Filomat 37:15 (2023), 5039–5051 https://doi.org/10.2298/FIL2315039K

Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

Right *e*-core inverse and the related generalized inverses in rings

Yuanyuan Ke^{a,*}, Long Wang^b, Jiahui Liang^b, Ling Shi^a

^a School of Artificial Intelligence, Jianghan University, Wuhan, 430056, Hubei, P. R. China ^b School of Mathematics, Yangzhou University, Yangzhou, 225002, Jiangsu, P. R. China

Abstract. In this paper, some characterizations and properties of right *e*-core inverses by using right invertible element and {1, 3*e*}-inverse are investigated. Meanwhile, some characterizations for a new generalized right *e*-core inverse which is called right pseudo *e*-core inverse are also studied. The relationship between right pseudo *e*-core inverses and right *e*-core inverses are presented.

1. Introduction

Let \mathcal{R} be an associative ring with the unit 1. An involution $* : \mathcal{R} \to \mathcal{R}$ is an anti-isomorphism which satisfies $(a^*)^* = a$, $(a + b)^* = a^* + b^*$ and $(ab)^* = b^*a^*$ for all $a, b \in \mathcal{R}$. We call \mathcal{R} a *-ring if there exists an involution on \mathcal{R} . Recall that an element $a \in \mathcal{R}$ is said to be Hermitian if $a^* = a$. And an element $a \in \mathcal{R}$ is an idempotent if $a^2 = a$.

The core inverse of a complex matrix was first introduced by Baksalary and Trenkler [3]. Later, Rakić et al. [11] generalized this concept to the case of an arbitrary *-ring. An element $a \in \mathcal{R}$ is core invertible (resp. dual core invertible) if there is an element $x \in \mathcal{R}$ such that

axa = a, $x\mathcal{R} = a\mathcal{R}$ (resp. $\mathcal{R}x = \mathcal{R}a$), $\mathcal{R}x = \mathcal{R}a^*$ (resp. $x\mathcal{R} = a^*\mathcal{R}$).

Such an *x* above is called a core inverse of *a*. It is unique if it exists and is denoted by a^{\oplus} (resp. a_{\oplus}). Moreover, it was proved in [11] that $a \in \mathcal{R}$ is core invertible if and only if there exists an element $x \in \mathcal{R}$ satisfying the following five equations:

 $axa = a, xax = x, (ax)^* = ax, xa^2 = a, ax^2 = x.$

Indeed, Xu, Chen and Zhang [14] proved that the above five equations can be deduced to three equations:

$$xa^2 = a$$
, $ax^2 = x$ and $(ax)^* = ax$.

In [5], Gao and Chen defined the pseudo core inverse by three equations in a *-rings, which extend the classical core inverses. An element $a \in \mathcal{R}$ is pseudo core invertible if there exist an $x \in \mathcal{R}$ and a positive integer *k* satisfying

²⁰²⁰ Mathematics Subject Classification. 15A09; 16W10.

Keywords. Core inverse; Right core inverse; Right pseudo core inverse; Right *e* core inverse; Right *e* pseudo core inverse. Received: 26 August 2022; Accepted: 21 November 2022

Communicated by Dijana Mosić

Research supported by the National Science Foundation of China (No.11901245, No.11901510), and the National Science Foundation of Jiangsu Province (No. BK20200944).

^{*} Corresponding author: Yuanyuan Ke

Email addresses: keyy086@126.com (Yuanyuan Ke), lwangmath@yzu.edu.cn (Long Wang), 506390843@qq.com (Jiahui Liang), 2806073607@qq.com (Ling Shi)

Y. Ke et al. / Filomat 37:15 (2023), 5039–5051 5040

$$xa^{k+1} = a^k$$
, $ax^2 = x$ and $(ax)^* = ax$.

If such an *x* exists, it is unique and is called a pseudo core inverse of *a*, and denoted by $a^{\mathbb{D}}$. The smallest positive integer *k* is called the pseudo core index of *a*.

Later, Mosić, Deng and Ma [10] introduced the definitions of the *e*-core inverse and the *f*-dual core inverse of elements in *-rings, which generalized the concepts of the core inverse and the dual core inverse, where *e* and *f* are invertible Hermitian elements. Following [10], any element $x \in \mathcal{R}$ is called an *e*-core inverse (or a weighted core inverse with weight *e*) of $a \in \mathcal{R}$, if it satisfies

$$axa = a$$
, $x\mathcal{R} = a\mathcal{R}$, and $\mathcal{R}x = \mathcal{R}a^*e$.

Such an *e*-core inverse *x* of *a* is unique if it exists, and is denoted by $a^{e,\oplus}$. If e = 1 in the above definition, then $a^{e,\oplus} = a^{\oplus}$ is the ordinary core inverse of *a*. Moreover, the authors characterized *e*-core inverse by three equations, that is, *a* is *e*-core invertible if and only if there exists $x \in \mathcal{R}$ such that

$$xa^2 = a$$
, $ax^2 = x$ and $(eax)^* = eax$.

Wang and Mosić [12] introduced the one-sided core inverse, which considered as the special case of right (b, c)-inverse, called it right core inverse in *-ring. Then they gave some characterizations for it. Recall that an element $a \in \mathcal{R}$ is said to be right core invertible if there is $x \in \mathcal{R}$ satisfying

$$axa = a$$
, $ax^2 = x$ and $(ax)^* = ax$.

Later, Wang, Mosić and Gao [13] investigated some properties of right core inverses, and gave new characterizations and expressions for them by using projections and one-sided invertible elements. They also introduced and studied a new generalized right core inverse which is called right pseudo core inverse. An element $a \in \mathcal{R}$ is right pseudo core invertible if there exist $x \in \mathcal{R}$ and positive integer k satisfy

$$axa^k = a^k$$
, $ax^2 = x$ and $(ax)^* = ax$.

We use the symbols a_r^{\oplus} and a_r^{\oplus} to denote the right core inverse and right pseudo core inverse of *a*, respectively.

In [15], Zhu and Wang derived the existence criteria and characterizations for the weighted Moore-Penrose, *e*-core inverse, *f*-dual core inverse and one-sided inverses along an element in rings. Later they in [16] defined two types of outer generalized inverses, called pseudo *e*-core inverse and pseudo *f*-dual core inverse. An element $a \in \mathcal{R}$ is called pseudo *e*-core invertible (resp. pseudo *f*-core invertible) if there are $x \in \mathcal{R}$ and positive integer *k* such that

$$xax = x$$
, $x\mathcal{R} = a^k\mathcal{R}$ (resp. $\mathcal{R}x = \mathcal{R}a^k$), $\mathcal{R}x = \mathcal{R}(a^k)^*e$ (resp. $fx\mathcal{R} = (a^k)^*\mathcal{R}$).

Furthermore, they investigated some characterizations and properties for them, and gave the relations between the pseudo *e*-core inverse and the inverse along an element.

Motivated by the aforementioned above, in this article, we will investigate some characterizations and properties for right *e*-core inverses by using right invertible element and {1,3*e*}-inverse. Meanwhile, we also study some characterizations for a new generalized right *e*-core inverse which is called right pseudo *e*-core inverse. Finally, we present the relationship between right pseudo *e*-core inverses and right *e*-core inverses.

Now, we give the main concepts and symbols.

Let $e, f \in \mathcal{R}$ be two invertible Hermitian elements, we say that $a \in \mathcal{R}$ is a weighted Moore-Penrose invertible with weights e, f if there exists an $x \in \mathcal{R}$ satisfying the following four equations (see [1, 2]):

(1)
$$axa = a$$
, (2) $xax = x$, (3e) $(eax)^* = eax$, (4f) $(fxa)^* = fxa$.

If such an *x* exists, it is unique and called a weighted Moore-Penrose inverse of *a*, denoted by $a_{e,f}^{\dagger}$. The set of all weighted Moore-Penrose invertible elements of \mathcal{R} with weighted *e*, *f* will be denoted by $\mathcal{R}_{e,f}^{\dagger}$. If e = f = 1 in the above equations, then $a_{e,f}^{\dagger} = a^{\dagger}$ is the ordinary Moore-Penrose inverse of *a*. More generally, if *a* and *x* satisfy the equations (1) axa = a and (3*e*) $(eax)^* = eax$, then *x* is called a {1,3*e*}-inverse of *a*, and

is denoted by $a^{(1,3e)}$. Similarly, if *a* and *x* satisfy the equations (1) axa = a and (4*f*) $(fxa)^* = fxa$, then *x* is called a {1,4*f*}-inverse of *a*, and is denoted by $a^{(1,4f)}$. As usual, we denote by $\mathcal{R}^{[1,3e]}$ and $\mathcal{R}^{[1,4f]}$ the sets of all {1,3*e*}-invertible and {1,4*f*}-invertible elements in \mathcal{R} , respectively. If *a* and *x* satisfy the equations (1) axa = a, (2) xax = x, and (5) ax = xa, then *x* is called a group inverse of *a*, and is denoted by a^{\sharp} . All the group invertible elements of \mathcal{R} is denoted by \mathcal{R}^{\sharp} .

As weaker versions of the (*b*, *c*)-invertibility, one-sided (*b*, *c*)-invertibility is introduced by Drazin [4]:

Definition 1.1. Let $a, b, c \in \mathbb{R}$. Then a is called right (resp. left) (b, c)-invertible if $c \in cab\mathcal{R}$ (resp. $b \in \mathcal{R}cab$), or equivalently if there exists $z \in b\mathcal{R}$ such that caz = c (resp. $x \in \mathcal{R}c$ such that xab = b), in which case any such z (resp. x) will be called a right (resp. left) (b, c)-inverse of a.

In [4], Drazin considered some properties of left (or right) (b, c)-inverses under the additional conditions, such as \mathcal{R} is strongly π -regular. In [6], Ke, Višnjić and Chen introduced left and right annihilator (b, c)-inverses and investigated some properties of them and of left (or right) (b, c)-inverses. In [12], the authors studied the properties of left (or right) (b, c)-inverses under the condition *cab* is regular. As applications, the authors introduced the one-sided core inverse, for the convenience of the reader, the definitions of right core inverses are given again see [13, Definition 1.3].

Definition 1.2. [13, Definition 1.3] Let $a \in \mathcal{R}$. We say that a is right core invertible if a is right (a, a^*)-invertible.

Motivated by above definition, the authors introduced the one-sided *e*-core inverse in [13, Remark 4.12], here we also give the definition.

Definition 1.3. [13] Let $a \in \mathcal{R}$ and $e \in \mathcal{R}$ be an invertible Hermitian element. An element a is called right e-core invertible if a is right (a, a^*e)-invertible.

Note that, by Definition 1.3, *a* is right *e*-core invertible if and only if $a^*e \in a^*ea^2\mathcal{R}$ if and only if there exists $x \in \mathcal{R}$ such that $x \in a\mathcal{R}$ and $a^*eax = a^*e$. The sets of all right *e*-core invertible elements of \mathcal{R} will be denoted by $\mathcal{R}_r^{e,\oplus}$. The symbol $a_r^{e,\oplus}$ is used to denote the right *e*-core inverse of *a*, if $a \in \mathcal{R}_r^{e,\oplus}$.

Next section we will study the properties of right *e*-core inverses.

2. Characterizing right e-core inverses by idempotent and one-sided inverse in a *-ring

In [9, Theorems 3.3 and 3.4], Li and Chen gave the characterizations and expressions of core inverse of an element by a projection and units. Motivated by this, in this section, we present some equivalent conditions for the existence of right *e*-core inverses. We will prove that *a* is right *e*-core invertible if and only if there exists an idempotent *p* such that $(ep)^* = ep$, pa = 0, and $a^n + p$ is right invertible for $n \ge 1$. Before we start, the following result is needed.

Lemma 2.1. [7, Theorem 1.4] Let $a \in \mathcal{R}$ and $e \in \mathcal{R}$ be an invertible Hermitian element. Then the following statements are equivalent:

(*i*) *a* is right *e*-core invertible;

(ii) there exists $x \in \mathcal{R}$ such that axa = a, $x = ax^2$ and $(eax)^* = eax$.

Remark 2.2. In fact, all right e-core inverses $a_r^{e,\oplus}$ of a satisfy

$$aa_{r}^{e,\oplus}a = a, a_{r}^{e,\oplus} = a(a_{r}^{e,\oplus})^{2}$$
 and $(eaa_{r}^{e,\oplus})^{*} = eaa_{r}^{e,\oplus}$.

Moreover, if a is right e-core invertible, then $aa_r^{e,\oplus}$ is invariant on the choice of $a_r^{e,\oplus}$. Indeed, assume that x_1 and x_2 are two right e-core inverses of a. Then $eax_1 = (eax_1)^* = x_1^*a^*e = x_1^*(ax_2a)^*e = x_1^*a^*(ax_2)^*e^* = x_1^*a^*(eax_2)^* = x_1^*a^*eax_2 = (eax_1)^*ax_2 = eax_1ax_2 = eax_2$. Since e is invertible, we have $ax_1 = ax_2$. Denote by $a^{\pi} = 1 - aa_r^{e,\oplus}$ the idempotent determined by a right e-core inverse of a, if a is right e-core invertible in \mathcal{R} .

In [10, Definition 1.1], the authors introduced the concept of weighted-EP elements in a ring with involution, which is a generalization of EP matrices. An element $a \in \mathcal{R}$ is weighted-EP with respect to (e, e) if $a \in \mathcal{R}^{\dagger}_{(e,e)} \cap \mathcal{R}^{\sharp}$ and $a^{\sharp} = a^{\dagger}_{(e,e)}$. Moreover, the authors pointed out that $a \in \mathcal{R}$ is *e*-core invertible if and only if $a \in \mathcal{R}^{\sharp} \cap \mathcal{R}^{\{1,3e\}}$ in [10, Theorem 2.1]. Using Lemma 2.1 and above remark, we can deduce the following result.

Proposition 2.3. Let $e \in \mathcal{R}$ be an invertible Hermitian element, and $a \in \mathcal{R}$ be right e-core invertible. If $aa_r^{e,\oplus} = a_r^{e,\oplus}a$, then a is weighted-EP with respect to (e, e) and $a_r^{e,\oplus} = a^{\ddagger} = a^{\dagger}_{(e,e)}$.

In the following, we will use the symbol \mathcal{R}_r^{-1} to denote the set of all right invertible elements in \mathcal{R} . The symbol a_r^{-1} denotes the right inverse of a, if $a \in \mathcal{R}_r^{-1}$. The symbol r(a) (rep. l(a)) denotes the right (rep. left) annihilator of $a \in \mathcal{R}$.

In [9], the authors proved that *a* is core invertible if and only if there exists a projection *p* such that pa = 0, $a^n + p$ is invertible for $n \ge 1$. Here we will give the similar result for right *e*-core invertible.

Theorem 2.4. Let $a \in \mathcal{R}$ and $e \in \mathcal{R}$ be an invertible Hermitian element. Then the following statements are equivalent: *(i) a is right e-core invertible;*

(ii) there exists a unique idempotent p such that $(pe)^* = pe$, pea = 0 and $u = p + eae^{-1} \in \mathcal{R}_r^{-1}$;

(iii) there exists a unique idempotent p such that $(pe)^* = pe$, pea = 0 and $w = eae^{-1}(1-p) + p \in \mathcal{R}_r^{-1}$.

(iv) there exists a unique idempotent p such that $(ep)^* = ep$, pa = 0 and $u = p + a \in \mathcal{R}_r^{-1}$;

- (v) there exists a unique idempotent p such that $(ep)^* = ep$, pa = 0 and $w = a(1 p) + p \in \mathcal{R}_r^{-1}$.
- In this case, $a_r^{\oplus} = e^{-1}u_r^{-1}(1-p)e = e^{-1}(1-p)w_r^{-1}e$.

Proof. (*i*) \Leftrightarrow (*ii*) \Leftrightarrow (*iii*) For the proofs we refer the reader to [7, Theorem 1.6].

 $(i) \Rightarrow (iv)$ Suppose that *a* is right *e*-core invertible, by Lemma 2.1, there is $x \in \mathcal{R}$ such that $axa = a, x = ax^2$ and $(eax)^* = eax$. Let p = 1 - ax. Then $p^2 = (1 - ax)^2 = 1 - ax = p$, $ep = e(1 - ax) = e - eax = e^* - (eax)^* = (e - eax)^* = (ep)^*$, pa = (1 - ax)a = 0, and px = (1 - ax)x = 0. And (p + a)(x + 1 - xa) = p + ax + a(1 - xa) = p + ax = 1, this gives $u = p + a \in \mathcal{R}_r^{-1}$.

For the uniqueness of the idempotent, assume that there exist two idempotents p and q satisfy $(ep)^* = ep$, $(eq)^* = eq$, pa = qa = 0, $p + a \in \mathcal{R}_r^{-1}$ and $q + a \in \mathcal{R}_r^{-1}$. It is easily seen that l(1 - p) = l(1 - q) = l(a), which implies p = pq and q = qp. Hence, $ep = (ep)^* = (epq)^* = q^*(ep)^* = q^*ep = q^*e^*p = (eq)^*p = eqp$, this gives p = qp = q since e is invertible.

 $(iv) \Rightarrow (i)$ Under hypothesis pa = 0 and $p + a \in \mathcal{R}_r^{-1}$, we know (1-p)(p+a) = a and hence $1-p = a(p+a)_r^{-1}$. Consider $x = (p+a)_r^{-1}(1-p)$. Then $ax = a(p+a)_r^{-1}(1-p) = 1-p$, which gives that $eax = e(1-p) = e - ep = e^* - (ep)^* = (e-ep)^* = (eax)^*$, and axa = (1-p)a = a. Note that p(p+a) = p, it follows that $p = p(p+a)_r^{-1}$ and hence $(1-p)(p+a)_r^{-1} = (p+a)_r^{-1} - p$. Therefore, $ax^2 = (1-p)(p+a)_r^{-1}(1-p) = [(p+a)_r^{-1} - p](1-p) = (p+a)_r^{-1}(1-p) = x$. By Lemma 2.1, we see at once that *a* is right *e*-core invertible.

 $(i) \Rightarrow (v)$ As in the proof of $(i) \Rightarrow (iv)$, we also let p = 1 - ax. Then $p^2 = p$, $(ep)^* = ep$, pa = 0, and px = 0. Thus

$$[a(1-p)+p](x+1-ax) = (a^2x+p)(x+1-ax) = a^2x^2 + a(ax)(1-ax) + px + p(1-ax) = ax + p = 1,$$

that is, $w = a(1 - p) + p \in \mathcal{R}_r^{-1}$.

For the uniqueness of the idempotent, analysis similar to that in the proof of $(i) \Rightarrow (iv)$.

 $(v) \Rightarrow (i)$ Notice that (1-p)w = (1-p)[a(1-p)+p] = (1-p)a(1-p) = a(1-p). Then $1-p = a(1-p)w_r^{-1}$. Set $x = (1-p)w_r^{-1}$. It is clear that $ax = a(1-p)w_r^{-1} = (1-p)ww_r^{-1} = 1-p$, $(eax)^* = (e-ep)^* = e^* - (ep)^* = e - ep = eax$, axa = (1-p)a = a and $ax^2 = (1-p)x = (1-p)^2w_r^{-1} = (1-p)w_r^{-1} = x$. By Lemma 2.1, we obtain that *a* is right *e*-core invertible. \Box

The following theorem shows that $p + a^n \in \mathcal{R}_r^{-1}$ is true when taking $n \ge 2$ in Theorem 2.4. Before it, we state an auxiliary result.

Lemma 2.5. [8, Exercise 1.6] Let $a, b \in \mathcal{R}$. Then 1 + ab is right invertible if and only if 1 + ba is right invertible.

Theorem 2.6. Let $a \in \mathcal{R}$ and $e \in \mathcal{R}$ be an invertible Hermitian element and $n \ge 2$. Then the following statements are equivalent:

- (*i*) *a* is right e-core invertible;
- (ii) there exists a unique idempotent p such that $(pe)^* = pe$, pea = 0 and $u = p + ea^n e^{-1} \in \mathcal{R}_r^{-1}$;
- (iii) there exists a unique idempotent p such that $(pe)^* = pe$, pea = 0 and $w = ea^n e^{-1}(1-p) + p \in \mathcal{R}_r^{-1}$;
- (iv) there exists a unique idempotent p such that $(ep)^* = ep$, pa = 0 and $u = p + a^n \in \mathcal{R}_r^{-1}$;
- (v) there exists a unique idempotent p such that $(ep)^* = ep$, pa = 0 and $w = a^n(1-p) + p \in \mathcal{R}_r^{-1}$.

Proof. (*i*) \Leftrightarrow (*ii*) \Leftrightarrow (*iii*) [7, Theorem 1.9] gives these equivalent statements.

 $(i) \Rightarrow (iv)$ If *a* is right *e*-core invertible, also let p = 1 - ax. From the proof of Theorem 2.4 $(i) \Rightarrow (iv)$, we know $p^2 = p$, $(ep)^* = ep$, pa = 0, px = 0 and $u = p + a = a + 1 - ax \in \mathcal{R}_r^{-1}$. Then 1 + ax(a - 1) = a + 1 - ax is right invertible. Using Lemma 2.5, it follows that $1 + (a - 1)ax = 1 + a^2x - ax$ is right invertible. It is easy to verify that if n = 2,

$$a^{2} + 1 - ax = (1 + a^{2}x - ax)(a + 1 - ax)$$

is right invertible. Assume that the result holds for the case n - 1(n > 2), that is, $a^{n-1} + 1 - ax$ is right invertible, we will prove it for *n*. Indeed,

$$p + a^n = a^n + 1 - ax = (1 + a^2x - ax)(a^{n-1} + 1 - ax)$$

is right invertible. For the uniqueness of the idempotent, it is similar to $(i) \Rightarrow (iv)$ in Theorem 2.4.

 $(iv) \Rightarrow (i)$ From the assumption pa = 0 and $u = p + a^n \in \mathcal{R}_r^{-1}$, we get $(1-p)(p+a^n) = a^n$ and $1-p = a^n(p+a^n)_r^{-1} = a^n u_r^{-1}$. Then $ax = a^n u_r^{-1} = 1-p$, $eax = e(1-p) = e - ep = e^* - (ep)^* = (e-ep)^* = (eax)^*$, axa = (1-p)a = a and $ax^2 = (1-p)a^{n-1}u_r^{-1} = a^{n-1}u_r^{-1} = x$. By Lemma 2.1, we obtain a is right e-core invertible. $(i) \Rightarrow (v)$ We also let p = 1 - ax. By the proof of $(i) \Rightarrow (iv)$, we get $p^2 = p$, $(ep)^* = ep$, pa = 0, px = 0 and $u = p + a^n = a^n + 1 - ax \in \mathcal{R}_r^{-1}$. So $1 + ax(a^n - 1) = a^n + 1 - ax$ is right invertible. Applying Lemma 2.5, $1 + (a^n - 1)ax$ is invertible. Hence $w = a^n(1-p) + p = a^n(1-p) - 1 + p + 1 = 1 + (a^n - 1)(1-p) = 1 + (a^n - 1)ax$

is right invertible.

 $(v) \Rightarrow (i)$ Note that $(1 - p)w = (1 - p)[a^n(1 - p) + p] = a^n(1 - p)$. Then $1 - p = a^n(1 - p)w_r^{-1}$. Take $x = a^{n-1}(1 - p)w_r^{-1}$. It is clear that ax = 1 - p, px = 0, $eax = e(1 - p) = e - ep = e - (ep)^* = (e - ep)^* = (eax)^*$, axa = (1 - p)a = a and $ax^2 = (1 - p)x = x$. Thus, by Lemma 2.1, we know that *a* is right *e*-core invertible. \Box

From Remark 2.2, it is evident that if *a* is right *e*-core invertible, then $a^{\pi} = 1 - aa_r^{e,\oplus}$ is an idempotent determined by a right *e*-core inverse of *a*. In the following result, some characterizations of those elements with equal corresponding idempotents are given.

Proposition 2.7. Let $a, b \in \mathcal{R}_r^{e, \oplus}$. Then the following statements are equivalent:

(i) $aa_r^{e,\oplus} = bB_r^{e,\oplus}$; (ii) $a\mathcal{R} = b\mathcal{R}$; (iii) $a^{\pi}b = 0$ and $a^{\pi} + b \in \mathcal{R}_r^{-1}$; (iv) $a^{\pi}b = 0$ and $a^{\pi} + b(1 - a^{\pi}) \in \mathcal{R}_r^{-1}$.

In addition, if one of statements (i)–(iv) holds, then ab is right e-core invertible and $b_r^{e,\oplus}a_r^{e,\oplus}$ is a right e-core inverse of ab.

Proof. (*i*) \Rightarrow (*ii*) From $aa_r^{e,\oplus} = bb_r^{e,\oplus}$, we get $a = aa_r^{e,\oplus}a = bb_r^{e,\oplus}a \in b\mathcal{R}$ and $b = bb_r^{e,\oplus}b = aa_r^{e,\oplus}b \in a\mathcal{R}$, which imply $a\mathcal{R} \subseteq b\mathcal{R} \subseteq a\mathcal{R}$, that is $a\mathcal{R} = b\mathcal{R}$.

 $(ii) \Rightarrow (i)$ If $a\mathcal{R} = b\mathcal{R}$, there exist $x, y \in \mathcal{R}$ such that a = bx and b = ay. Then $bb_r^{e,\oplus}a = bb_r^{e,\oplus}(bx) = bx = a$, and $aa_r^{e,\oplus}b = aa_r^{e,\oplus}(ay) = ay = b$. Thus,

$$eaa_{r}^{e,\oplus} = e(bb_{r}^{e,\oplus}a)a_{r}^{e,\oplus} = (ebb_{r}^{e,\oplus})^{*}aa_{r}^{e,\oplus} = (bb_{r}^{e,\oplus})^{*}eaa_{r}^{e,\oplus} = (bb_{r}^{e,\oplus})^{*}(eaa_{r}^{e,\oplus})^{*} = (eaa_{r}^{e,\oplus}bb_{r}^{e,\oplus})^{*} = (ebb_{r}^{e,\oplus})^{*} = ebb_{r}^{e,\oplus}.$$

Therefore, $aa_r^{e,\oplus} = bb_r^{e,\oplus}$ since *e* is invertible.

$$(i) \Rightarrow (iii) \text{ From } aa_r^{e,\oplus} = bb_r^{e,\oplus}, \text{ we have } a^{\pi}b = (1 - aa_r^{e,\oplus})b = (1 - bb_r^{e,\oplus})b = 0. \text{ Since} (a^{\pi} + b)(b_r^{e,\oplus} + 1 - b_r^{e,\oplus}b) = (1 - aa_r^{e,\oplus} + b)(b_r^{e,\oplus} + 1 - b_r^{e,\oplus}b) = (1 - bb_r^{e,\oplus} + b)(b_r^{e,\oplus} + 1 - b_r^{e,\oplus}b) = b_r^{e,\oplus} + 1 - b_r^{e,\oplus}b - bb_r^{e,\oplus}b_r^{e,\oplus} - bb_r^{e,\oplus} + bb_r^{e,\oplus}b_r^{e,\oplus}b + bb_r^{e,\oplus} + b - bb_r^{e,\oplus}b) = b_r^{e,\oplus} + 1 - b_r^{e,\oplus}b - bb_r^{e,\oplus} - bb_r^{e,\oplus} + bb_r^{e,\oplus}b + bb_r^{e,\oplus} + b - bb_r^{e,\oplus}b = b_r^{e,\oplus} + 1 - b_r^{e,\oplus}b - b_r^{e,\oplus} - bb_r^{e,\oplus} + b_r^{e,\oplus}b + bb_r^{e,\oplus} + b - bb_r^{e,\oplus}b = 1$$

Thus, $a^{\pi} + b$ is right invertible.

 $(iii) \Rightarrow (i)$ Suppose that $a^{\pi}b = 0$ and $a^{\pi} + b \in \mathcal{R}_r^{-1}$. Notice that $ea^{\pi} = e - eaa_r^{e,\oplus} = (e - eaa_r^{e,\oplus})^* = (ea^{\pi})^*$, and

$$bb_{r}^{e,\oplus}a^{\pi} = e^{-1}ebb_{r}^{e,\oplus}a^{\pi} = e^{-1}(ebb_{r}^{e,\oplus})^{*}a^{\pi} = e^{-1}(bb_{r}^{e,\oplus})^{*}ea^{\pi} = e^{-1}(bb_{r}^{e,\oplus})^{*}(ea^{\pi})^{*} = e^{-1}(ea^{\pi}bb_{r}^{e,\oplus})^{*} = 0.$$

So we have $(aa_r^{e,\oplus} - bb_r^{e,\oplus})(a^{\pi} + b) = aa_r^{e,\oplus}a^{\pi} + aa_r^{e,\oplus}b - bb_r^{e,\oplus}a^{\pi} - b = aa_r^{e,\oplus}b - b = -a^{\pi}b = 0$. Therefore $aa_r^{e,\oplus} = bb_r^{e,\oplus}$, since $a^{\pi} + b$ is right invertible.

 $(i) \Rightarrow (iv)$ From $aa_r^{e,\oplus} = bb_r^{e,\oplus}$, we have $a^{\pi} = 1 - aa_r^{e,\oplus} = 1 - bb_r^{e,\oplus} = b^{\pi}$, and $a^{\pi}b = b^{\pi}b = 0$. Notice that $b^{\pi}b_r^{e,\oplus} = 0$ and $(b^{\pi})^2 = b^{\pi}$. So we get

$$\begin{aligned} & [a^{\pi} + b(1 - a^{\pi})](b_r^{e, \oplus} + b^{\pi}) &= [b^{\pi} + b(1 - b^{\pi})](b_r^{e, \oplus} + b^{\pi}) = b^{\pi}b_r^{e, \oplus} + b^{\pi} + b(1 - b^{\pi})b_r^{e, \oplus} + b(1 - b^{\pi})b_r^{e, \oplus} \\ &= b^{\pi} + b(1 - b^{\pi})b_r^{e, \oplus} = b^{\pi} + b(b_r^{e, \oplus})b_r^{e, \oplus} = b^{\pi} + bb_r^{e, \oplus} = 1. \end{aligned}$$

Thus, $a^{\pi} + b(1 - a^{\pi})$ is right invertible.

 $(iv) \Rightarrow (i)$ If $a^{\pi}b = 0$, from the proof of $(iii) \Rightarrow (i)$, we know that $bb_r^{e,\oplus}a^{\pi} = 0$ and $(aa_r^{e,\oplus} - bb_r^{e,\oplus})(a^{\pi} + b) = 0$. Thus,

$$\begin{aligned} (aa_r^{e,\oplus} - bb_r^{e,\oplus})(a^{\pi} + b(1 - a^{\pi})) &= (aa_r^{e,\oplus} - bb_r^{e,\oplus})(a^{\pi} + b) - (aa_r^{e,\oplus} - bb_r^{e,\oplus})ba^{\pi} = -(aa_r^{e,\oplus} - bb_r^{e,\oplus})ba^{\pi} \\ &= -aa_r^{e,\oplus}ba^{\pi} + ba^{\pi} = (1 - aa_r^{e,\oplus})ba^{\pi} = a^{\pi}ba^{\pi} = 0. \end{aligned}$$

Therefore, $aa_r^{e,\oplus} = bb_r^{e,\oplus}$ since $a^{\pi} + b(1 - a^{\pi})$ is right invertible.

The equality $aa_r^{e,\oplus} = bb_r^{e,\oplus}$ gives $abb_r^{e,\oplus}a_r^{e,\oplus} = a(aa_r^{e,\oplus})a_r^{e,\oplus} = aa_r^{e,\oplus}$. Thus $ab(b_r^{e,\oplus}a_r^{e,\oplus})ab = aa_r^{e,\oplus}ab = ab$, $ab(b_r^{e,\oplus}a_r^{e,\oplus})^2 = (ab(b_r^{e,\oplus}a_r^{e,\oplus}))b_r^{e,\oplus}a_r^{e,\oplus} = aa_r^{e,\oplus}b_r^{e,\oplus}b_r^{e,\oplus}a_r^{e,\oplus} = bb_r^{e,\oplus}a_r^{e,\oplus} = br_r^{e,\oplus}a_r^{e,\oplus}$, and $[eab(b_r^{e,\oplus}a_r^{e,\oplus})]^* = (eaa_r^{e,\oplus})^* = eaa_r^{e,\oplus} = bb_r^{e,\oplus}a_r^{e,\oplus} = b_r^{e,\oplus}a_r^{e,\oplus}$. \Box

More sufficient conditions for the reverse order law of right *e*-core invertible elements are presented now.

Proposition 2.8. Let $a, b \in \mathcal{R}_r^{e, \oplus}$. Then the following statements are equivalent:

(*i*) $a = abb_r^{e, \oplus}$ and $b = aa_r^{e, \oplus}b$;

(*ii*) $a^*\mathcal{R} \subseteq eb\mathcal{R} \subseteq ea\mathcal{R}$.

In addition, if one of statements (i)–(ii) holds, then ab is right e-core invertible and $b_r^{e,\oplus}a_r^{e,\oplus}$ is a right e-core inverse of ab.

Proof. (*i*) \Rightarrow (*ii*) The assumption $b = aa_r^{e,\oplus}b$ yields $b\mathcal{R} \subseteq a\mathcal{R}$ and $eb\mathcal{R} \subseteq ea\mathcal{R}$. Applying involution to $a = abb_r^{e,\oplus}$, it follows that $a^* = (abb_r^{e,\oplus})^* = (ae^{-1}ebb_r^{e,\oplus})^* = (ebb_r^{e,\oplus})^*(ae^{-1})^* = ebb_r^{e,\oplus}(ae^{-1})^*$, that is, $a^*\mathcal{R} \subseteq eb\mathcal{R}$. Hence, $a^*\mathcal{R} \subseteq eb\mathcal{R} \subseteq ea\mathcal{R}$.

 $(ii) \Rightarrow (i)$ Suppose that $a^*\mathcal{R} \subseteq eb\mathcal{R}$ and $eb\mathcal{R} \subseteq ea\mathcal{R}$, then there exist $x, y \in \mathcal{R}$ such that $a^* = ebx$ and eb = eay, which give b = ay since e is invertible. So we have $aa_r^{e,\oplus}b = (aa_r^{e,\oplus}a)y = ay = b$. And $(abb_r^{e,\oplus})^* = (ae^{-1}ebb_r^{e,\oplus})^* = (ebb_r^{e,\oplus})^* = (ebb_r^{e,\oplus}e^{-1}a^* = ebb_r^{e,\oplus}e^{-1}(ebx) = ebx = a^*$, applying involution, we get $a = abb_r^{e,\oplus}$.

From $a = abb_r^{e,\oplus}$, we get $abb_r^{e,\oplus}a_r^{e,\oplus} = aa_r^{e,\oplus}and ab(b_r^{e,\oplus}a_r^{e,\oplus})ab = aa_r^{e,\oplus}ab$. Since $b = aa_r^{e,\oplus}b$, we see $b_r^{e,\oplus} = b(b_r^{e,\oplus})^2 = aa_r^{e,\oplus}b(b_r^{e,\oplus})^2 = aa_r^{e,\oplus}b_r^{e,\oplus}a_r^{e,\oplus})^2 = (aa_r^{e,\oplus})b_r^{e,\oplus}a_r^{e,\oplus})^2 = (aa_r^{e,\oplus})b_r^{e,\oplus}a_r^{e,\oplus} = b_r^{e,\oplus}a_r^{e,\oplus}and [eab(b_r^{e,\oplus}a_r^{e,\oplus})]^* = (eaa_r^{e,\oplus})^* = eaa_r^{e,\oplus}a_r^{e,\oplus})^* = eab(b_r^{e,\oplus}a_r^{e,\oplus})$. Therefore, ab is right e-core invertible and $(ab)_r^{e,\oplus} = b_r^{e,\oplus}a_r^{e,\oplus}$.

Let $p = p^2 \in \mathcal{R}$ be an idempotent. Then we can represent any element $a \in \mathcal{R}$ as

$$a = \left[\begin{array}{cc} a_{11} & a_{12} \\ a_{21} & a_{22} \end{array} \right]_p,$$

where $a_{11} = pap$, $a_{12} = pa(1-p)$, $a_{21} = (1-p)ap$, $a_{22} = (1-p)a(1-p)$.

Now we give matrix representations for a right *e*-core invertible element and its right *e*-core inverse.

Theorem 2.9. Let $a \in \mathcal{R}$ and $e \in \mathcal{R}$ be an invertible Hermitian element. Then the following statements are equivalent: (i) a is right e-core invertible and $x \in \mathcal{R}$ is a right e-core inverse of a;

(ii) there exists an idempotent $q \in \mathcal{R}$ such that $(eq)^* = eq$ and

$$a = \begin{bmatrix} a_1 & a_2 \\ 0 & 0 \end{bmatrix}_q, \qquad x = \begin{bmatrix} x_1 & x_2 \\ 0 & 0 \end{bmatrix}_q, \tag{1}$$

where a_1 is right invertible in $q\mathcal{R}q$, $x_1 = (a_1)_r^{-1}$ and $a_1x_2 = 0$;

(iii) there exists an idempotent $p \in \mathcal{R}$ such that $(ep)^* = ep$ and

$$a = \begin{bmatrix} 0 & 0 \\ a_1 & a_2 \end{bmatrix}_p, \qquad x = \begin{bmatrix} 0 & 0 \\ x_1 & x_2 \end{bmatrix}_p,$$

where a_2 is right invertible in $(1 - p)\mathcal{R}(1 - p)$, $x_2 = (a_2)_r^{-1}$ and $a_2x_1 = 0$.

Proof. (i) \Rightarrow (ii) Suppose that a is right e-core invertible and $x \in \mathcal{R}$ is a right e-core inverse of a, by Lemma 2.1, we have $axa = a, ax^2 = x, (eax)^* = eax$. Let q = ax. Then $q^2 = (ax)(ax) = ax = q, eq = eax = q$ $(eax)^{*} = (eq)^{*}, qa = (ax)a = a \text{ and } qx = (ax)x = x, \text{ which imply } (1-q)a = 0 \text{ and } (1-q)x = 0. \text{ Thus,}$ $a = \begin{bmatrix} qaq & qa(1-q) \\ (1-q)aq & (1-q)a(1-q) \end{bmatrix}_{q} = \begin{bmatrix} qaq & qa(1-q) \\ 0 & 0 \end{bmatrix}_{q} = \begin{bmatrix} a_{1} & a_{2} \\ 0 & 0 \end{bmatrix}_{q}, \text{ and } x = \begin{bmatrix} x_{1} & x_{2} \\ 0 & 0 \end{bmatrix}_{q}, \text{ that is, } a \text{ and } x$ are represented as in (1). Since $a_1 = qaq = aq = a^2x$ and $x_1 = qxq = xax$, we get $a_1x_1 = (a^2x)xax = axax = axax$ ax = q, that is, x_1 is a right inverse of a_1 in qRq. By $x_2 = qx(1-q) = (ax)x(1-ax) = x(1-ax)$, we have $a_1x_2 = (a^2x)x(1-ax) = ax(1-ax) = 0.$

 $(ii) \Rightarrow (i) \text{ Because } ax = \begin{bmatrix} a_1 & a_2 \\ 0 & 0 \end{bmatrix}_q \begin{bmatrix} x_1 & x_2 \\ 0 & 0 \end{bmatrix}_q = \begin{bmatrix} a_1x_1 & a_1x_2 \\ 0 & 0 \end{bmatrix}_q = \begin{bmatrix} q & 0 \\ 0 & 0 \end{bmatrix}_q = q, \text{ we can verify that } x$ satisfies $(eax)^* = (eq)^* = eq = eax$, axa = a and $x = ax^2$. Using Lemma 2.1, we deduce that a is right e-core

invertible and *x* is a right *e*-core inverse of *a*.

(*i*) \Leftrightarrow (*iii*) This equivalence follows similarly as (*i*) \Leftrightarrow (*ii*) for p = 1 - ax.

 $\begin{array}{l} (p) \leftrightarrow (m) \text{ find equivalence follows bilinearly as } (p) \leftrightarrow (n) \text{ for } p = 1 - am \\ \text{Indeed, let } p = 1 - ax. \text{ Then } p^2 = (1 - ax)^2 = 1 - ax - ax - axax = 1 - ax, pa = 0, px = 0, (ep)^* = (e(1 - ax))^* = \\ (e - eax)^* = e - (eax)^* = e - eax = ep, a = \begin{bmatrix} pap & pa(1 - p) \\ (1 - p)ap & (1 - p)a(1 - p) \end{bmatrix}_p = \begin{bmatrix} 0 & 0 \\ (1 - p)ap & (1 - p)a(1 - p) \end{bmatrix}_p = \begin{bmatrix} 0 & 0 \\ (1 - p)ap & (1 - p)a(1 - p) \end{bmatrix}_p = \begin{bmatrix} 0 & 0 \\ (1 - p)ap & (1 - p)a(1 - p) \end{bmatrix}_p = \begin{bmatrix} 0 & 0 \\ (1 - p)ap & (1 - p)a(1 - p) \end{bmatrix}_p = \begin{bmatrix} 0 & 0 \\ (1 - p)ap & (1 - p)a(1 - p) \end{bmatrix}_p = \begin{bmatrix} 0 & 0 \\ (1 - p)ap & (1 - p)a(1 - p) \end{bmatrix}_p = \begin{bmatrix} 0 & 0 \\ (1 - p)ap & (1 - p)a(1 - p) \end{bmatrix}_p = \begin{bmatrix} 0 & 0 \\ (1 - p)ap & (1 - p)a(1 - p) \end{bmatrix}_p = \begin{bmatrix} 0 & 0 \\ (1 - p)ap & (1 - p)a(1 - p) \end{bmatrix}_p = \begin{bmatrix} 0 & 0 \\ (1 - p)ap & (1 - p)a(1 - p) \end{bmatrix}_p = \begin{bmatrix} 0 & 0 \\ (1 - p)ap & (1 - p)a(1 - p) \end{bmatrix}_p = \begin{bmatrix} 0 & 0 \\ (1 - p)ap & (1 - p)a(1 - p) \end{bmatrix}_p = \begin{bmatrix} 0 & 0 \\ (1 - p)ap & (1 - p)a(1 - p) \end{bmatrix}_p = \begin{bmatrix} 0 & 0 \\ (1 - p)ap & (1 - p)a(1 - p) \end{bmatrix}_p = \begin{bmatrix} 0 & 0 \\ (1 - p)ap & (1 - p)a(1 - p) \end{bmatrix}_p = \begin{bmatrix} 0 & 0 \\ (1 - p)ap & (1 - p)a(1 - p) \end{bmatrix}_p = \begin{bmatrix} 0 & 0 \\ (1 - p)ap & (1 - p)a(1 - p) \end{bmatrix}_p = \begin{bmatrix} 0 & 0 \\ (1 - p)ap & (1 - p)a(1 - p) \end{bmatrix}_p = \begin{bmatrix} 0 & 0 \\ (1 - p)ap & (1 - p)a(1 - p) \end{bmatrix}_p = \begin{bmatrix} 0 & 0 \\ (1 - p)ap & (1 - p)a(1 - p) \end{bmatrix}_p = \begin{bmatrix} 0 & 0 \\ (1 - p)ap & (1 - p)a(1 - p) \end{bmatrix}_p = \begin{bmatrix} 0 & 0 \\ (1 - p)ap & (1 - p)a(1 - p) \end{bmatrix}_p = \begin{bmatrix} 0 & 0 \\ (1 - p)ap & (1 - p)a(1 - p) \end{bmatrix}_p = \begin{bmatrix} 0 & 0 \\ (1 - p)ap & (1 - p)a(1 - p) \end{bmatrix}_p = \begin{bmatrix} 0 & 0 \\ (1 - p)ap & (1 - p)a(1 - p) \end{bmatrix}_p = \begin{bmatrix} 0 & 0 \\ (1 - p)ap & (1 - p)a(1 - p) \end{bmatrix}_p = \begin{bmatrix} 0 & 0 \\ (1 - p)ap & (1 - p)a(1 - p) \end{bmatrix}_p = \begin{bmatrix} 0 & 0 \\ (1 - p)ap & (1 - p)a(1 - p) \end{bmatrix}_p = \begin{bmatrix} 0 & 0 \\ (1 - p)ap & (1 - p)a(1 - p) \end{bmatrix}_p = \begin{bmatrix} 0 & 0 \\ (1 - p)ap & (1 - p)a(1 - p) \end{bmatrix}_p = \begin{bmatrix} 0 & 0 \\ (1 - p)ap & (1 - p)a(1 - p) \end{bmatrix}_p = \begin{bmatrix} 0 & 0 \\ (1 - p)ap & (1 - p)a(1 - p) \end{bmatrix}_p = \begin{bmatrix} 0 & 0 \\ (1 - p)ap & (1 - p)a(1 - p) \end{bmatrix}_p = \begin{bmatrix} 0 & 0 \\ (1 - p)ap & (1 - p)a(1 - p) \end{bmatrix}_p = \begin{bmatrix} 0 & 0 \\ (1 - p)ap & (1 - p)a(1 - p) \end{bmatrix}_p = \begin{bmatrix} 0 & 0 \\ (1 - p)ap & (1 - p)a(1 - p) \end{bmatrix}_p = \begin{bmatrix} 0 & 0 \\ (1 - p)ap & (1 - p)a(1 - p) \end{bmatrix}_p = \begin{bmatrix} 0 & 0 \\ (1 - p)ap & (1 - p)a(1 - p) \end{bmatrix}_p \end{bmatrix}_p = \begin{bmatrix} 0 & 0 \\ (1 - p)ap & (1 - p)a(1 - p) \end{bmatrix}_p \end{bmatrix}_p =$ $\begin{bmatrix} 0 & 0 \\ a_1 & a_2 \end{bmatrix}_n, \text{ and } x = \begin{bmatrix} 0 & 0 \\ x_1 & x_2 \end{bmatrix}_n. \text{ Since } a_1 = (1-p)ap = ap = a(1-ax) = a - a^2x \text{ and } a_2 = a(1-p) = a^2x,$ $x_1 = xp = x - xax$, $x_2 = x(1-p) = xax$, we get $a_2x_2 = (a^2x)xax = axax = ax = 1-p$, that is, x_2 is a right inverse

of a_2 in $(1-p)\mathcal{R}(1-p)$. And $a_2x_1 = (a^2x)x(1-ax) = ax(1-ax) = 0$. Conversely, as $ax = \begin{bmatrix} 0 & 0 \\ a_2x_1 & a_2x_2 \end{bmatrix}_p = \begin{bmatrix} 0 & 0 \\ 0 & 1-p \end{bmatrix}_p = 1-p$, it is easy to prove that a is right e-core invertible and *x* is a right *e*-core inverse

Notice that *p* and *q*, which appear in Theorem 2.9, are invariant on the choice of *x*. We present one decomposition of a right e-core invertible element which is also invariant on the choice of right e-core inverse.

Proposition 2.10. Let $a \in \mathcal{R}$ be right e-core invertible. Then $a = a_1 + a_2$, where (*i*) a_1 is right e-core invertible, (*ii*) $a_2^2 = 0$, (*iii*) $a_2a_1 = 0$.

In addition, $a^2 a_r^{e,\oplus}$ is right e-core invertible and $a_r^{e,\oplus} a a_r^{e,\oplus}$ is a right e-core inverse of $a^2 a_r^{e,\oplus}$.

Proof. Suppose that *a* is right *e*-core invertible, and *x* is a right *e*-core inverse of *a*. Let $a_1 = a^2x$ and $a_2 = a - a^2x$. We have $a = a_1 + a_2$, where $a_2a_1 = (a - a^2x)a^2x = a(a^2x - a^2x) = 0$ and $a_2^2 = a(1 - ax)a(1 - ax) = a(a - a)(1 - ax) = 0$. Set y = xax. Since $a_1y = a^2x^2ax = axax = ax$, $(ea_1y)^* = (eax)^* = eax = ea_1y$, $a_1ya_1 = (ax)a^2x = a^2x = a_1$ and

 $a_1y^2 = (ax)xax = xax = y$. Hence, a_1 is right *e*-core invertible and *y* is a right *e*-core inverse of a_1 .

3. More characterizations of right *e*-core inverses

From Lemma 2.1 and Remark 2.2, we know that if *a* is right *e*-core invertible and *x* is a right *e*-core inverse of *a*, then $a \in \mathcal{R}^{[1,3e]}$. Since $a = axa = a(ax^2)a = a^2x^2a$, it gives that $a\mathcal{R} \subseteq a^2\mathcal{R}$. Since $a^2\mathcal{R} \subseteq a\mathcal{R}$, we have $a\mathcal{R} = a^2\mathcal{R}$. So we have the following result.

Theorem 3.1. Let $a \in \mathcal{R}$ and $e \in \mathcal{R}$ be an invertible Hermitian element. Then the following statements are equivalent:

(*i*) *a* is right *e*-core invertible; (*ii*) $a \in \mathcal{R}^{\{1,3e\}}$ and $a\mathcal{R} = a^2\mathcal{R}$; (*ii*)' $a \in \mathcal{R}^{\{1,3e\}}$ and $a\mathcal{R} \subseteq a^2\mathcal{R}$; (*iii*) $a \in \mathcal{R}^{\{1,3e\}}$ and $a\mathcal{R} = a^n \mathcal{R}$ for any $n \ge 2$; (iii)' $a \in \mathcal{R}^{\{1,3e\}}$ and $a\mathcal{R} \subseteq a^n\mathcal{R}$ for any $n \geq 2$; (iv) $a \in \mathcal{R}^{\{1,3e\}}$ and $a\mathcal{R} = a^n \mathcal{R}$ for some $n \geq 2$; (iv)' $a \in \mathcal{R}^{\{1,3e\}}$ and $a\mathcal{R} \subseteq a^n \mathcal{R}$ for some $n \geq 2$; (v) a^n is right e-core invertible and $a\mathcal{R} = a^n\mathcal{R}$ for any $n \ge 2$; (v)' a^n is right e-core invertible and $a\mathcal{R} \subseteq a^n\mathcal{R}$ for any $n \geq 2$; (vi) a^n is right e-core invertible and $a\mathcal{R} = a^n\mathcal{R}$ for some $n \ge 2$; (vi)' a^n is right e-core invertible and $a\mathcal{R} \subseteq a^n\mathcal{R}$ for some $n \geq 2$; (vii) $a^n \in \mathcal{R}^{[1,3e]}$ and $aR = a^k \mathcal{R}$ for any $n \ge 2$ and k > n; $(vii)' a^n \in \mathcal{R}^{\{1,3e\}}$ and $aR \subseteq a^k \mathcal{R}$ for any $n \ge 2$ and k > n; (viii) $a^n \in \mathcal{R}^{\{1,3e\}}$ and $aR = a^k \mathcal{R}$ for some $n \ge 2$ and k > n; (viii)' $a^n \in \mathcal{R}^{\{1,3e\}}$ and $aR \subseteq a^k \mathcal{R}$ for some $n \ge 2$ and k > n. *In this case, for any* $n \ge 2$ *,*

$$(a^n)_r^{e,\oplus} = (a_r^{e,\oplus})^n$$
 and $a_r^{e,\oplus} = a^{n-1}(a^n)_r^{e,\oplus} = a^{n-1}(a^n)^{(1,3e)}$

Proof. $(i) \Rightarrow (ii) \Rightarrow (ii)'$ and $(iii) \Rightarrow (iii)' \Rightarrow (iv)' \Rightarrow (iv)$ It is clear.

 $(ii)' \Rightarrow (iii)$ Since $a\mathcal{R} \subseteq a^2\mathcal{R}$, we have $a = a^2t$ for some $t \in \mathcal{R}$. Then we get

 $a = aat = a(a^{2}t)t = a^{3}t^{2} = a^{2}at^{2} = a^{2}(a^{2}t)t^{2} = a^{4}t^{3} = \cdots = a^{n}t^{n-1}.$

This means $a\mathcal{R} \subseteq a^n \mathcal{R}$. And obviously, $a^n \mathcal{R} \subseteq a\mathcal{R}$. So $a\mathcal{R} = a^n \mathcal{R}$ for any $n \ge 2$.

 $(iv) \Rightarrow (i)$ The condition $a \in \mathbb{R}^{[1,3e]}$ implies that $p = 1 - eaa^{(1,3e)}e^{-1}$ is an idempotent, pea = 0 and $pe = e - eaa^{(1,3e)} = (pe)^*$. Since $a\mathcal{R} = a^n\mathcal{R}$, we have $a = a^nt$ for some $t \in \mathcal{R}$. Next we will prove that $p + eae^{-1} \in \mathbb{R}_r^{-1}$ and then, by Theorem 2.4, we get that *a* is right *e*-core invertible. Indeed, $(p + eae^{-1})(1 + ea^{n-1}ta^{(1,3e)}e^{-1} - ea^{n-1}te^{-1}) = p + eae^{-1} + ea^nta^{(1,3e)}e^{-1} - ea^nte^{-1} = p + eaa^{(1,3e)}e^{-1} = 1$.

 $(i) \Rightarrow (v)$ Suppose that *x* is a right *e*-core inverse of *a* and $n \ge 2$. Then, from

$$ax = a(ax^2) = a^2x^2 = \dots = a^nx^n,$$

we get $(ea^n x^n)^* = (eax)^* = eax = ea^n x^n$. Moreover, it is easy to get $a^n x^n a^n = axa^n = a^n$ and $a^n (x^n)^2 = axx^n = (ax^2)x^{n-1} = x^n$. Hence, by Lemma 2.1, we obtain that a^n is right *e*-core invertible and $(a^n)_r^{e,\oplus} = x^n = (a_r^{e,\oplus})^n$. Since (*i*) is equivalent to (*iii*), it follows that $a\mathcal{R} = a^n\mathcal{R}$ for any $n \ge 2$.

 $(v) \Rightarrow (v)' \Rightarrow (vi)' \Rightarrow (vi)$ This is obvious.

 $(vi) \Rightarrow (i)$ Let $x = a^{n-1}(a^n)_r^{e,\oplus}$ and $a = a^n t$ for some $t \in \mathcal{R}$. Firstly, we observe that $ax = a^n(a^n)_r^{e,\oplus}$, which gives $(eax)^* = [ea^n(a^n)_r^{e,\oplus}]^* = ea^n(a^n)_r^{e,\oplus} = eax$. Further, $axa = a^n(a^n)_r^{e,\oplus}a = a^n(a^n)_r^{e,\oplus}a^n t = a^n t = a$ and $ax^2 = a^n(a^n)_r^{e,\oplus}a^{n-1}(a^n)_r^{e,\oplus} = a^n(a^n)_r^{e,\oplus}a^n t a^{n-2}(a^n)_r^{e,\oplus} = a^n t a^{n-2}(a^n)_r^{e,\oplus} = a^{n-1}(a^n)_r^{e,\oplus} = x$. So, by Lemma 2.1, *a* is right *e*-core invertible and $a_r^{e,\oplus} = x = a^{n-1}(a^n)_r^{e,\oplus}$.

 $(i) \Rightarrow (vii) \Rightarrow (vii)'$ Consequently, by previous proofs.

 $(vii)' \Rightarrow (viii) \Rightarrow (viii)'$ It is obvious.

 $(viii)' \Rightarrow (i)$ Let $x = a^{n-1}(a^n)^{(1,3e)}$ and $a = a^k t$ for some $t \in \mathcal{R}$. It is clear that $(eax)^* = [ea^n(a^n)^{(1,3e)}]^* = ea^n(a^n)^{(1,3e)} = eax$. Further, by k > n, $axa = a^n(a^n)^{(1,3e)}a = a^n(a^n)^{(1,3e)}a^k t = a^n(a^n)^{(1,3e)}a^n a^{k-n}t = a^n a^{k-n}t = a^k t = a$ and $ax^2 = a^n(a^n)^{(1,3e)}a^{n-1}(a^n)^{(1,3e)} = a^n(a^n)^{(1,3e)}a^k t a^{n-2}(a^n)^{(1,3e)} = a^k ta^{n-2}(a^n)^{(1,3e)} = a^{n-1}(a^n)^{(1,3e)} = x$. So, by Lemma 2.1, *a* is right *e*-core invertible and $a_r^{e,\oplus} = x = a^{n-1}(a^n)^{(1,3e)}$. \Box

By [16, Lemma 3.15], it is well known that $a \in \mathcal{R}^{\{1,3e\}}$ is equivalent to $\mathcal{R}a = \mathcal{R}a^*ea$. And obviously $\mathcal{R}a^*ea \subseteq \mathcal{R}a$, so $\mathcal{R}a = \mathcal{R}a^*ea$ is equivalent to $\mathcal{R}a \subseteq \mathcal{R}a^*ea$. Thus, by Theorem 3.1, we have the following result.

Proposition 3.2. Let $a \in \mathcal{R}$ and $e \in \mathcal{R}$ be an invertible Hermitian element. Then the following statements are equivalent:

(i) a is right e-core invertible; (ii) $\mathcal{R}a = \mathcal{R}a^*ea$ and $a\mathcal{R} = a^2\mathcal{R}$; (iii) $\mathcal{R}a \subseteq \mathcal{R}a^*ea$ and $a\mathcal{R} \subseteq a^2\mathcal{R}$; (iv) $\mathcal{R}a = \mathcal{R}a^*ea$ and $a\mathcal{R} \subseteq a^n\mathcal{R}$ for any $n \ge 2$; (v) $\mathcal{R}a \subseteq \mathcal{R}a^*ea$ and $a\mathcal{R} \subseteq a^n\mathcal{R}$ for some $n \ge 2$; (vi) $\mathcal{R}a \subseteq \mathcal{R}a^*ea$ and $a\mathcal{R} \subseteq a^n\mathcal{R}$ for some $n \ge 2$; (vii) $\mathcal{R}a \subseteq \mathcal{R}a^*ea$ and $a\mathcal{R} \subseteq a^n\mathcal{R}$ for some $n \ge 2$; (viii) $\mathcal{R}a^n = \mathcal{R}(a^n)^*ea^n$ and $a\mathcal{R} = a^k\mathcal{R}$ for any $n \ge 2$ and k > n; (ix) $\mathcal{R}a^n \subseteq \mathcal{R}(a^n)^*ea^n$ and $a\mathcal{R} \subseteq a^k\mathcal{R}$ for some $n \ge 2$ and k > n; (x) $\mathcal{R}a^n = \mathcal{R}(a^n)^*ea^n$ and $a\mathcal{R} = a^k\mathcal{R}$ for some $n \ge 2$ and k > n; (xi) $\mathcal{R}a^n \subseteq \mathcal{R}(a^n)^*ea^n$ and $a\mathcal{R} \subseteq a^k\mathcal{R}$ for some $n \ge 2$ and k > n;

In the following, we will give some characterizations for a right *e*-core invertible element by using $\mathcal{R}a \subseteq \mathcal{R}(a^*)^n ea$, where $n \ge 2$. For n = 2, that is if $\mathcal{R}a \subseteq \mathcal{R}(a^*)^2 ea$, we know $a = t(a^*)^2 ea$ for some $t \in \mathcal{R}$, then $a^* = a^* ea^2 t^*$. It gives that $t(a^*)^2 = ta^*a^* = ta^*(a^* ea^2 t^*) = (ta^*a^* ea)at^* = a^2t^*$. This implies that $a = t(a^*)^2 ea = a^2t^* ea$. Hence, $\mathcal{R}a \subseteq \mathcal{R}(a^*)^2 ea$ gives that $\mathcal{R}a \subseteq \mathcal{R}a^* ea$ and $a\mathcal{R} \subseteq a^2\mathcal{R}$. This means that $\mathcal{R}a = \mathcal{R}(a^*)^2 ea$ implies that a is right *e*-core invertible by Proposition 3.2.

Proposition 3.3. Let $a \in \mathcal{R}$ and $e \in \mathcal{R}$ be an invertible Hermitian element and $n \ge 2$. Then the following statements are equivalent:

(i) a is right e-core invertible; (ii) $\mathcal{R}a = \mathcal{R}(a^*)^n ea;$ (iii) $\mathcal{R}a \subseteq \mathcal{R}(a^*)^n ea;$

Proof. (*ii*) \Leftrightarrow (*iii*) Obviously.

(*i*) \Rightarrow (*iii*) If *a* is right *e*-core invertible, by Proposition 3.2(iv), we know $\mathcal{R}a = \mathcal{R}a^*ea$ and $a\mathcal{R} = a^n\mathcal{R}$, so $a = a^n t$ for some $t \in \mathcal{R}$. Thus $a^* = t^*(a^*)^n$. The condition $\mathcal{R}a = \mathcal{R}a^*ea$ gives that $a = sa^*ea$ for some $s \in \mathcal{R}$, then $a = st^*(a^*)^n ea$. This means that $\mathcal{R}a \subseteq \mathcal{R}(a^*)^n ea$.

 $(iii) \Rightarrow (i)$ By assumption $\mathcal{R}a \subseteq \mathcal{R}(a^*)^n ea$, we have $a = t(a^*)^n ea$ for some $t \in \mathcal{R}$, and then $a^* = a^* ea^n t^*$. It gives that $t(a^*)^n = t(a^*)^{n-1}a^* = t(a^*)^{n-1}(a^* ea^n t^*) = [t(a^*)^n ea]a^{n-1}t^* = a^n t^*$. This implies that $a = t(a^*)^n ea = a^n t^* ea$. Hence, $\mathcal{R}a \subseteq \mathcal{R}(a^*)^n ea$ implies that $\mathcal{R}a \subseteq \mathcal{R}a^* ea$ and $a\mathcal{R} \subseteq a^n\mathcal{R}$. Therefore, *a* is right *e*-core invertible by Proposition 3.2. \Box

Note that a^* is left (*ea*, a^*) invertible if and only if $\mathcal{R}ea = \mathcal{R}(a^*)^2 ea$. Then we can obtain the following result.

Proposition 3.4. Let $a \in \mathcal{R}$ and $e \in \mathcal{R}$ be an invertible Hermitian element. Then a is right (a, a^*e) invertible if and only if a^* is left (ea, a^*) invertible.

Proof. If *a* is right (*a*, *a*^{*}*e*) invertible, by Definition 1.3, *a* is right *e*-core invertible, applying Proposition 3.3, we have $\mathcal{R}(a^*)^2 ea = \mathcal{R}a$. Then $\mathcal{R}ea \subseteq \mathcal{R}a = \mathcal{R}(a^*)^2 ea \subseteq \mathcal{R}ea$, i.e. $\mathcal{R}ea = \mathcal{R}(a^*)^2 ea$, so a^* is left (*ea*, *a*^{*}) invertible.

Conversely, if a^* is left (*ea*, a^*) invertible, we know $\mathcal{R}ea = \mathcal{R}(a^*)^2 ea$, which gives that $ea = t(a^*)^2 ea$ for some $t \in \mathcal{R}$. Then $a = e^{-1}t(a^*)^2 ea \in \mathcal{R}ea$ as e is invertible, which yields $\mathcal{R}a \subseteq \mathcal{R}ea \subseteq \mathcal{R}a$, i.e. $\mathcal{R}a = \mathcal{R}ea = \mathcal{R}(a^*)^2 ea$, so a is right (a, a^*e) invertible. \Box

Remark 3.5. Notice that if $aR = a^2R$, we have a^* is left (ea, a^*) invertible if and only if $(a^*)^n$ is left (ea, a^*) invertible. Indeed, a^* is left (ea, a^*) invertible $\stackrel{Proposition 3.4}{\longleftrightarrow}$ a is right (a, a^*e) invertible $\stackrel{Theorem 3.1}{\longleftrightarrow} a^n$ is right (a, a^*e) invertible $\stackrel{Proposition 3.4}{\longleftrightarrow}$ (a^n)* is left (ea, a^*) invertible.

4. The related generalized core inverses

In this section, some new characterizations of (generalized) *e*-core inverses are given. Through these characterizations, we can clearly find the relationship between these generalized inverses. In what follows, we assume that $e \in \mathcal{R}$ is an invertible Hermitian element.

Theorem 4.1. Let $a, e \in \mathcal{R}$ and $k \ge 1$. Then the following statements are equivalent:

(*i*) *a* is *e*-core invertible;

(ii) there exists $x \in \mathcal{R}$ such that $xa^2 = a$, $x^k = ax^{k+1}$ and $(ea^k x^k)^* = ea^k x^k$; (iii) there exists $x \in \mathcal{R}$ such that $xa^2 = a$, $x^k = ax^{k+1}$ and $(eax)^* = eax$.

Proof. If k = 1, by [10, Theorem 2.1], it is clear that (i) \Leftrightarrow (ii) \Leftrightarrow (iii). Let us assume that $k \ge 2$ in the rest of the proof.

 $(i) \Rightarrow (ii)$ and (iii) If *a* is *e*-core invertible, let $x = a^{e,\oplus}$. By [10, Theorem 2.1], we obtain $xa^2 = a$, $x = ax^2$ and $(eax)^* = eax$. For $k \ge 2$, it is easy to get $ax^{k+1} = ax^2x^{k-1} = x^k$. Notice that $ax = a(ax^2) = a^2x^2 = a^2(ax^2)x = \cdots = a^{k-1}$ $a^{k}x^{k}$, then $(ea^{k}x^{k})^{*} = (eax)^{*} = eax = ea^{k}x^{k}$.

 $(ii) \Rightarrow (i)$ Suppose that there exists $x \in \mathcal{R}$ such that $xa^2 = a$, $x^k = ax^{k+1}$ and $(ea^kx^k)^* = ea^kx^k$. Let $z = a^{k-1}x^k$. Then $a = xa^2 = xaa = x(xa^2)a = x^2a^3 = \cdots = x^{k-1}a^k = x^ka^{k+1} = (ax^{k+1})a^{k+1} = a(x^k)xa^{k+1} = a(x^k)xa^{k+1}$ $a(ax^{k+1})xa^{k+1} = a^2(x^k)x^2a^{k+1} = a^2(ax^{k+1})x^2a^{k+1} = \cdots = a^{k-1}x^{k+(k-1)}a^{k+1} = (a^{k-1}x^k)(x^{k-1}a^k)a = zaa = za^2$, and $z = a^{k-1}x^k = a^{k-1}(ax^{k+1}) = a^kx^{k+1} = a^kx(ax^{k+1}) = a^kx(xa^2)x^{k+1} = a^kx^2a^2x^{k+1} = a^kx^2(xa^2)ax^{k+1} = a^kx^3a^3x^{k+1} = \cdots = a^kx^{k-1}a^{k-1}x^{k-1}$ $a^{k}x^{k}a^{k}x^{k+1} = a^{k}x^{k}a^{k-1}(ax^{k+1}) = a^{k}x^{k}a^{k-1}x^{k} = az^{2}$. Note that $az = a^{k}x^{k}$, thus $(eaz)^{*} = eaz$. Hence $a^{e,\oplus} = z = a^{k-1}x^{k}$.

(*iii*) \Rightarrow (*i*) Note that $a = xa^2 = x(xa^2)a = x^2a^3 = x^2(xa^2)a^2 = x^3a^4 = \cdots = x^ka^{k+1}$. Write z = xax. Then $az = axax = ax(x^k a^{k+1})x = (ax^{k+1})a^{k+1}x = x^k a^{k+1}x = ax$, which gives that $(eaz)^* = eaz$. It is easy to get $za^2 = xa(xa^2) = xa^2 = a$. Moreover, $az^2 = axz = ax(xax) = ax^2(x^ka^{k+1})x = (ax^{k+1})xa^{k+1}x = x^{k+1}a^{k+1}x = xax = z$. This implies that $a^{e,\oplus} = xax$. \Box

Proposition 4.2. Let $a, e, x \in \mathcal{R}$ and $k \ge 1$. Then the following statements are equivalent:

(i) x is the e-core inverse of a;

(*ii*) $xa^2 = a$, xax = x, $x^k = ax^{k+1}$ and $(eax)^* = eax$; (*iii*) $xa^2 = a$, $x^{k+1}a^{k+1}x = x$, $x^k = x^ka^{k+1}x^{k+1}$ and $(ex^ka^{k+1}x)^* = ex^ka^{k+1}x$.

Proof. (*i*) \Rightarrow (*ii*) If x is the *e*-core inverse of a, we know $xa^2 = a$, $x = ax^2$ and $(eax)^* = eax$, then $x^k = xx^{k-1} = ax^{k+1}$, and $ax = a(ax^2) = a^2x^2$. Thus $xax = x(a^2x^2) = (xa^2)x^2 = ax^2 = x$.

 $(ii) \Rightarrow (i)$ It suffices to prove $ax^2 = x$. Indeed, by $xa^2 = a$, we get $xa = x(xa^2) = x^2a^2 = \cdots = x^ka^k$. Thus, $x = xax = x^k a^k x = ax^{k+1} a^k x = ax(x^k a^k) x = axxax = ax^2.$

(*ii*) \Leftrightarrow (*iii*) Since $a = xa^2$ implies $a = x^k a^{k+1}$, this equivalence is obvious. \Box

Recall in [10, Theorem 2.4] that *a* is weighted-EP with respect to (*e*, *e*) if and only if there exists $x \in \mathcal{R}$ such that $(exa)^* = exa, xa^2 = a, ax^2 = x$, which are also equivalent to that $(eax)^* = eax, a^2x = a, x^2a = x$. In the following result, we will change the condition $(eax)^* = eax$ in Theorem 4.1 into $(exa)^* = exa$. It is interesting that *a* is weighted-EP with respect to (e, e).

Theorem 4.3. Let $a, e \in \mathcal{R}$ and $k \ge 1$. Then the following statements are equivalent:

(*i*) *a* is weighted-EP with respect to (e, e);

(ii) there exists $x \in \mathcal{R}$ such that $xa^2 = a$, $x^k = ax^{k+1}$ and $(exa)^* = exa;$

- (iii) there exists $x \in \mathcal{R}$ such that $xa^2 = a$, $x^k = x^k a^{k+1} x^{k+1}$ and $(ex^{k+1} a^{k+1})^* = ex^{k+1} a^{k+1}$;
- (iv) there exists $x \in \mathcal{R}$ such that $a^2x = a$, $x^k = x^{k+1}a$ and $(eax)^* = eax$;
- (v) there exists $x \in \mathcal{R}$ such that $a^2 x = a$, $x^k = x^{k+1}a^{k+1}x^k$ and $(ea^{k+1}x^{k+1})^* = ea^{k+1}x^{k+1}$.

Proof. (*i*) \Rightarrow (*ii*) If *a* is weighted-EP with respect to (*e*, *e*), we know that $(exa)^* = exa, xa^2 = a, ax^2 = x$ for some $x \in \mathcal{R}$. Thus $x^k = xx^{k-1} = ax^{k+1}$.

(ii) \Rightarrow (i) Note that $a = xa^2 = x(xa^2)a = x^2a^3 = \cdots = x^ka^{k+1}$. Write z = xax. Then az = axax = axax $ax(x^{k}a^{k+1})x = (ax^{k+1})a^{k+1}x = x^{k}a^{k+1}x = ax$, and $za = xaxa = xax(x^{k}a^{k+1}) = x(ax^{k+1})a^{k+1} = x(x^{k}a^{k+1}) = xa$, which imply that $(eza)^* = (exa)^* = exa = eaz$. It is easy to get $za^2 = xa(xa^2) = xa^2 = a$. Moreover, $az^2 = axz = ax(xax) = ax^2(x^ka^{k+1})x = (ax^{k+1})xa^{k+1}x = x^{k+1}a^{k+1}x = xax = z$. Hence, *a* is weighted-EP with respect to (e, e).

 $(ii) \Leftrightarrow (iii)$ Since $a = xa^2$ implies $a = x^k a^{k+1}$, it is clear.

 $(i) \Rightarrow (iv)$ Suppose that *a* is weighted-EP with respect to (e, e), then we have $(eax)^* = eax, a^2x = a, x^2a = x$ for some $x \in \mathcal{R}$. Thus $x^{k+1}a = x^{k-1}(x^2a) = x^k$.

 $(iv) \Rightarrow (i)$ Note that $a = a^2x = a(a^2x)x = a^3x^2 = \cdots = a^{k+1}x^k$. Let z = xax. Then $az = axax = (a^{k+1}x^k)xax = a^{k+1}(x^{k+1}a)x = a^{k+1}x^{k+1} = ax$, and $za = xaxa = x(a^{k+1}x^k)xa = xa^{k+1}(x^{k+1}a) = xa^{k+1}x^k = xa$. So $(eaz)^* = (eax)^* = eax = eaz$, and $a^2z = a^2x = a$. Furthermore, $z^2a = zxa = (xax)xa = x(a^{k+1}x^k)x^2a = xa^{k+1}x(x^{k+1}a) = xa^{k+1}x^{k+1} = xax = z$. Hence, *a* is weighted-EP with respect to (e, e).

 $(iv) \Leftrightarrow (v)$ The condition $a = a^2 x$ implies $a = a^{k+1} x^k$, thus the equivalence is obvious. \Box

In [16], Zhu and Wang introduced the concept of pseudo *e*-core inverse in *-rings.

Definition 4.4. [16] Let $a, e \in \mathbb{R}$. The pseudo e-core inverse of a, denoted by $a^{e, \mathbb{O}}$, is the unique solution to system

 $xa^{k+1} = a^k$ for some $k \ge 1$, $ax^2 = x$ and $(eax)^* = eax$.

The authors introduced the one-sided pseudo *e*-core inverse in [13, Remark 4.12], here we also present the definition.

Definition 4.5. [13] Let $a, e \in \mathcal{R}$. Then a is called right pseudo e-core invertible if there exist $x \in \mathcal{R}$ and some positive integer k such that $axa^k = a^k$, $x = ax^2$ and $(eax)^* = eax$.

We use the symbol $a_r^{e, \mathbb{D}}$ to denote the right pseudo *e*-core inverse of *a*, if *a* is right pseudo *e*-core invertible. Next we will characterize pseudo *e*-core invertible elements.

Theorem 4.6. Let $a, e \in \mathcal{R}$ and $k \ge 1$. Then the following are equivalent:

(*i*) *a is pseudo e-core invertible;*

(ii) there exists $x \in \mathcal{R}$ such that $xa^{k+1} = a^k$, $ax^{k+1} = x^k$ and $(ea^kx^k)^* = ea^kx^k$;

(iii) there exists $x \in \mathcal{R}$ such that $a^k x^{k+1} a^{k+1} = a^k$, $ax^2 = x$ and $(ea^{k+1} x^{k+1})^* = ea^{k+1} x^{k+1}$.

Proof. (*i*) \Rightarrow (*ii*) By Definition 4.4, there exists $x \in \mathcal{R}$ such that $xa^{k+1} = a^k$, $ax^2 = x$ and $(eax)^* = eax$, which give that $ax^{k+1} = ax^2x^{k-1} = x^k$, and $ax = a(ax^2) = a^2x^2 = a^2(ax^2)x = a^3x^3 = \cdots = a^kx^k$. So $(ea^kx^k)^* = (eax)^* = eax = ea^kx^k$.

 $(ii) \Rightarrow (i)$ By the assumption, let $z = a^{k-1}x^k$. Then $az = a^kx^k$, and $(eaz)^* = (ea^kx^k)^* = ea^kx^k = eaz$. Notice that $a^k = xa^{k+1} = x(xa^{k+1})a = x^2a^{k+2} = \cdots = x^{k-1}a^{2k-1} = x^ka^{2k}$, and $x^k = ax^{k+1} = a(ax^{k+1})x = a^2x^{k+2} = \cdots = a^{k-1}x^{2k-1} = a^kx^{2k}$, which imply that $z = a^{k-1}x^k = a^{k-1}(ax^{k+1}) = a^kx^{k+1} = \cdots = a^{2k}x^{2k+1} = a^k(x^ka^{2k})x^{2k+1} = a^kx^ka^k(a^kx^{2k})x = a^kx^ka^kx^{k+1} = a^kx^ka^{k-1}x^k = az^2$, and $a^k = x^ka^{2k} = (a^{k-1}x^{2k-1})a^{2k} = (a^{k-1}x^k)(x^{k-1}a^{2k-1})a = za^{k+1}$. These yield that $z = a^{k-1}x^k$ is a pseudo *e*-core inverse of *a*, and *a* is pseudo *e*-core invertible.

(*ii*) \Leftrightarrow (*iii*) The equality $x = ax^2$ gives $x = a^k x^{k+1}$ and so the rest is clear.

In the following result, we will reveal the relationship between right pseudo *e*-core inverses and right *e*-core inverses.

Theorem 4.7. *Let* $a, e \in \mathcal{R}$ *. Then the following statements are equivalent:*

(*i*) *a* is right pseudo *e*-core invertible;

(ii) a^k is right e-core invertible for some positive integer k.

Proof. (*i*) \Rightarrow (*ii*) If *a* is right pseudo *e*-core invertible, then we can check that $z = (a_r^{e, \textcircled{D}})^k$ is a right *e*-core inverse of a^k . Indeed, the condition $a_r^{e, \textcircled{D}} = a(a_r^{e, \textcircled{D}})^2$ yields $a_r^{e, \textcircled{D}} = a^{k-1}(a_r^{e, \textcircled{D}})^k$. Thus $a^k z = a^k(a_r^{e, \textcircled{D}})^k = a(a^{k-1}(a_r^{e, \textcircled{D}})^k) = aa_r^{e, \textcircled{D}}$. Therefore, $(ea^k z)^* = (eaa_r^{e, \textcircled{D}})^* = eaa_r^{e, \textcircled{D}} = ea^k z$, $a^k z a^k = aa_r^{e, \textcircled{D}} a^k = a^k$ and $a^k z^2 = aa_r^{e, \textcircled{D}} z = aa_r^{e, \textcircled{D}}(a_r^{e, \textcircled{D}})^k = (a(a_r^{e, \textcircled{D}})^k) = (a(a_r^{e, \textcircled{D}})^2)(a_r^{e, \textcircled{D}})^{k-1} = (a_r^{e, \textcircled{D}})^k = z$.

 $\begin{array}{l} (ii) \Rightarrow (i) \text{ If } a^k \text{ is right } e\text{-core invertible for some positive integer } k, \text{ then we can check that } y = a^{k-1}(a^k)_r^{e,\oplus} \\ \text{ is a right pseudo } e\text{-core inverse of } a. \text{ Indeed, } ay = a^k(a^k)_r^{e,\oplus}, aya^k = a^k(a^k)_r^{e,\oplus}a^k = a^k, ay^2 = a^k(a^k)_r^{e,\oplus}y = a^k(a^k)_r^{e,\oplus}a^{k-1}(a^k)_r^{e,\oplus}a^{k-1} = a^k(a^k)_r^{e,\oplus}a^{k-1} = a^k(a^k)_r^{e,$

Next we characterize right pseudo e-core invertible elements by using Theorem 4.7.

Theorem 4.8. Let $a, e \in \mathcal{R}$. Then the following statements are equivalent: (i) a is right pseudo e-core invertible; (ii) $a^k \in \mathcal{R}^{\{1,3e\}}$ and $a^k \mathcal{R} = a^{k+1} \mathcal{R}$ for some positive integer k; (iii) $a^k \in \mathcal{R}^{\{1,3e\}}$ and $a^k \mathcal{R} \subseteq a^{k+1} \mathcal{R}$ for some positive integer k; (iv) $\mathcal{R}a^k = \mathcal{R}(a^k)^* ea^k$ and $a^k \mathcal{R} \subseteq a^{k+1} \mathcal{R}$ for some positive integer k; (v) $\mathcal{R}a^k \subseteq \mathcal{R}(a^k)^* ea^k$ and $a^k \mathcal{R} \subseteq a^{k+1} \mathcal{R}$ for some positive integer k; (vi) $\mathcal{R}a^k \subseteq \mathcal{R}(a^k)^{k+1} ea^k$ for some positive integer k; (vi) $\mathcal{R}a^k \subseteq \mathcal{R}(a^*)^{k+1} ea^k$ for some positive integer k.

Proof. a is right pseudo *e*-core invertible $\stackrel{Theorem4.7}{\longleftrightarrow} a^k$ is right *e*-core invertible for some positive integer *k* $\stackrel{Theorem3.1}{\longleftrightarrow} a^k \in \mathcal{R}^{\{1,3e\}}$ and $a^k \mathcal{R} = a^{k+1} \mathcal{R}$ for some positive integer $k \stackrel{Theorem3.1}{\longleftrightarrow} (\text{iii}) \stackrel{Proposition3.2}{\longleftrightarrow} (\text{iv}) \stackrel{Proposition3.2}{\longleftrightarrow} (\text{v})$

Finally, the matrix representations of right pseudo *e*-core invertible element and its right pseudo *e*-core inverse are presented in the following theorem.

Theorem 4.9. Let $a, e \in \mathcal{R}$. Then the following statements are equivalent: (*i*) *a* is right pseudo e-core invertible and $x \in \mathcal{R}$ is a right pseudo e-core inverse of a; (*ii*) there exists an idempotent $q \in \mathcal{R}$ such that $(eq)^* = eq$ and

$$a = \begin{bmatrix} a_1 & a_2 \\ a_3 & a_4 \end{bmatrix}_q, \qquad x = \begin{bmatrix} x_1 & x_2 \\ 0 & 0 \end{bmatrix}_q,$$
(2)

where a_1 is right invertible in $q\mathcal{R}q$, $x_1 = (a_1)_r^{-1}$, $a_1x_2 = 0$, $a_3x_1 = 0$, $a_3x_2 = 0$ and $qa^k = a^k$ for some $k \ge 1$; (iii) there exists an idempotent $p \in \mathcal{R}$ such that $(ep)^* = ep$ and

$$a = \begin{bmatrix} a_1 & a_2 \\ a_3 & a_4 \end{bmatrix}_p, \qquad x = \begin{bmatrix} 0 & 0 \\ x_1 & x_2 \end{bmatrix}_p, \tag{3}$$

where a_4 is right invertible in $(1-p)\mathcal{R}(1-p)$, $x_2 = (a_4)_r^{-1}$, $a_2x_1 = 0$, $a_2x_2 = 0$, $a_4x_1 = 0$ and $pa^k = 0$ for some $k \ge 1$.

Proof. (*i*) \Rightarrow (*ii*) If *a* is right pseudo *e*-core invertible and $x \in \mathcal{R}$ is a right pseudo *e*-core inverse of *a*, by Definition 4.5, we have $axa^k = a^k$, $x = ax^2$ and $(eax)^* = eax$ for some $k \ge 1$. Note that $ax = a(ax^2) = a^2x^2 = \cdots = a^kx^k$, which gives $axax = ax(a^kx^k) = (axa^k)x^k = a^kx^k = ax$. For q = ax, we get $q^2 = axax = ax = q$, $(eq)^* = (eax)^* = eax = eq$, $qa^k = a^k$ and qx = x implying (3). Since

$$\begin{bmatrix} a_1x_1 & a_1x_2 \\ a_3x_1 & a_3x_2 \end{bmatrix}_q = ax = q = \begin{bmatrix} q & 0 \\ 0 & 0 \end{bmatrix}_q,$$

the rest is clear.

(*ii*) \Rightarrow (*i*) Because $ax = \begin{bmatrix} a_1 & a_2 \\ a_3 & a_4 \end{bmatrix}_q \begin{bmatrix} x_1 & x_2 \\ 0 & 0 \end{bmatrix}_q = \begin{bmatrix} a_1x_1 & a_1x_2 \\ a_3x_1 & a_3x_2 \end{bmatrix}_q = \begin{bmatrix} q & 0 \\ 0 & 0 \end{bmatrix}_q = q$, we can prove this implication by elementary computations.

(*i*) \Leftrightarrow (*iii*) This equivalence follows similarly as (*i*) \Leftrightarrow (*ii*) for p = 1 - ax. \Box

5050

References

- [1] A. Ben-Israel, T. N. E. Greville, Generalized Inverses: Theory and Applications, Wilery, New York, 1974.
- [2] K. P. S. Bhaskara Rao, Theory of Generalized Inverses Over Commutative Rings, London: Taylor and Francis, Ltd London, 2002.
- [3] O. M. Baksalary, G. Trenkler, Core inverse of matrices, Linear Multilinear Algebra, 58 (2010) 681-697.
- [4] M. P. Drazin, Left and right generalized inverses, Linear Algebra Appl., 510 (2016) 64-78.
- [5] Y. F. Gao, J. L. Chen, Pseudo core inverses in rings with involution, Comm. Algebra, 46(1) (2018) 38-50.
- [6] Y. Y. Ke, J. Višnjić, J. L. Chen, One-sided (*b*, *c*)-inverses in rings, Filomat, 34(3) (2020) 272-736.
- [7] Y. Y. Ke, L. Wang, J. H. Liang, The characterizations of weighted right core inverse and the related generalized inverses, (submitted).
- [8] T. Y. Lam, A First Course in Noncommutative Rings, Grad. Text in Math. Vol. 131. Springer-Verlag, Berlin-Heidelberg-New York, 2001.
- [9] T. T. Li, J. L. Chen, Characterizations of core and dual core inverses in rings with involution, Linear Multilinear Algebra, 66 (2018) 717-730.
- [10] D. Mosić, C. Y. Deng, H. F. Ma, On a weighted core inverse in a ring with involution. Comm. Algebra, 46 (2018) 2332-2345.
- [11] D. S. Rakić, N. S. Dinčić, D. S. Djordjević, Group, Moore-Penrose, core and dual core inverse in rings with involution, Linear Algebra Appl., 463 (2014) 115-133.
- [12] L. Wang, D. Mosić, The one-sided inverse along two elements in rings, Linear and Multilinear Algebra, 69 (2021) 2410-2422.
- [13] L. Wang, D. Mosić, Y. F. Gao, Right core inverse and the related generalized inverses, Comm. Algebra, 47 (11) (2019) 4749-4762.
 [14] S. Z. Xu, J. L. Chen, X. X. Zhang, New characterizations for core inverses in rings with involution. Front. Math. China 12(1)(2017)
- 231-246.[15] H. H. Zhu, Q. W. Wang, Weighted Moore-Penrose inverses and Weighted core inverses in rings with involution, Chinese Annals
- of Mathematics, Series B, 42 (04) (2021) 613-624.
- [16] H. H. Zhu, Q. W. Wang, Weighted pseudo core inverses in rings, Linear and Multilinear Algebra, 68 (12) (2020) 2434-2447.