Right e-core inverse and the related generalized inverses in rings

Yuanyuan Ke $^{\text {a,** }}$, Long Wang ${ }^{\mathbf{b}}$, Jiahui Liang ${ }^{\mathbf{b}}$, Ling Shi ${ }^{\text {a }}$
${ }^{a}$ School of Artificial Intelligence, Jianghan University, Wuhan, 430056, Hubei, P. R. China
${ }^{b}$ School of Mathematics, Yangzhou University, Yangzhou, 225002, Jiangsu, P. R. China

Abstract

In this paper, some characterizations and properties of right e-core inverses by using right invertible element and $\{1,3 e\}$-inverse are investigated. Meanwhile, some characterizations for a new generalized right e-core inverse which is called right pseudo e-core inverse are also studied. The relationship between right pseudo e-core inverses and right e-core inverses are presented.

1. Introduction

Let \mathcal{R} be an associative ring with the unit 1 . An involution $*: \mathcal{R} \rightarrow \mathcal{R}$ is an anti-isomorphism which satisfies $\left(a^{*}\right)^{*}=a,(a+b)^{*}=a^{*}+b^{*}$ and $(a b)^{*}=b^{*} a^{*}$ for all $a, b \in \mathcal{R}$. We call \mathcal{R} a *ring if there exists an involution on \mathcal{R}. Recall that an element $a \in \mathcal{R}$ is said to be Hermitian if $a^{*}=a$. And an element $a \in \mathcal{R}$ is an idempotent if $a^{2}=a$.

The core inverse of a complex matrix was first introduced by Baksalary and Trenkler [3]. Later, Rakić et al. [11] generalized this concept to the case of an arbitrary *-ring. An element $a \in \mathcal{R}$ is core invertible (resp. dual core invertible) if there is an element $x \in \mathcal{R}$ such that

$$
\left.a x a=a, \quad x \mathcal{R}=a \mathcal{R} \quad(\text { resp. } \mathcal{R} x=\mathcal{R} a), \mathcal{R} x=\mathcal{R} a^{*} \quad \text { (resp. } x \mathcal{R}=a^{*} \mathcal{R}\right) .
$$

Such an x above is called a core inverse of a. It is unique if it exists and is denoted by a^{\oplus} (resp. a_{\oplus}). Moreover, it was proved in [11] that $a \in \mathcal{R}$ is core invertible if and only if there exists an element $x \in \mathcal{R}$ satisfying the following five equations:

$$
a x a=a, \quad x a x=x, \quad(a x)^{*}=a x, \quad x a^{2}=a, \quad a x^{2}=x .
$$

Indeed, Xu , Chen and Zhang [14] proved that the above five equations can be deduced to three equations:

$$
x a^{2}=a, a x^{2}=x \text { and }(a x)^{*}=a x
$$

In [5], Gao and Chen defined the pseudo core inverse by three equations in a*-rings, which extend the classical core inverses. An element $a \in \mathcal{R}$ is pseudo core invertible if there exist an $x \in \mathcal{R}$ and a positive integer k satisfying

[^0]$$
x a^{k+1}=a^{k}, \quad a x^{2}=x \text { and }(a x)^{*}=a x
$$

If such an x exists, it is unique and is called a pseudo core inverse of a, and denoted by a^{D}. The smallest positive integer k is called the pseudo core index of a.

Later, Mosić, Deng and Ma [10] introduced the definitions of the e-core inverse and the f-dual core inverse of elements in *-rings, which generalized the concepts of the core inverse and the dual core inverse, where e and f are invertible Hermitian elements. Following [10], any element $x \in \mathcal{R}$ is called an e-core inverse (or a weighted core inverse with weight e) of $a \in \mathcal{R}$, if it satisfies

$$
\text { axa } a=a, \quad x \mathcal{R}=a \mathcal{R}, \text { and } \mathcal{R} x=\mathcal{R} a^{*} e
$$

Such an e-core inverse x of a is unique if it exists, and is denoted by $a^{e, \oplus}$. If $e=1$ in the above definition, then $a^{e, \oplus}=a^{\boxplus}$ is the ordinary core inverse of a. Moreover, the authors characterized e-core inverse by three equations, that is, a is e-core invertible if and only if there exists $x \in \mathcal{R}$ such that

$$
x a^{2}=a, \quad a x^{2}=x \quad \text { and }(e a x)^{*}=e a x
$$

Wang and Mosić [12] introduced the one-sided core inverse, which considered as the special case of right (b, c)-inverse, called it right core inverse in *-ring. Then they gave some characterizations for it. Recall that an element $a \in \mathcal{R}$ is said to be right core invertible if there is $x \in \mathcal{R}$ satisfying

$$
a x a=a, \quad a x^{2}=x \text { and }(a x)^{*}=a x
$$

Later, Wang, Mosić and Gao [13] investigated some properties of right core inverses, and gave new characterizations and expressions for them by using projections and one-sided invertible elements. They also introduced and studied a new generalized right core inverse which is called right pseudo core inverse. An element $a \in \mathcal{R}$ is right pseudo core invertible if there exist $x \in \mathcal{R}$ and positive integer k satisfy

$$
a x a^{k}=a^{k}, \quad a x^{2}=x \text { and }(a x)^{*}=a x
$$

We use the symbols a_{r}^{\oplus} and $a_{r}^{\mathbb{D}}$ to denote the right core inverse and right pseudo core inverse of a, respectively.
In [15], Zhu and Wang derived the existence criteria and characterizations for the weighted MoorePenrose, e-core inverse, f-dual core inverse and one-sided inverses along an element in rings. Later they in [16] defined two types of outer generalized inverses, called pseudo e-core inverse and pseudo f-dual core inverse. An element $a \in \mathcal{R}$ is called pseudo e-core invertible (resp. pseudo f-core invertible) if there are $x \in \mathcal{R}$ and positive integer k such that

$$
x a x=x, \quad x \mathcal{R}=a^{k} \mathcal{R}\left(\text { resp. } \mathcal{R} x=\mathcal{R} a^{k}\right), \quad \mathcal{R} x=\mathcal{R}\left(a^{k}\right)^{*} e\left(\text { resp. } f x \mathcal{R}=\left(a^{k}\right)^{*} \mathcal{R}\right)
$$

Furthermore, they investigated some characterizations and properties for them, and gave the relations between the pseudo e-core inverse and the inverse along an element.

Motivated by the aforementioned above, in this article, we will investigate some characterizations and properties for right e-core inverses by using right invertible element and $\{1,3 e\}$-inverse. Meanwhile, we also study some characterizations for a new generalized right e-core inverse which is called right pseudo e-core inverse. Finally, we present the relationship between right pseudo e-core inverses and right e-core inverses.

Now, we give the main concepts and symbols.
Let $e, f \in \mathcal{R}$ be two invertible Hermitian elements, we say that $a \in \mathcal{R}$ is a weighted Moore-Penrose invertible with weights e, f if there exists an $x \in \mathcal{R}$ satisfying the following four equations (see [1, 2]):

$$
\text { (1) } a x a=a, \quad \text { (2) } x a x=x, \quad(3 e)(e a x)^{*}=e a x, \quad(4 f)(f x a)^{*}=f x a .
$$

If such an x exists, it is unique and called a weighted Moore-Penrose inverse of a, denoted by $a_{e, f}^{+}$. The set of all weighted Moore-Penrose invertible elements of \mathcal{R} with weighted e, f will be denoted by $\mathcal{R}_{e, f}^{\dagger}$. If $e=f=1$ in the above equations, then $a_{e, f}^{\dagger}=a^{\dagger}$ is the ordinary Moore-Penrose inverse of a. More generally, if a and x satisfy the equations (1) $a x a=a$ and ($3 e$) $(e a x)^{*}=e a x$, then x is called a $\{1,3 e\}$-inverse of a, and
is denoted by $a^{(1,3 e)}$. Similarly, if a and x satisfy the equations (1) $a x a=a$ and (4f) ($\left.f x a\right)^{*}=f x a$, then x is called a $\{1,4 f\}$-inverse of a, and is denoted by $a^{(1,4 f)}$. As usual, we denote by $\mathcal{R}^{\{1,3 e\}}$ and $\mathcal{R}^{\{1,4 f\}}$ the sets of all $\{1,3 e\}$-invertible and $\{1,4 f\}$-invertible elements in \mathcal{R}, respectively. If a and x satisfy the equations (1) $a x a=a$, (2) $x a x=x$, and (5) $a x=x a$, then x is called a group inverse of a, and is denoted by a^{\sharp}. All the group invertible elements of \mathcal{R} is denoted by \mathcal{R}^{\sharp}.

As weaker versions of the (b, c)-invertibility, one-sided (b, c)-invertibility is introduced by Drazin [4]:
Definition 1.1. Let $a, b, c \in \mathcal{R}$. Then a is called right (resp. left) (b, c)-invertible if $c \in c a b \mathcal{R}$ (resp. $b \in \mathcal{R} c a b)$, or equivalently if there exists $z \in b \mathcal{R}$ such that $c a z=c$ (resp. $x \in \mathcal{R} c$ such that $x a b=b$), in which case any such z (resp. $x)$ will be called a right (resp. left) (b, c)-inverse of a.

In [4], Drazin considered some properties of left (or right) (b, c)-inverses under the additional conditions, such as \mathcal{R} is strongly π-regular. In [6], Ke, Višnjić and Chen introduced left and right annihilator (b, c) inverses and investigated some properties of them and of left (or right) (b, c)-inverses. In [12], the authors studied the properties of left (or right) (b, c)-inverses under the condition $c a b$ is regular. As applications, the authors introduced the one-sided core inverse, for the convenience of the reader, the definitions of right core inverses are given again see [13, Definition 1.3].

Definition 1.2. [13, Definition 1.3] Let $a \in \mathcal{R}$. We say that a is right core invertible if a is right $\left(a, a^{*}\right)$-invertible.
Motivated by above definition, the authors introduced the one-sided e-core inverse in [13, Remark 4.12], here we also give the definition.

Definition 1.3. [13] Let $a \in \mathcal{R}$ and $e \in \mathcal{R}$ be an invertible Hermitian element. An element a is called right e-core invertible if a is right $\left(a, a^{*} e\right)$-invertible.

Note that, by Definition 1.3, a is right e-core invertible if and only if $a^{*} e \in a^{*} e a^{2} \mathcal{R}$ if and only if there exists $x \in \mathcal{R}$ such that $x \in a \mathcal{R}$ and $a^{*} e a x=a^{*} e$. The sets of all right e-core invertible elements of \mathcal{R} will be denoted by $\mathcal{R}_{r}^{e, \oplus}$. The symbol $a_{r}^{e, \oplus}$ is used to denote the right e-core inverse of a, if $a \in \mathcal{R}_{r}^{e, \oplus}$.

Next section we will study the properties of right e-core inverses.

2. Characterizing right e-core inverses by idempotent and one-sided inverse in a*-ring

In [9, Theorems 3.3 and 3.4], Li and Chen gave the characterizations and expressions of core inverse of an element by a projection and units. Motivated by this, in this section, we present some equivalent conditions for the existence of right e-core inverses. We will prove that a is right e-core invertible if and only if there exists an idempotent p such that $(e p)^{*}=e p, p a=0$, and $a^{n}+p$ is right invertible for $n \geq 1$. Before we start, the following result is needed.

Lemma 2.1. [7, Theorem 1.4] Let $a \in \mathcal{R}$ and $e \in \mathcal{R}$ be an invertible Hermitian element. Then the following statements are equivalent:
(i) a is right e-core invertible;
(ii) there exists $x \in \mathcal{R}$ such that axa $=a, x=a x^{2}$ and $(\text { eax })^{*}=e a x$.

Remark 2.2. In fact, all right e-core inverses $a_{r}^{e, \oplus}$ of a satisfy

$$
a a_{r}^{e, \oplus} a=a, a_{r}^{e, \oplus}=a\left(a_{r}^{e, \oplus}\right)^{2} \text { and }\left(e a a_{r}^{e, \oplus}\right)^{*}=e \operatorname{eaa_{r}^{e,\oplus }.}
$$

Moreover, if a is right e-core invertible, then a $a_{r}^{e, \oplus}$ is invariant on the choice of $a_{r}^{e, \oplus}$. Indeed, assume that x_{1} and x_{2} are two right e-core inverses of a. Then eax $x_{1}=\left(e a x_{1}\right)^{*}=x_{1}^{*} a^{*} e=x_{1}^{*}\left(a x_{2} a\right)^{*} e=x_{1}^{*} a^{*}\left(a x_{2}\right)^{*} e^{*}=x_{1}^{*} a^{*}\left(e a x_{2}\right)^{*}=x_{1}^{*} a^{*}$ eax $x_{2}=$ $\left.(\text { eax })^{*}\right)^{*} a x_{2}=e a x_{1} a x_{2}=e a x_{2}$. Since e is invertible, we have ax $=$ ax x_{2}. Denote by $a^{\pi}=1-$ aa $a_{r}^{e, \oplus}$ the idempotent determined by a right e-core inverse of a, if a is right e-core invertible in \mathcal{R}.

In [10, Definition 1.1], the authors introduced the concept of weighted-EP elements in a ring with involution, which is a generalization of EP matrices. An element $a \in \mathcal{R}$ is weighted-EP with respect to (e, e) if $a \in \mathcal{R}_{(e, e)}^{\dagger} \cap \mathcal{R}^{\sharp}$ and $a^{\sharp}=a_{(e, e)}^{\dagger}$. Moreover, the authors pointed out that $a \in \mathcal{R}$ is e-core invertible if and only if $a \in \mathcal{R}^{\sharp} \cap \mathcal{R}^{\{1,3 e\}}$ in [10, Theorem 2.1]. Using Lemma 2.1 and above remark, we can deduce the following result.

Proposition 2.3. Let $e \in \mathcal{R}$ be an invertible Hermitian element, and $a \in \mathcal{R}$ be right e-core invertible. If a $a_{r}^{e \oplus}=a_{r}^{e, \oplus} a$, then a is weighted-EP with respect to (e, e) and $a_{r}^{e, \oplus}=a^{\sharp}=a_{(e, e)}^{+}$.

In the following, we will use the symbol \mathcal{R}_{r}^{-1} to denote the set of all right invertible elements in \mathcal{R}. The symbol a_{r}^{-1} denotes the right inverse of a, if $a \in \mathcal{R}_{r}^{-1}$. The symbol $r(a)$ (rep. $\left.l(a)\right)$ denotes the right (rep. left) annihilator of $a \in \mathcal{R}$.

In [9], the authors proved that a is core invertible if and only if there exists a projection p such that $p a=0$, $a^{n}+p$ is invertible for $n \geq 1$. Here we will give the similar result for right e-core invertible.

Theorem 2.4. Let $a \in \mathcal{R}$ and $e \in \mathcal{R}$ be an invertible Hermitian element. Then the following statements are equivalent:
(i) a is right e-core invertible;
(ii) there exists a unique idempotent p such that $(p e)^{*}=p e$, pea $=0$ and $u=p+e a e^{-1} \in \mathcal{R}_{r}^{-1}$;
(iii) there exists a unique idempotent p such that (pe) $)^{*}=p e$, pea $=0$ and $w=e a e^{-1}(1-p)+p \in \mathcal{R}_{r}^{-1}$.
(iv) there exists a unique idempotent p such that (ep)* $=e p, p a=0$ and $u=p+a \in \mathcal{R}_{r}^{-1}$;
(v) there exists a unique idempotent p such that (ep $)^{*}=e p, p a=0$ and $w=a(1-p)+p \in \mathcal{R}_{r}^{-1}$.

In this case, $a_{r}^{\oplus}=e^{-1} u_{r}^{-1}(1-p) e=e^{-1}(1-p) w_{r}^{-1} e$.
Proof. (i) $\Leftrightarrow($ ii $) \Leftrightarrow$ (iii) For the proofs we refer the reader to [7, Theorem 1.6].
(i) \Rightarrow (iv) Suppose that a is right e-core invertible, by Lemma 2.1, there is $x \in \mathcal{R}$ such that $a x a=a, x=a x^{2}$ and $(e a x)^{*}=e a x$. Let $p=1-a x$. Then $p^{2}=(1-a x)^{2}=1-a x=p, e p=e(1-a x)=e-e a x=e^{*}-(e a x)^{*}=$ $(e-e a x)^{*}=(e p)^{*}, p a=(1-a x) a=0$, and $p x=(1-a x) x=0$. And $(p+a)(x+1-x a)=p+a x+a(1-x a)=p+a x=1$, this gives $u=p+a \in \mathcal{R}_{r}^{-1}$.

For the uniqueness of the idempotent, assume that there exist two idempotents p and q satisfy $(e p)^{*}=e p$, $(e q)^{*}=e q, p a=q a=0, p+a \in \mathcal{R}_{r}^{-1}$ and $q+a \in \mathcal{R}_{r}^{-1}$. It is easily seen that $l(1-p)=l(1-q)=l(a)$, which implies $p=p q$ and $q=q p$. Hence, $e p=(e p)^{*}=(e p q)^{*}=q^{*}(e p)^{*}=q^{*} e p=q^{*} e^{*} p=(e q)^{*} p=e q p$, this gives $p=q p=q$ since e is invertible.
$(i v) \Rightarrow(i)$ Under hypothesis $p a=0$ and $p+a \in \mathcal{R}_{r}^{-1}$, we know $(1-p)(p+a)=a$ and hence $1-p=a(p+a)_{r}^{-1}$. Consider $x=(p+a)_{r}^{-1}(1-p)$. Then $a x=a(p+a)_{r}^{-1}(1-p)=1-p$, which gives that $e a x=e(1-p)=e-e p=$ $e^{*}-(e p)^{*}=(e-e p)^{*}=(e a x)^{*}$, and axa $=(1-p) a=a$. Note that $p(p+a)=p$, it follows that $p=p(p+a)_{r}^{-1}$ and hence $(1-p)(p+a)_{r}^{-1}=(p+a)_{r}^{-1}-p$. Therefore, $a x^{2}=(1-p)(p+a)_{r}^{-1}(1-p)=\left[(p+a)_{r}^{-1}-p\right](1-p)=(p+a)_{r}^{-1}(1-p)=x$. By Lemma 2.1, we see at once that a is right e-core invertible.
$(i) \Rightarrow(v)$ As in the proof of $(i) \Rightarrow(i v)$, we also let $p=1-a x$. Then $p^{2}=p,(e p)^{*}=e p, p a=0$, and $p x=0$. Thus

$$
[a(1-p)+p](x+1-a x)=\left(a^{2} x+p\right)(x+1-a x)=a^{2} x^{2}+a(a x)(1-a x)+p x+p(1-a x)=a x+p=1
$$

that is, $w=a(1-p)+p \in \mathcal{R}_{r}^{-1}$.
For the uniqueness of the idempotent, analysis similar to that in the proof of $(i) \Rightarrow(i v)$.
$(v) \Rightarrow(i)$ Notice that $(1-p) w=(1-p)[a(1-p)+p]=(1-p) a(1-p)=a(1-p)$. Then $1-p=a(1-p) w_{r}^{-1}$. Set $x=(1-p) w_{r}^{-1}$. It is clear that $a x=a(1-p) w_{r}^{-1}=(1-p) w w_{r}^{-1}=1-p,(e a x)^{*}=(e-e p)^{*}=e^{*}-(e p)^{*}=e-e p=e a x$, axa $=(1-p) a=a$ and $a x^{2}=(1-p) x=(1-p)^{2} w_{r}^{-1}=(1-p) w_{r}^{-1}=x$. By Lemma 2.1, we obtain that a is right e-core invertible.

The following theorem shows that $p+a^{n} \in \mathcal{R}_{r}^{-1}$ is true when taking $n \geq 2$ in Theorem 2.4. Before it, we state an auxiliary result.

Lemma 2.5. [8, Exercise 1.6] Let $a, b \in \mathcal{R}$. Then $1+a b$ is right invertible if and only if $1+b a$ is right invertible.

Theorem 2.6. Let $a \in \mathcal{R}$ and $e \in \mathcal{R}$ be an invertible Hermitian element and $n \geq 2$. Then the following statements are equivalent:
(i) a is right e-core invertible;
(ii) there exists a unique idempotent p such that $(p e)^{*}=p e$, pea $=0$ and $u=p+e a^{n} e^{-1} \in \mathcal{R}_{r}^{-1}$;
(iii) there exists a unique idempotent p such that $(p e)^{*}=p e$, pea $=0$ and $w=e a^{n} e^{-1}(1-p)+p \in \mathcal{R}_{r}^{-1}$;
(iv) there exists a unique idempotent p such that (ep)*$=e p, p a=0$ and $u=p+a^{n} \in \mathcal{R}_{r}^{-1}$;
(v) there exists a unique idempotent p such that $(e p)^{*}=e p, p a=0$ and $w=a^{n}(1-p)+p \in \mathcal{R}_{r}^{-1}$.

Proof. (i) $\Leftrightarrow($ ii $) \Leftrightarrow$ (iii) [7, Theorem 1.9] gives these equivalent statements.
$(i) \Rightarrow(i v)$ If a is right e-core invertible, also let $p=1-a x$. From the proof of Theorem $2.4(i) \Rightarrow(i v)$, we know $p^{2}=p,(e p)^{*}=e p, p a=0, p x=0$ and $u=p+a=a+1-a x \in \mathcal{R}_{r}^{-1}$. Then $1+a x(a-1)=a+1-a x$ is right invertible. Using Lemma 2.5, it follows that $1+(a-1) a x=1+a^{2} x-a x$ is right invertible. It is easy to verify that if $n=2$,

$$
a^{2}+1-a x=\left(1+a^{2} x-a x\right)(a+1-a x)
$$

is right invertible. Assume that the result holds for the case $n-1(n>2)$, that is, $a^{n-1}+1-a x$ is right invertible, we will prove it for n. Indeed,

$$
p+a^{n}=a^{n}+1-a x=\left(1+a^{2} x-a x\right)\left(a^{n-1}+1-a x\right)
$$

is right invertible. For the uniqueness of the idempotent, it is similar to $(i) \Rightarrow(i v)$ in Theorem 2.4.
(iv) \Rightarrow (i) From the assumption $p a=0$ and $u=p+a^{n} \in \mathcal{R}_{r}^{-1}$, we get $(1-p)\left(p+a^{n}\right)=a^{n}$ and $1-p=a^{n}(p+$ $\left.a^{n}\right)_{r}^{-1}=a^{n} u_{r}^{-1}$. Take $x=a^{n-1} u_{r}^{-1}$. Then $a x=a^{n} u_{r}^{-1}=1-p, e a x=e(1-p)=e-e p=e^{*}-(e p)^{*}=(e-e p)^{*}=(e a x)^{*}$, axa $=(1-p) a=a$ and $a x^{2}=(1-p) a^{n-1} u_{r}^{-1}=a^{n-1} u_{r}^{-1}=x$. By Lemma 2.1, we obtain a is right e-core invertible.
$(i) \Rightarrow(v)$ We also let $p=1-a x$. By the proof of $(i) \Rightarrow(i v)$, we get $p^{2}=p,(e p)^{*}=e p, p a=0, p x=0$ and $u=p+a^{n}=a^{n}+1-a x \in \mathcal{R}_{r}^{-1}$. So $1+a x\left(a^{n}-1\right)=a^{n}+1-a x$ is right invertible. Applying Lemma 2.5, $1+\left(a^{n}-1\right) a x$ is invertible. Hence $w=a^{n}(1-p)+p=a^{n}(1-p)-1+p+1=1+\left(a^{n}-1\right)(1-p)=1+\left(a^{n}-1\right) a x$ is right invertible.
$(v) \Rightarrow$ (i) Note that $(1-p) w=(1-p)\left[a^{n}(1-p)+p\right]=a^{n}(1-p)$. Then $1-p=a^{n}(1-p) w_{r}^{-1}$. Take $x=a^{n-1}(1-p) w_{r}^{-1}$. It is clear that $a x=1-p, p x=0, e a x=e(1-p)=e-e p=e-(e p)^{*}=(e-e p)^{*}=(e a x)^{*}$, axa $a=(1-p) a=a$ and $a x^{2}=(1-p) x=x$. Thus, by Lemma 2.1, we know that a is right e-core invertible.

From Remark 2.2, it is evident that if a is right e-core invertible, then $a^{\pi}=1-a a_{r}^{e, \oplus}$ is an idempotent determined by a right e-core inverse of a. In the following result, some characterizations of those elements with equal corresponding idempotents are given.

Proposition 2.7. Let $a, b \in \mathcal{R}_{r}^{e, \oplus .}$. Then the following statements are equivalent:
(i) $a a_{r}^{e, \oplus}=b b_{r}^{e, \oplus}$;
(ii) $a \mathcal{R}=b \mathcal{R}$;
(iii) $a^{\pi} b=0$ and $a^{\pi}+b \in \mathcal{R}_{r}^{-1}$;
(iv) $a^{\pi} b=0$ and $a^{\pi}+b\left(1-a^{\pi}\right) \in \mathcal{R}_{r}^{-1}$.

In addition, if one of statements (i)-(iv) holds, then ab is right e-core invertible and $b_{r}^{e, .,} a_{r}^{e, \oplus}$ is a right e-core inverse of $a b$.

Proof. (i) \Rightarrow (ii) From $a a_{r}^{e, \oplus}=b b_{r}^{e, \oplus}$, we get $a=a a_{r}^{e, \oplus} a=b b_{r}^{e, \oplus} a \in b \mathcal{R}$ and $b=b b_{r}^{e, \oplus} b=a a_{r}^{e, \oplus} b \in a \mathcal{R}$, which imply $a \mathcal{R} \subseteq b \mathcal{R} \subseteq a \mathcal{R}$, that is $a \mathcal{R}=b \mathcal{R}$.
(ii) \Rightarrow (i) If $a \mathcal{R}=b \mathcal{R}$, there exist $x, y \in \mathcal{R}$ such that $a=b x$ and $b=a y$. Then $b b_{r}^{e, \oplus} a=b b_{r}^{e, \oplus}(b x)=b x=a$, and $a a_{r}^{e, \oplus} b=a a_{r}^{e, \oplus}(a y)=a y=b$. Thus,

$$
e a a_{r}^{e, \oplus}=e\left(b b_{r}^{e, \oplus} a\right) a_{r}^{e, \oplus}=\left(e b b_{r}^{e, \oplus}\right)^{*} a a_{r}^{e, \oplus}=\left(b b_{r}^{e, \oplus}\right)^{*} e e a a_{r}^{e, \oplus}=\left(b b_{r}^{e, \oplus}\right)^{*}\left(e a a_{r}^{e, \oplus}\right)^{*}=\left(e a a_{r}^{e, \oplus} b b_{r}^{e, \oplus}\right)^{*}=\left(e b b_{r}^{e, \oplus}\right)^{*}=e b b_{r}^{e, \oplus} .
$$

Therefore, $a a_{r}^{e, \oplus}=b b_{r}^{e, \oplus}$ since e is invertible.
(i) \Rightarrow (iii) From $a a_{r}^{e, \oplus}=b b_{r}^{e, \oplus}$, we have $a^{\pi} b=\left(1-a a_{r}^{e, \oplus}\right) b=\left(1-b b_{r}^{e, \oplus}\right) b=0$. Since

$$
\begin{aligned}
\left(a^{\pi}+b\right)\left(b_{r}^{e, \oplus}+1-b_{r}^{e, \oplus} b\right) & =\left(1-a a_{r}^{e, \oplus}+b\right)\left(b_{r}^{e, \oplus}+1-b_{r}^{e, \oplus} b\right)=\left(1-b b_{r}^{e, \oplus}+b\right)\left(b_{r}^{e, \oplus}+1-b_{r}^{e, \oplus} b\right) \\
& =b_{r}^{e, \oplus}+1-b_{r}^{e, \oplus} b-b b_{r}^{e, \oplus} b_{r}^{e, \oplus}-b b_{r}^{e, \oplus}+b b_{r}^{e, \oplus} b_{r}^{e, \oplus} b+b b_{r}^{e, \oplus}+b-b b_{r}^{e, \oplus} b \\
& =b_{r}^{e, \oplus}+1-b_{r}^{e^{e, \oplus}} b-b_{r}^{e, \oplus}-b b_{r}^{e, \oplus}+b_{r}^{e, \oplus} b+b b_{r}^{e, \oplus}+b-b \\
& =1 .
\end{aligned}
$$

Thus, $a^{\pi}+b$ is right invertible.
$($ iiii $) \Rightarrow(i)$ Suppose that $a^{\pi} b=0$ and $a^{\pi}+b \in \mathcal{R}_{r}^{-1}$. Notice that $e a^{\pi}=e-e a a a_{r}^{e, \oplus}=\left(e-e a a_{r}^{e, \oplus}\right)^{*}=\left(e a^{\pi}\right)^{*}$, and

$$
b b_{r}^{e, \oplus} a^{\pi}=e^{-1} e b b r_{r}^{e, \oplus} a^{\pi}=e^{-1}\left(e b b_{r}^{e, \oplus}\right)^{*} a^{\pi}=e^{-1}\left(b b_{r}^{e, \oplus}\right)^{*} e a^{\pi}=e^{-1}\left(b b_{r}^{e, \oplus}\right)^{*}\left(e a^{\pi}\right)^{*}=e^{-1}\left(e a^{\pi} b b_{r}^{e, \oplus}\right)^{*}=0 .
$$

So we have $\left(a a_{r}^{e, \oplus}-b b_{r}^{e \oplus}\right)\left(a^{\pi}+b\right)=a a_{r}^{e, \oplus} a^{\pi}+a a_{r}^{e, \oplus} b-b b_{r}^{e, \oplus} a^{\pi}-b=a a_{r}^{e, \oplus} b-b=-a^{\pi} b=0$. Therefore $a a_{r}^{e, \oplus}=b b_{r}^{e, \oplus,}$ since $a^{\pi}+b$ is right invertible.
(i) \Rightarrow (iv) From $a a_{r}^{e, \oplus}=b b_{r}^{e, \oplus}$, we have $a^{\pi}=1-a a_{r}^{e, \oplus}=1-b b_{r}^{e, \oplus}=b^{\pi}$, and $a^{\pi} b=b^{\pi} b=0$. Notice that $b^{\pi} b_{r}^{e, \oplus}=0$ and $\left(b^{\pi}\right)^{2}=b^{\pi}$. So we get

$$
\begin{aligned}
{\left[a^{\pi}+b\left(1-a^{\pi}\right)\right]\left(b_{r}^{e, \oplus}+b^{\pi}\right) } & =\left[b^{\pi}+b\left(1-b^{\pi}\right)\right]\left(b_{r}^{e, \oplus}+b^{\pi}\right)=b^{\pi} b_{r}^{e, \oplus}+b^{\pi}+b\left(1-b^{\pi}\right) b_{r}^{e, \oplus}+b\left(1-b^{\pi}\right) b^{\pi} \\
& =b^{\pi}+b\left(1-b^{\pi}\right) b_{r}^{e, \oplus}=b^{\pi}+b\left(b b_{r}^{e, \oplus}\right) b_{r}^{e, \oplus}=b^{\pi}+b b_{r}^{e, \oplus}=1 .
\end{aligned}
$$

Thus, $a^{\pi}+b\left(1-a^{\pi}\right)$ is right invertible.
$(i v) \Rightarrow(i)$ If $a^{\pi} b=0$, from the proof of $(i i i) \Rightarrow(i)$, we know that $b b_{r}^{e, \oplus} a^{\pi}=0$ and $\left(a a_{r}^{e, \oplus}-b b_{r}^{e, \oplus}\right)\left(a^{\pi}+b\right)=0$. Thus,

$$
\begin{aligned}
\left(a a_{r}^{e, \oplus}-b b_{r}^{e, \oplus}\right)\left(a^{\pi}+b\left(1-a^{\pi}\right)\right) & =\left(a a_{r}^{e, \oplus}-b b_{r}^{e, \oplus}\right)\left(a^{\pi}+b\right)-\left(a a_{r}^{e, \oplus}-b b_{r}^{e, \oplus}\right) b a^{\pi}=-\left(a a_{r}^{e, \oplus}-b b_{r}^{e, \oplus}\right) b a^{\pi} \\
& =-a a_{r}^{e \oplus} b a^{\pi}+b a^{\pi}=\left(1-a a_{r}^{e, \oplus}\right) b a^{\pi}=a^{\pi} b a^{\pi}=0 .
\end{aligned}
$$

Therefore, $a a_{r}^{e, \oplus}=b b_{r}^{e \oplus}$ since $a^{\pi}+b\left(1-a^{\pi}\right)$ is right invertible.
The equality $a a_{r}^{e, \oplus}=b b_{r}^{e, \oplus}$ gives $a b b_{r}^{e, \oplus} a_{r}^{e, \oplus}=a\left(a a_{r}^{e, \oplus}\right) a_{r}^{e, \oplus}=a a_{r}^{e, \oplus}$. Thus $a b\left(b_{r}^{e, \oplus} a_{r}^{e, \oplus}\right) a b=a a_{r}^{e, \oplus} a b=a b$, $a b\left(b_{r}^{e, \oplus} a_{r}^{e, \oplus}\right)^{2}=\left(a b\left(b_{r}^{e, \oplus} a_{r}^{e, \oplus}\right)\right) b_{r}^{e, \oplus} a_{r}^{e, \oplus}=a a_{r}^{e, \oplus} b_{r}^{e, \oplus} a_{r}^{e, \oplus}=b b_{r}^{e, \oplus} b_{r}^{e, \oplus} a_{r}^{e, \oplus}=b_{r}^{e, \oplus} a_{r}^{e, \oplus}$, and $\left[e a b\left(b_{r}^{e, \oplus} a_{r}^{e, \oplus}\right)\right]^{*}=\left(e a a_{r}^{e, \oplus}\right)^{*}=e a a_{r}^{e, \oplus}=$ $e a b\left(b_{r}^{e, \oplus} a_{r}^{e, \oplus}\right)$. So, $a b$ is right e-core invertible and $(a b)_{r}^{e, \oplus}=b_{r}^{e, \oplus} a_{r}^{e, \oplus}$.

More sufficient conditions for the reverse order law of right e-core invertible elements are presented now.

Proposition 2.8. Let $a, b \in \mathcal{R}_{r}^{e, \oplus .}$. Then the following statements are equivalent:
(i) $a=a b b_{r}^{e, \oplus}$ and $b=a a_{r}^{e, \oplus} b$;
(ii) $a^{*} \mathcal{R} \subseteq e b \mathcal{R} \subseteq e a \mathcal{R}$.

In addition, if one of statements (i)-(ii) holds, then ab is right e-core invertible and $b_{r}^{e, \oplus} a_{r}^{e, \oplus}$ is a right e-core inverse of $a b$.
Proof. (i) \Rightarrow (ii) The assumption $b=a a_{r}^{e, \oplus} b$ yields $b \mathcal{R} \subseteq a \mathcal{R}$ and $e b \mathcal{R} \subseteq e a \mathcal{R}$. Applying involution to $a=a b b_{r}^{e, \oplus}$, it follows that $a^{*}=\left(a b b_{r}^{e, \oplus}\right)^{*}=\left(a e^{-1} e b b_{r}^{e, \oplus}\right)^{*}=\left(e b b_{r}^{e, \oplus}\right)^{*}\left(a e^{-1}\right)^{*}=e b b_{r}^{e, \oplus}\left(a e^{-1}\right)^{*}$, that is, $a^{*} \mathcal{R} \subseteq e b \mathcal{R}$. Hence, $a^{*} \mathcal{R} \subseteq e b \mathcal{R} \subseteq e a \mathcal{R}$.
$(i i) \Rightarrow(i)$ Suppose that $a^{*} \mathcal{R} \subseteq e b \mathcal{R}$ and $e b \mathcal{R} \subseteq e a \mathcal{R}$, then there exist $x, y \in \mathcal{R}$ such that $a^{*}=e b x$ and $e b=e a y$, which give $b=a y$ since e is invertible. So we have $a a_{r}^{e, \oplus} b=\left(a a_{r}^{e, \oplus} a\right) y=a y=b$. And $\left(a b b_{r}^{e, \oplus}\right)^{*}=\left(a e^{-1} e b b_{r}^{e, \oplus}\right)^{*}=$ $\left(e b b_{r}^{e, \oplus}\right)^{*}\left(a e^{-1}\right)^{*}=e b b_{r}^{e, \oplus}\left(a e^{-1}\right)^{*}=e b b_{r}^{e, \oplus} e^{-1} a^{*}=e b b_{r}^{e, \oplus} e^{-1}(e b x)=e b x=a^{*}$, applying involution, we get $a=a b b_{r}^{e, \oplus}$.

From $a=a b b_{r}^{e, \oplus}$, we get $a b b_{r}^{e, \oplus} a_{r}^{e, \oplus}=a a_{r}^{e, \oplus}$ and $a b\left(b_{r}^{e \oplus} a_{r}^{e, \oplus}\right) a b=a a_{r}^{e^{e, \oplus}} a b=a b$. Since $b=a a_{r}^{e, \oplus} b$, we see $b_{r}^{e, \oplus}=b\left(b_{r}^{e, \oplus}\right)^{2}=a a_{r}^{e, \oplus} b\left(b_{r}^{e, \oplus}\right)^{2}=a a_{r}^{e, \oplus} b_{r}^{e, \oplus}$. Thus, $a b\left(b_{r}^{e, \oplus} a_{r}^{e, \oplus}\right)^{2}=\left(a a_{r}^{e, \oplus}\right) a_{r}^{e^{e, \oplus}} a_{r}^{e, \oplus}=b_{r}^{e, \oplus} a_{r}^{e, \oplus}$ and $\left[e a b\left(b_{r}^{e, \oplus} a_{r}^{e, \oplus}\right)\right]^{*}=$ $\left(e a a_{r}^{e, \oplus}\right)^{*}=e a a_{r}^{e, \oplus}=e a b\left(b_{r}^{e, \oplus} a_{r}^{e, \oplus}\right)$. Therefore, $a b$ is right e-core invertible and $(a b)_{r}^{e, \oplus}=b_{r}^{e, \oplus} a_{r}^{e, \oplus}$.

Let $p=p^{2} \in \mathcal{R}$ be an idempotent. Then we can represent any element $a \in \mathcal{R}$ as

$$
a=\left[\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right]_{p},
$$

where $a_{11}=p a p, a_{12}=p a(1-p), a_{21}=(1-p) a p, a_{22}=(1-p) a(1-p)$.
Now we give matrix representations for a right e-core invertible element and its right e-core inverse.

Theorem 2.9. Let $a \in \mathcal{R}$ and $e \in \mathcal{R}$ be an invertible Hermitian element. Then the following statements are equivalent:
(i) a is right e-core invertible and $x \in \mathcal{R}$ is a right e-core inverse of a;
(ii) there exists an idempotent $q \in \mathcal{R}$ such that $(e q)^{*}=e q$ and

$$
a=\left[\begin{array}{cc}
a_{1} & a_{2} \tag{1}\\
0 & 0
\end{array}\right]_{q}, \quad x=\left[\begin{array}{cc}
x_{1} & x_{2} \\
0 & 0
\end{array}\right]_{q}
$$

where a_{1} is right invertible in $q \mathcal{R} q, x_{1}=\left(a_{1}\right)_{r}^{-1}$ and $a_{1} x_{2}=0$;
(iii) there exists an idempotent $p \in \mathcal{R}$ such that (ep $)^{*}=e p$ and

$$
a=\left[\begin{array}{cc}
0 & 0 \\
a_{1} & a_{2}
\end{array}\right]_{p}, \quad x=\left[\begin{array}{cc}
0 & 0 \\
x_{1} & x_{2}
\end{array}\right]_{p}
$$

where a_{2} is right invertible in $(1-p) \mathcal{R}(1-p), x_{2}=\left(a_{2}\right)_{r}^{-1}$ and $a_{2} x_{1}=0$.
Proof. (i) \Rightarrow (ii) Suppose that a is right e-core invertible and $x \in \mathcal{R}$ is a right e-core inverse of a, by Lemma 2.1, we have $a x a=a, a x^{2}=x,(e a x)^{*}=e a x$. Let $q=a x$. Then $q^{2}=(a x)(a x)=a x=q, e q=e a x=$ $(e a x)^{*}=(e q)^{*}, q a=(a x) a=a$ and $q x=(a x) x=x$, which imply $(1-q) a=0$ and $(1-q) x=0$. Thus, $a=\left[\begin{array}{cc}q a q & q a(1-q) \\ (1-q) a q & (1-q) a(1-q)\end{array}\right]_{q}=\left[\begin{array}{cc}q a q & q a(1-q) \\ 0 & 0\end{array}\right]_{q}=\left[\begin{array}{cc}a_{1} & a_{2} \\ 0 & 0\end{array}\right]_{q}$, and $x=\left[\begin{array}{cc}x_{1} & x_{2} \\ 0 & 0\end{array}\right]_{q}$, that is, a and x are represented as in (1). Since $a_{1}=q a q=a q=a^{2} x$ and $x_{1}=q x q=x a x$, we get $a_{1} x_{1}=\left(a^{2} x\right) x a x=a x a x=$ $a x=q$, that is, x_{1} is a right inverse of a_{1} in $q \mathcal{R} q$. By $x_{2}=q x(1-q)=(a x) x(1-a x)=x(1-a x)$, we have $a_{1} x_{2}=\left(a^{2} x\right) x(1-a x)=a x(1-a x)=0$.
(ii) \Rightarrow (i) Because $a x=\left[\begin{array}{cc}a_{1} & a_{2} \\ 0 & 0\end{array}\right]_{q}\left[\begin{array}{cc}x_{1} & x_{2} \\ 0 & 0\end{array}\right]_{q}=\left[\begin{array}{cc}a_{1} x_{1} & a_{1} x_{2} \\ 0 & 0\end{array}\right]_{q}=\left[\begin{array}{ll}q & 0 \\ 0 & 0\end{array}\right]_{q}=q$, we can verify that x satisfies $(e a x)^{*}=(e q)^{*}=e q=e a x, a x a=a$ and $x=a x^{2}$. Using Lemma 2.1, we deduce that a is right e-core invertible and x is a right e-core inverse of a.
(i) \Leftrightarrow (iii) This equivalence follows similarly as $(i) \Leftrightarrow(i i)$ for $p=1-a x$.

Indeed, let $p=1-a x$. Then $p^{2}=(1-a x)^{2}=1-a x-a x-a x a x=1-a x, p a=0, p x=0,(e p)^{*}=(e(1-a x))^{*}=$ $(e-e a x)^{*}=e-(e a x)^{*}=e-e a x=e p, a=\left[\begin{array}{cc}p a p & p a(1-p) \\ (1-p) a p & (1-p) a(1-p)\end{array}\right]_{p}=\left[\begin{array}{cc}0 & 0 \\ (1-p) a p & (1-p) a(1-p)\end{array}\right]_{p}=$ $\left[\begin{array}{cc}0 & 0 \\ a_{1} & a_{2}\end{array}\right]_{p}$, and $x=\left[\begin{array}{cc}0 & 0 \\ x_{1} & x_{2}\end{array}\right]_{p}$. Since $a_{1}=(1-p) a p=a p=a(1-a x)=a-a^{2} x$ and $a_{2}=a(1-p)=a^{2} x$, $x_{1}=x p=x-x a x, x_{2}=x(1-p)=x a x$, we get $a_{2} x_{2}=\left(a^{2} x\right) x a x=a x a x=a x=1-p$, that is, x_{2} is a right inverse of a_{2} in $(1-p) \mathcal{R}(1-p)$. And $a_{2} x_{1}=\left(a^{2} x\right) x(1-a x)=a x(1-a x)=0$.

Conversely, as $a x=\left[\begin{array}{cc}0 & 0 \\ a_{2} x_{1} & a_{2} x_{2}\end{array}\right]_{p}=\left[\begin{array}{cc}0 & 0 \\ 0 & 1-p\end{array}\right]_{p}=1-p$, it is easy to prove that a is right e-core invertible and x is a right e-core inverse of a.

Notice that p and q, which appear in Theorem 2.9, are invariant on the choice of x. We present one decomposition of a right e-core invertible element which is also invariant on the choice of right e-core inverse.

Proposition 2.10. Let $a \in \mathcal{R}$ be right e-core invertible. Then $a=a_{1}+a_{2}$, where
(i) a_{1} is right e-core invertible,
(ii) $a_{2}^{2}=0$,
(iii) $a_{2} a_{1}=0$.

In addition, $a^{2} a_{r}^{e, \oplus}$ is right e-core invertible and $a_{r}^{e, \oplus} a a_{r}^{e, \oplus}$ is a right e-core inverse of $a^{2} a_{r}^{e \oplus}$.
Proof. Suppose that a is right e-core invertible, and x is a right e-core inverse of a. Let $a_{1}=a^{2} x$ and $a_{2}=a-a^{2} x$. We have $a=a_{1}+a_{2}$, where $a_{2} a_{1}=\left(a-a^{2} x\right) a^{2} x=a\left(a^{2} x-a^{2} x\right)=0$ and $a_{2}^{2}=a(1-a x) a(1-a x)=a(a-a)(1-a x)=0$.

Set $y=x a x$. Since $a_{1} y=a^{2} x^{2} a x=\operatorname{axax}=a x,\left(e a_{1} y\right)^{*}=(e a x)^{*}=e a x=e a_{1} y, a_{1} y a_{1}=(a x) a^{2} x=a^{2} x=a_{1}$ and $a_{1} y^{2}=(a x) x a x=x a x=y$. Hence, a_{1} is right e-core invertible and y is a right e-core inverse of a_{1}.

3. More characterizations of right e-core inverses

From Lemma 2.1 and Remark 2.2, we know that if a is right e-core invertible and x is a right e-core inverse of a, then $a \in \mathcal{R}^{\{1,3 e\}}$. Since $a=a x a=a\left(a x^{2}\right) a=a^{2} x^{2} a$, it gives that $a \mathcal{R} \subseteq a^{2} \mathcal{R}$. Since $a^{2} \mathcal{R} \subseteq a \mathcal{R}$, we have $a \mathcal{R}=a^{2} \mathcal{R}$. So we have the following result.

Theorem 3.1. Let $a \in \mathcal{R}$ and $e \in \mathcal{R}$ be an invertible Hermitian element. Then the following statements are equivalent:
(i) a is right e-core invertible;
(ii) $a \in \mathcal{R}^{[1,3 e\}}$ and $a \mathcal{R}=a^{2} \mathcal{R}$;
(ii)' $a \in \mathcal{R}^{\{1,3 e\}}$ and $a \mathcal{R} \subseteq a^{2} \mathcal{R}$;
(iii) $a \in \mathcal{R}^{\{1,3 e\}}$ and $a \mathcal{R}=a^{n} \mathcal{R}$ for any $n \geq 2$;
(iii)' $a \in \mathcal{R}^{\{1,3 e\}}$ and $a \mathcal{R} \subseteq a^{n} \mathcal{R}$ for any $n \geq 2$;
(iv) $a \in \mathcal{R}^{\{1,3 e\}}$ and $a \mathcal{R}=a^{n} \mathcal{R}$ for some $n \geq 2$;
(iv)' $a \in \mathcal{R}^{\{1,3 e\}}$ and $a \mathcal{R} \subseteq a^{n} \mathcal{R}$ for some $n \geq 2$;
(v) a^{n} is right e-core invertible and $a \mathcal{R}=a^{n} \mathcal{R}$ for any $n \geq 2$;
(v)' a^{n} is right e-core invertible and $a \mathcal{R} \subseteq a^{n} \mathcal{R}$ for any $n \geq 2$;
(vi) a^{n} is right e-core invertible and $a \mathcal{R}=a^{n} \mathcal{R}$ for some $n \geq 2$;
(vi)' a^{n} is right e-core invertible and $a \mathcal{R} \subseteq a^{n} \mathcal{R}$ for some $n \geq 2$;
(vii) $a^{n} \in \mathcal{R}^{\{1,3 e\}}$ and $a R=a^{k} \mathcal{R}$ for any $n \geq 2$ and $k>n$;
(vii)' $a^{n} \in \mathcal{R}^{\{1,3 e\}}$ and $a R \subseteq a^{k} \mathcal{R}$ for any $n \geq 2$ and $k>n$;
(viii) $a^{n} \in \mathcal{R}^{\{1,3 e\}}$ and $a R=a^{k} \mathcal{R}$ for some $n \geq 2$ and $k>n$;
(viii)' $a^{n} \in \mathcal{R}^{\{1,3 e\}}$ and $a R \subseteq a^{k} \mathcal{R}$ for some $n \geq 2$ and $k>n$.

In this case, for any $n \geq 2$,

$$
\left(a^{n}\right)_{r}^{e, \oplus}=\left(a_{r}^{e, \oplus}\right)^{n} \quad \text { and } \quad a_{r}^{e, \oplus}=a^{n-1}\left(a^{n}\right)_{r}^{e, \oplus}=a^{n-1}\left(a^{n}\right)^{(1,3 e)} .
$$

Proof. $(i) \Rightarrow(i i) \Rightarrow(i i)^{\prime}$ and $(i i i) \Rightarrow(i i i)^{\prime} \Rightarrow(i v)^{\prime} \Rightarrow(i v)$ It is clear.
(ii) ${ }^{\prime} \Rightarrow$ (iii) Since $a \mathcal{R} \subseteq a^{2} \mathcal{R}$, we have $a=a^{2} t$ for some $t \in \mathcal{R}$. Then we get

$$
a=a a t=a\left(a^{2} t\right) t=a^{3} t^{2}=a^{2} a t^{2}=a^{2}\left(a^{2} t\right) t^{2}=a^{4} t^{3}=\cdots=a^{n} t^{n-1} .
$$

This means $a \mathcal{R} \subseteq a^{n} \mathcal{R}$. And obviously, $a^{n} \mathcal{R} \subseteq a \mathcal{R}$. So $a \mathcal{R}=a^{n} \mathcal{R}$ for any $n \geq 2$.
(iv) \Rightarrow (i) The condition $a \in \mathcal{R}^{\{1,3 e\}}$ implies that $p=1-e a a^{(1,3 e)} e^{-1}$ is an idempotent, pea $=0$ and $p e=e-e a a^{(1,3 e)}=(p e)^{*}$. Since $a \mathcal{R}=a^{n} \mathcal{R}$, we have $a=a^{n} t$ for some $t \in \mathcal{R}$. Next we will prove that $p+e a e^{-1} \in \mathcal{R}_{r}^{-1}$ and then, by Theorem 2.4, we get that a is right e-core invertible. Indeed, $\left(p+e a e^{-1}\right)(1+$ $\left.e a^{n-1} t a^{(1,3 e)} e^{-1}-e a^{n-1} t e^{-1}\right)=p+e a e^{-1}+e a^{n} t a^{(1,3 e)} e^{-1}-e a^{n} t e^{-1}=p+e a a^{(1,3)} e^{-1}=1$.
$(i) \Rightarrow(v)$ Suppose that x is a right e-core inverse of a and $n \geq 2$. Then, from

$$
a x=a\left(a x^{2}\right)=a^{2} x^{2}=\cdots=a^{n} x^{n},
$$

we get $\left(e a^{n} x^{n}\right)^{*}=(e a x)^{*}=e a x=e a^{n} x^{n}$. Moreover, it is easy to get $a^{n} x^{n} a^{n}=a x a^{n}=a^{n}$ and $a^{n}\left(x^{n}\right)^{2}=a x x^{n}=$ $\left(a x^{2}\right) x^{n-1}=x^{n}$. Hence, by Lemma 2.1, we obtain that a^{n} is right e-core invertible and $\left(a^{n}\right)_{r}^{e, \oplus}=x^{n}=\left(a_{r}^{e, \oplus}\right)^{n}$. Since (i) is equivalent to (iii), it follows that $a \mathcal{R}=a^{n} \mathcal{R}$ for any $n \geq 2$.
$(v) \Rightarrow(v)^{\prime} \Rightarrow(v i)^{\prime} \Rightarrow(v i)$ This is obvious.
(vi) \Rightarrow (i) Let $x=a^{n-1}\left(a^{n}\right)_{r}^{e, \oplus}$ and $a=a^{n} t$ for some $t \in \mathcal{R}$. Firstly, we observe that $a x=a^{n}\left(a^{n}\right)_{r}^{e \oplus,}$, which gives $(e a x)^{*}=\left[e a^{n}\left(a^{n}\right)_{r}^{e, \oplus}\right]^{*}=e a^{n}\left(a^{n}\right)_{r}^{e, \oplus}=e a x$. Further, $a x a=a^{n}\left(a^{n}\right)_{r}^{e, \oplus} a=a^{n}\left(a^{n}\right)_{r}^{e, \oplus} a^{n} t=a^{n} t=a$ and $a x^{2}=a^{n}\left(a^{n}\right)_{r}^{e, \oplus} a^{n-1}\left(a^{n}\right)_{r}^{e, \oplus}=a^{n}\left(a^{n}\right)_{r}^{e, \oplus} a^{n} t a^{n-2}\left(a^{n}\right)_{r}^{e, \oplus}=a^{n} t a^{n-2}\left(a^{n}\right)_{r}^{e, \oplus}=a^{n-1}\left(a^{n}\right)_{r}^{e, \oplus}=x$. So, by Lemma 2.1, a is right e-core invertible and $a_{r}^{e, \oplus}=x=a^{n-1}\left(a^{n}\right)_{r}^{e, \oplus}$.
$(i) \Rightarrow(v i i) \Rightarrow(v i i)^{\prime}$ Consequently, by previous proofs.
(vii) $\Rightarrow($ viii $) \Rightarrow\left(\right.$ viii) $^{\prime}$ It is obvious.
(viii) \Rightarrow (i) Let $x=a^{n-1}\left(a^{n}\right)^{(1,3 e)}$ and $a=a^{k} t$ for some $t \in \mathcal{R}$. It is clear that $(e a x)^{*}=\left[e a^{n}\left(a^{n}\right)^{(1,3 e)}\right]^{*}=$ $e a^{n}\left(a^{n}\right)^{(1,3 e)}=e a x$. Further, by $k>n$, axa $=a^{n}\left(a^{n}\right)^{(1,3 e)} a=a^{n}\left(a^{n}\right)^{(1,3 e)} a^{k} t=a^{n}\left(a^{n}\right)^{(1,3 e)} a^{n} a^{k-n} t=a^{n} a^{k-n} t=a^{k} t=a$ and $a x^{2}=a^{n}\left(a^{n}\right)^{(1,3 e)} a^{n-1}\left(a^{n}\right)^{(1,3 e)}=a^{n}\left(a^{n}\right)^{(1,3 e)} a^{k} t a^{n-2}\left(a^{n}\right)^{(1,3 e)}=a^{k} t a^{n-2}\left(a^{n}\right)^{(1,3 e)}=a^{n-1}\left(a^{n}\right)^{(1,3 e)}=x$. So, by Lemma 2.1, a is right e-core invertible and $a_{r}^{e, \oplus}=x=a^{n-1}\left(a^{n}\right)^{(1,3 e)}$.

By [16, Lemma 3.15], it is well known that $a \in \mathcal{R}^{\{1,3 e\}}$ is equivalent to $\mathcal{R} a=\mathcal{R} a^{*} e a$. And obviously $\mathcal{R} a^{*} e a \subseteq \mathcal{R} a$, so $\mathcal{R} a=\mathcal{R} a^{*} e a$ is equivalent to $\mathcal{R} a \subseteq \mathcal{R} a^{*} e a$. Thus, by Theorem 3.1, we have the following result.

Proposition 3.2. Let $a \in \mathcal{R}$ and $e \in \mathcal{R}$ be an invertible Hermitian element. Then the following statements are equivalent:
(i) a is right e-core invertible;
(ii) $\mathcal{R} a=\mathcal{R} a^{*}$ ea and $a \mathcal{R}=a^{2} \mathcal{R}$;
(iii) $\mathcal{R} a \subseteq \mathcal{R} a^{*}$ ea and $a \mathcal{R} \subseteq a^{2} \mathcal{R}$;
(iv) $\mathcal{R} a=\mathcal{R} a^{*}$ ea and $a \mathcal{R}=a^{n} \mathcal{R}$ for any $n \geq 2$;
(v) $\mathcal{R} a \subseteq \mathcal{R} a^{*}$ ea and $a \mathcal{R} \subseteq a^{n} \mathcal{R}$ for any $n \geq 2$;
(vi) $\mathcal{R} a=\mathcal{R} a^{*}$ ea and $a \mathcal{R}=a^{n} \mathcal{R}$ for some $n \geq 2$;
(vii) $\mathcal{R} a \subseteq \mathcal{R} a^{*}$ ea and $a \mathcal{R} \subseteq a^{n} \mathcal{R}$ for some $n \geq 2$;
(viii) $\mathcal{R} a^{n}=\mathcal{R}\left(a^{n}\right)^{*} e a^{n}$ and $a R=a^{k} \mathcal{R}$ for any $n \geq 2$ and $k>n$;
(ix) $\mathcal{R} a^{n} \subseteq \mathcal{R}\left(a^{n}\right)^{*} e a^{n}$ and $a R \subseteq a^{k} \mathcal{R}$ for any $n \geq 2$ and $k>n$;
(x) $\mathcal{R} a^{n}=\mathcal{R}\left(a^{n}\right)^{*} e a^{n}$ and $a R=a^{k} \mathcal{R}$ for some $n \geq 2$ and $k>n$;
(xi) $\mathcal{R} a^{n} \subseteq \mathcal{R}\left(a^{n}\right)^{*} e a^{n}$ and $a R \subseteq a^{k} \mathcal{R}$ for some $n \geq 2$ and $k>n$.

In the following, we will give some characterizations for a right e-core invertible element by using $\mathcal{R} a \subseteq \mathcal{R}\left(a^{*}\right)^{n} e a$, where $n \geq 2$. For $n=2$, that is if $\mathcal{R} a \subseteq \mathcal{R}\left(a^{*}\right)^{2} e a$, we know $a=t\left(a^{*}\right)^{2} e a$ for some $t \in \mathcal{R}$, then $a^{*}=a^{*} e a^{2} t^{*}$. It gives that $t\left(a^{*}\right)^{2}=t a^{*} a^{*}=t a^{*}\left(a^{*} e a^{2} t^{*}\right)=\left(t a^{*} a^{*} e a\right) a t^{*}=a^{2} t^{*}$. This implies that $a=t\left(a^{*}\right)^{2} e a=a^{2} t^{*} e a$. Hence, $\mathcal{R} a \subseteq \mathcal{R}\left(a^{*}\right)^{2} e a$ gives that $\mathcal{R} a \subseteq \mathcal{R} a^{*} e a$ and $a \mathcal{R} \subseteq a^{2} \mathcal{R}$. This means that $\mathcal{R} a=\mathcal{R}\left(a^{*}\right)^{2} e a$ implies that a is right e-core invertible by Proposition 3.2.

Proposition 3.3. Let $a \in \mathcal{R}$ and $e \in \mathcal{R}$ be an invertible Hermitian element and $n \geq 2$. Then the following statements are equivalent:
(i) a is right e-core invertible;
(ii) $\mathcal{R} a=\mathcal{R}\left(a^{*}\right)^{n} e a$;
(iii) $\mathcal{R} a \subseteq \mathcal{R}\left(a^{*}\right)^{n} e a$;

Proof. (ii) \Leftrightarrow (iii) Obviously.
(i) \Rightarrow (iii) If a is right e-core invertible, by Proposition 3.2(iv), we know $\mathcal{R} a=\mathcal{R} a^{*} e a$ and $a \mathcal{R}=a^{n} \mathcal{R}$, so $a=a^{n} t$ for some $t \in \mathcal{R}$. Thus $a^{*}=t^{*}\left(a^{*}\right)^{n}$. The condition $\mathcal{R} a=\mathcal{R} a^{*} e a$ gives that $a=s a^{*} e a$ for some $s \in \mathcal{R}$, then $a=s t^{*}\left(a^{*}\right)^{n} e a$. This means that $\mathcal{R} a \subseteq \mathcal{R}\left(a^{*}\right)^{n} e a$.
(iii) \Rightarrow (i) By assumption $\mathcal{R} a \subseteq \mathcal{R}\left(a^{*}\right)^{n} e a$, we have $a=t\left(a^{*}\right)^{n} e a$ for some $t \in \mathcal{R}$, and then $a^{*}=a^{*} e a^{n} t^{*}$. It gives that $t\left(a^{*}\right)^{n}=t\left(a^{*}\right)^{n-1} a^{*}=t\left(a^{*}\right)^{n-1}\left(a^{*} e a^{n} t^{*}\right)=\left[t\left(a^{*}\right)^{n} e a\right] a^{n-1} t^{*}=a^{n} t^{*}$. This implies that $a=t\left(a^{*}\right)^{n} e a=a^{n} t^{*} e a$. Hence, $\mathcal{R} a \subseteq \mathcal{R}\left(a^{*}\right)^{n} e a$ implies that $\mathcal{R} a \subseteq \mathcal{R} a^{*} e a$ and $a \mathcal{R} \subseteq a^{n} \mathcal{R}$. Therefore, a is right e-core invertible by Proposition 3.2.

Note that a^{*} is left $\left(e a, a^{*}\right)$ invertible if and only if $\mathcal{R} e a=\mathcal{R}\left(a^{*}\right)^{2} e a$. Then we can obtain the following result.
Proposition 3.4. Let $a \in \mathcal{R}$ and $e \in \mathcal{R}$ be an invertible Hermitian element. Then a is right $\left(a, a^{*} e\right)$ invertible if and only if a^{*} is left (ea, a^{*}) invertible.

Proof. If a is right ($a, a^{*} e$) invertible, by Definition 1.3, a is right e-core invertible, applying Proposition 3.3, we have $\mathcal{R}\left(a^{*}\right)^{2} e a=\mathcal{R} a$. Then $\mathcal{R} e a \subseteq \mathcal{R} a=\mathcal{R}\left(a^{*}\right)^{2} e a \subseteq \mathcal{R} e a$, i.e. $\mathcal{R} e a=\mathcal{R}\left(a^{*}\right)^{2} e a$, so a^{*} is left $\left(e a, a^{*}\right)$ invertible.

Conversely, if a^{*} is left (ea, a^{*}) invertible, we know $\mathcal{R} e a=\mathcal{R}\left(a^{*}\right)^{2} e a$, which gives that $e a=t\left(a^{*}\right)^{2} e a$ for some $t \in \mathcal{R}$. Then $a=e^{-1} t\left(a^{*}\right)^{2} e a \in \mathcal{R} e a$ as e is invertible, which yields $\mathcal{R} a \subseteq \mathcal{R} e a \subseteq \mathcal{R} a$, i.e. $\mathcal{R} a=\mathcal{R} e a=\mathcal{R}\left(a^{*}\right)^{2} e a$, so a is right ($a, a^{*} e$) invertible.

Remark 3.5. Notice that if $a R=a^{2} R$, we have a^{*} is left (ea, a^{*}) invertible if and only if $\left(a^{*}\right)^{n}$ is left (ea, a^{*}) invertible. Indeed, a^{*} is left (ea, a^{*}) invertible $\stackrel{\text { Proposition } 3.4}{\Longleftrightarrow}$ is right $\left(a, a^{*} e\right)$ invertible $\stackrel{\text { Theorem3. }}{\Longleftrightarrow} a^{n}$ is right $\left(a, a^{*} e\right)$ invertible $\stackrel{\text { Proposition } 3.4}{\Longleftrightarrow}$ $\left(a^{n}\right)^{*}$ is left (ea, a^{*}) invertible.

4. The related generalized core inverses

In this section, some new characterizations of (generalized) e-core inverses are given. Through these characterizations, we can clearly find the relationship between these generalized inverses. In what follows, we assume that $e \in \mathcal{R}$ is an invertible Hermitian element.

Theorem 4.1. Let $a, e \in \mathcal{R}$ and $k \geq 1$. Then the following statements are equivalent:
(i) a is e-core invertible;
(ii) there exists $x \in \mathcal{R}$ such that $x a^{2}=a, x^{k}=a x^{k+1}$ and $\left(e a^{k} x^{k}\right)^{*}=e a^{k} x^{k}$;
(iii) there exists $x \in \mathcal{R}$ such that $x a^{2}=a, x^{k}=a x^{k+1}$ and (eax)* $=$ eax.

Proof. If $k=1$, by [10, Theorem 2.1], it is clear that $(i) \Leftrightarrow(i i) \Leftrightarrow(i i i)$. Let us assume that $k \geq 2$ in the rest of the proof.
(i) \Rightarrow (ii) and (iii) If a is e-core invertible, let $x=a^{e, \oplus .}$. By [10, Theorem 2.1], we obtain $x a^{2}=a, x=a x^{2}$ and $(e a x)^{*}=e a x$. For $k \geq 2$, it is easy to get $a x^{k+1}=a x^{2} x^{k-1}=x^{k}$. Notice that $a x=a\left(a x^{2}\right)=a^{2} x^{2}=a^{2}\left(a x^{2}\right) x=\cdots=$ $a^{k} x^{k}$, then $\left(e a^{k} x^{k}\right)^{*}=(e a x)^{*}=e a x=e a^{k} x^{k}$.
(ii) \Rightarrow (i) Suppose that there exists $x \in \mathcal{R}$ such that $x a^{2}=a, x^{k}=a x^{k+1}$ and $\left(e a^{k} x^{k}\right)^{*}=e a^{k} x^{k}$. Let $z=a^{k-1} x^{k}$. Then $a=x a^{2}=x a a=x\left(x a^{2}\right) a=x^{2} a^{3}=\cdots=x^{k-1} a^{k}=x^{k} a^{k+1}=\left(a x^{k+1}\right) a^{k+1}=a\left(x^{k}\right) x a^{k+1}=$ $a\left(a x^{k+1}\right) x a^{k+1}=a^{2}\left(x^{k}\right) x^{2} a^{k+1}=a^{2}\left(a x^{k+1}\right) x^{2} a^{k+1}=\cdots=a^{k-1} x^{k+(k-1)} a^{k+1}=\left(a^{k-1} x^{k}\right)\left(x^{k-1} a^{k}\right) a=z a a=z a^{2}$, and $z=a^{k-1} x^{k}=a^{k-1}\left(a x^{k+1}\right)=a^{k} x^{k+1}=a^{k} x\left(a x^{k+1}\right)=a^{k} x\left(x a^{2}\right) x^{k+1}=a^{k} x^{2} a^{2} x^{k+1}=a^{k} x^{2}\left(x a^{2}\right) a x^{k+1}=a^{k} x^{3} a^{3} x^{k+1}=\cdots=$ $a^{k} x^{k} a^{k} x^{k+1}=a^{k} x^{k} a^{k-1}\left(a x^{k+1}\right)=a^{k} x^{k} a^{k-1} x^{k}=a z^{2}$. Note that $a z=a^{k} x^{k}$, thus $(e a z)^{*}=e a z$. Hence $a^{e, \oplus}=z=a^{k-1} x^{k}$.
(iii) \Rightarrow (i) Note that $a=x a^{2}=x\left(x a^{2}\right) a=x^{2} a^{3}=x^{2}\left(x a^{2}\right) a^{2}=x^{3} a^{4}=\cdots=x^{k} a^{k+1}$. Write $z=x a x$. Then $a z=\operatorname{axax}=\operatorname{ax}\left(x^{k} a^{k+1}\right) x=\left(a x^{k+1}\right) a^{k+1} x=x^{k} a^{k+1} x=a x$, which gives that (eaz $)^{*}=e a z$. It is easy to get $z a^{2}=x a\left(x a^{2}\right)=x a^{2}=a$. Moreover, $a z^{2}=a x z=a x(x a x)=a x^{2}\left(x^{k} a^{k+1}\right) x=\left(a x^{k+1}\right) x a^{k+1} x=x^{k+1} a^{k+1} x=x a x=z$. This implies that $a^{e, \oplus}=x a x$.

Proposition 4.2. Let $a, e, x \in \mathcal{R}$ and $k \geq 1$. Then the following statements are equivalent:
(i) x is the e-core inverse of a;
(ii) $x a^{2}=a, x a x=x, x^{k}=a x^{k+1}$ and $(e a x)^{*}=e a x$;
(iii) $x a^{2}=a, x^{k+1} a^{k+1} x=x, x^{k}=x^{k} a^{k+1} x^{k+1}$ and $\left(e x^{k} a^{k+1} x\right)^{*}=e x^{k} a^{k+1} x$.

Proof. (i) \Rightarrow (ii) If x is the e-core inverse of a, we know $x a^{2}=a, x=a x^{2}$ and $(e a x)^{*}=e a x$, then $x^{k}=x x^{k-1}=a x^{k+1}$, and $a x=a\left(a x^{2}\right)=a^{2} x^{2}$. Thus $x a x=x\left(a^{2} x^{2}\right)=\left(x a^{2}\right) x^{2}=a x^{2}=x$.
(ii) \Rightarrow (i) It suffices to prove $a x^{2}=x$. Indeed, by $x a^{2}=a$, we get $x a=x\left(x a^{2}\right)=x^{2} a^{2}=\cdots=x^{k} a^{k}$. Thus, $x=x a x=x^{k} a^{k} x=a x^{k+1} a^{k} x=a x\left(x^{k} a^{k}\right) x=a x x a x=a x^{2}$.
(ii) \Leftrightarrow (iii) Since $a=x a^{2}$ implies $a=x^{k} a^{k+1}$, this equivalence is obvious.

Recall in [10, Theorem 2.4] that a is weighted-EP with respect to (e, e) if and only if there exists $x \in \mathcal{R}$ such that $(e x a)^{*}=e x a, x a^{2}=a, a x^{2}=x$, which are also equivalent to that $(e a x)^{*}=e a x, a^{2} x=a, x^{2} a=x$. In the following result, we will change the condition $(e a x)^{*}=e a x$ in Theorem 4.1 into (exa $)^{*}=e x a$. It is interesting that a is weighted-EP with respect to (e, e).

Theorem 4.3. Let $a, e \in \mathcal{R}$ and $k \geq 1$. Then the following statements are equivalent:
(i) a is weighted-EP with respect to (e, e);
(ii) there exists $x \in \mathcal{R}$ such that $x a^{2}=a, x^{k}=a x^{k+1}$ and (exa $)^{*}=$ exa;
(iii) there exists $x \in \mathcal{R}$ such that $x a^{2}=a, x^{k}=x^{k} a^{k+1} x^{k+1}$ and $\left(e x^{k+1} a^{k+1}\right)^{*}=e x^{k+1} a^{k+1}$;
(iv) there exists $x \in \mathcal{R}$ such that $a^{2} x=a, x^{k}=x^{k+1} a$ and $(\text { eax })^{*}=e a x$;
(v) there exists $x \in \mathcal{R}$ such that $a^{2} x=a, x^{k}=x^{k+1} a^{k+1} x^{k}$ and $\left(e a^{k+1} x^{k+1}\right)^{*}=e a^{k+1} x^{k+1}$.

Proof. $(i) \Rightarrow$ (ii) If a is weighted-EP with respect to (e, e), we know that $(\text { exa })^{*}=e x a, x a^{2}=a, a x^{2}=x$ for some $x \in \mathcal{R}$. Thus $x^{k}=x x^{k-1}=a x^{k+1}$.
(ii) \Rightarrow (i) Note that $a=x a^{2}=x\left(x a^{2}\right) a=x^{2} a^{3}=\cdots=x^{k} a^{k+1}$. Write $z=x a x$. Then $a z=a x a x=$ $a x\left(x^{k} a^{k+1}\right) x=\left(a x^{k+1}\right) a^{k+1} x=x^{k} a^{k+1} x=a x$, and $z a=x a x a=x a x\left(x^{k} a^{k+1}\right)=x\left(a x^{k+1}\right) a^{k+1}=x\left(x^{k} a^{k+1}\right)=x a$, which imply that $(e z a)^{*}=(e x a)^{*}=e x a=e a z$. It is easy to get $z a^{2}=x a\left(x a^{2}\right)=x a^{2}=a$. Moreover,
$a z^{2}=a x z=a x(x a x)=a x^{2}\left(x^{k} a^{k+1}\right) x=\left(a x^{k+1}\right) x a^{k+1} x=x^{k+1} a^{k+1} x=x a x=z$. Hence, a is weighted-EP with respect to (e, e).
(ii) \Leftrightarrow (iii) Since $a=x a^{2}$ implies $a=x^{k} a^{k+1}$, it is clear.
$(i) \Rightarrow$ (iv) Suppose that a is weighted-EP with respect to (e, e), then we have $(e a x)^{*}=e a x, a^{2} x=a, x^{2} a=x$ for some $x \in \mathcal{R}$. Thus $x^{k+1} a=x^{k-1}\left(x^{2} a\right)=x^{k}$.
(iv) \Rightarrow (i) Note that $a=a^{2} x=a\left(a^{2} x\right) x=a^{3} x^{2}=\cdots=a^{k+1} x^{k}$. Let $z=x a x$. Then $a z=\operatorname{axax}=\left(a^{k+1} x^{k}\right) x a x=$ $a^{k+1}\left(x^{k+1} a\right) x=a^{k+1} x^{k+1}=a x$, and $z a=x a x a=x\left(a^{k+1} x^{k}\right) x a=x a^{k+1}\left(x^{k+1} a\right)=x a^{k+1} x^{k}=x a$. So $(e a z)^{*}=(e a x)^{*}=$ $e a x=e a z$, and $a^{2} z=a^{2} x=a$. Furthermore, $z^{2} a=z x a=(x a x) x a=x\left(a^{k+1} x^{k}\right) x^{2} a=x a^{k+1} x\left(x^{k+1} a\right)=x a^{k+1} x^{k+1}=$ $x a x=z$. Hence, a is weighted-EP with respect to (e, e).
$(i v) \Leftrightarrow(v)$ The condition $a=a^{2} x$ implies $a=a^{k+1} x^{k}$, thus the equivalence is obvious.
In [16], Zhu and Wang introduced the concept of pseudo e-core inverse in *-rings.
Definition 4.4. [16] Let $a, e \in \mathcal{R}$. The pseudo e-core inverse of a, denoted by $a^{e,(®)}$, is the unique solution to system

$$
x a^{k+1}=a^{k} \text { for some } k \geq 1, a x^{2}=x \text { and }(\text { eax })^{*}=e a x .
$$

The authors introduced the one-sided pseudo e-core inverse in [13, Remark 4.12], here we also present the definition.

Definition 4.5. [13] Let $a, e \in \mathcal{R}$. Then a is called right pseudo e-core invertible if there exist $x \in \mathcal{R}$ and some positive integer k such that $a x a^{k}=a^{k}, x=a x^{2}$ and $(e a x)^{*}=e a x$.
We use the symbol $a_{r}^{e,(1)}$ to denote the right pseudo e-core inverse of a, if a is right pseudo e-core invertible.
Next we will characterize pseudo e-core invertible elements.
Theorem 4.6. Let $a, e \in \mathcal{R}$ and $k \geq 1$. Then the following are equivalent:
(i) a is pseudo e-core invertible;
(ii) there exists $x \in \mathcal{R}$ such that $x a^{k+1}=a^{k}, a x^{k+1}=x^{k}$ and $\left(e a^{k} x^{k}\right)^{*}=e a^{k} x^{k}$;
(iii) there exists $x \in \mathcal{R}$ such that $a^{k} x^{k+1} a^{k+1}=a^{k}$, $a x^{2}=x$ and $\left(e a^{k+1} x^{k+1}\right)^{*}=e a^{k+1} x^{k+1}$.

Proof. (i) \Rightarrow (ii) By Definition 4.4, there exists $x \in \mathcal{R}$ such that $x a^{k+1}=a^{k}, a x^{2}=x$ and (eax) $)^{*}=e a x$, which give that $a x^{k+1}=a x^{2} x^{k-1}=x^{k}$, and $a x=a\left(a x^{2}\right)=a^{2} x^{2}=a^{2}\left(a x^{2}\right) x=a^{3} x^{3}=\cdots=a^{k} x^{k}$. So $\left(e a^{k} x^{k}\right)^{*}=(e a x)^{*}=e a x=$ $e a^{k} x^{k}$.
(ii) \Rightarrow (i) By the assumption, let $z=a^{k-1} x^{k}$. Then $a z=a^{k} x^{k}$, and $(e a z)^{*}=\left(e a^{k} x^{k}\right)^{*}=e a^{k} x^{k}=e a z$. Notice that $a^{k}=x a^{k+1}=x\left(x a^{k+1}\right) a=x^{2} a^{k+2}=\cdots=x^{k-1} a^{2 k-1}=x^{k} a^{2 k}$, and $x^{k}=a x^{k+1}=a\left(a x^{k+1}\right) x=a^{2} x^{k+2}=\cdots=a^{k-1} x^{2 k-1}=$ $a^{k} x^{2 k}$, which imply that $z=a^{k-1} x^{k}=a^{k-1}\left(a x^{k+1}\right)=a^{k} x^{k+1}=\cdots=a^{2 k} x^{2 k+1}=a^{k}\left(x^{k} a^{2 k}\right) x^{2 k+1}=a^{k} x^{k} a^{k}\left(a^{k} x^{2 k}\right) x=$ $a^{k} x^{k} a^{k} x^{k+1}=a^{k} x^{k} a^{k-1} x^{k}=a z^{2}$, and $a^{k}=x^{k} a^{2 k}=\left(a^{k-1} x^{2 k-1}\right) a^{2 k}=\left(a^{k-1} x^{k}\right)\left(x^{k-1} a^{2 k-1}\right) a=z a^{k+1}$. These yield that $z=a^{k-1} x^{k}$ is a pseudo e-core inverse of a, and a is pseudo e-core invertible.
(ii) \Leftrightarrow (iii) The equality $x=a x^{2}$ gives $x=a^{k} x^{k+1}$ and so the rest is clear.

In the following result, we will reveal the relationship between right pseudo e-core inverses and right e-core inverses.

Theorem 4.7. Let $a, e \in \mathcal{R}$. Then the following statements are equivalent:
(i) a is right pseudo e-core invertible;
(ii) a^{k} is right e-core invertible for some positive integer k.

Proof. (i) \Rightarrow (ii) If a is right pseudo e-core invertible, then we can check that $z=\left(a_{r}^{e,(®)}\right)^{k}$ is a right e-core inverse of a^{k}. Indeed, the condition $a_{r}^{e,(1)}=a\left(a_{r}^{e,(1)}\right)^{2}$ yields $a_{r}^{e,(\mathbb{D}}=a^{k-1}\left(a_{r}^{e,(1)}\right)^{k}$. Thus $a^{k} z=a^{k}\left(a_{r}^{e,(\mathbb{D}}\right)^{k}=a\left(a^{k-1}\left(a_{r}^{e,(\mathbb{)}}\right)^{k}\right)=$ $a a_{r}^{e,(1)}$. Therefore, $\left(e a^{k} z\right)^{*}=\left(e a a_{r}^{e,(\mathbb{D}}\right)^{*}=e a a_{r}^{e,(1)}=e a^{k} z, a^{k} z a^{k}=a a_{r}^{e^{\prime,(1)}} a^{k}=a^{k}$ and $a^{k} z^{2}=a a_{r}^{e,(1)} z=a a_{r}^{e,(\mathbb{D}}\left(a_{r}^{e,(1)}\right)^{k}=$ $\left(a\left(a_{r}^{e,(\mathbb{D}}\right)^{2}\right)\left(a_{r}^{e,(\mathbb{D}}\right)^{k-1}=\left(a_{r}^{e,(1)}\right)^{k}=z$.
(ii) \Rightarrow (i) If a^{k} is right e-core invertible for some positive integer k, then we can check that $y=a^{k-1}\left(a^{k}\right)_{r}^{e, \oplus}$ is a right pseudo e-core inverse of a. Indeed, $a y=a^{k}\left(a^{k}\right)_{r}^{e, \oplus}, a y a^{k}=a^{k}\left(a^{k}\right)_{r}^{e, \oplus} a^{k}=a^{k}, a y^{2}=a^{k}\left(a^{k}\right)_{r}^{e, \oplus} y=$ $a^{k}\left(a^{k}\right)_{r}^{e, \oplus} a^{k-1}\left(a^{k}\right)_{r}^{e^{, \oplus}}=a^{k}\left(a^{k}\right)_{r}^{e, \oplus} a^{k-1}\left\{a^{k}\left[\left(a^{k}\right)_{r}^{e^{, \oplus}}\right]^{2}\right\}=a^{k}\left(a^{k}\right)_{r}^{e^{e, \oplus}} a^{k} a^{k-1}\left[\left(a^{k}\right)_{r}^{e^{\oplus} \oplus}\right]^{2}=a^{k} a^{k-1}\left[\left(a^{k}\right)_{r}^{e, \oplus}\right]^{2}=a^{k-1} a^{k}\left[\left(a^{k}\right)_{r}^{e^{, \oplus}}\right]^{2}=$ $a^{k-1}\left(a^{k}\right)_{r}^{e, \boxplus}=y$, and $(e a y)^{*}=\left(e a^{k} x\right)^{*}=e a^{k} x=e a y$.

Next we characterize right pseudo e-core invertible elements by using Theorem 4.7.
Theorem 4.8. Let $a, e \in \mathcal{R}$. Then the following statements are equivalent:
(i) a is right pseudo e-core invertible;
(ii) $a^{k} \in \mathcal{R}^{\{1,3 e\}}$ and $a^{k} \mathcal{R}=a^{k+1} \mathcal{R}$ for some positive integer k;
(iii) $a^{k} \in \mathcal{R}^{[1,3 e\}}$ and $a^{k} \mathcal{R} \subseteq a^{k+1} \mathcal{R}$ for some positive integer k;
(iv) $\mathcal{R} a^{k}=\mathcal{R}\left(a^{k}\right)^{*} e a^{k}$ and $a^{k} \mathcal{R}=a^{k+1} \mathcal{R}$ for some positive integer k;
(v) $\mathcal{R} a^{k} \subseteq \mathcal{R}\left(a^{k}\right)^{*} e a^{k}$ and $a^{k} \mathcal{R} \subseteq a^{k+1} \mathcal{R}$ for some positive integer k;
(vi) $\mathcal{R} a^{k}=\mathcal{R}\left(a^{*}\right)^{k+1}$ ea for some positive integer k;
(vii) $\mathcal{R} a^{k} \subseteq \mathcal{R}\left(a^{*}\right)^{k+1}$ ea a^{k} for some positive integer k.

Proof. a is right pseudo e-core invertible $\stackrel{\text { Theorem } 4.7}{\Longleftrightarrow} a^{k}$ is right e-core invertible for some positive integer k $\stackrel{\text { Theorem } 3.1}{\Longleftrightarrow} a^{k} \in \mathcal{R}^{\{1,3 e\}}$ and $a^{k} \mathcal{R}=a^{k+1} \mathcal{R}$ for some positive integer $k \stackrel{\text { Theorem3.1 }}{\Longleftrightarrow}$ (iii) $\stackrel{\text { Proposition } 3.2}{\Longleftrightarrow}$ (iv) $\stackrel{\text { Proposition } 3.2}{\Longleftrightarrow}$ (v) $\stackrel{\text { Proposition } 3.3}{\Longleftrightarrow}$ (vi) $\stackrel{\text { Proposition } 3.3}{\Longleftrightarrow}$ (vii).

Finally, the matrix representations of right pseudo e-core invertible element and its right pseudo e-core inverse are presented in the following theorem.

Theorem 4.9. Let $a, e \in \mathcal{R}$. Then the following statements are equivalent:
(i) a is right pseudo e-core invertible and $x \in \mathcal{R}$ is a right pseudo e-core inverse of a;
(ii) there exists an idempotent $q \in \mathcal{R}$ such that (eq)*$=e q$ and

$$
a=\left[\begin{array}{ll}
a_{1} & a_{2} \tag{2}\\
a_{3} & a_{4}
\end{array}\right]_{q}, \quad x=\left[\begin{array}{cc}
x_{1} & x_{2} \\
0 & 0
\end{array}\right]_{q},
$$

where a_{1} is right invertible in $q \mathcal{R} q, x_{1}=\left(a_{1}\right)_{r}^{-1}, a_{1} x_{2}=0, a_{3} x_{1}=0, a_{3} x_{2}=0$ and $q a^{k}=a^{k}$ for some $k \geq 1$;
(iii) there exists an idempotent $p \in \mathcal{R}$ such that (ep $)^{*}=e p$ and

$$
a=\left[\begin{array}{ll}
a_{1} & a_{2} \tag{3}\\
a_{3} & a_{4}
\end{array}\right]_{p}, \quad x=\left[\begin{array}{cc}
0 & 0 \\
x_{1} & x_{2}
\end{array}\right]_{p}
$$

where a_{4} is right invertible in $(1-p) \mathcal{R}(1-p), x_{2}=\left(a_{4}\right)_{r}^{-1}, a_{2} x_{1}=0, a_{2} x_{2}=0, a_{4} x_{1}=0$ and $p a^{k}=0$ for some $k \geq 1$.
Proof. (i) \Rightarrow (ii) If a is right pseudo e-core invertible and $x \in \mathcal{R}$ is a right pseudo e-core inverse of a, by Definition 4.5, we have $a x a^{k}=a^{k}, x=a x^{2}$ and $(e a x)^{*}=e a x$ for some $k \geq 1$. Note that $a x=a\left(a x^{2}\right)=a^{2} x^{2}=$ $\cdots=a^{k} x^{k}$, which gives $\operatorname{axax}=\operatorname{ax}\left(a^{k} x^{k}\right)=\left(a x a^{k}\right) x^{k}=a^{k} x^{k}=a x$. For $q=a x$, we get $q^{2}=\operatorname{axax}=a x=q$, $(e q)^{*}=(e a x)^{*}=e a x=e q, q a^{k}=a^{k}$ and $q x=x$ implying (3). Since

$$
\left[\begin{array}{ll}
a_{1} x_{1} & a_{1} x_{2} \\
a_{3} x_{1} & a_{3} x_{2}
\end{array}\right]_{q}=a x=q=\left[\begin{array}{ll}
q & 0 \\
0 & 0
\end{array}\right]_{q}
$$

the rest is clear.
$($ ii $) \Rightarrow$ (i) Because $a x=\left[\begin{array}{ll}a_{1} & a_{2} \\ a_{3} & a_{4}\end{array}\right]_{q}\left[\begin{array}{cc}x_{1} & x_{2} \\ 0 & 0\end{array}\right]_{q}=\left[\begin{array}{ll}a_{1} x_{1} & a_{1} x_{2} \\ a_{3} x_{1} & a_{3} x_{2}\end{array}\right]_{q}=\left[\begin{array}{ll}q & 0 \\ 0 & 0\end{array}\right]_{q}=q$, we can prove this implication by elementary computations.
$(i) \Leftrightarrow(i i i)$ This equivalence follows similarly as $(i) \Leftrightarrow(i i)$ for $p=1-a x$.

References

[1] A. Ben-Israel,T. N. E. Greville, Generalized Inverses: Theory and Applications, Wilery, New York, 1974.
[2] K. P. S. Bhaskara Rao, Theory of Generalized Inverses Over Commutative Rings, London: Taylor and Francis, Ltd London, 2002.
[3] O. M. Baksalary, G. Trenkler, Core inverse of matrices, Linear Multilinear Algebra, 58 (2010) 681-697.
[4] M. P. Drazin, Left and right generalized inverses, Linear Algebra Appl., 510 (2016) 64-78.
[5] Y. F. Gao, J. L. Chen, Pseudo core inverses in rings with involution, Comm. Algebra, 46(1) (2018) 38-50.
[6] Y. Y. Ke, J. Vis̆njić, J. L. Chen, One-sided (b, c)-inverses in rings, Filomat, 34(3) (2020) 272-736.
[7] Y. Y. Ke, L. Wang, J. H. Liang, The characterizations of weighted right core inverse and the related generalized inverses, (submitted).
[8] T. Y. Lam, A First Course in Noncommutative Rings, Grad. Text in Math. Vol. 131. Springer-Verlag, Berlin-Heidelberg-New York, 2001.
[9] T. T. Li, J. L. Chen, Characterizations of core and dual core inverses in rings with involution, Linear Multilinear Algebra, 66 (2018) 717-730.
[10] D. Mosić, C. Y. Deng, H. F. Ma, On a weighted core inverse in a ring with involution. Comm. Algebra, 46 (2018) 2332-2345.
$[11]$ D. S. Rakić, N. S. Dinčić, D. S. Djordjević, Group, Moore-Penrose, core and dual core inverse in rings with involution, Linear Algebra Appl., 463 (2014) 115-133.
[12] L. Wang, D. Mosić, The one-sided inverse along two elements in rings, Linear and Multilinear Algebra, 69 (2021) 2410-2422.
[13] L. Wang, D. Mosić, Y. F. Gao, Right core inverse and the related generalized inverses, Comm. Algebra, 47 (11) (2019) 4749-4762.
[14] S. Z. Xu, J. L. Chen, X. X. Zhang, New characterizations for core inverses in rings with involution. Front. Math. China 12(1)(2017) 231-246.
[15] H. H. Zhu, Q. W. Wang, Weighted Moore-Penrose inverses and Weighted core inverses in rings with involution, Chinese Annals of Mathematics, Series B, 42 (04) (2021) 613-624.
[16] H. H. Zhu, Q. W. Wang, Weighted pseudo core inverses in rings, Linear and Multilinear Algebra, 68 (12) (2020) 2434-2447.

[^0]: 2020 Mathematics Subject Classification. 15A09; 16W10.
 Keywords. Core inverse; Right core inverse; Right pseudo core inverse; Right e core inverse; Right e pseudo core inverse.
 Received: 26 August 2022; Accepted: 21 November 2022
 Communicated by Dijana Mosić
 Research supported by the National Science Foundation of China (No.11901245, No.11901510), and the National Science Foundation of Jiangsu Province (No. BK20200944).

 * Corresponding author: Yuanyuan Ke

 Email addresses: keyy086@126.com (Yuanyuan Ke), lwangmath@yzu. edu.cn (Long Wang), 506390843@qq. com (Jiahui Liang), 2806073607@qq.com (Ling Shi)

