the set of minimal prime ideals of the ring R.

Theorem 2.13. Let R be a reduced ring. If Min(R) contains a strongly r-ideal then Min(R) is infinite.

Proof. Suppose that there exists a minimal prime ideal P1 which is a strongly r-ideal. Assume that Min(R)
is finite and set Min(R) = {P1, · · · ,Pn}. If n = 1 then R is a domain and P1 = (0), a contradiction since (0)

cannot be a strongly r-ideal. Hence, n ≥ 2. Let x ∈ P1 and suppose that x <
n⋃

i=2

Pi. Since P1 ⊆ Z(P1), there

exists y ∈ P∗1 such that xy = 0. Thus, y ∈
n⋂

i=1

Pi = (0), a contradiction. Thus, x ∈
n⋃

i=2

Pi, and so P1 ⊆

n⋃
i=2

Pi, a

contradiction (by [11, Theorem 2.5]). Consequently, Min(R) is infinite.

Here are some properties of strongly r-ideals.

Theorem 2.14. Let R be a ring. Then, the following hold.

1. If I is a strongly r-ideal of R then, (I : S) is a strongly r-ideal of R for each nonempty subset S of R such that
S ⊈ I.

2. Every maximal strongly r-ideal of R is a prime ideal.
3. If I is a strongly r-ideal of R and P is a minimal prime ideal over I, then P is a strongly r-ideal.
4. If I is a strongly r-ideal of R then so is

√
I.

Proof. (1) It is easy to see that (I : S) , R. Let a, b ∈ R with ab ∈ (I : S) and b < (I : S). There exists x ∈ S
such that abx ∈ I and bx < I. Hence, annI(a) , (0). Since I ⊆ (I : S), we get ann(I:S)(a) , (0). Thus, (I : S) is a
strongly r-ideal.
(2) Suppose that P is a maximal strongly r-ideal of R, and let a, b ∈ R with ab ∈ P and a < P. We have to
show that b ∈ P. By (1), (P : a) is a strongly r-ideal which contains P. By the maximality of P, we obtain that
P = (P : a). Hence, b ∈ (P : a) = P.
(3) Firstly, (0) , I ⊆ P. Let a, b ∈ R such that ab ∈ P and annP(a) = (0) (so a , 0). By [11, Theorem 2.1],
there exists x < P and a positive integer n ≥ 1 such that xanbn

∈ I. Let α ∈ annP(an). Then, αan−1a = 0.
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Since annP(a) = (0), we get αan−1 = 0. By induction, we obtain that α = 0. Hence, annP(an) = (0). Thus,
annI(an) = (0). Thus, xbn

∈ I ⊆ P. Then, b ∈ P.
(4) Note that (0) , I ⊆

√
I. Let a, b ∈ R with ab ∈

√
I and b <

√
I. We have to show that ann√I(a) , (0).

We may assume that a , 0. We have anbn
∈ I for some integer n ≥ 1 and bn < I. Thus, annI(an) , (0). Let

x ∈ I∗ such that xan = 0, and k be the smallest integer such that xak = 0. Note that k ≥ 1 since x , 0. Hence,
0 , xak−1

∈ ann√I(a). Thus,
√

I is a strongly r-ideal of R

Remark 2.15. 1. Let R be a ring. If Z(R) is a nonzero ideal of R then it is the unique maximal strongly r-ideal of
R.

2. The previous results about reduced rings do not mean that reduced rings, in general, do not contain strongly
r-ideals. Indeed, seeing Remark 3.2 and Corollary 3.4 of section 3, [14, Example 5.1] is a witness of a reduced
ring with strongly r-ideals.

3. Let I be a proper ideal of a ring R. If
√

I is a strongly r-ideal of R then I need not be a strongly r-ideal of R. For
example, for R = Z/4Z, the ideal Z (Z/4Z) = 2Z/4Z =

√
(0) is a strongly r-ideal of Z/4Z but (0) is not.

Proposition 2.16. Let R be a ring.
1. R admits a strongly r-ideal if and only if R admits a (nonzero) prime ideal P such that P ⊆ Z(P).
2. If (R,M) is local then, M is a strongly r-ideal if and only if R is a total ring of fractions.

Proof. (1) If R admits a strongly r-ideal of R, then R admits a maximal strongly r-ideal P which is nonzero
prime ideal (by Theorem 2.14), and so, by Proposition 2.3, (0) , P ⊆ Z(P). Conversely, if P is a prime ideal
of R such that P ⊆ Z(P) then, P , (0). Indeed, Z(0) = ∅. Now, using Proposition 2.3, P must be a strongly
r-ideal.
(2) If M is a strongly r-ideal, then (0) , M ⊆ Z(M) = Z(R) ⊆ M. Thus, M = Z(R). So, R is a total ring of
fractions. Conversely, if R is a local total ring of fractions, then Z(R) is a maximal ideal, and then Z(R) is a
strongly r-ideal.

Let R be a ring and let f ∈ R[x] be a polynomial in one variable over R. The content of f , denoted by c( f ),
is the ideal of R generated by the coefficients of f . The content of a polynomial, c( f ), satisfies a number of
multiplicative properties. For example, the Dedekind-Mertens Lemma (see, for example, [6, Theorem 1])
asserts that for every two polynomials f and 1 in R[x]:

c( f )c(1)k+1 = c(1)kc( f1), where k = deg( f ).

Let R be a reduced ring and I be a proper ideal of R. The next result characterizes when I[X] is a strongly
r-ideal of R[X].

Theorem 2.17. Let R be a reduced ring and I be a proper ideal of R. Then, the following are equivalent.
1. I[X] is a strongly r-ideal of R[X].
2. For each ideal A of R and each finitely generated ideal B of R, AB ⊆ I implies that A ⊆ I or annI(B) , (0).
3. For each finitely generated ideals A and B of R, AB ⊆ I implies that A ⊆ I or annI(B) , (0).

Proof. Let 1 ∈ R[X]. Using [2, Theorem 3.3], we have

annI[X](1) = annR[X](1) ∩ I[X] = annR(c(1))[X] ∩ I[X] = annI(c(1))[X].

(1)⇒ (2) Let A be an ideal of R and B a finitely generated ideal of R with AB ⊆ I and A ⊈ I. Set B =
∑n

i=1 Rbi
and 1 =

∑n
i=1 biXi. Then, B = c(1). Let a ∈ A\I. We have aB ⊆ I. Then, a1 ∈ I[X]. Thus, since a < I[X], we get

annI(B)[X] = annI(c(1))[X] = annI[X](1) , (0). So, annI(B) , (0), as desired.
(2)⇒ (3) Clear.
(3) ⇒ (1) Let f , 1 ∈ R[X] with f1 ∈ I[X] and annI[X](1) = (0). We have to show that f ∈ I[X]. We may
assume that f , 0. We have c( f )c(1)k+1 = c(1)kc( f1) where k = deg( f ). Hence, c( f )c(1)k+1

⊆ I since c( f1) ⊆ I.
Moreover, annI(c(1))[X] = annI[X](1) = (0). Thus, annI(c(1)) = (0). Set 1 =

∑n
i=1 biXi and let x ∈ annI(c(1)k+1).

Then, for each i ∈ {1, · · · ,n}, xabk+1
i = 0. Hence, (xbi)k+1 = 0. Since R is reduced, we get xbi = 0. Hence,

x ∈ annI(c(1)) = (0). Thus, annI(c(1)k+1) = (0). Since c( f ) and c(1)k+1 are finitely generated, we get c( f ) ⊆ I.
Hence, f ∈ I[X].
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Corollary 2.18. Let I be a proper ideal of a reduced ring R. If I[X] is a strongly r-ideal of R[X] then

1. I is a strongly r-ideal of R, and
2. for each finitely generated sub-ideal B of I, annI(B) , (0).

Proof. (1) Let a, b ∈ R with ab ∈ I. Set A = Ra and B = Rb. Since AB ⊆ I, we have A ⊆ I or annI(B) , (0) (by
Theorem 2.17). Thus, a ∈ I or annI(b) , (0). Accordingly, I is a strongly r-ideal of R.
(2) We have RB = B ⊆ I and R ⊈ I. Then, annI(B) , (0).

A ring R is said to have the strong annihilator condition or briefly R satisfies (s.a.c.) if for each finitely
generated ideal I of R there exists an element a ∈ I with annR(I) = annR(a) ([2]).

Proposition 2.19. Let R be a ring satisfying the (s.a.c) and I be a proper ideal of R. Then,
√

I is a strongly r-ideal of
R if and only if

√
I[X] is a strongly r-ideal of R[X].

Proof. (⇒) Suppose that
√

I is a strongly r-ideal of R. Let f , 1 ∈ R[X] with f1 ∈
√

I[X] and ann√I[X](1) = (0).

We have to show that f ∈
√

I[X]. We may assume that f , 0. We have ann√I(c(1)) ⊆ ann√I[X](1) = (0).

Hence, ann√I(c(1)) = (0). There exists so a ∈ c(1) such that ann√I(a) = annR(a) ∩
√

I = annR(c(1)) ∩
√

I =
ann√I(c(1)) = (0). As in the proof of Theorem 2.17, we can show that c( f )k+1c(1) ⊆

√
I where k = deg(1).

Thus, c( f )k+1a ⊆
√

I and ann√I(a) = (0). Hence, c( f )k+1
⊆
√

I, and so c( f ) ⊆
√

I. Thus, f ∈
√

I[X].
Consequently,

√
I[X] is a strongly r-ideal of R[X].

(⇐) Clear.

Proposition 2.20. Let I1 × I2 be a proper ideal of a direct product of rings R1 × R2. Then I1 × I2 is a strongly r-ideal
of R1 × R2 if and only if I1 and I1 are strongly r-ideals of R1 and R2, respectively.

Proof. (⇒) Let x, y ∈ R1 with xy ∈ I1 and x < I1. Then, (x, 0)(y, 1) = (xy, 0) ∈ I1 × I2 and (x, 0) < I1 × I2. Thus,
there exists a nonzero element (r1, r2) ∈ I1 × I2 such that (r1, r2)(y, 1) = (0, 0). Thus, r2 = 0, and so r1 ∈ I∗1 with
r1y = 0. So, I1 is a strongly r-ideal of R1. Similarly, I2 is a strongly r-ideal of R2.
(⇐) Let (x1, x2), (y1, y2) ∈ R1 × R2 with (x1, x2)(y1, y2) ∈ I1 × I2 and (x1, x2) < I1 × I2. Thus, x1 < I1 or
x2 < I2. Suppose, for example, that x1 < I1. Since x1y1 ∈ I1, there exists r ∈ I∗1 such that ry1 = 0. Thus,
(r, 0)(y1, y2) = (0, 0) and (r, 0) ∈ (I1 × I2)∗. Hence, I1 × I2 is a strongly r-ideal of R1 × R2.

Proposition 2.21. Let R be a ring, S ⊆ Reg(R) be a multiplicatively closed subset of R, and I be a proper ideal of R.
If I is a strongly r-ideal of R then S−1I is a strongly r-ideal of S−1R.

Proof. Since I ∩ S ⊆ Z(R) ∩ Reg(R) = ∅, S−1I is a proper ideal of S−1R. Let a
s1
, b

s2
∈ S−1R with a

s1

b
s2
∈ S−1I and

a
s1
< S−1I. Then, as < I for each s ∈ S and abs3 ∈ I for some s3 ∈ S. Hence, there exists c ∈ I∗ such that bc = 0.

Since S ⊆ Reg(R), c
1 ∈
(
S−1I
)∗

and b
s2
. c1 =

0
1 . Hence, S−1I is a strongly r-ideal of S−1R.

3. Strong r-ideals and some related graphs

This section is devoted to the use of the notion of strongly r-ideals to characterize some graphical properties
of some well-known graph of rings.
The first result of this section characterizes rings R such that diam(Γ(R)) ≤ 2 provided Z(R) is an ideal of R.

Theorem 3.1. Let R be a ring which is not a domain. Then, the following are equivalent:

1. For each x ∈ Z(R)∗, annR(x) is a strongly r-ideal.
2. For each x ∈ Z(R)∗, Z (annR(x)) = Z(R).
3. For each x, y ∈ Z(R)∗, annR(x) ∩ annR(y) , (0).
4. diam(Γ(R)) ≤ 2 and Z(R) is an ideal of R.
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Proof. The equivalences (1)⇔ (2)⇔ (3) follow from Proposition 2.10.
(3) ⇒ (4) Let x, y ∈ Z(R)∗. There exists r ∈ R∗ such that rx = ry = 0. Thus, r(x + y) = 0. So, x + y ∈ Z(R).
Then, Z(R) is an ideal of R. Moreover, if x , y and xy , 0 then x − r − y is a path. Thus, d(x, y) = 2. Hence,
diam(Γ(R)) ≤ 2.
(4) ⇒ (3) Let x, y ∈ Z(R)∗. If x = y then, annR(x) ∩ annR(y) = annR(x) , (0). So, suppose that x , y. Since
diam(Γ(R)) ≤ 2, we get either xy = 0 or there exists r ∈ Z(R)∗ such that rx = ry = 0. In the last case,
0 , r ∈ annR(x) ∩ annR(y), as desired. Suppose now, that x , y and that xy = 0. Since Z(R) is an ideal,
x + y ∈ Z(R), and then there exists α ∈ Z(R)∗ such that α(x + y) = 0. Set r = αx = −αy. If r = 0 then
0 , α ∈ annR(x) ∩ annR(y). Now, if r , 0 then rx = ry = 0 and so 0 , r ∈ annR(x) ∩ annR(y). In all cases, we
get annR(x) ∩ annR(y) , (0).

Remark 3.2. An example of a reduced (resp. non-reduced) ring R with diam(Γ(R)) ≤ 2 such that Z(R) is an ideal
of R is given in [14, Example 5.1] (resp. [14, Example 5.5]).

Let R be a non-reduced ring. Using [5, Theorem 2.2] and [14, Corollary 2.5], we conclude that if diam(Γ(R)) ≤
2 then Z(R) is an ideal. Hence, we have the following corollary.

Corollary 3.3. Let R be a non-reduced ring. Then, diam(Γ(R)) ≤ 2 if and only if annR(x) is a strongly for each
x ∈ Z(R)∗.

Let R be a reduced ring with diam(Γ(R)) ≤ 2 such that Z(R) is an ideal of R. Following [14, Theorem 2.6],
diam(R) ≥ 1. Suppose now that diam(Γ(R)) = 1. Then, xy = 0 for each distinct pair of zero-divisors and
R has at least two nonzero zero-divisors. Let x ∈ Z(R)∗. Then, x2 , 0 since R is reduced. If x , x2 then
x3 = xx2 = 0, and so x = 0, a contradiction. Thus, x = x2, and so x is a non trivial idempotent. Moreover,
1− x is a non trivial idempotent, and so is a zero-divisor. Hence, 1 = x+ (1− x) ∈ Z(R) since Z(R) is an ideal,
a contradiction. Thus, diam(Γ(R)) = 2. We conclude then the following corollary.

Corollary 3.4. Let R be a reduced ring. Then, annR(x) is a strongly r-ideal for each x ∈ Z(R)∗ if and only if
diam(Γ(R)) = 2 and Z(R) is an ideal of R.

Theorem 3.5. Let R be a ring which is not a domain. Then, the following are equivalent:

1. For each f ∈ Z(R[X])∗, annR[X]( f ) is a strongly r-ideal.
2. For each f , 1 ∈ Z(R[X])∗, annR[X]( f ) ∩ annR[X](1) , (0).
3. diam(Γ(R[X])) ≤ 2 and Z(R[X]) is an ideal of R.
4. Z(R[X]) is an ideal of R.
5. R is McCoy and Z(R) is an ideal of R.
6. For each finitely generated ideals A,B ⊆ Z(R), A + B has a nonzero annihilator.

Proof. As R is not a domain, R[X] is not either. Then, the equivalences between (1), (2), and (3) follow from
Theorem 3.1. Moreover, the equivalence (4)⇔ (5) is just [14, Theorem 3.3].
(3)⇒ (4) Clear.
(5)⇒ (3) Note first that diam(Γ(R[X])) ≥ 1 (By [14, Theorem 3.4]) and that Z(R[X]) is an ideal. If Z(R)2 , (0),
then diam(Γ(R[X])) = 2 ((By [14, Theorem 3.4]). So, assume that Z(R)2 = (0). If R is reduced then for each
x ∈ Z(R), we have x2 = 0 and so x = 0. Hence, R is a domain, a contradiction. Hence, R is not reduced.
Thus, diam(Γ(R[X])) = 1 (By [14, Theorem 3.4]).
(5)⇒ (6) Let A,B ⊆ Z(R) be two finitely generated ideals of R. Since Z(R) is an ideal, A + B ⊆ Z(R). Hence,
since A + B is finitely generated and R is a McCoy ring, A + B has a nonzero annihilator.
(6) ⇒ (5) Let A ⊆ Z(R) be a finitely generated ideal. By hypothesis, A = A + (0) has a nonzero annihilator.
So, R is a McCoy ring. Let x, y ∈ Z(R). Then, Rx + Ry has a nonzero annihilator. Thus, Rx + Ry ⊆ Z(R), and
so Z(R) is an ideal of R.

Remark 3.6. An example of a reduced (resp. non-reduced) McCoy ring R such that Z(R) is an ideal of R is given in
[14, Example 5.3] (resp. [14, Example 5.5]).
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As is the case of corollaries 3.3 and 3.4, we deduce the following ones

Corollary 3.7. Let R be a non-reduced ring. Then, the following are equivalent.

1. For each f ∈ Z(R[X])∗, annR[X]( f ) is a strongly r-ideal.
2. diam(Γ(R[X])) ≤ 2.
3. R is McCoy and Z(R) is an ideal of R.

Corollary 3.8. Let R be a reduced ring. Then, the following are equivalent.

1. For each f ∈ Z(R[X])∗, annR[X]( f ) is a strongly r-ideal.
2. diam(Γ(R[X])) = 2 and Z(R) is an ideal of R.
3. R is McCoy and Z(R) is an ideal of R.

The zero-annihilator graph of R, introduced by Mostafanasab in [16] and denoted by ZA(R), is the graph
whose vertex set is the set of all nonzero nonunit elements of R and two distinct vertices x and y are adjacent
whenever annR(Rx + Ry) = annR(x) ∩ annR(y) = (0).
Recall that an empty graph is a graph in which there are no edges between its vertices.

Corollary 3.9. Let R be a ring which is not a domain. Then, the following are equivalent:

1. For each nonzero nonunit element x ∈ R, annR(x) is a strongly r-ideal.
2. For each nonzero nonunit elements x, y ∈ R, annR(x) ∩ annR(y) , (0).
3. R is local with maximal ideal Z(R) and diam(Γ(R)) ≤ 2.
4. ZA(R) is empty.

Proof. If one of the assertions (1), (2), or (3) holds then annR(x) , (0) for each nonzero nonunit element x ∈ R
(recall that (0) cannot be a strongly r-ideal). Thus, R is a total ring of fractions. So, the equivalences between
(1), (2), and (3) follow from Theorem 3.1.
(2)⇒ (4) follows directly from the definition of the zero-annihilator graph.
(4)⇒ (2) Let x, y ∈ R be nonzero nonunit elements. If x , y then, since ZA(R) is empty, annR(x)∩ annR(y) ,
(0), as desired. Hence, it suffices to prove that annR(x) = annR(x) ∩ annR(x) , (0), that is x is a zero-divisor.
Suppose that x is regular. Hence, x , x2, and x and x2 are regular. Thus, annR(x)∩ annR(x2) = (0). However,
ZA(R) is empty, and so annR(x) ∩ annR(x2) , (0), a contradiction.

Remark 3.10. An example of a local reduced (resp. non-reduced) ring R with maximal ideal Z(R) and diam(Γ(R)) ≤ 2
is given in [14, Example 5.2] (resp. [14, Example 5.6]).

Next, we are interested to rings R such that every nonzero proper ideal of Q(R) is a strongly r-ideal
of Q(R). Suppose that R is reduced. Let x ∈ Z(R)∗. Then, Q(R) x

1 is a strongly r-ideal of Q(R). Thus,
Z
(
Q(R) x

1

)
= Z(Q(R)). Since x

1 ∈ Z(Q(R)), there exists a
s ∈ Q(R) such that a

s .
x
1 ,

0
1 and a

s .
x
1 .

x
1 =

0
1 . That is ax , 0

and ax2 = 0. Hence, (ax)2 = 0. Since R is reduced, we get ax = 0, a contradiction. Thus, Z(R) = {0}, and so R
is a domain. So, we turn our attention to the case when R is non-reduced.

Theorem 3.11. Let R be a non-reduced ring and set Q = Q(R). Then, the following are equivalent.

1. Every nonzero proper ideal of Q is a strongly r-ideal of Q.
2. For every nonzero proper ideal J of Q, Jc is a strongly r-ideal of R.
3. For each x ∈ Z(R)∗, Q x

1 is a strongly r-ideal of Q.
4. For each x ∈ Z(R)∗, Z(Rx) = Z(R).
5. For each x, y ∈ Z(R)∗, annR(y) , annR(xy).
6. For each x, y ∈ Z(R)∗, annR(x) ∪ annR(y) , annR(xy).
7. For each x, y ∈ Z(R)∗, Rx ∩ annR(y) , (0).
8. For each nonzero ideal I of R and y ∈ Z(R)∗, I ∩ annR(y) , (0).
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9. For each ideal (0) , I ⊆ Z(R) and y ∈ Z(R)∗, I ∩ annR(y) , (0).
10. For each ideal (0) , I ⊆ Z(R), Z(I) = Z(R).
11. R is indecomposable and AG(R) is complete.
12. Z(R) is an ideal and AG(R) is complete.
13. Q is local and AG(Q) is complete.

Proof. (1)⇔ (2) Follows from Theorem 2.7.
(1)⇒ (3) Clear.
(3)⇒ (4) Let x ∈ Z(R)∗ and r ∈ Z(R). Then, r

1 ∈ Z(Q). Following Theorem 2.2, we have Z
(
Q x

1

)
= Z(Q). Then,

there exists a
s ∈ Q such that ax

s ,
0
1 and axr

s =
0
1 . Then, ax , 0 and axr = 0. Thus, r ∈ Z(Rx). Consequently,

Z(Rx) = Z(R).
(4) ⇒ (5) Let x, y ∈ Z(R)∗. We have x ∈ Z(R) = Z(Ry). So, there exists r ∈ R such that ry , 0 and rxy = 0.
Then, r ∈ annR(xy)\annR(y).
(5) ⇒ (6) Let x, y ∈ Z(R)∗. If annR(x) ∪ annR(y) = annR(xy) then annR(x) and annR(y) are comparable and
annR(x) = annR(xy) or annR(y) = annR(xy), a contradiction.
(6)⇒ (7) Let x, y ∈ Z(R)∗. By hypothesis, we have annR(x)∪annR(y) ⊊ annR(xy). Let α ∈ annR(xy)\annR(x)∪
annR(y). Then, αxy = 0 and αx , 0. Thus, 0 , αx ∈ Rx ∩ annR(y), as desired.
(7) ⇒ (8) Let I be a nonzero ideal of R and let y ∈ Z(R)∗. Let r ∈ I. Then, either r ∈ Z(R) or r is regular
and 0 , ry ∈ I ∩ Z(R). Thus, we have always I ∩ Z(R) , (0). Consider 0 , x ∈ I ∩ Z(R). We have
(0) , Rx ∩ annR(y) ⊆ I ∩ annR(y).
(8)⇒ (9) Clear.
(9) ⇒ (10) Let (0) , I ⊆ Z(R) be an ideal of R. Let y ∈ Z(R)∗ and consider 0 , x ∈ I ∩ annR(y). Then, x ∈ I∗

and xy = 0. Thus, annI(y) , (0). Hence, y ∈ Z(I). So, Z(R) ⊆ Z(I). Consequently, Z(I) = Z(R).
(10)⇒ (1) Let J be a nonzero proper ideal of Q. Thus, (0) , Jc

⊆ Z(R). Then, Z(Jc) = Z(R). So, by Theorem
2.7, J is a strongly r-ideal of Q.
(6) ⇒ (11) Clearly AG(R) is complete. Let e ∈ R be an idempotent. If e is not trivial (that is e < {0, 1})
then e ∈ Z(R)∗. Hence, annR(e) = annR(e) ∪ annR(e) , annR(e2) = annR(e), a contradiction. Thus R is
indecomposable.
(11) ⇒ (6) Since AG(R) is complete, it suffices to show that annR(a) , ann(a2) for each a ∈ Z(R)∗. If a2 = 0,
we have the desired result. So, we may assume that a2 , 0. Moreover, a2 , a, otherwise a becomes an
non trivial idempotent which is impossible since R is indecomposable. Thus, since AG(R) is complete
and a and a2 are two distinct nonzero zero-divisors of R, we have annR(a) ∪ annR(a2) ⊊ annR(a3). Thus,
ann(a) ⊆ annR(a2) ⊊ annR(a3). There exists r ∈ R such that ra3 = 0 and ra2 , 0. Thus, (ra)a2 = 0 and (ra)a , 0.
Hence, ra ∈ annR(a2)\annR(a). Consequently, for each a ∈ Z(R)∗, we have annR(a) , annR(a2).
(11)⇒ (12) Let a, b ∈ Z(R)∗. Clearly, b2 , b since R is indecomposable.
Suppose that ab = 0. If b2 = 0, then b(a+ b) = 0, and so a+ b ∈ Z(R). Suppose now that b2 , 0. Since AG(R) is
complete, there exists c ∈ R such that cb3 = 0 and cb2 , 0. Thus, cb2(a + b) = 0. Hence, a + b ∈ Z(R). Assume
now that ab , 0 and let r ∈ R∗ such that ra = 0. Clearly r , b. Thus, there exists r′ ∈ R such that r′rb = 0 and
rr′ , 0. Hence, rr′(a + b) = 0. So, a + b ∈ Z(R). Consequently, Z(R) is an ideal of R.
(12) ⇒ (11) Let e be an non trivial idempotent of R. Then, e, 1 − e ∈ Z(R). Thus, 1 = e + (1 − e) ∈ Z(R), a
contradiction. Thus, R is indecomposable.
(12) ⇔ (13) First, it is easy to show that AG(R) is complete if and only if AG(Q) is complete. Moreover, Q
is a total ring of fractions, and then every proper ideal of Q is contained in Z(Q). So, Q is local if and only
if Z(Q) is an ideal. On the other hand, Z(R) is an ideal of R if and only if Z(Q) is an ideal of Q. Thus, we
conclude the desired equivalence.

In [1], Adlifard and Payrovi study when AG(R) is complete. The next result continues in this line of
investigation.

Corollary 3.12. Let R be a non-reduced ring. Then, the following are equivalent.

1. Every nonzero proper ideal of R is a strongly r-ideal.
2. For each nonzero nonunit element x ∈ R, Rx is a strongly r-ideal.
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3. For each nonzero nonunit elements x, y ∈ R, annR(y) , annR(xy).
4. For each nonzero nonunit elements, annR(x) ∪ annR(y) , annR(xy).
5. For each nonzero nonunit elements, Rx ∩ annR(y) , (0).
6. For each ideal nonzero ideal I of R and each nonzero nonunit element y ∈ R, I ∩ annR(y) , (0).
7. For each ideal (0) , I ⊆ Z(R) and each nonzero nonunit element y ∈ R, I ∩ annR(y) , (0).
8. R is local with maximal ideal Z(R) and AG(R) is complete.

Proof. The implications (1)⇒ (2) and (5)⇒ (6)⇒ (7) are clear.
(2)⇒ (3) Let x be a nonzero nonunit element of R. Since Rx is a strongly r-ideal, we have x ∈ Rx ⊆ Z(R) =
Z(Rx). Thus, every nonzero nonunit element of R is a zero-divisor. Thus, the desired result follows from
the implication (4)⇒ (5) of Theorem 3.11.
The proof of the implications (3)⇒ (4)⇒ (5) is similar to the proof of (5)⇒ (6)⇒ (7) in Theorem 3.11.
(7) ⇒ (8) Since annR(y) , (0) for each nonzero nonunit element of R, every nonzero nonunit element of R
is a zero-divisor. Thus, R is a total quotient ring. Hence, R = Q(R). Thus, the desired result follows from
(9)⇒ (13) of Theorem 3.11.
(8)⇒ (1) Once again, it is clear that R is a total quotient ring, and so R = Q(R). Thus, the present implication
is just (13)⇒ (1) of Theorem 3.11.

Recall from [9] that a ring R is said to be an UN-ring if every nonunit element a of R is a product of a unit
and a nilpotent elements. Following [17, Proposition 2.25], R is a UN-ring if and only if every element of
R is either nilpotent or unit if and only if nil(R) is a maximal ideal of R. A simple example of UN-rings is
Z/9Z.

Proposition 3.13. Let R be a ring and set Q = Q(R).

1. If Z(R) = nil(R) then, every nonzero proper ideal of Q is a strongly r-ideal of Q.
2. If R is a UN-ring then, every nonzero proper ideal of R is strongly r-ideal of R.

Proof. (1) If R is reduced then Z(R) = (0), and so R is a domain and Q is a field. In this case, the desired
result follows trivially. Now, assume that R is non-reduced. Using Theorem 3.11, we have to show that
annR(a) , annR(ab) for each a, b ∈ Z(R)∗. Let a, b ∈ Z(R)∗. If ab = 0 then annR(a) , R = annR(ab). Hence,
assume that ab , 0. Let n be the smallest integer such abn = 0. Such integer exists since b is nilpotent, and
we have n > 1. Then, bn−1

∈ annR(ab)\annR(a). So, we have the desired result.
(2) Since R is a UN-ring, Z(R) = nil(R) is a maximal ideal. Thus, R = Q. So, the desired result follows from
(1).

Theorem 3.14. Let R be a ring with the ascending chain condition on annihilator ideals (in particular if R is
Noetherian) and set Q = Q(R). Then, the following are equivalent.

1. Every nonzero proper ideal of Q is a strongly r-ideal of Q.
2. Z(R) = nil(R).

Proof. (1) ⇒ (2) Suppose that R is reduced. Let x ∈ Z(R)∗. By Theorem 3.11, we have Z(xR) = Z(R). Thus,
there exists r ∈ R such that rx , 0 and rx2 = 0. Thus, (rx)2 = 0, and so rx = 0, a contradiction. Hence,
Z(R) = (0). So, Z(R) = nil(R) = (0), as desired. Assume now that R is not reduced. Let a ∈ Z(R)∗. Consider
the increasing sequence of annihilator ideals:

annR(a) ⊆ annR(a2) ⊆ · · · ⊆ annR(an) ⊆ · · ·

There exists n such that annR(an) = annR(an+1). Hence, by Theorem 3.11, an = 0. Thus, a ∈ nil(R). So,
nil(R) = Z(R).
(2)⇒ (1) Follows from Proposition 3.13.

Theorem 3.15. Let R be a ring with the ascending chain condition on annihilator ideals. Then, the following are
equivalent.



K. Alhazmy et al. / Filomat 37:15 (2023), 5027–5038 5038

1. Every nonzero proper ideal of R is a strongly r-ideal of R.
2. R is a UN-ring.

Proof. (1) ⇒ (2) If R is reduced, then as in the proof of Theorem 3.14, we can prove that every nonunit
element is zero. Thus, R is a field. Thus, R is a UN-ring. Now, if R is non-reduced, by Corollary 3.12, R is
local with maximal ideal Z(R), and so R = Q(R). Then, by Theorem 3.14, Z(R) = nil(R) is maximal, and so
R is a UN-ring.
(2)⇒ (1) Follows from Proposition 3.13.

Proposition 3.16. Let R be a ring such that every nonzero prime ideal is maximal. Then, the following are equivalent.

1. Every nonzero proper ideal of R is a strongly r-ideal of R.
2. R is a UN-ring.

Proof. (1) ⇒ (2) If R is reduced, then as in the proof of Theorem 3.14, we can prove that every nonunit
element is zero. Thus, R is a field. Thus, R is a UN-ring. So, suppose that R is not reduced. By Corollary
3.12, R is local with maximal ideal Z(R). Let P be a minimal prime ideal. Since P , (0) (otherwise, R is
reduced), P is maximal, and so P = Z(R). Thus, R admits a unique prime ideal which is necessarily nil(R).
Thus, nil(R) = Z(R) is maximal. So, R is a UN-ring.
(2)⇒ (1) Follows from Proposition 3.13.

Remarks 3.17. It is possible to have a local ring R which is not a UN-ring such that Z(R) is a maximal ideal
of R and AG(R) is a complete graph. Let Z(2) be the ring of integers localized at the prime ideal (2), that is
Z(2) =

{
a
b | a ∈ Z and b ∈ 2Z + 1

}
. Set M = Q/Z(2) and consider R = Z(+)M, the trivial extension of Z by the

Z-module M. Then, R is a local ring with maximal ideal Z(R) = 2Z(+)M, nil(R) = {0}(+)M , Z(R), and AG(R) is
complete (by [8, Theorem 3.24]).
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