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Abstract. In this paper we further study θ-Menger, θ-almost Menger and θ-weakly Menger properties
[13] and investigate their relationships with other selective covering properties. We prove that in extremally
disconnected semi-regular spaces, the properties viz. Menger, semi-Menger, α-Menger, θ-Menger, midly
Menger are equivalent; and every finite power of a space X has the selection property S f in(θ-O, θ-O) if and
only if X has the property S f in(θ-Ω, θ-Ω).

1. Introduction and preliminaries

The Menger property [19] is a classical covering property: a space X is said to have the Menger property
if for each sequence (Ak : k ∈N) of open covers of X there is a sequence (Bk : k ∈N) such that for each k, Bk
is a finite subset ofAk and X =

⋃
k∈N ∪Bk. After that several weak variants of the Menger covering property

occurred in the mathematical literature such as almost Menger and weakly Menger ([2, 11]). A new variant
of the Menger property is also formed when the open cover is replaced by a cover of generalized open sets.

A subset A of a space X is said to be:

• θ-open if for each element x ∈ A, there is an open subset B of space X such that x ∈ B ⊂ Cl(B) ⊂ A [32];

• α-open if A ⊂ Int(Cl(Int(A))), or equivalently, if there is an open subset B of space X such that
B ⊂ A ⊂ Int(Cl(B)) [22];

• semi-open if there exists an open subset B of space X such that B ⊂ A ⊂ Cl(B), or equivalently, if
A ⊂ Cl(Int(A)) [18] and SO(X) denotes the set of all semi-open sets.

Clearly, we have the following implications:

clopen⇒ θ-open⇒ open⇒ α-open⇒ semi-open.

Using the semi-open sets Sabah et.al [26] defined the semi-Menger property which is stronger than the
Menger property and Kočinac [12] introduced mildy Menger spaces using the clopen sets. Recently,
Kočinac [13] introduced and investigated the covering properties θ-Menger and α-Menger using θ-open
sets and α-open sets, respectively.
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The first author acknowledges the fellowship grant of University Grant Commission, India.
Email addresses: gaurav.maths.du9419@gmail.com (Gaurav Kumar), brijkishore.tyagi@gmail.com (Brij K. Tyagi)



G. Kumar, B.K. Tyagi / Filomat 37:15 (2023), 5075–5085 5076

A space X is said to have semi-Menger [26] (resp., α-Menger [13], θ-Menger [13], mildly-Menger [12])
if for each sequence (Ak : k ∈ N) of semi-open (resp., α-open, θ-open, clopen) covers of X there exists a
sequence (Bk : k ∈N), where Bk is a finite subset ofAk for each k, such that X =

⋃
k∈N ∪Bk.

The above properties are also written in a form of selection principle. Let A and B be the collections
of subsets of a space X. Then a space X satisfies the selection principle : S f in(A,B) (resp., U f in(A,B)) if for
each sequence (Ak : k ∈ N) inA there exists a sequence (Bk : k ∈ N), where for each k, Bk is a finite subset
of Ak such that

⋃
k∈NBk ∈ B (resp., {∪Bk : k = 1, 2, 3, ...} is in B) (see, [14, 15]). Let O, CO, θ-O, α-O, s-O,

denote the collection of all open, clopen, θ-open, α-open, semi-open covers of a space X, respectively. Then
the Menger, mildly Menger, θ-Menger, α-Menger, semi-Menger, property of X is the property S f in(O,O),
S f in(CO,CO), S f in(θ-O, θ-O), S f in(α-O, α-O), S f in(s-O, s-O), respectively.

In 1968, Velichko [32] introduced θ-closure operator to study H-closed spaces. For a subset A of a space
X, the θ-closure of A denoted by Clθ(A) and defined as Clθ(A) = {x ∈ X : for each neighbourhood U of x,
Cl(U) ∩ A , ϕ}. A subset A of space X is called θ-closed if Clθ(A) = A and A is θ-open if its complement
is θ-closed. Many papers have been published on θ-closure operator (see [3, 6, 7, 16, 21]). Recently, using
the θ-closure operator Kočinac [13, Remark 3.6] generalized almost Menger and weakly Menger properties
namely introduced θ-almost Menger and θ-weakly Menger properties, respectively. In this paper, we
further continue the study of θ-Menger, θ-almost Menger and θ-weakly Menger properties.

2. θ-Menger spaces

For a topological space X,we denote:

1. Ω: the collection of ω covers of X: An open coverA of X is a ω-cover if no element ofA contains X,
and each finite subset of X is contained in some element ofA.

2. θ-Ω: the collection of θ-ω-covers of X: A coverA of X is a θ-ω-cover if it is a θ-open cover of X such
that no element ofA contains X, and each finite subset of X is a subset of some element ofA.

3. Γ: the collection of γ-covers of X: An infinite open coverA of X is γ-cover if, for each x in X, the set
{U ∈ A : x < U} is finite.

4. θ-Γ: the collection of θ-γ-covers of X: An infinite θ-open coverA of X is θ-γ-cover if, for each x in X,
the set {U ∈ A : x < U} is finite.

Theorem 2.1. For a space X the following statements are equivalent:

1. X has the θ-Menger property;
2. X satisfies S f in(θ-Ω, θ-O).

Proof. 1⇒ 2 It follows from the fact that each θ-ω-cover of X is a θ-open cover of X.
2⇒ 1 Let (Ak : k ∈N) be a sequence of θ-open covers of X. LetN = Y1 ∪Y2 ∪ ...∪Ym ∪ ... be a partition

ofN into countably many pairwise disjoint infinite subsets. For each k, let Bk contained all sets of the form
Ak1 ∪ Ak2 ∪ ... ∪ Akn , k1 ≤ ... ≤ kn, ki ∈ Yk, Aki ∈ Ak, i ≤ n, n ∈ N. Then for each k, Bk is a θ-ω-cover of
X. Applying S f in(θ-Ω, θ-O) on the sequence (Bk : k ∈ N), there is a sequence (Ck : k ∈ N), where for each
k, Ck is a finite subset of Bk such that X =

⋃
k∈N ∪{C : C ∈ Ck}. Suppose Ck = {C1

k , .....C
mk
k }, then from the

construction, each Ci
k = A

ki1
k ∪ .....∪Akin

k . Therefore for each k,we can construct a finite subsetA′k ofAk such
that ∪Ck ⊆ ∪A

′

k. Hence X has the θ-Menger property.

Sheepers et al. ([31, Theorem 3.9] proved the following equivalence.

Theorem 2.2. ([31]) For a space X the following statements are equivalent:

1. Every finite power of X has property S f in(O,O);
2. X has property S f in(Ω,Ω).

We prove the similar result for θ-Menger spaces in Theorem 2.7. In the following example we also
observe that square of θ-Menger space need not be θ-Menger.
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Example 2.3. There exists a θ-Menger space X such that X2 is not θ-Menger.

Proof. Let i : S→ R be the identity map from the Sorgenfrey line S to the real line R. If A ⊂ R, then denote
AS = i−1(A). In [17], Lelek proved that LS has the Menger property for each Lusin set L in R.He also stated
that if (L × L) ∩ {(a, b) : a + b = 0} is an uncountable set, then LS × LS does not have the Menger property.
Then LS is a θ-Menger space but LS

2 is not θ-Menger, LS × LS being a regular space and in regular spaces
the θ-Menger property coincides with the Menger property.

Recall that a space X is called extremally disconnected if the closure of each open set in X is open [25].

Lemma 2.4. Let X be an extremally disconnected space and A be a θ-open set in the product space Xk, k ∈ N, then
for each (a1, a2, ....ak) ∈ A, there exists θ-open set Ui containing ai such that (a1, a2, ..., ak) ∈

∏k
i=1 Ui ⊆ A.

Proof. Let A be a θ-open set of Xk, n ∈N. Then for each (a1, a2, ....ak) ∈ A there exists open set Ui containing
ai such that (a1, a2, ..., ak) ∈

∏k
i=1 Ui ⊆

∏k
i=1 Cl(Ui) ⊆ A, moreover Cl(Ui) is θ-open, X being an extremally

disconnected.

Proposition 2.5. Let X be an extremally disconnected space. For each θ-ω-cover A of Xk, k ∈ N, there exists a
θ-ω-cover B of X such that the θ-open cover {Bk : B ∈ B} of Xk refinesA.

Proof. Let A be a θ-ω-cover of Xk. Let F be a finite subset of X, thus Fk is a finite subset of Xk. Then
there is a θ-open set A ∈ A such that Fk

⊂ A. Since X is extremally disconnected, from Lemma 2.4, for
each (x1, ..., xk, ) ∈ Fk, there is a θ-open set Axi containing xi such that (x1, ......, xk) ∈

∏k
i=1 Axi ⊂ A. For each

x ∈ F, consider Ax is the intersection of all Axi containing x. Let BF = ∪x∈FAx. Then BF is a θ-open set of X
containing F, thus Fk

⊂ Bk
F ⊂ A. Put B = {BF : F is a finite subset of X}. Then B is a required θ-ω-cover of X

such that the θ-open cover {Bk : B ∈ B} refinesA.

Theorem 2.6. Let X be an extremally disconnected space. If X has the property S f in(θ-Ω, θ-Ω), then for each n ∈N,
Xn also has this property.

Proof. Let (Ak, : k ∈ N) be a sequence of θ-ω-covers of Xn. Then by Proposition 2.5, for each k, there exists
a θ-ω-cover Bk of X such that {Bn : B ∈ Bk} refinesAk. Now apply the condition S f in(θ-Ω, θ-Ω) of X on the
sequence (Bk : k ∈ N), for each k, there exists a finite subset Ck of Bk such that

⋃
∞

k=1 Ck forms θ-ω-cover of
X. Since for each k, {Bn : B ∈ Bk} refines Ak, for each C ∈ Ck there is a A ∈ Ak such that Cn

⊂ A. Hence for
each k,we can find a finite subsetA′k, ofAk such that

⋃
∞

k=1A
′

k forms a θ-ω-cover of Xn.

Theorem 2.7. For an extremally disconnected space X the following statements are equivalent:

1. Every finite power of X has the property S f in(θ-O, θ-O);
2. X has the property S f in(θ-Ω, θ-Ω).

Proof. (1)⇒ (2) Already done by Kočinac [13, Theorem 3.12].
(2)⇒ (1) The result follows directly from Theorem 2.6 and Theorem 2.1.

In [29] Scheepers proved that for a Lindelöf space, S f in(O,O) = U f in(Γ,O). In the following theorem,
we show the similar result for θ-Lindelöf spaces. First, recall that a space X is called θ-compact (resp.,
θ-Lindelöf) if each θ-open cover of X has finite (resp., countable) subcover.

Theorem 2.8. For a θ-Lindelöf space X, S f in(θ-O, θ-O) if and only if U f in(θ-Γ, θ-O).

Proof. The forward part is obvious. For the converse part, assume that X satisfies U f in(θ-Γ, θ-O). Let
(Ak : k ∈ N) be a sequence of θ-open covers of X. We may assume that X is not θ-compact and for each
k ∈N,Ak is countably infinite with no finite subset which covers X. For each k, letAk = (An

k : n = 1, 2, 3, ...).
Thus Bk = {Bm : Bm =

⋃m
n=1 An

k ,m ∈ N} forms θ-γ-cover of X. Since X satisfying U f in(θ-Γ, θ-O), choose
a finite set Ck of Bk, such that {∪Ck : k ∈ N} is a θ-open cover of X. Then for each k, disassembling the
members of Ck. Thus for each k,we can find a finite subsetA′k ofAk such that

⋃
∞

k=1A
′

k forms θ-open cover
of X.
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Definition 2.9. ([13, Definition 5.2]) A space X is called nearly Menger if for each sequence (Ak : k ∈ N)
of open covers of X there is a sequence (Bk : k ∈ N) such that for each Bk is a finite subset of Ak and
X =
⋃

k∈N
⋃
{Int(Cl(B)) : B ∈ Bk}.

Each nearly-Menger space is almost Menger and Kočinac [13, Theorem 3.5] showed that an almost
Menger space is θ-Menger. Thus we have the following implications:

semi-Menger⇒ α-Menger⇒Menger⇒ nearly Menger⇒ θ-Menger⇒mildy Menger.

But the reverse implications do not hold in general. In the following example we show that a θ-Menger
space need not be nearly-Menger. For the details about other reverse implications see [13, 24]

Example 2.10. Let X = {a, b, ci, ai j, bi j : i ∈ A, j ∈ N}, where A = [0,Ω) and Ω is the smallest uncountable
ordinal number. We topololize X as follows: Bn

ci
= {ci, ai j, bi j} j≥n, Bαa = {a, ai j}i≥α, j∈N and Bαb = {b, bi j}i≥α, j∈N are

the fundamental system of neighborhoods of the points ci, a, b respectively, and {ai j}, {bi j} are isolated points.
Then the space X is not nearly Menger ([24, Example 2.6]). Now, we show that the space X is θ-Menger.
Let (Uk : k ∈ N) be a sequence of θ-open covers of X. For each k and each x ∈ X there is an open set U′x
such that x ∈ U′x ⊂ Cl(U′x) ⊂ U for some U ∈ Uk. Put U′k = {U

′
x : x ∈ X}. Then (U′k : k ∈ N) is a sequence

of open covers of X. For fixed k1 ∈ N, there are open sets U′a, U′b inU′k1
such that a ∈ U′a and b ∈ U′b. Thus

∃ α1, α2 ∈ A such that Bα1
a ⊂ U′a, Bα2

b ⊂ U′b. It is clear that the set X \ (Bα1
a ∪ Bα2

b ) is countable, hence the set
X \ (U′a ∪U′b) is also countable. Thus we can find a sequence (V′k : k ∈ N \ k1), such that, k ∈ N \ k1,V′k is
a finite subset ofU′k and X \ (U′a ∪U′b) ⊂

⋃
k∈N\k1

∪{Cl(V′) : V′ ∈ V′k}. FixedV′k1
= {U′a,U′b}. Then we have a

sequence (V′k : k ∈N), where for each k,V′k is a finite subset ofU′k such that X =
⋃

k∈N ∪{Cl(V′) : V′ ∈ V′k}.
For each V′ ∈ V′k we can find a UV′ ∈ Uk such that V′ ⊂ Cl(V′) ⊂ UV′ . LetWk = {UV′ : V′ ∈ V′k}, then for
each k,Wk is a finite subset ofUk and X =

⋃
k∈N ∪Wk. Hence X is a θ-Menger space.

Recall that a space X is called semi-regular [4] if for each element x ∈ X and for each semi-closed set U
such that x < U, there exist disjoint semi-open subsets A and B of X such that x ∈ A and U ⊂ B.

Lemma 2.11. ([4]) For a space X the following statements are equivalent:

(i) X is semi-regular;

(ii) For each element x ∈ X and A ∈ SO(X) with x ∈ A, there is a B ∈ SO(X) such that x ∈ B ⊂ sCl(B) ⊂ A, sCl(A)
denotes the semi-closure of A.

Now we prove that for an extremally disconnected semi regular space, all the above mentioned variants
of Menger property are equivalent.

Theorem 2.12. For extremally disconnected semi-regular spaces X, the following statements are equivalent:

1. X is semi-Menger;
2. X is α-Menger;
3. X is Menger;
4. X is nearly Menger;
5. X is θ-Menger;
6. X is mildly Menger.

Proof. Obviously (1)⇒ (2)⇒ (3)⇒ (4)⇒ (5)⇒ (6).
For (6) ⇒ (1), let (Ak : k ∈ N) be a sequence of semi-open covers of X. Then for each x ∈ X there is

a Bk,x ∈ SO(X) such that x ∈ Bk,x ⊂ sCl(Bk,x) ⊂ A for some A ∈ Ak, X being a semi-regular space. Let for
k ∈ N, Bk = {Bk,x : x ∈ X}. Then (Bk : k ∈ N), is a sequence of semi-open covers of X. Since X is extremally
disconnected, from [8, Proposition 4.1], we have B ⊂ Int(Cl(B)) for each B ∈ SO(X). Further, Cl(Int(Cl(B))) is
a clopen subset of X for each B ∈ SO(X). Put Ck = {Cl(Int(Cl(B))) : B ∈ Bk}. Thus (Ck : k ∈ N) is a sequence
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of clopen covers of X. As X is mildly Menger, there is a sequence (C′k : k ∈N), where C′k is a finite subset of
Ck for each k ∈ N such that

⋃
k∈N ∪C

′

k = X. Note that, Int(Cl(A)) ⊂ sCl(A) for each subset A of space X and
by extremal disconnectedness of X, sCl(A) = Cl(A) for each A ∈ SO(X). Then from the above construction,
for each C′ ∈ C′k there is a AC′ ∈ Ak such that C′ ⊂ AC′ . Thus for k ∈ N, let A′k = {AC′ : C′ ∈ C′k}. Hence for
each k,A′k is a finite subset ofAk such that

⋃
k∈N ∪A

′

k = X. This means that X is semi-Menger.

In the following examples, we show that the extremally disconnectedness and semi-regularity are
necessary conditions in Theorem 2.12.

Example 2.13. Consider the real line R with usual topology. Then clearly, R is not an extremally discon-
nected space but it is semi-regular mildly Menger space being a regular Menger space. On the other hand,
R is not semi-Menger [26].

Example 2.14. Let X be an uncountable cofinite space, that is uncountable set X with cofinite topology.
Then X is an extremally disconnected mildly Menger space. On the other hand X it not semi-Menger, since
a semi-open cover {X \ {x} : x ∈ X} has no countable subcover.

Since in extremally disconnected spaces, zero-dimensionality is equivalent to semi-regularity [25, The-
orem 6.4], we have the following corollary:

Corollary 2.15. For extremally disconnected, zero-dimensional spaces X, the following statements are equivalent:

1. X is semi-Menger;
2. X is α-Menger;
3. X is Menger;
4. X is nearly Menger;
5. X is θ-Menger;
6. X is mildly Menger.

A space X is called S-paracompact [1] if for each open cover of X has a locally finite semi-open refinement.
A Hausdorff S-paracompact space X is semi-regular [1, Corollary 2.3]. Hence all the properties mentioned
in Theorem 2.12 are also equivalent for an extremally disconnected Hausdorff S-paracompact space.

It may be noted that the Stone-Čech compactification of a discrete space is extremally disconnected
compact Hausdorff space. Then the class of Stone-Čech compactifications of discrete spaces is a subclass
of extremally disconnected S-paracompact Hausdorff spaces which is in turn the subclass of extremally
disconnected semi-regular spaces.

Theorem 2.16. For a space X, the following statements are equivalent:

1. X is θ-Menger;
2. For each non-empty subset A of X and for each sequence (Uk : k ∈ N) of collections of θ-open sets in X such

that Clθ(A) ⊂ ∪Uk, k ∈ N, there is a sequence (Vk : k ∈ N), for each k ∈ N,Vk is a finite subset ofUk such
that A ⊂

⋃
k∈N ∪Vk.

Proof. 2⇒ 1 obvious.
1 ⇒ 2 Let A be a non-empty subset of X and (Uk : k ∈ N) is a sequence of collections of θ-open sets

in X such that Clθ(A) ⊂ ∪Uk, k ∈ N. For each k ∈ N, put Vk = Uk ∪ {X \ Clθ(A)}. Then (Vk : k ∈ N) is a
sequence of θ-open covers of X. By assumption X is θ-Menger, there exists a sequence (V′k : k ∈ N) such
that V′k is a finite subset of Vk for each k ∈ N and

⋃
k∈N ∪V

′

k = X. Consider U′k = V
′

k \ {X \ Clθ(A)}. Then
(U′k : k ∈N) is a sequence of θ-open sets in X,where for each k ∈N,U′k is finite subset ofUk such that with
A ⊂
⋃

k∈N ∪U
′

k.

In the next theorem we provide a sufficient condition for a space to be θ-Menger.
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Theorem 2.17. A space X is θ-Menger if for each sequence (Ak : k ∈N) of closed covers of X there exists a sequence
(Bk : k ∈N), where for each k, Bk is a finite subset ofAk, such that X =

⋃
k∈N ∪Bk.

Proof. Let (Ak : k ∈ N) be a sequence of θ-open covers of X. For each x ∈ X and each k ∈ N there exists
a Ax,k ∈ Ak and an open set Bx,k such that x ∈ Bx,k ⊂ Bx,k ⊂ Ax,k. For each k, put Bk = {Bx,k : x ∈ X}. Then
(Bk : k ∈N) is a sequence of closed covers of X. From the assumption, there is a sequence (Ck : k ∈N),where
for each k, Ck is a finite subset of Bk, such that X =

⋃
k∈N ∪Ck. Since for each Ck ∈ Ck, there is a A′Ck

∈ Ak

such that Ck ⊂ A′Ck
. Let for k ∈N,A′k = {A

′

Ck
: Ck ∈ Ck}. Thus for each k,A′k is a finite subset ofAk such that⋃

Ck ⊂
⋃
A
′

k. Hence X is θ-Menger space.

A space X is called almost Menger [11], if for each sequence (Ak : k ∈N) of open covers of X there exists
a sequence (Bk : k ∈N),where Bk is a finite subset ofAk for each k ∈N, such that

⋃
k∈N ∪{B : B ∈ Bk} = X.

We prove that for the class of an extremally disconnected spaces the θ-Menger property is equivalent to
the almost-Menger property:

Theorem 2.18. For an extremally disconnected space X, the following statements are equivalent:

1. X is θ-Menger; item For each sequence (Ak : k ∈N) of θ-open covers of X there exists a sequence (Bk : k ∈N),
where for each k ∈N, Bk is a finite subset ofAk, such that

⋃
k∈N ∪{B : B ∈ Bk} = X;

2. X is almost Menger.

Proof. (1)⇒ (2) Obvious.
(2)⇒ (3) Let (Ak : k ∈N) be a sequence of open covers of X. Since X is extremally disconnected, for each

k, A′k = {A : A ∈ Ak} is a θ-open cover of X. Thus (A′k : k ∈ N) is a sequence of θ-open covers of X. From
the assumption, there exists a sequence (Bk : k ∈ N), where for each k, Bk is a finite subset ofAk, such that⋃

k∈N ∪{B : B ∈ Bk} = X. Thus X is almost Menger.
(3)⇒ (1) It is proved in [13, Theorem 3.5].

3. θ-almost Menger and θ-weakly Menger spaces

In this section we studied θ-almost Menger and θ-weakly Menger spaces. First we recall some defini-
tions.

A space X is said to be weakly Menger [2] if for each sequence (Ak : k ∈N) of open covers of X there is
a sequence (Bk : k ∈N) such that for each k, Bk is a finite subset ofAk and X = Cl(

⋃
k∈N ∪Bk).

Definition 3.1. ([13, Remark 3.6]) A space X is said to be θ-almost Menger (resp., θ-weakly Menger) if for
each sequence (Ak : k ∈ N) of open covers of X there is a sequence (Bk : k ∈ N), where for each k, Bk is a
finite subset ofAk, such that X =

⋃
k∈N ∪{Clθ(Cl(B)) : B ∈ Bk}, (resp., X = Clθ(Cl(

⋃
k∈N ∪Bk))).

From the definitions it is clear that each θ-almost Menger space is θ-weakly Menger. In the following
example, we show that weakly Menger (hence θ-weakly Menger) space need not be θ-almost Menger.

Example 3.2. There is a Tychonoff weakly Menger (hence, θ-weakly Menger) space which is not θ-almost
Menger.

Proof. Let D be a discrete space with cardinality ω1, and D∗ = D ∪ {d∗} is an one-point compactification of
D, where d∗ < D, let

X = (D∗ × [0, ω]) \ {< d∗, ω >}

be the subspace of the product space D∗ × [0, ω].
Note that, D∗ × ω is a σ-compact dense subset of X, that means the space X is weakly Menger (hence

θ-weakly Menger).
Now, we prove that the space X is not an θ-almost Menger. We enumerate D as {dα : α < ω1} because

cardinality of D is ω1. Let Aα = {dα} × [0, ω], for each α < ω1. Then
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Aα ∩ Aα′ = ϕ if α , α
′

, and Clθ(Cl(Aα)) = Aα for each α < ω1.

Let Bk = D∗ × {k}, for each k ∈ ω. Then

Clθ(Cl(Bk)) = Bk for each k ∈ ω.

Let

Ak = {Aα : α < ω1} ∪ {Bk : k ∈ ω}, for each k ∈N.

Observe that for each k ∈N,Ak is an open cover of the space X. Let us consider the sequence (Ak : k ∈N)
of open covers of X.

Claim: For any sequence (Bk : k ∈N), whereBk is a finite subset ofAk for each k ∈N,
⋃

k∈N ∪{Clθ(Cl(B)) :
B ∈ Bk} , X.
Let (Bk : k ∈ N) be any sequence, where for each k, Bk is a finite subset ofAk. Since Bk is a finite subset of
Ak for each k ∈N, then there is a αk < ω1 such that Aα < Bk for each α > αk. Put α′ = sup{αk : k ∈N}. Then
α′ < ω1. We can choose α0 > α′. Then

< dα0 , ω > <
⋃

k∈N ∪{Clθ(Cl(B)) : B ∈ Bk}.

Note that, Aα0 is the only element of Ak which contain < dα0 , ω > for each k ∈ N. It is easy to see that⋃
k∈N ∪{B : B ∈ Bk} =

⋃
k∈N ∪{Clθ(Cl(B)) : B ∈ Bk} from the construction of the sequence (Ak : k ∈ N) of

open covers of X. Thus < dα0 , ω > <
⋃

k∈N ∪{Clθ(Cl(B)) : B ∈ Bk} that means the space X is not an θ-almost
Menger.

Recall that a topological space X is said to be P-space [10] if every intersection of countably many open
sets of X is open. For P-spaces, we prove the following result:

Theorem 3.3. Let X be a θ-weakly Menger P-space, then X is θ-almost Menger.

Proof. Let (Ak : k ∈ N) be a sequence of open covers of X. Since the space X is θ-weakly Menger, then
for each k, there exists a finite subset Bk of Ak such that X = Clθ(Cl(

⋃
k∈N ∪Bk)). Since X is a P-space,⋃

k∈N ∪{Cl(B) : B ∈ Bk} is a closed subset of X and Cl(
⋃

k∈N ∪Bk) is the least closed set contains
⋃

k∈N ∪Bk,
hence Cl(

⋃
k∈N ∪Bk) ⊆

⋃
k∈N ∪{Cl(B) : B ∈ Bk}. Also observe that if x <

⋃
k∈N ∪{Clθ(Cl(B)) : B ∈ Bk}, then

x < Clθ(
⋃

k∈N ∪{Cl(B) : B ∈ Bk}). Thus, we have X = Clθ(Cl(
⋃

k∈N ∪Bk)) ⊆ Clθ(
⋃

k∈N ∪{Cl(B) : B ∈ Bk}) =⋃
k∈N ∪{Clθ(Cl(B)) : B ∈ Bk}. Hence X is θ-almost Menger.

However in general, it remains open question whether a θ-almost Menger space is almost Menger
or not. But in the following results, we provide a class of spaces in which θ-almost Menger property is
equivalent to almost Menger property.

Theorem 3.4. X is an extremally disconnected almost Menger space if and only if X is θ-almost Menger.

Proof. The forward part is obvious. Conversely, let (Ak : k ∈ N) be a sequence of open covers of X. Since
X is θ-almost Menger, there exists a sequence (Bk : k ∈N), where Bk is a finite subset ofAk for each k ∈N,
such that X =

⋃
k∈N ∪{Clθ(Cl(B)) : B ∈ Bk}. Also by the extremally disconnectedness of X, Clθ(Cl(B)) = Cl(B)

for each open set B of X. Hence X =
⋃

k∈N ∪{Cl(B) : B ∈ Bk}.

Theorem 3.5. Let X be a regular θ-almost Menger space, then X is Menger.

Proof. Let (Ak : k ∈ N) be a sequence of open covers of X. Since X is regular, for each k and for each x ∈ X
there exist open sets Bx,k,Cx,k such that x ∈ Cx,k ⊂ Cl(Cx,k) ⊂ Bx,k ⊂ Cl(Bx,k) ⊂ A for some A ∈ Ak. Thus for
k ∈N, Ck = {Cx,k : x ∈ X} is an open cover of X. Also X is θ-almost Menger, there is a sequence (C′k : k ∈N),
where for each k, C′k is a finite subset of Ck such that

⋃
k∈N ∪{Clθ(Cl(C′)) : C′ ∈ C′k} = X. For each k, for

each C′k,x ∈ C
′

k, there is an open set Bk,x and AC′x,k ∈ Ak such that Cl(C′x,k) ⊂ Bx,k ⊂ Cl(Bx,k) ⊂ ACx,k . Thus
Clθ(Cl(C′x,k)) ⊆ Cl(Bx,k) ⊂ AC′x,k . LetA′k = {AC′x,k : C′x,k ∈ C

′

k}. Then the sequence (A′k : k ∈N) witnesses that the
space X is Menger.
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From Theorem 3.3 and Theorem 3.5, we have the following corollary:

Corollary 3.6. Let X be a regular P-space. Then the following statements are equivalent:

1. X is θ-Menger;
2. X is Menger;
3. X is almost Menger;
4. X is weakly Menger;
5. X is θ-weakly Menger;
6. X is θ-almost Menger.

From the following examples, it is clear that θ-almost Menger (θ-weakly Menger) properties are not
hereditary.

Example 3.7. A closed subset of an θ-weakly Menger space need not be θ-weakly Menger.

Proof. LetR be the set of real numbers,Q and Idenotes the set of rational and irrational numbers respetively.
For each a ∈ I, we choose a sequence {ai : i ∈ ω} of rational numbers which converge to a in the Euclidean
topology. The rational sequence topology τ (see [30], Example 65) is defined as declaring each rational open
and the sets Ak(a) = {ak,i : i ∈ ω} ∪ {a} as a basis for the irrational point a. Then the set I is a closed subset of
(R, τ) and as a subspace I is not θ-weakly Menger, I being an uncountable discrete subspace. On the other
hand, (R, τ) is θ-weakly Menger, because Q is a countable dense subset of (R, τ).

Example 3.8. Let X be the same space as in [28, Example 2.1]: Consider U = {uα : α < ω1}, V = {vi : i ∈ ω}
and W = {< uα, vi >: α < ω1, i ∈ ω}, where ω, ω1 are the first infinite cardinal and the first uncountable
cardinal respectively. Let X = {x} ∪W ∪U,where x does not belongs to W ∪U.We topologize X as follows:
the basic neighborhood of x is of the form Ax(α) = {x} ∪

⋃
{< uβ, vi >: β > α, i ∈ ω}, α < ω1, for uα ∈ U

for each α < ω1, the basic neighborhood of uα is of the form Auα (i) = {uα} ∪ {< uα, v j >: j ≥ i}, i ∈ ω, and
each member of W are isolated. In [28] Song showed that X is an almost Menger space having uncountable
discrete closed subset, U = {uα : α < ω1}. Thus X is a θ-almost Menger space with uncountable discrete
closed subset. Hence we can conclude that closed subset of θ-almost Menger space need not be θ-almost
Menger.

Proposition 3.9. The closed and open subspace of θ-almost Menger space is θ-almost Menger.

Proof. Let Y be a closed and open subspace of the space X, let (Ak : k ∈N) be a sequence of open covers of
Y. Then for each k, Bk = Ak ∪ {X \Y} is an open cover of X. Since X is θ-almost Menger, for each k there is a
finite subset B′k of Bk such that X =

⋃
k∈N ∪{Clθ(Cl(B′)) : B′ ∈ Bk}. Since Y is a closed and open subspace X,

Clθ(Cl(X\Y)) = X\Y and Cl(U) ⊂ Y for each open subset U of Y, which implies that Clθ(Cl(B)) ⊆ ClθY (ClY(B))
for each open set B of Y. Thus, Y ⊆

⋃
k∈N ∪{Clθ(Cl(B′)) : B′ ∈ B′k \ {X \ Y}} ⊆

⋃
k∈N ∪{ClθY (ClY(B′)) : B′ ∈

B
′

k \ {X \ Y}}. Hence Y is θ-almost Menger.

Similarly, we can prove that closed and open subset of a θ-weakly Menger space is θ-weakly Menger.
Note that, from Theorem 3.5 and Example 2.3, it is clear that the product space X2 of a θ-almost Menger

space X need not be θ-almost Menger. In the following theorem we give the necessary and sufficient
conditions for the product space Xk to be θ-almost Menger for each k ∈N.

Theorem 3.10. Let X be a topological space. Then the product space Xn is θ-almost Menger for each n ∈ N if and
only if for each sequence (Ak : k ∈N) of ω-covers of X there exists a sequence (Bk : k ∈N), where for each k, Bk is a
finite subset ofAk, such that for every finite set F ⊂ X, there exists k ∈N, , such that F ⊂ Clθ(Cl(B)) for some B ∈ Bk.

Proof. Let for each n ∈ N, Xn be an θ-almost Menger space. Let (Ak : k ∈ N) be a sequence of ω-covers
of X. Let N = N1 ∪ N2 ∪ .... ∪ Nn∪··· be a partition of N into countably many pairwise disjoint infinite
subsets. For each n ∈ N and each j ∈ Nn, let B j = {An : A ∈ A j}. Then (B j : j ∈ Nn) is a sequence of



G. Kumar, B.K. Tyagi / Filomat 37:15 (2023), 5075–5085 5083

open covers of Xn. Since for n ∈ N, Xn is θ-almost Menger, we can find a sequence (C j : j ∈ Nn) such
that for each j, C j = {An

j1
,An

J2
, ...,An

jk( j)
} is a finite subset of B j and Xn =

⋃
j∈Nn
{Clθ(Cl(C)) : C ∈ C j}. Let

F = {x1, x2, ..., xq} be a finite subset of X. Then (x1, x2, ..., xq) ∈ Xq, there is a r ∈ Nq and 1 ≤ l ≤ k(r) such that
(x1, x2, ..., xq) ∈ Clθ(Cl(Aq

rl
)) = (Clθ(Cl(Arl )))

q. Hence F ⊂ Clθ(Cl(Arl )).
Conversely, let n ∈ N be fixed and (Ak : k ∈ N) be a sequence of open covers of Xn, where Ak = {Ak, j :

j ∈ Jk}, Jk is an indexing set. Let F ⊂ X be a finite set. Then Fn is a finite subset of Xn, thus compact
subset of Xn. Then for each k, there exists a finite subset JF

k of Jk such that Fn
⊂
⋃

j∈JF
k

Ak, j. By the Wallace
theorem (see 3.2.10. [5]), there is an open set BF in X such that F ⊂ BF and Bn

F ⊂
⋃

j∈JF
k

Ak, j. For each k, put
Bk = {BF : F is a finite subset of X}. Thus (Bk : k ∈ N) is a sequence of ω-covers of X. From the assumption,
there exists a sequence (Ck : k ∈N),where for each k,Ck is a finite subset ofBk such that for every finite subset
F of X, there is k ∈N, such that F ⊂ Clθ(Cl(C)) for some C ∈ Ck. LetHk = {Ak, j : j ∈ JF

k ,F ⊂ BF ∈ Ck}. Then for
each k,Hk is a finite subset ofAk. Let x = (x1, ..., xn) ∈ Xn. Thus F = {x1, ..., xn} is a finite subset of X, there exists
a k ∈ N and C ∈ Ck such that F ⊂ Clθ(Cl(C)). Since C ∈ Ck, then C = BF′ , for some finite subset F′ of X such
that Bn

F′ ⊂
⋃

j∈JF′
k

Ak, j. We have Fn
⊂ Clθ(Cl(BF′ ))n = Clθ(Cl(Bn

F′ )) ⊂ Clθ(Cl(
⋃

j∈JF′
k

Ak, j)) =
⋃

j∈JF′
k

Clθ(Cl(Ak, j)),
hence Xn

⊆
⋃

k∈N ∪{Clθ(Cl(H)) : H ∈ Hk}. That means Xn is almost Menger.

4. Preservation properties

In this section, we study the preservation of θ-almost Menger property under varies type of mappings.

Theorem 4.1. The continuous image of θ-almost Menger space is θ-almost Menger.

Proof. Let f : X→ Y be a continuous map from an θ-almost Menger space onto a space Y. Let (Ak : k ∈N) be
a sequence of open covers of Y. Then for each k, { f−1(A) : A ∈ Ak} is an open cover of X. Since X is an almost
Menger, for each k, there exists a finite subset Bk ofAk such that X =

⋃
k∈N ∪{Clθ(Cl( f−1(B)) : B ∈ Bk}. Thus

we have, Y = f (X) = f (
⋃

k∈N ∪{Clθ(Cl( f−1(B)) : B ∈ Bk}) =
⋃

k∈N ∪{ f (Clθ(Cl( f−1(B)))) : B ∈ Bk}. From the
continuity of f it follows that for each y ∈ f (Clθ(Cl( f−1(B)))) and each neighbourhood U of y, Cl(U)∩Cl(B) , ∅
that means y ∈ Clθ(Cl(B)). Then

⋃
k∈N ∪{ f (Clθ(Cl( f−1(B)))) : B ∈ Bk} ⊆

⋃
k∈N ∪{Clθ(Cl((B))) : B ∈ Bk}. Hence

Y is θ-almost Menger.

We show that the preimage of an θ-almost Menger space under a closed continuous map need not be
θ-almost Menger. Recall the Alexandroff duplicate A(X) of a space X: The underlying set of A(X) is X×{0, 1}
which is topologized as follows: let U be a neighborhood of x in X then a basic neighborhood of a point
⟨x, 0⟩ ∈ X × {0} is of the form (U × {0}) ∪ ((U × {1}) \ {⟨x, 1⟩}) and each points of X × {1} is isolated.

Example 4.2. The preimage of a θ-almost Menger space under a closed continuous map need not be
θ-almost Menger.

Proof. Let X be the same space as Example 3.8. Since U = {uα : α < ω1} is an uncountable discrete closed
subset of X. Then the Alexandroff duplicate A(X) of X is not θ-almost Menger, since U×{1} is an uncountable
infinite discrete closed and open set in A(X) and every open and closed subset of an θ-almost Menger space
is θ-almost Menger. Let us consider the projection map f : A(X) → X . Then f is a required closed
continuous map.

Definition 4.3. A map f : X→ Y said to be θ-almost open if for each open subset A of Y, f−1(Clθ(Cl(A))) ⊆
Clθ(Cl( f−1(A))).

A map f is called θ-open [27] if the image of every open set is θ-open. It may be noted that injective
θ-open maps are θ-almost open.

Theorem 4.4. Let f : X→ Y be an θ-almost open, perfect continuous map and Y is an θ-almost Menger space, then
X is θ-almost Menger.
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Proof. Let (Ak : k ∈N) be a sequence of open covers of X. Let y ∈ Y, since f−1(y) is compact, for each k ∈N
there is a finite sub-collectionAky ofAk such that f−1(y) ⊂ ∪Aky and for each A ∈ Aky , A ∩ f−1(y) , ϕ. Let
Bky = Y \ f (X \ ∪Aky ). Since f is closed, Bky is an open neighbourhood of y in Y such that f−1(Bky ) ⊆ ∪{A :
A ∈ Aky }. For each k ∈ N, put Bk = {Bky : y ∈ Y}. Thus (Bk : k ∈ N) is a sequence of open covers of Y. Since
Y is an θ-almost Menger space, there is a sequence (B′k : k ∈ N), where for each k, B′k is a finite subset of
Bk such that

⋃
k∈N ∪{Clθ(Cl(B′)) : B′ ∈ B′k} = Y. By the above construction there is a sequence (A′k : k ∈ N),

where for each k,A′k is finite subset ofAk, such that ∪{ f−1(B′) : B′ ∈ B′k} ⊆ ∪{A
′ : A′ ∈ A′k}. Then we have,

X = f−1(Y) = f−1(
⋃

k∈N ∪{Clθ(Cl(B′)) : B′ ∈ B′k})

=
⋃

k∈N ∪{ f−1(Clθ(Cl(B′))) : B′ ∈ B′k}

⊆
⋃

k∈N ∪{Clθ(Cl( f−1(B′))) : B′ ∈ B′k}

⊆
⋃

k∈N ∪{Clθ(Cl(A′)) : A′ ∈ A′k}.

Hence X is θ-almost Menger.
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[12] Lj.D.R. Kočinac, On mildly Hurewicz spaces, Internat. Math. Forum 11 (2016) 573–582.
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