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Abstract. In this paper, some characterizations and properties of right e-core inverses by using right invert-
ible element and {1, 3e}-inverse are investigated. Meanwhile, some characterizations for a new generalized
right e-core inverse which is called right pseudo e-core inverse are also studied. The relationship between
right pseudo e-core inverses and right e-core inverses are presented.

1. Introduction

Let R be an associative ring with the unit 1. An involution ∗ : R → R is an anti-isomorphism which
satisfies (a∗)∗ = a, (a + b)∗ = a∗ + b∗ and (ab)∗ = b∗a∗ for all a, b ∈ R. We call R a ∗-ring if there exists an
involution on R. Recall that an element a ∈ R is said to be Hermitian if a∗ = a. And an element a ∈ R is an
idempotent if a2 = a.

The core inverse of a complex matrix was first introduced by Baksalary and Trenkler [3]. Later, Rakić et
al. [11] generalized this concept to the case of an arbitrary ∗-ring. An element a ∈ R is core invertible (resp.
dual core invertible) if there is an element x ∈ R such that

axa = a, xR = aR (resp. Rx = Ra), Rx = Ra∗ (resp. xR = a∗R).

Such an x above is called a core inverse of a. It is unique if it exists and is denoted by a #O(resp. a #O). Moreover,
it was proved in [11] that a ∈ R is core invertible if and only if there exists an element x ∈ R satisfying the
following five equations:

axa = a, xax = x, (ax)∗ = ax, xa2 = a, ax2 = x.

Indeed, Xu, Chen and Zhang [14] proved that the above five equations can be deduced to three equations:

xa2 = a, ax2 = x and (ax)∗ = ax.

In [5], Gao and Chen defined the pseudo core inverse by three equations in a ∗-rings, which extend the
classical core inverses. An element a ∈ R is pseudo core invertible if there exist an x ∈ R and a positive
integer k satisfying
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xak+1 = ak, ax2 = x and (ax)∗ = ax.

If such an x exists, it is unique and is called a pseudo core inverse of a, and denoted by aDO. The smallest
positive integer k is called the pseudo core index of a.

Later, Mosić, Deng and Ma [10] introduced the definitions of the e-core inverse and the f -dual core
inverse of elements in ∗-rings, which generalized the concepts of the core inverse and the dual core inverse,
where e and f are invertible Hermitian elements. Following [10], any element x ∈ R is called an e-core
inverse (or a weighted core inverse with weight e) of a ∈ R, if it satisfies

axa = a, xR = aR, and Rx = Ra∗e.

Such an e-core inverse x of a is unique if it exists, and is denoted by ae, #O. If e = 1 in the above definition,
then ae, #O = a #O is the ordinary core inverse of a. Moreover, the authors characterized e-core inverse by three
equations, that is, a is e-core invertible if and only if there exists x ∈ R such that

xa2 = a, ax2 = x and (eax)∗ = eax.

Wang and Mosić [12] introduced the one-sided core inverse, which considered as the special case of
right (b, c)-inverse, called it right core inverse in ∗-ring. Then they gave some characterizations for it. Recall
that an element a ∈ R is said to be right core invertible if there is x ∈ R satisfying

axa = a, ax2 = x and (ax)∗ = ax.

Later, Wang, Mosić and Gao [13] investigated some properties of right core inverses, and gave new char-
acterizations and expressions for them by using projections and one-sided invertible elements. They also
introduced and studied a new generalized right core inverse which is called right pseudo core inverse. An
element a ∈ R is right pseudo core invertible if there exist x ∈ R and positive integer k satisfy

axak = ak, ax2 = x and (ax)∗ = ax.

We use the symbols a #O
r and aDO

r to denote the right core inverse and right pseudo core inverse of a, respectively.
In [15], Zhu and Wang derived the existence criteria and characterizations for the weighted Moore-

Penrose, e-core inverse, f -dual core inverse and one-sided inverses along an element in rings. Later they in
[16] defined two types of outer generalized inverses, called pseudo e-core inverse and pseudo f -dual core
inverse. An element a ∈ R is called pseudo e-core invertible (resp. pseudo f -core invertible) if there are
x ∈ R and positive integer k such that

xax = x, xR = ak
R (resp. Rx = Rak), Rx = R(ak)∗e (resp. f xR = (ak)∗R).

Furthermore, they investigated some characterizations and properties for them, and gave the relations
between the pseudo e-core inverse and the inverse along an element.

Motivated by the aforementioned above, in this article, we will investigate some characterizations and
properties for right e-core inverses by using right invertible element and {1, 3e}-inverse. Meanwhile, we
also study some characterizations for a new generalized right e-core inverse which is called right pseudo
e-core inverse. Finally, we present the relationship between right pseudo e-core inverses and right e-core
inverses.

Now, we give the main concepts and symbols.
Let e, f ∈ R be two invertible Hermitian elements, we say that a ∈ R is a weighted Moore-Penrose

invertible with weights e, f if there exists an x ∈ R satisfying the following four equations (see [1, 2]):

(1) axa = a, (2) xax = x, (3e) (eax)∗ = eax, (4 f ) ( f xa)∗ = f xa.

If such an x exists, it is unique and called a weighted Moore-Penrose inverse of a, denoted by a†e, f . The
set of all weighted Moore-Penrose invertible elements of R with weighted e, f will be denoted by R†e, f . If
e = f = 1 in the above equations, then a†e, f = a† is the ordinary Moore-Penrose inverse of a. More generally,
if a and x satisfy the equations (1) axa = a and (3e) (eax)∗ = eax, then x is called a {1, 3e}-inverse of a, and
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is denoted by a(1,3e). Similarly, if a and x satisfy the equations (1) axa = a and (4 f ) ( f xa)∗ = f xa, then x is
called a {1, 4 f }-inverse of a, and is denoted by a(1,4 f ). As usual, we denote by R{1,3e} and R{1,4 f } the sets of all
{1, 3e}-invertible and {1, 4 f }-invertible elements inR, respectively. If a and x satisfy the equations (1) axa = a,
(2) xax = x, and (5) ax = xa, then x is called a group inverse of a, and is denoted by a♯. All the group
invertible elements of R is denoted by R♯.

As weaker versions of the (b, c)-invertibility, one-sided (b, c)-invertibility is introduced by Drazin [4]:

Definition 1.1. Let a, b, c ∈ R. Then a is called right (resp. left) (b, c)-invertible if c ∈ cabR (resp. b ∈ Rcab), or
equivalently if there exists z ∈ bR such that caz = c (resp. x ∈ Rc such that xab = b), in which case any such z (resp.
x) will be called a right (resp. left) (b, c)-inverse of a.

In [4], Drazin considered some properties of left (or right) (b, c)-inverses under the additional conditions,
such as R is strongly π-regular. In [6], Ke, Višnjić and Chen introduced left and right annihilator (b, c)-
inverses and investigated some properties of them and of left (or right) (b, c)-inverses. In [12], the authors
studied the properties of left (or right) (b, c)-inverses under the condition cab is regular. As applications,
the authors introduced the one-sided core inverse, for the convenience of the reader, the definitions of right
core inverses are given again see [13, Definition 1.3].

Definition 1.2. [13, Definition 1.3] Let a ∈ R. We say that a is right core invertible if a is right (a, a∗)-invertible.

Motivated by above definition, the authors introduced the one-sided e-core inverse in [13, Remark 4.12],
here we also give the definition.

Definition 1.3. [13] Let a ∈ R and e ∈ R be an invertible Hermitian element. An element a is called right e-core
invertible if a is right (a, a∗e)-invertible.

Note that, by Definition 1.3, a is right e-core invertible if and only if a∗e ∈ a∗ea2
R if and only if there exists

x ∈ R such that x ∈ aR and a∗eax = a∗e. The sets of all right e-core invertible elements of R will be denoted
by Re, #O

r . The symbol ae, #O
r is used to denote the right e-core inverse of a, if a ∈ Re, #O

r .
Next section we will study the properties of right e-core inverses.

2. Characterizing right e-core inverses by idempotent and one-sided inverse in a ∗-ring

In [9, Theorems 3.3 and 3.4], Li and Chen gave the characterizations and expressions of core inverse
of an element by a projection and units. Motivated by this, in this section, we present some equivalent
conditions for the existence of right e-core inverses. We will prove that a is right e-core invertible if and only
if there exists an idempotent p such that (ep)∗ = ep, pa = 0, and an + p is right invertible for n ≥ 1. Before we
start, the following result is needed.

Lemma 2.1. [7, Theorem 1.4] Let a ∈ R and e ∈ R be an invertible Hermitian element. Then the following statements
are equivalent:

(i) a is right e-core invertible;
(ii) there exists x ∈ R such that axa = a, x = ax2 and (eax)∗ = eax.

Remark 2.2. In fact, all right e-core inverses ae, #O
r of a satisfy

aae, #O
r a = a, ae, #O

r = a(ae, #O
r )2 and (eaae, #O

r )∗ = eaae, #O
r .

Moreover, if a is right e-core invertible, then aae, #O
r is invariant on the choice of ae, #O

r . Indeed, assume that x1 and x2 are
two right e-core inverses of a. Then eax1 = (eax1)∗ = x∗1a∗e = x∗1(ax2a)∗e = x∗1a∗(ax2)∗e∗ = x∗1a∗(eax2)∗ = x∗1a∗eax2 =
(eax1)∗ax2 = eax1ax2 = eax2. Since e is invertible, we have ax1 = ax2. Denote by aπ = 1 − aae, #O

r the idempotent
determined by a right e-core inverse of a, if a is right e-core invertible in R.
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In [10, Definition 1.1], the authors introduced the concept of weighted-EP elements in a ring with
involution, which is a generalization of EP matrices. An element a ∈ R is weighted-EP with respect to (e, e)
if a ∈ R†(e,e) ∩ R

♯ and a♯ = a†(e,e). Moreover, the authors pointed out that a ∈ R is e-core invertible if and only

if a ∈ R♯ ∩ R{1,3e} in [10, Theorem 2.1]. Using Lemma 2.1 and above remark, we can deduce the following
result.

Proposition 2.3. Let e ∈ R be an invertible Hermitian element, and a ∈ R be right e-core invertible. If aae, #O
r = ae, #O

r a,
then a is weighted-EP with respect to (e, e) and ae, #O

r = a♯ = a†(e,e).

In the following, we will use the symbol R−1
r to denote the set of all right invertible elements in R. The

symbol a−1
r denotes the right inverse of a, if a ∈ R−1

r . The symbol r(a) (rep. l(a)) denotes the right (rep. left)
annihilator of a ∈ R.

In [9], the authors proved that a is core invertible if and only if there exists a projection p such that pa = 0,
an + p is invertible for n ≥ 1. Here we will give the similar result for right e-core invertible.

Theorem 2.4. Let a ∈ R and e ∈ R be an invertible Hermitian element. Then the following statements are equivalent:
(i) a is right e-core invertible;
(ii) there exists a unique idempotent p such that (pe)∗ = pe, pea = 0 and u = p + eae−1

∈ R
−1
r ;

(iii) there exists a unique idempotent p such that (pe)∗ = pe, pea = 0 and w = eae−1(1 − p) + p ∈ R−1
r .

(iv) there exists a unique idempotent p such that (ep)∗ = ep, pa = 0 and u = p + a ∈ R−1
r ;

(v) there exists a unique idempotent p such that (ep)∗ = ep, pa = 0 and w = a(1 − p) + p ∈ R−1
r .

In this case, a #O
r = e−1u−1

r (1 − p)e = e−1(1 − p)w−1
r e.

Proof. (i)⇔ (ii)⇔ (iii) For the proofs we refer the reader to [7, Theorem 1.6].
(i)⇒ (iv) Suppose that a is right e-core invertible, by Lemma 2.1, there is x ∈ R such that axa = a, x = ax2

and (eax)∗ = eax. Let p = 1 − ax. Then p2 = (1 − ax)2 = 1 − ax = p, ep = e(1 − ax) = e − eax = e∗ − (eax)∗ =
(e−eax)∗ = (ep)∗, pa = (1−ax)a = 0, and px = (1−ax)x = 0. And (p+a)(x+1−xa) = p+ax+a(1−xa) = p+ax = 1,
this gives u = p + a ∈ R−1

r .
For the uniqueness of the idempotent, assume that there exist two idempotents p and q satisfy (ep)∗ = ep,

(eq)∗ = eq, pa = qa = 0, p+ a ∈ R−1
r and q+ a ∈ R−1

r . It is easily seen that l(1− p) = l(1− q) = l(a), which implies
p = pq and q = qp. Hence, ep = (ep)∗ = (epq)∗ = q∗(ep)∗ = q∗ep = q∗e∗p = (eq)∗p = eqp, this gives p = qp = q since
e is invertible.

(iv)⇒ (i) Under hypothesis pa = 0 and p+a ∈ R−1
r , we know (1−p)(p+a) = a and hence 1−p = a(p+a)−1

r .
Consider x = (p + a)−1

r (1 − p). Then ax = a(p + a)−1
r (1 − p) = 1 − p, which gives that eax = e(1 − p) = e − ep =

e∗−(ep)∗ = (e−ep)∗ = (eax)∗, and axa = (1−p)a = a. Note that p(p+a) = p, it follows that p = p(p+a)−1
r and hence

(1−p)(p+a)−1
r = (p+a)−1

r −p. Therefore, ax2 = (1−p)(p+a)−1
r (1−p) = [(p+a)−1

r −p](1−p) = (p+a)−1
r (1−p) = x.

By Lemma 2.1, we see at once that a is right e-core invertible.
(i) ⇒ (v) As in the proof of (i) ⇒ (iv), we also let p = 1 − ax. Then p2 = p, (ep)∗ = ep, pa = 0, and px = 0.

Thus

[a(1 − p) + p](x + 1 − ax) = (a2x + p)(x + 1 − ax) = a2x2 + a(ax)(1 − ax) + px + p(1 − ax) = ax + p = 1,

that is, w = a(1 − p) + p ∈ R−1
r .

For the uniqueness of the idempotent, analysis similar to that in the proof of (i)⇒ (iv).
(v)⇒ (i) Notice that (1−p)w = (1−p)[a(1−p)+p] = (1−p)a(1−p) = a(1−p). Then 1−p = a(1−p)w−1

r . Set
x = (1−p)w−1

r . It is clear that ax = a(1−p)w−1
r = (1−p)ww−1

r = 1−p, (eax)∗ = (e− ep)∗ = e∗− (ep)∗ = e− ep = eax,
axa = (1 − p)a = a and ax2 = (1 − p)x = (1 − p)2w−1

r = (1 − p)w−1
r = x. By Lemma 2.1, we obtain that a is right

e-core invertible.

The following theorem shows that p + an
∈ R

−1
r is true when taking n ≥ 2 in Theorem 2.4. Before it, we

state an auxiliary result.

Lemma 2.5. [8, Exercise 1.6] Let a, b ∈ R. Then 1 + ab is right invertible if and only if 1 + ba is right invertible.
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Theorem 2.6. Let a ∈ R and e ∈ R be an invertible Hermitian element and n ≥ 2. Then the following statements
are equivalent:

(i) a is right e-core invertible;
(ii) there exists a unique idempotent p such that (pe)∗ = pe, pea = 0 and u = p + eane−1

∈ R
−1
r ;

(iii) there exists a unique idempotent p such that (pe)∗ = pe, pea = 0 and w = eane−1(1 − p) + p ∈ R−1
r ;

(iv) there exists a unique idempotent p such that (ep)∗ = ep, pa = 0 and u = p + an
∈ R

−1
r ;

(v) there exists a unique idempotent p such that (ep)∗ = ep, pa = 0 and w = an(1 − p) + p ∈ R−1
r .

Proof. (i)⇔ (ii)⇔ (iii) [7, Theorem 1.9] gives these equivalent statements.
(i) ⇒ (iv) If a is right e-core invertible, also let p = 1 − ax. From the proof of Theorem 2.4 (i) ⇒ (iv), we

know p2 = p, (ep)∗ = ep, pa = 0, px = 0 and u = p+ a = a+ 1− ax ∈ R−1
r . Then 1+ ax(a− 1) = a+ 1− ax is right

invertible. Using Lemma 2.5, it follows that 1+ (a− 1)ax = 1+ a2x− ax is right invertible. It is easy to verify
that if n = 2,

a2 + 1 − ax = (1 + a2x − ax)(a + 1 − ax)

is right invertible. Assume that the result holds for the case n − 1(n > 2), that is, an−1 + 1 − ax is right
invertible, we will prove it for n. Indeed,

p + an = an + 1 − ax = (1 + a2x − ax)(an−1 + 1 − ax)

is right invertible. For the uniqueness of the idempotent, it is similar to (i)⇒ (iv) in Theorem 2.4.
(iv)⇒ (i) From the assumption pa = 0 and u = p + an

∈ R
−1
r , we get (1 − p)(p + an) = an and 1 − p = an(p +

an)−1
r = anu−1

r . Take x = an−1u−1
r . Then ax = anu−1

r = 1− p, eax = e(1− p) = e− ep = e∗ − (ep)∗ = (e− ep)∗ = (eax)∗,
axa = (1−p)a = a and ax2 = (1−p)an−1u−1

r = an−1u−1
r = x. By Lemma 2.1, we obtain a is right e-core invertible.

(i) ⇒ (v) We also let p = 1 − ax. By the proof of (i) ⇒ (iv), we get p2 = p, (ep)∗ = ep, pa = 0, px = 0 and
u = p + an = an + 1 − ax ∈ R−1

r . So 1 + ax(an
− 1) = an + 1 − ax is right invertible. Applying Lemma 2.5,

1+ (an
− 1)ax is invertible. Hence w = an(1− p)+ p = an(1− p)− 1+ p+ 1 = 1+ (an

− 1)(1− p) = 1+ (an
− 1)ax

is right invertible.
(v) ⇒ (i) Note that (1 − p)w = (1 − p)[an(1 − p) + p] = an(1 − p). Then 1 − p = an(1 − p)w−1

r . Take
x = an−1(1 − p)w−1

r . It is clear that ax = 1 − p, px = 0, eax = e(1 − p) = e − ep = e − (ep)∗ = (e − ep)∗ = (eax)∗,
axa = (1 − p)a = a and ax2 = (1 − p)x = x. Thus, by Lemma 2.1, we know that a is right e-core invertible.

From Remark 2.2, it is evident that if a is right e-core invertible, then aπ = 1 − aae, #O
r is an idempotent

determined by a right e-core inverse of a. In the following result, some characterizations of those elements
with equal corresponding idempotents are given.

Proposition 2.7. Let a, b ∈ Re, #O
r . Then the following statements are equivalent:

(i) aae, #O
r = bbe, #O

r ;
(ii) aR = bR;
(iii) aπb = 0 and aπ + b ∈ R−1

r ;
(iv) aπb = 0 and aπ + b(1 − aπ) ∈ R−1

r .
In addition, if one of statements (i)–(iv) holds, then ab is right e-core invertible and be, #O

r ae, #O
r is a right e-core inverse

of ab.

Proof. (i) ⇒ (ii) From aae, #O
r = bbe, #O

r , we get a = aae, #O
r a = bbe, #O

r a ∈ bR and b = bbe, #O
r b = aae, #O

r b ∈ aR, which imply
aR ⊆ bR ⊆ aR, that is aR = bR.

(ii)⇒ (i) If aR = bR, there exist x, y ∈ R such that a = bx and b = ay. Then bbe, #O
r a = bbe, #O

r (bx) = bx = a, and
aae, #O

r b = aae, #O
r (ay) = ay = b. Thus,

eaae, #O
r = e(bbe, #O

r a)ae, #O
r = (ebbe, #O

r )∗aae, #O
r = (bbe, #O

r )∗eaae, #O
r = (bbe, #O

r )∗(eaae, #O
r )∗ = (eaae, #O

r bbe, #O
r )∗ = (ebbe, #O

r )∗ = ebbe, #O
r .

Therefore, aae, #O
r = bbe, #O

r since e is invertible.
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(i)⇒ (iii) From aae, #O
r = bbe, #O

r , we have aπb = (1 − aae, #O
r )b = (1 − bbe, #O

r )b = 0. Since

(aπ + b)(be, #O
r + 1 − be, #O

r b) = (1 − aae, #O
r + b)(be, #O

r + 1 − be, #O
r b) = (1 − bbe, #O

r + b)(be, #O
r + 1 − be, #O

r b)
= be, #O

r + 1 − be, #O
r b − bbe, #O

r be, #O
r − bbe, #O

r + bbe, #O
r be, #O

r b + bbe, #O
r + b − bbe, #O

r b
= be, #O

r + 1 − be, #O
r b − be, #O

r − bbe, #O
r + be, #O

r b + bbe, #O
r + b − b

= 1.

Thus, aπ + b is right invertible.
(iii)⇒ (i) Suppose that aπb = 0 and aπ + b ∈ R−1

r . Notice that eaπ = e − eaae, #O
r = (e − eaae, #O

r )∗ = (eaπ)∗, and

bbe, #O
r aπ = e−1ebbe, #O

r aπ = e−1(ebbe, #O
r )∗aπ = e−1(bbe, #O

r )∗eaπ = e−1(bbe, #O
r )∗(eaπ)∗ = e−1(eaπbbe, #O

r )∗ = 0.

So we have (aae, #O
r − bbe, #O

r )(aπ + b) = aae, #O
r aπ + aae, #O

r b− bbe, #O
r aπ − b = aae, #O

r b− b = −aπb = 0. Therefore aae, #O
r = bbe, #O

r ,
since aπ + b is right invertible.

(i) ⇒ (iv) From aae, #O
r = bbe, #O

r , we have aπ = 1 − aae, #O
r = 1 − bbe, #O

r = bπ, and aπb = bπb = 0. Notice that
bπbe, #O

r = 0 and (bπ)2 = bπ. So we get

[aπ + b(1 − aπ)](be, #O
r + bπ) = [bπ + b(1 − bπ)](be, #O

r + bπ) = bπbe, #O
r + bπ + b(1 − bπ)be, #O

r + b(1 − bπ)bπ

= bπ + b(1 − bπ)be, #O
r = bπ + b(bbe, #O

r )be, #O
r = bπ + bbe, #O

r = 1.

Thus, aπ + b(1 − aπ) is right invertible.
(iv)⇒ (i) If aπb = 0, from the proof of (iii)⇒ (i), we know that bbe, #O

r aπ = 0 and (aae, #O
r − bbe, #O

r )(aπ + b) = 0.
Thus,

(aae, #O
r − bbe, #O

r )(aπ + b(1 − aπ)) = (aae, #O
r − bbe, #O

r )(aπ + b) − (aae, #O
r − bbe, #O

r )baπ = −(aae, #O
r − bbe, #O

r )baπ

= −aae, #O
r baπ + baπ = (1 − aae, #O

r )baπ = aπbaπ = 0.

Therefore, aae, #O
r = bbe, #O

r since aπ + b(1 − aπ) is right invertible.
The equality aae, #O

r = bbe, #O
r gives abbe, #O

r ae, #O
r = a(aae, #O

r )ae, #O
r = aae, #O

r . Thus ab(be, #O
r ae, #O

r )ab = aae, #O
r ab = ab,

ab(be, #O
r ae, #O

r )2 = (ab(be, #O
r ae, #O

r ))be, #O
r ae, #O

r = aae, #O
r be, #O

r ae, #O
r = bbe, #O

r be, #O
r ae, #O

r = be, #O
r ae, #O

r , and [eab(be, #O
r ae, #O

r )]∗ = (eaae, #O
r )∗ = eaae, #O

r =
eab(be, #O

r ae, #O
r ). So, ab is right e-core invertible and (ab)e, #O

r = be, #O
r ae, #O

r .

More sufficient conditions for the reverse order law of right e-core invertible elements are presented
now.

Proposition 2.8. Let a, b ∈ Re, #O
r . Then the following statements are equivalent:

(i) a = abbe, #O
r and b = aae, #O

r b;
(ii) a∗R ⊆ ebR ⊆ eaR.
In addition, if one of statements (i)–(ii) holds, then ab is right e-core invertible and be, #O

r ae, #O
r is a right e-core inverse

of ab.

Proof. (i)⇒ (ii) The assumption b = aae, #O
r b yields bR ⊆ aR and ebR ⊆ eaR. Applying involution to a = abbe, #O

r ,
it follows that a∗ = (abbe, #O

r )∗ = (ae−1ebbe, #O
r )∗ = (ebbe, #O

r )∗(ae−1)∗ = ebbe, #O
r (ae−1)∗, that is, a∗R ⊆ ebR. Hence,

a∗R ⊆ ebR ⊆ eaR.
(ii)⇒ (i) Suppose that a∗R ⊆ ebR and ebR ⊆ eaR, then there exist x, y ∈ R such that a∗ = ebx and eb = eay,

which give b = ay since e is invertible. So we have aae, #O
r b = (aae, #O

r a)y = ay = b. And (abbe, #O
r )∗ = (ae−1ebbe, #O

r )∗ =
(ebbe, #O

r )∗(ae−1)∗ = ebbe, #O
r (ae−1)∗ = ebbe, #O

r e−1a∗ = ebbe, #O
r e−1(ebx) = ebx = a∗, applying involution, we get a = abbe, #O

r .
From a = abbe, #O

r , we get abbe, #O
r ae, #O

r = aae, #O
r and ab(be, #O

r ae, #O
r )ab = aae, #O

r ab = ab. Since b = aae, #O
r b, we see

be, #O
r = b(be, #O

r )2 = aae, #O
r b(be, #O

r )2 = aae, #O
r be, #O

r . Thus, ab(be, #O
r ae, #O

r )2 = (aae, #O
r )be, #O

r ae, #O
r = be, #O

r ae, #O
r and [eab(be, #O

r ae, #O
r )]∗ =

(eaae, #O
r )∗ = eaae, #O

r = eab(be, #O
r ae, #O

r ). Therefore, ab is right e-core invertible and (ab)e, #O
r = be, #O

r ae, #O
r .

Let p = p2
∈ R be an idempotent. Then we can represent any element a ∈ R as

a =
[

a11 a12
a21 a22

]
p
,

where a11 = pap, a12 = pa(1 − p), a21 = (1 − p)ap, a22 = (1 − p)a(1 − p).
Now we give matrix representations for a right e-core invertible element and its right e-core inverse.
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Theorem 2.9. Let a ∈ R and e ∈ R be an invertible Hermitian element. Then the following statements are equivalent:
(i) a is right e-core invertible and x ∈ R is a right e-core inverse of a;
(ii) there exists an idempotent q ∈ R such that (eq)∗ = eq and

a =
[

a1 a2
0 0

]
q
, x =

[
x1 x2
0 0

]
q
, (1)

where a1 is right invertible in qRq, x1 = (a1)−1
r and a1x2 = 0;

(iii) there exists an idempotent p ∈ R such that (ep)∗ = ep and

a =
[

0 0
a1 a2

]
p
, x =

[
0 0
x1 x2

]
p
,

where a2 is right invertible in (1 − p)R(1 − p), x2 = (a2)−1
r and a2x1 = 0.

Proof. (i) ⇒ (ii) Suppose that a is right e-core invertible and x ∈ R is a right e-core inverse of a, by
Lemma 2.1, we have axa = a, ax2 = x, (eax)∗ = eax. Let q = ax. Then q2 = (ax)(ax) = ax = q, eq = eax =
(eax)∗ = (eq)∗, qa = (ax)a = a and qx = (ax)x = x, which imply (1 − q)a = 0 and (1 − q)x = 0. Thus,

a =
[

qaq qa(1 − q)
(1 − q)aq (1 − q)a(1 − q)

]
q
=

[
qaq qa(1 − q)
0 0

]
q
=

[
a1 a2
0 0

]
q
, and x =

[
x1 x2
0 0

]
q
, that is, a and x

are represented as in (1). Since a1 = qaq = aq = a2x and x1 = qxq = xax, we get a1x1 = (a2x)xax = axax =
ax = q, that is, x1 is a right inverse of a1 in qRq. By x2 = qx(1 − q) = (ax)x(1 − ax) = x(1 − ax), we have
a1x2 = (a2x)x(1 − ax) = ax(1 − ax) = 0.

(ii) ⇒ (i) Because ax =
[

a1 a2
0 0

]
q

[
x1 x2
0 0

]
q
=

[
a1x1 a1x2

0 0

]
q
=

[
q 0
0 0

]
q
= q, we can verify that x

satisfies (eax)∗ = (eq)∗ = eq = eax, axa = a and x = ax2. Using Lemma 2.1, we deduce that a is right e-core
invertible and x is a right e-core inverse of a.

(i)⇔ (iii) This equivalence follows similarly as (i)⇔ (ii) for p = 1 − ax.
Indeed, let p = 1− ax. Then p2 = (1− ax)2 = 1− ax− ax− axax = 1− ax, pa = 0, px = 0, (ep)∗ = (e(1− ax))∗ =

(e − eax)∗ = e − (eax)∗ = e − eax = ep, a =
[

pap pa(1 − p)
(1 − p)ap (1 − p)a(1 − p)

]
p
=

[
0 0

(1 − p)ap (1 − p)a(1 − p)

]
p
=[

0 0
a1 a2

]
p
, and x =

[
0 0
x1 x2

]
p
. Since a1 = (1 − p)ap = ap = a(1 − ax) = a − a2x and a2 = a(1 − p) = a2x,

x1 = xp = x − xax, x2 = x(1 − p) = xax, we get a2x2 = (a2x)xax = axax = ax = 1 − p, that is, x2 is a right inverse
of a2 in (1 − p)R(1 − p). And a2x1 = (a2x)x(1 − ax) = ax(1 − ax) = 0.

Conversely, as ax =
[

0 0
a2x1 a2x2

]
p
=

[
0 0
0 1 − p

]
p
= 1 − p, it is easy to prove that a is right e-core

invertible and x is a right e-core inverse of a.

Notice that p and q, which appear in Theorem 2.9, are invariant on the choice of x. We present one
decomposition of a right e-core invertible element which is also invariant on the choice of right e-core
inverse.

Proposition 2.10. Let a ∈ R be right e-core invertible. Then a = a1 + a2, where
(i) a1 is right e-core invertible,
(ii) a2

2 = 0,
(iii) a2a1 = 0.
In addition, a2ae, #O

r is right e-core invertible and ae, #O
r aae, #O

r is a right e-core inverse of a2ae, #O
r .

Proof. Suppose that a is right e-core invertible, and x is a right e-core inverse of a. Let a1 = a2x and a2 = a−a2x.
We have a = a1+a2, where a2a1 = (a−a2x)a2x = a(a2x−a2x) = 0 and a2

2 = a(1−ax)a(1−ax) = a(a−a)(1−ax) = 0.
Set y = xax. Since a1y = a2x2ax = axax = ax, (ea1y)∗ = (eax)∗ = eax = ea1y, a1ya1 = (ax)a2x = a2x = a1 and

a1y2 = (ax)xax = xax = y. Hence, a1 is right e-core invertible and y is a right e-core inverse of a1.
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3. More characterizations of right e-core inverses

From Lemma 2.1 and Remark 2.2, we know that if a is right e-core invertible and x is a right e-core
inverse of a, then a ∈ R{1,3e}. Since a = axa = a(ax2)a = a2x2a, it gives that aR ⊆ a2

R. Since a2
R ⊆ aR, we have

aR = a2
R. So we have the following result.

Theorem 3.1. Let a ∈ R and e ∈ R be an invertible Hermitian element. Then the following statements are equivalent:
(i) a is right e-core invertible;
(ii) a ∈ R{1,3e} and aR = a2

R;
(ii)′ a ∈ R{1,3e} and aR ⊆ a2

R;
(iii) a ∈ R{1,3e} and aR = an

R for any n ≥ 2;
(iii)′ a ∈ R{1,3e} and aR ⊆ an

R for any n ≥ 2;
(iv) a ∈ R{1,3e} and aR = an

R for some n ≥ 2;
(iv)′ a ∈ R{1,3e} and aR ⊆ an

R for some n ≥ 2;
(v) an is right e-core invertible and aR = an

R for any n ≥ 2;
(v)′ an is right e-core invertible and aR ⊆ an

R for any n ≥ 2;
(vi) an is right e-core invertible and aR = an

R for some n ≥ 2;
(vi)′ an is right e-core invertible and aR ⊆ an

R for some n ≥ 2;
(vii) an

∈ R
{1,3e} and aR = ak

R for any n ≥ 2 and k > n;
(vii)’ an

∈ R
{1,3e} and aR ⊆ ak

R for any n ≥ 2 and k > n;
(viii) an

∈ R
{1,3e} and aR = ak

R for some n ≥ 2 and k > n;
(viii)’ an

∈ R
{1,3e} and aR ⊆ ak

R for some n ≥ 2 and k > n.
In this case, for any n ≥ 2,

(an)e, #O
r = (ae, #O

r )n and ae, #O
r = an−1(an)e, #O

r = an−1(an)(1,3e).

Proof. (i)⇒ (ii)⇒ (ii)′ and (iii)⇒ (iii)′ ⇒ (iv)′ ⇒ (iv) It is clear.
(ii)′ ⇒ (iii) Since aR ⊆ a2

R, we have a = a2t for some t ∈ R. Then we get

a = aat = a(a2t)t = a3t2 = a2at2 = a2(a2t)t2 = a4t3 = · · · = antn−1.

This means aR ⊆ an
R. And obviously, an

R ⊆ aR. So aR = an
R for any n ≥ 2.

(iv) ⇒ (i) The condition a ∈ R{1,3e} implies that p = 1 − eaa(1,3e)e−1 is an idempotent, pea = 0 and
pe = e − eaa(1,3e) = (pe)∗. Since aR = an

R, we have a = ant for some t ∈ R. Next we will prove that
p + eae−1

∈ R
−1
r and then, by Theorem 2.4, we get that a is right e-core invertible. Indeed, (p + eae−1)(1 +

ean−1ta(1,3e)e−1
− ean−1te−1) = p + eae−1 + eanta(1,3e)e−1

− eante−1 = p + eaa(1,3)e−1 = 1.
(i)⇒ (v) Suppose that x is a right e-core inverse of a and n ≥ 2. Then, from

ax = a(ax2) = a2x2 = · · · = anxn,

we get (eanxn)∗ = (eax)∗ = eax = eanxn. Moreover, it is easy to get anxnan = axan = an and an(xn)2 = axxn =
(ax2)xn−1 = xn. Hence, by Lemma 2.1, we obtain that an is right e-core invertible and (an)e, #O

r = xn = (ae, #O
r )n.

Since (i) is equivalent to (iii), it follows that aR = an
R for any n ≥ 2.

(v)⇒ (v)′ ⇒ (vi)′ ⇒ (vi) This is obvious.
(vi) ⇒ (i) Let x = an−1(an)e, #O

r and a = ant for some t ∈ R. Firstly, we observe that ax = an(an)e, #O
r ,

which gives (eax)∗ = [ean(an)e, #O
r ]∗ = ean(an)e, #O

r = eax. Further, axa = an(an)e, #O
r a = an(an)e, #O

r ant = ant = a and
ax2 = an(an)e, #O

r an−1(an)e, #O
r = an(an)e, #O

r antan−2(an)e, #O
r = antan−2(an)e, #O

r = an−1(an)e, #O
r = x. So, by Lemma 2.1, a is right

e-core invertible and ae, #O
r = x = an−1(an)e, #O

r .
(i)⇒ (vii)⇒ (vii)′ Consequently, by previous proofs.
(vii)′ ⇒ (viii)⇒ (viii)′ It is obvious.
(viii)′ ⇒ (i) Let x = an−1(an)(1,3e) and a = akt for some t ∈ R. It is clear that (eax)∗ = [ean(an)(1,3e)]∗ =

ean(an)(1,3e) = eax. Further, by k > n, axa = an(an)(1,3e)a = an(an)(1,3e)akt = an(an)(1,3e)anak−nt = anak−nt = akt = a
and ax2 = an(an)(1,3e)an−1(an)(1,3e) = an(an)(1,3e)aktan−2(an)(1,3e) = aktan−2(an)(1,3e) = an−1(an)(1,3e) = x. So, by Lemma
2.1, a is right e-core invertible and ae, #O

r = x = an−1(an)(1,3e).
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By [16, Lemma 3.15], it is well known that a ∈ R{1,3e} is equivalent to Ra = Ra∗ea. And obviously
Ra∗ea ⊆ Ra, so Ra = Ra∗ea is equivalent to Ra ⊆ Ra∗ea. Thus, by Theorem 3.1, we have the following result.

Proposition 3.2. Let a ∈ R and e ∈ R be an invertible Hermitian element. Then the following statements are
equivalent:

(i) a is right e-core invertible;
(ii) Ra = Ra∗ea and aR = a2

R;
(iii) Ra ⊆ Ra∗ea and aR ⊆ a2

R;
(iv) Ra = Ra∗ea and aR = an

R for any n ≥ 2;
(v) Ra ⊆ Ra∗ea and aR ⊆ an

R for any n ≥ 2;
(vi) Ra = Ra∗ea and aR = an

R for some n ≥ 2;
(vii) Ra ⊆ Ra∗ea and aR ⊆ an

R for some n ≥ 2;
(viii) Ran = R(an)∗ean and aR = ak

R for any n ≥ 2 and k > n;
(ix) Ran

⊆ R(an)∗ean and aR ⊆ ak
R for any n ≥ 2 and k > n;

(x) Ran = R(an)∗ean and aR = ak
R for some n ≥ 2 and k > n;

(xi) Ran
⊆ R(an)∗ean and aR ⊆ ak

R for some n ≥ 2 and k > n.

In the following, we will give some characterizations for a right e-core invertible element by using
Ra ⊆ R(a∗)nea, where n ≥ 2. For n = 2, that is if Ra ⊆ R(a∗)2ea, we know a = t(a∗)2ea for some t ∈ R, then
a∗ = a∗ea2t∗. It gives that t(a∗)2 = ta∗a∗ = ta∗(a∗ea2t∗) = (ta∗a∗ea)at∗ = a2t∗. This implies that a = t(a∗)2ea = a2t∗ea.
Hence, Ra ⊆ R(a∗)2ea gives that Ra ⊆ Ra∗ea and aR ⊆ a2

R. This means that Ra = R(a∗)2ea implies that a is
right e-core invertible by Proposition 3.2.

Proposition 3.3. Let a ∈ R and e ∈ R be an invertible Hermitian element and n ≥ 2. Then the following statements
are equivalent:

(i) a is right e-core invertible;
(ii) Ra = R(a∗)nea;
(iii) Ra ⊆ R(a∗)nea;

Proof. (ii)⇔ (iii) Obviously.
(i) ⇒ (iii) If a is right e-core invertible, by Proposition 3.2(iv), we know Ra = Ra∗ea and aR = an

R, so
a = ant for some t ∈ R. Thus a∗ = t∗(a∗)n. The condition Ra = Ra∗ea gives that a = sa∗ea for some s ∈ R, then
a = st∗(a∗)nea. This means that Ra ⊆ R(a∗)nea.

(iii)⇒ (i) By assumptionRa ⊆ R(a∗)nea, we have a = t(a∗)nea for some t ∈ R, and then a∗ = a∗eant∗. It gives
that t(a∗)n = t(a∗)n−1a∗ = t(a∗)n−1(a∗eant∗) = [t(a∗)nea]an−1t∗ = ant∗. This implies that a = t(a∗)nea = ant∗ea. Hence,
Ra ⊆ R(a∗)nea implies that Ra ⊆ Ra∗ea and aR ⊆ an

R. Therefore, a is right e-core invertible by Proposition
3.2.

Note that a∗ is left (ea, a∗) invertible if and only ifRea = R(a∗)2ea. Then we can obtain the following result.

Proposition 3.4. Let a ∈ R and e ∈ R be an invertible Hermitian element. Then a is right (a, a∗e) invertible if and
only if a∗ is left (ea, a∗) invertible.

Proof. If a is right (a, a∗e) invertible, by Definition 1.3, a is right e-core invertible, applying Proposition 3.3,
we have R(a∗)2ea = Ra. Then Rea ⊆ Ra = R(a∗)2ea ⊆ Rea, i.e. Rea = R(a∗)2ea, so a∗ is left (ea, a∗) invertible.

Conversely, if a∗ is left (ea, a∗) invertible, we know Rea = R(a∗)2ea, which gives that ea = t(a∗)2ea for some
t ∈ R. Then a = e−1t(a∗)2ea ∈ Rea as e is invertible, which yields Ra ⊆ Rea ⊆ Ra, i.e. Ra = Rea = R(a∗)2ea, so a
is right (a, a∗e) invertible.

Remark 3.5. Notice that if aR = a2R, we have a∗ is left (ea, a∗) invertible if and only if (a∗)n is left (ea, a∗) invertible.

Indeed, a∗ is left (ea, a∗) invertible
Proposition3.4
⇐⇒ a is right (a, a∗e) invertible Theorem3.1

⇐⇒ an is right (a, a∗e) invertible
Proposition3.4
⇐⇒

(an)∗ is left (ea, a∗) invertible.
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4. The related generalized core inverses

In this section, some new characterizations of (generalized) e-core inverses are given. Through these
characterizations, we can clearly find the relationship between these generalized inverses. In what follows,
we assume that e ∈ R is an invertible Hermitian element.

Theorem 4.1. Let a, e ∈ R and k ≥ 1. Then the following statements are equivalent:
(i) a is e-core invertible;
(ii) there exists x ∈ R such that xa2 = a, xk = axk+1 and (eakxk)∗ = eakxk;
(iii) there exists x ∈ R such that xa2 = a, xk = axk+1 and (eax)∗ = eax.

Proof. If k = 1, by [10, Theorem 2.1], it is clear that (i) ⇔ (ii) ⇔ (iii). Let us assume that k ≥ 2 in the rest of
the proof.

(i)⇒ (ii) and (iii) If a is e-core invertible, let x = ae, #O. By [10, Theorem 2.1], we obtain xa2 = a, x = ax2 and
(eax)∗ = eax. For k ≥ 2, it is easy to get axk+1 = ax2xk−1 = xk. Notice that ax = a(ax2) = a2x2 = a2(ax2)x = · · · =
akxk, then (eakxk)∗ = (eax)∗ = eax = eakxk.

(ii) ⇒ (i) Suppose that there exists x ∈ R such that xa2 = a, xk = axk+1 and (eakxk)∗ = eakxk. Let
z = ak−1xk. Then a = xa2 = xaa = x(xa2)a = x2a3 = · · · = xk−1ak = xkak+1 = (axk+1)ak+1 = a(xk)xak+1 =
a(axk+1)xak+1 = a2(xk)x2ak+1 = a2(axk+1)x2ak+1 = · · · = ak−1xk+(k−1)ak+1 = (ak−1xk)(xk−1ak)a = zaa = za2, and
z = ak−1xk = ak−1(axk+1) = akxk+1 = akx(axk+1) = akx(xa2)xk+1 = akx2a2xk+1 = akx2(xa2)axk+1 = akx3a3xk+1 = · · · =
akxkakxk+1 = akxkak−1(axk+1) = akxkak−1xk = az2. Note that az = akxk, thus (eaz)∗ = eaz. Hence ae, #O = z = ak−1xk.

(iii) ⇒ (i) Note that a = xa2 = x(xa2)a = x2a3 = x2(xa2)a2 = x3a4 = · · · = xkak+1. Write z = xax. Then
az = axax = ax(xkak+1)x = (axk+1)ak+1x = xkak+1x = ax, which gives that (eaz)∗ = eaz. It is easy to get
za2 = xa(xa2) = xa2 = a. Moreover, az2 = axz = ax(xax) = ax2(xkak+1)x = (axk+1)xak+1x = xk+1ak+1x = xax = z.
This implies that ae, #O = xax.

Proposition 4.2. Let a, e, x ∈ R and k ≥ 1. Then the following statements are equivalent:
(i) x is the e-core inverse of a;
(ii) xa2 = a, xax = x, xk = axk+1 and (eax)∗ = eax;
(iii) xa2 = a, xk+1ak+1x = x, xk = xkak+1xk+1 and (exkak+1x)∗ = exkak+1x.

Proof. (i)⇒ (ii) If x is the e-core inverse of a, we know xa2 = a, x = ax2 and (eax)∗ = eax, then xk = xxk−1 = axk+1,
and ax = a(ax2) = a2x2. Thus xax = x(a2x2) = (xa2)x2 = ax2 = x.

(ii) ⇒ (i) It suffices to prove ax2 = x. Indeed, by xa2 = a, we get xa = x(xa2) = x2a2 = · · · = xkak. Thus,
x = xax = xkakx = axk+1akx = ax(xkak)x = axxax = ax2.

(ii)⇔ (iii) Since a = xa2 implies a = xkak+1, this equivalence is obvious.

Recall in [10, Theorem 2.4] that a is weighted-EP with respect to (e, e) if and only if there exists x ∈ R
such that (exa)∗ = exa, xa2 = a, ax2 = x, which are also equivalent to that (eax)∗ = eax, a2x = a, x2a = x. In the
following result, we will change the condition (eax)∗ = eax in Theorem 4.1 into (exa)∗ = exa. It is interesting
that a is weighted-EP with respect to (e, e).

Theorem 4.3. Let a, e ∈ R and k ≥ 1. Then the following statements are equivalent:
(i) a is weighted-EP with respect to (e, e);
(ii) there exists x ∈ R such that xa2 = a, xk = axk+1 and (exa)∗ = exa;
(iii) there exists x ∈ R such that xa2 = a, xk = xkak+1xk+1 and (exk+1ak+1)∗ = exk+1ak+1;
(iv) there exists x ∈ R such that a2x = a, xk = xk+1a and (eax)∗ = eax;
(v) there exists x ∈ R such that a2x = a, xk = xk+1ak+1xk and (eak+1xk+1)∗ = eak+1xk+1.

Proof. (i)⇒ (ii) If a is weighted-EP with respect to (e, e), we know that (exa)∗ = exa, xa2 = a, ax2 = x for some
x ∈ R. Thus xk = xxk−1 = axk+1.

(ii) ⇒ (i) Note that a = xa2 = x(xa2)a = x2a3 = · · · = xkak+1. Write z = xax. Then az = axax =
ax(xkak+1)x = (axk+1)ak+1x = xkak+1x = ax, and za = xaxa = xax(xkak+1) = x(axk+1)ak+1 = x(xkak+1) = xa,
which imply that (eza)∗ = (exa)∗ = exa = eaz. It is easy to get za2 = xa(xa2) = xa2 = a. Moreover,
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az2 = axz = ax(xax) = ax2(xkak+1)x = (axk+1)xak+1x = xk+1ak+1x = xax = z. Hence, a is weighted-EP with
respect to (e, e).

(ii)⇔ (iii) Since a = xa2 implies a = xkak+1, it is clear.
(i)⇒ (iv) Suppose that a is weighted-EP with respect to (e, e), then we have (eax)∗ = eax, a2x = a, x2a = x

for some x ∈ R. Thus xk+1a = xk−1(x2a) = xk.
(iv) ⇒ (i) Note that a = a2x = a(a2x)x = a3x2 = · · · = ak+1xk. Let z = xax. Then az = axax = (ak+1xk)xax =

ak+1(xk+1a)x = ak+1xk+1 = ax, and za = xaxa = x(ak+1xk)xa = xak+1(xk+1a) = xak+1xk = xa. So (eaz)∗ = (eax)∗ =
eax = eaz, and a2z = a2x = a. Furthermore, z2a = zxa = (xax)xa = x(ak+1xk)x2a = xak+1x(xk+1a) = xak+1xk+1 =
xax = z. Hence, a is weighted-EP with respect to (e, e).

(iv)⇔ (v) The condition a = a2x implies a = ak+1xk, thus the equivalence is obvious.

In [16], Zhu and Wang introduced the concept of pseudo e-core inverse in ∗-rings.

Definition 4.4. [16] Let a, e ∈ R. The pseudo e-core inverse of a, denoted by ae, DO, is the unique solution to system

xak+1 = ak for some k ≥ 1, ax2 = x and (eax)∗ = eax.

The authors introduced the one-sided pseudo e-core inverse in [13, Remark 4.12], here we also present
the definition.

Definition 4.5. [13] Let a, e ∈ R. Then a is called right pseudo e-core invertible if there exist x ∈ R and some positive
integer k such that axak = ak, x = ax2 and (eax)∗ = eax.

We use the symbol ae, DO
r to denote the right pseudo e-core inverse of a, if a is right pseudo e-core invertible.

Next we will characterize pseudo e-core invertible elements.

Theorem 4.6. Let a, e ∈ R and k ≥ 1. Then the following are equivalent:
(i) a is pseudo e-core invertible;
(ii) there exists x ∈ R such that xak+1 = ak, axk+1 = xk and (eakxk)∗ = eakxk;
(iii) there exists x ∈ R such that akxk+1ak+1 = ak, ax2 = x and (eak+1xk+1)∗ = eak+1xk+1.

Proof. (i)⇒ (ii) By Definition 4.4, there exists x ∈ R such that xak+1 = ak, ax2 = x and (eax)∗ = eax, which give
that axk+1 = ax2xk−1 = xk, and ax = a(ax2) = a2x2 = a2(ax2)x = a3x3 = · · · = akxk. So (eakxk)∗ = (eax)∗ = eax =
eakxk.

(ii)⇒ (i) By the assumption, let z = ak−1xk. Then az = akxk, and (eaz)∗ = (eakxk)∗ = eakxk = eaz. Notice that
ak = xak+1 = x(xak+1)a = x2ak+2 = · · · = xk−1a2k−1 = xka2k, and xk = axk+1 = a(axk+1)x = a2xk+2 = · · · = ak−1x2k−1 =
akx2k, which imply that z = ak−1xk = ak−1(axk+1) = akxk+1 = · · · = a2kx2k+1 = ak(xka2k)x2k+1 = akxkak(akx2k)x =
akxkakxk+1 = akxkak−1xk = az2, and ak = xka2k = (ak−1x2k−1)a2k = (ak−1xk)(xk−1a2k−1)a = zak+1. These yield that
z = ak−1xk is a pseudo e-core inverse of a, and a is pseudo e-core invertible.

(ii)⇔ (iii) The equality x = ax2 gives x = akxk+1 and so the rest is clear.

In the following result, we will reveal the relationship between right pseudo e-core inverses and right
e-core inverses.

Theorem 4.7. Let a, e ∈ R. Then the following statements are equivalent:
(i) a is right pseudo e-core invertible;
(ii) ak is right e-core invertible for some positive integer k.

Proof. (i)⇒ (ii) If a is right pseudo e-core invertible, then we can check that z = (ae, DO
r )k is a right e-core inverse

of ak. Indeed, the condition ae, DO
r = a(ae, DO

r )2 yields ae, DO
r = ak−1(ae, DO

r )k. Thus akz = ak(ae, DO
r )k = a(ak−1(ae, DO

r )k) =
aae, DO

r . Therefore, (eakz)∗ = (eaae, DO
r )∗ = eaae, DO

r = eakz, akzak = aae, DO
r ak = ak and akz2 = aae, DO

r z = aae, DO
r (ae, DO

r )k =
(a(ae, DO

r )2)(ae, DO
r )k−1 = (ae, DO

r )k = z.
(ii)⇒ (i) If ak is right e-core invertible for some positive integer k, then we can check that y = ak−1(ak)e, #O

r
is a right pseudo e-core inverse of a. Indeed, ay = ak(ak)e, #O

r , ayak = ak(ak)e, #O
r ak = ak, ay2 = ak(ak)e, #O

r y =
ak(ak)e, #O

r ak−1(ak)e, #O
r = ak(ak)e, #O

r ak−1
{ak[(ak)e, #O

r ]2
} = ak(ak)e, #O

r akak−1[(ak)e, #O
r ]2 = akak−1[(ak)e, #O

r ]2 = ak−1ak[(ak)e, #O
r ]2 =

ak−1(ak)e, #O
r = y, and (eay)∗ = (eakx)∗ = eakx = eay.
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Next we characterize right pseudo e-core invertible elements by using Theorem 4.7.

Theorem 4.8. Let a, e ∈ R. Then the following statements are equivalent:
(i) a is right pseudo e-core invertible;
(ii) ak

∈ R
{1,3e} and ak

R = ak+1
R for some positive integer k;

(iii) ak
∈ R

{1,3e} and ak
R ⊆ ak+1

R for some positive integer k;
(iv) Rak = R(ak)∗eak and ak

R = ak+1
R for some positive integer k;

(v) Rak
⊆ R(ak)∗eak and ak

R ⊆ ak+1
R for some positive integer k;

(vi) Rak = R(a∗)k+1eak for some positive integer k;
(vii) Rak

⊆ R(a∗)k+1eak for some positive integer k.

Proof. a is right pseudo e-core invertible Theorem4.7
⇐⇒ ak is right e-core invertible for some positive integer k

Theorem3.1
⇐⇒ ak

∈ R
{1,3e} and ak

R = ak+1
R for some positive integer k Theorem3.1

⇐⇒ (iii)
Proposition3.2
⇐⇒ (iv)

Proposition3.2
⇐⇒ (v)

Proposition3.3
⇐⇒ (vi)

Proposition3.3
⇐⇒ (vii).

Finally, the matrix representations of right pseudo e-core invertible element and its right pseudo e-core
inverse are presented in the following theorem.

Theorem 4.9. Let a, e ∈ R. Then the following statements are equivalent:
(i) a is right pseudo e-core invertible and x ∈ R is a right pseudo e-core inverse of a;
(ii) there exists an idempotent q ∈ R such that (eq)∗ = eq and

a =
[

a1 a2
a3 a4

]
q
, x =

[
x1 x2
0 0

]
q
, (2)

where a1 is right invertible in qRq, x1 = (a1)−1
r , a1x2 = 0, a3x1 = 0, a3x2 = 0 and qak = ak for some k ≥ 1;

(iii) there exists an idempotent p ∈ R such that (ep)∗ = ep and

a =
[

a1 a2
a3 a4

]
p
, x =

[
0 0
x1 x2

]
p
, (3)

where a4 is right invertible in (1 − p)R(1 − p), x2 = (a4)−1
r , a2x1 = 0, a2x2 = 0, a4x1 = 0 and pak = 0 for some k ≥ 1.

Proof. (i) ⇒ (ii) If a is right pseudo e-core invertible and x ∈ R is a right pseudo e-core inverse of a, by
Definition 4.5, we have axak = ak, x = ax2 and (eax)∗ = eax for some k ≥ 1. Note that ax = a(ax2) = a2x2 =
· · · = akxk, which gives axax = ax(akxk) = (axak)xk = akxk = ax. For q = ax, we get q2 = axax = ax = q,
(eq)∗ = (eax)∗ = eax = eq, qak = ak and qx = x implying (3). Since[

a1x1 a1x2
a3x1 a3x2

]
q
= ax = q =

[
q 0
0 0

]
q
,

the rest is clear.

(ii) ⇒ (i) Because ax =
[

a1 a2
a3 a4

]
q

[
x1 x2
0 0

]
q
=

[
a1x1 a1x2
a3x1 a3x2

]
q
=

[
q 0
0 0

]
q
= q, we can prove this

implication by elementary computations.
(i)⇔ (iii) This equivalence follows similarly as (i)⇔ (ii) for p = 1 − ax.
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