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Abstract. In this paper, the notion of rough membership function has been introduced in the multiset
context. As a consequence, we introduced the lower and upper approximations in terms of the rough
membership multiset functions. Finally, an application about how to select the best possible suppliers of
chemicals has been presented.

1. Introduction

In classical set theory, a set is a well-defined grouping of unique items. If an object can appear more than
once in a set, a mathematical structure known as a multiset ([1], [2], [11]) will result. A multiset is therefore
distinct from a set in that each element has a multiplicity natural number rather than one that specifically
denotes how many times it is a part of the multiset. The multiset of prime factors for a positive integer n is
one of the most straightforward and natural examples.

A fundamental idea used to depict various circumstances in mathematical notation where it is forbidden
for elements to occur more than once is known as classical set theory. However, under some conditions, the
system must repeat certain elements. For instance, in a graph containing loops, there are many hydrogen
atoms, many water molecules, many identical DNA strands, etc.

The concept of multisets as proposed by Yager [11], Blizard [1, 2], and Jena et al. [5] has been briefly
reviewed in this section. In addition, Girish and John introduced several varieties of collections of multisets,
rough multisets, and fundamental definitions and conceptions of relations in multiset context.

In what follows, a brief survey of the notion of multisets as introduced by Yager [11], Blizard [1], [2]
and Jena et al. [5] have been collected. Furthermore, the different types of collections of multisets, Rough
multisets, and the basic definitions and notions of relations in multiset context introduced by Girish and
John [3], [4] and Zakaria et al. [12]. For further reading in rough sets check [6], [7], [8], [9], [10], [13].

Definition 1.1. A collection of elements containing duplicates is called an multiset. Formally, if X is a set
of elements, a multiset M drawn from the set X is represented by a function count M or CM defined as
CM : X→N, whereN represents the set of nonnegative integers.

2020 Mathematics Subject Classification. Primary 54A05; Secondary 54-11.
Keywords. Rough set; Approximation space; Membership function; Multiset; Accuracy.
Received: 02 September 2022; Revised: 23 November 2022; Accepted: 27 November 2022
Communicated by Ljubiša D.R. Kočinac
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Let M be a multiset from the set X = {x1, x2, . . . , xn} with x appearing n times in M. It is denoted by
x ∈n M. The multiset M drawn from the set X is given by

M = {k1/x1, k2/x2, . . . , kn/xn},

where M is a multiset with x1 appearing k1 times, x2 appearing k2 times and so on. In Definition 1.1, CM(x)
is the number of occurrences of the element x in the multiset M. However those elements which are not
included in the multiset M have zero count. A multiset M is a set if CM(x) = 0 or 1 for all x ∈ X.

Definition 1.2. A domain X, is defined as a set of elements from which multisets are constructed. The
multiset space [X]ω is the set of all multisets whose elements are in X such that no element in the multiset
occurs more than m times. The set [X]∞ is the set of all multisets over a domain X such that there is no limit
on the number of occurrences of an element in a multiset.

Let M,N ∈ [X]ω. Then, the following are defined:

1. M is a submultiset of N denoted by (M ⊆ N) if CM(x) ≤ CN(x) ∀ x ∈ X.
2. M = N if M ⊆ N and N ⊆M.
3. M is a proper submultiset of N denoted by (M ⊂ N) if CM(x) ≤ CN(x) ∀ x ∈ X and there exists at least

one element x ∈ X such that CM(x) < CN(x).
4. P =M ∪N if CP(x) = max{CM(x),CN(x)} for all x ∈ X.
5. P =M ∩N if CP(x) = min{CM(x),CN(x)} for all x ∈ X.
6. Subtraction of M and N results in a new multiset P = M ⊖N such that CP(x) = max{CM(x) − CN(x), 0}

for all x ∈ X, where ⊕ and ⊖ represent multiset addition and multiset subtraction, respectively.
7. A multiset M is empty if CM(x) = 0 ∀ x ∈ X.
8. The support set of M denoted by M∗ is a subset of X and M∗ = {x ∈ X | CM(x) > 0}; that is, M∗ is an

ordinary set and it is also called root set.
9. The cardinality of a multiset M drawn from a set X is Card(M)=

∑
x∈X

CM(x).

Definition 1.3. Let M ∈ [X]ω. Then the complement Mc of M in [X]ω is an element of [X]ω such that

CMc (x) = m − CM(x) for all x ∈ X.

Definition 1.4. Let M ∈ [X]ω. The power multiset P(M) of M is the set of all submultisets of M.

The power set of a multiset is the support set of the power multiset and is denoted by P∗(M). The
following theorem shows the cardinality of the power set of a multiset.

Definition 1.5. Let M ∈ [X]ω and τ ⊆ P∗(M). Then τ is called a multiset topology if τ satisfies the following
properties.

1. ϕ and M are in τ.
2. The union of the elements of any sub collection of τ is in τ.
3. The intersection of the elements of any finite sub collection of τ is in τ.

A multiset topological space is an ordered pair (M, τ) consisting of a multiset M and a multiset topology
τ ⊆ P∗(M). Note that τ is an ordinary set whose elements are multisets and the multiset topology is
abbreviated as a M–topology. Also, a submultiset U of M is an open multiset of M if U belongs to the
collection τ. Moreover, a submultiset N of M is closed multiset if M ⊖N is an open multiset.

Definition 1.6. Let M1 and M2 be two multisets drawn from a set X, then the Cartesian product of M1 and
M2 is defined as

M1 ×M2 = {(m/x,n/y)/mn | x ∈m M1, y ∈n M2}.

Here the entry (m/x,n/y)/mn in M1 ×M2 denotes x is repeated m times in M1, y is repeated n times in M2
and the pair (x, y) is repeated mn times in M1 ×M2.
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The Cartesian product of three or more nonempty multisets can be defined by generalizing the definition
of the Cartesian product of two multisets.

Theorem 1.7. Let M1 and M2 be two nonempty multisets. Then

CM1×M2 [(x, y)] = CM1 (x) · CM2 (y) and |M1 ×M2| = |M1| · |M2|.

In general, we have

|M1 ×M2 × · · · ×Mn| = |M1| · |M2| · · · |Mn|.

Definition 1.8. Let M ∈ [X]k. Then the following are defined:

1. A multiset relation R on a multiset M is reflexive if (m/x)R(m/x) for all m/x in M, where

∆ = {(m/x,m/x)/m2
| x ∈m M}

is the identity multiset relation on M.
2. A multiset relation R on a multiset M is symmetric if (m/x)R(n/y) implies (n/y)R(m/x), antisymmetric

if (m/x)R(n/y) and (n/y)R(m/x) implies m/x and n/y are equal.
3. A multiset relation R on a multiset M is transitive if (m/x)R(n/y) and (n/y)R(k/z), then (m/x)R(k/z).
4. A multiset relation R on a multiset M is called an equivalence multiset relation if it is reflexive,

symmetric and transitive.

Definition 1.9. Let R be a multiset relation on M. The post-multiset of x ∈m M is defined as

(m/x)R = {n/y | ∃ some k with (k/x)R(n/y)}.

Definition 1.10. Let R be any binary multiset relation on M in [X]ω. Then the multiset ⟨n/y⟩R is defined as
the intersection of all post-multisets containing y with nonzero multiplicity; that is,

⟨n/y⟩R = ∩{(m/x)R | y ∈n (m/x)R}. (1)

Definition 1.11. Let R be an equivalence multiset relation on a nonempty multiset M, [m/x] be the equiva-
lence class containing m/x. For N ⊆M, a pair of lower and upper multiset approximations, R(N) and R(N),
are defined respectively as

R(N) = {m/x | [m/x] ⊆ N},

R(N) = {m/x | [m/x] ∩N , ϕ}.

The pair (R(N),R(N)) is referred to as the rough multiset of N.

Definition 1.12. Let R be a binary multiset relation on M. For N ⊆ M, a pair of lower and upper multiset
approximations, R(N) and R(N), are defined respectively as

R(N) = {m/x | (m/x)R ⊆ N},

R(N) = {m/x | (m/x)R ∩N , ϕ}.

The pair (R(N),R(N)) is referred to as the rough multiset of N. It’s clear that if R is an equivalence multiset
relation, then (m/x)R = [m/x]. In addition, this definition is equivalent to Definition 1.11.

Definition 1.13. Let R be a binary multiset relation on M. For N ⊆ M, a pair of lower and upper multiset
approximations, Rℓ(N) and RU(N), are defined respectively as

Rℓ(N) = {m/x | ⟨m/x⟩R ⊆ N}, (2)

RU(N) = {m/x | ⟨m/x⟩R ∩N , ϕ}. (3)

The pair (Rℓ(N),RU(N)) is referred to as the rough multiset of N. It’s clear that if R is a reflexive and transitive
multiset relation, then ⟨m/x⟩R = (m/x)R. In addition, this definition is equivalent to Definition 1.12.
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Definition 1.14. Let M ∈ [X]ω, R be a binary multiset relation on M, and let N be a nonempty submultiset
of M. Then the boundary, positive region, and negative region of N are defined, respicitvely, as follows

BNDR(N) = RU(N) ⊖ Rℓ(N),
POSR(N) = Rℓ(N),

NEGR(N) =M ⊖ RU(N).

Theorem 1.15. Let R be a reflexive multiset relation on M. Then the operator RU on P∗(M) defined by equation (3)
satisfies the Kuratowski’s axioms and induces an M–topology on M called τR given by

τR = {N ⊆M | RU(Nc) = Nc
}.

2. Rough membership multiset functions

Definition 2.1. Let M ∈ [X]ω, R be a reflexive multiset relation on M, and let N be a nonempty submultiset
of M. The rough multiset membership function µ : M→ [0, 1] is defined as

µN(k/x) =
| ⟨k/x⟩R ∩N |
| ⟨k/x⟩R |

. (4)

The rough membership function in the multiset mode represents the conditional probability that x belongs
to N k–times given a multiset relation R. It also shows the degree of membership of k/x to N in light of
information about k/x given by R. It is easily seen that 0 ≤ µN(k/x) ≤ 1.

The following example is to clarify the computations of the rough multiset membership function in
practice.

Example 2.2. Let M = {3/a, 2/b, 4/c, 8/d}, let N = {2/a, 5/d} be a submultiset of M, and let

R = ∆ ∪ {(3/a, 2/b)/6, (3/a, 4/c)/12, (4/c, 8/d)/32, (2/b, 4/c)/8, (2/b, 8/d)/16}

be a reflexive multiset relation on M. Then

(3/a)R = {3/a, 2/b, 4/c},
(2/b)R = {2/b, 4/c, 8/d},
(4/c)R = {4/c, 8/d},
(8/d)R = {8/d},

and hence

⟨3/a⟩R = {3/a, 2/b, 4/c},
⟨2/b⟩R = {2/b, 4/c},
⟨4/c⟩R = {4/c},
⟨8/d⟩R = {8/d}.

Therefore, the degree of membership of the elements of M is given as

µN(3/a) =
2
9
, µN(2/b) = 0, µN(4/c) = 0, and µN(8/d) =

5
8
.

Theorem 2.3. Let M ∈ [X]ω, R be a reflexive multiset relation on M, and let N, N1, and N2 be nonempty submultisets
of M. Then the following assertions are hold:
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(i) µN(k/x) = 1 if and only if k/x ∈ Rℓ(N),
(ii) µN(k/x) = 0 if and only if k/x ∈ NEG(N),

(iii) 0 < µN(k/x) < 1 if and only if k/x ∈ BND(N),
(iv) µ∅(k/x) = 0 and µM(k/x) = 1 for all k/x ∈M,
(v) µNc (k/x) = 1 − µN(k/x) for all k/x ∈M,

(vi) If N1 ⊆ N2, then µN1 (k/x) ≤ µN2 (k/x) for all k/x ∈M,
(vii) µN1∪N2 (k/x) ≥ max{µN1 (k/x), µN2 (k/x)} for all k/x ∈M, the equality holds if N1 ⊆ N2 or N2 ⊆ N1,

(viii) µN1∩N2 (k/x) ≤ min{µN1 (k/x), µN2 (k/x)} for all k/x ∈M, the equality holds if N1 ⊆ N2 or N2 ⊆ N1.

Proof. Assertions (i) and (ii) are direct consequences of equation (4), respectively, as follows:

µN(k/x) = 1⇔ ⟨k/x⟩R ⊆ N⇔ k/x ∈ Rℓ(N),

and

µN(k/x) = 0⇔ ⟨k/x⟩R ∩N = ∅

⇔ k/x < RU(N)

⇔ k/x ∈M − RU(N)
⇔ k/x ∈ NEG(N).

Using part (i), part (ii), and the inequality 0 ≤ µN(k/x) ≤ 1, then assertion (iii) follows directly. To prove
assertion (iv), we follow the following computations

µ∅(k/x) =
| ⟨k/x⟩R ∩ ∅ |
| ⟨k/x⟩R |

=
| ∅ |

| ⟨k/x⟩R |
= 0,

µM(k/x) =
| ⟨k/x⟩R ∩M |
| ⟨k/x⟩R |

=
| ⟨k/x⟩R |
| ⟨k/x⟩R |

= 1.

Now we have,

µN(k/x) + µNc (k/x) =
| ⟨k/x⟩ ∩N | + | ⟨k/x⟩ ∩Nc

|

| ⟨k/x⟩ |
=
| ⟨k/x⟩ |
| ⟨k/x⟩ |

= 1,

which implies assertion (v).
To prove (vi), let k/x ∈M and N1 ⊆ N2. Then we have

| ⟨k/x⟩ ∩N1 |≤| ⟨k/x⟩ ∩N2 | .

Hence
| ⟨k/x⟩ ∩N1 |

| ⟨k/x⟩ |
≤
| ⟨k/x⟩ ∩N2 |

| ⟨k/x⟩ |
. That is to say µN1 (k/x) ≤ µN2 (k/x). Thus assertion (vi) is completed.

Now, for all k/x ∈M, we get

µN1∪N2 (k/x) =
| ⟨k/x⟩ ∩ (N1 ∪N2) |

| N(u) |

=
| (⟨k/x⟩ ∩N1) ∪ (⟨k/x⟩ ∩N2) |

| ⟨k/x⟩ |

≥
max{| ⟨k/x⟩ ∩N1 |, | ⟨k/x⟩ ∩N2 |}

| ⟨k/x⟩ |

= max
{ | ⟨k/x⟩ ∩N1 |

| ⟨k/x⟩ |
,
| ⟨k/x⟩ ∩N2 |

| ⟨k/x⟩ |

}
= max{µN1 (k/x), µN2 (k/x)}.
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On the other hand, it is easy to see that if N1 ⊆ N2 or N2 ⊆ N1, then we get that

max{µN1 (k/x), µN2 (k/x)} = µN2 (k/x) or µN1 (k/x).

This completes the proof of assertion (vii).
Finally, we prove assertion (viii). For all k/x ∈M, we have

µN1∩N2 (k/x) =
| ⟨k/x⟩ ∩ (N1 ∩N2) |

| ⟨k/x⟩ |

=
| (⟨k/x⟩ ∩N1) ∩ (⟨k/x⟩ ∩N2) |

| ⟨k/x⟩ |

≤
min{| ⟨k/x⟩ ∩N1 |, | ⟨k/x⟩ ∩N2 |}

| ⟨k/x⟩ |

= min
{ | ⟨k/x⟩R ∩N1 |

| ⟨k/x⟩R |
,
| ⟨k/x⟩R ∩N2 |

| ⟨k/x⟩R |

}
= min{µN1 (k/x), µN2 (k/x)}.

Obviously, If N1 ⊆ N2 or N2 ⊆ N1, then

min{µN1 (k/x), µN2 (k/x)} = µN1 (k/x) or µN2 (k/x),

which completes the proof of (viii).

The following example shows that the equality does not hold in (vii) and (viii) of Theorem 2.3, in general.

Example 2.4. Consider Example 2.2. Let N1 = {3/a, 2/b} and N2 = {3/a, 4/c}. Hence

µN1 (3/a) =
2
3
, µN2 (3/a) =

2
3
, µN1∪N2 (3/a) = 1, and µN1∩N2 (3/a) =

1
3
,

which clarifies that the equality in assertions (vii) and (viii) of Theorem 2.3 is not true, in general.

3. Rough multiset via membership functions

This section introduces the rough multiset technique using the rough membership function.

Definition 3.1. Let M ∈ [X]ω, R be a reflexive multiset relation on M, and let N be a nonempty submultiset
of M. Then the lower multiset, the upper multiset approximations, and the accuracy of N are defined,
respectively, as:

N = {k/x | µN(k/x) = 1}, (5)

N = {k/x | µN(k/x) > 0}, (6)

αR(N) =
| N |

| N |
. (7)

The pair (N,N) is referred to as the rough multiset of N.

Theorem 3.2. Let M ∈ [X]ω, R be a reflexive multiset relation on M, and let N and L be nonempty submultisets of
M. Then the following assertions are hold:

(i) N = (Nc)c,
(ii) N ⊆ N,

(iii) ∅ = ∅,
(iv) M =M,
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(v) L ⊆ N⇒ L ⊆ N,
(vi) L ∩N = L ∩N,

(vii) L ∪N ⊆ L ∪N,
(viii) N = N.

Proof. The assertions (iii) and (iv) are consequences of part (iv) of Theorem 2.3 and equation (5). To prove
assertion (i), we follow the following calculations:

(Nc)c = {k/x | µNc (k/x) > 0}c

= {k/x | 1 − µN(k/x) > 0}c, by part (v) of Theorem 2.3
= {k/x | µN(k/x) < 1}c

= {k/x | µN(k/x) ≥ 1}
= {k/x | µN(k/x) = 1}, as 0 ≤ µN(k/x) ≤ 1
= N.

Then assertion (i) proved.
Let k/x ∈ N. Then µN(k/x) = 1. Using part (i) of Theorem 2.3, then we get k/x ∈ Rℓ(N). That is, by

equation (2), we have that k/x ∈ ⟨k/x⟩ ⊆ N, which implies assertion (ii).
Now we proof part (v). Let L ⊆ N and k/x ∈ L. Then equation (5) and part (vi) of Theorem 2.3 imply

that

µN(k/x) ≥ µL(k/x) = 1.

Thus, using 0 ≤ µN(k/x) ≤ 1, we get µN(k/x) = 1. This completes assertion (v).
For assertion (vi), the inclusion L ∩N ⊆ L ∩ N is a consequence of part (v) of this theorem. Now, let

k/x ∈ L ∩N. Then we have

µL(k/x) = 1 and µN(k/x) = 1.

Thus (i) of Theorem 2.3 implies

k/x ∈ Rℓ(L) ∩ Rℓ(N) = Rℓ(L ∩N).

Again, part (i) of Theorem 2.3 implies µL∩N(u) = 1. Thus, k/x ∈ L ∩N. This result concludes part (vi) of this
theorem.

The result of (vii) is a direct consequence of part (v) of this theorem. Thus we omit the proof of this
assertion.

Finally, we prove assertion (viii). The inclusion N ⊆ N is a consequence of assertions (ii) and (v) of this
theorem. Thus, it is sufficient to prove that N ⊆ N. Let k/x ∈ N. Then µN(k/x) = 1. This result, together
with part (i) of Theorem 2.3, implies k/x ∈ R

ℓ
(N). Again, part (i) of Theorem 2.2 implies µN(k/x) = 1. Thus

k/x ∈ N, which completes the proof of assertion (viii).

Theorem 3.3. Let M ∈ [X]ω, R be a reflexive multiset relation on M, and let N and L be nonempty submultisets of
M. Then the following assertions are hold:

(i) N = (Nc)c,
(ii) N ⊆ N,

(iii) ∅ = ∅,
(iv) M =M,
(v) L ∪N = L ∪N,

(vi) L ⊆ N⇒ L ⊆ N,
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(vii) L ∩N ⊆ L ∩N,

(viii) N = N.

Proof. The proof is similar to that of Theorem 3.2.

Corollary 3.4. Let M ∈ [X]ω, R be a reflexive multiset relation on M. Then the lower multiset approximation,
defined in (5), satisfies Kuratowski’s axioms and induces a topology on M called τR given by

τR = {N ⊆M | N = N}.

Proof. The proof is a direct consequence of Theorem 3.2.

4. Application

In this section we discuss how to select the best possible chemical suppliers among several providers.
Let X = {s1, . . . , s10} be the set of suppliers and let a1, a2, and a3 be the cost, the experience, and the green

suppliers of chemicals, respectively. This is shown in Table 1. You can imagine if we have a large number

Table 1: Information table
X a1 a2 a3

s1 expensive beginner Yes
s2 expensive advanced Yes
s3 expensive beginner Yes
s4 moderate professional No
s5 moderate professional No
s6 expensive advanced Yes
s7 cheap advanced No
s8 cheap advanced No
s9 moderate professional No
s10 expensive professional Yes

of data and there are similarities in the attributes. Here is the essential role of the multiset to collect these
similar suppliers of attributes together as follows:

s1 = s3 = x
s2 = s6 = y
s4 = s5 = s9 = z
s7 = s8 = r

s10 = t.

Thus our data can be simplified in this multiset M = {2/x, 2/y, 3/z, 2/r, 1/t}. That is, we can prettify Table 1
into Table 2.

Now, we define the multiset relation as follows:

(m/x)R(n/y)⇔ x(ak) = y(ak) for some k ∈ {1, 2, 3}.

Therefore, we can express the multiset relation R in the following form

R = ∆ ∪ {(2/x, 2/y), (2/y, 2/x), (2/x, 1/t), (1/t, 2/x), (2/y, 2/r), (2/r, 2/y),
(2/y, 1/t), (1/t, 2/y), (3/z, 2/r), (2/r, 3/z), (3/z, 1/t), (1/t, 3/z)}.
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Table 2: Multiset information table
X a1 a2 a3

2/x expensive beginner Yes
2/y expensive advanced Yes
3/z moderate professional No
2/r cheap advanced No
1/t expensive professional Yes

Consequently, for all elements m/a ∈M, we can compute (m/a)R as follows:

(2/x)R = {2/x, 2/y, 1/t}
(2/y)R = {2/x, 2/y, 2/r, 1/t}
(3/z)R = {3/z, 2/r, 1/t}
(2/r)R = {2/y, 3/z, 2/r}
(1/t)R = {2/x, 2/y, 3/z, 1/t}.

Now, using (1), we can calculate ⟨m/a⟩R as follows:

⟨2/x⟩R = {2/x, 2/y, 1/t}
⟨2/y⟩R = {2/y}
⟨3/z⟩R = {2/y, 3/z}
⟨2/r⟩R = {2/r}
⟨1/t⟩R = {1/t}.

Let N = {2/y, 1/t} be a submultiset of M. Then we find the rough multiset membership function with respect
to N.

µN(2/x) =
3
5
, µN(2/y) = 1, µN(3/z) =

2
5
, µN(2/r) = 0, µN(1/t) = 1.

Using this result, then we can compute the lower multiset, uper multiset, and the accuracy of N as follows

N = {2/y, 1/t}, N = {2/x, 2/y, 3/z, 1/t}, and αR(N) =
3
8
.

Therefore, the accuracy of choosing supplier between category 2/y or 1/t is a bout 40%.

5. Conclusion

A set is a well-defined collection of singular items according to classical set theory. A mathematical
structure known as a multiset exists when an object can occur more than once in a set. In this paper, the
idea of a rough membership function has been proposed in the environment of multisets. We introduced
counter-examples to clarify some identities and properties of this concept. As a result of this notion, we
introduced the lower and upper multiset approximations via this approach of rough membership multiset
functions. The properties of these approximations have been studied. Also, we generated a topology via
this approach. Finally, the application for choosing the best chemical suppliers has finally been presented.
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