Filomat 37:15 (2023), 5075–5085 https://doi.org/10.2298/FIL2315075K

Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

On variants of θ **-Menger spaces**

Gaurav Kumar^a, Brij K. Tyagi^b

^aDepartment of Mathematics, University of Delhi, New Delhi 110007, India ^bAtma Ram Sanatan Dharma College, University of Delhi, New Delhi 110021, India

Abstract. In this paper we further study θ -Menger, θ -almost Menger and θ -weakly Menger properties [13] and investigate their relationships with other selective covering properties. We prove that in extremally disconnected semi-regular spaces, the properties viz. Menger, semi-Menger, α -Menger, θ -Menger, midly Menger are equivalent; and every finite power of a space *X* has the selection property $S_{fin}(\theta - O, \theta - O)$ if and only if *X* has the property $S_{fin}(\theta - \Omega, \theta - \Omega)$.

1. Introduction and preliminaries

The Menger property [19] is a classical covering property: a space *X* is said to have the Menger property if for each sequence $(\mathcal{A}_k : k \in \mathbb{N})$ of open covers of *X* there is a sequence $(\mathcal{B}_k : k \in \mathbb{N})$ such that for each k, \mathcal{B}_k is a finite subset of \mathcal{A}_k and $X = \bigcup_{k \in \mathbb{N}} \cup \mathcal{B}_k$. After that several weak variants of the Menger covering property occurred in the mathematical literature such as almost Menger and weakly Menger ([2, 11]). A new variant of the Menger property is also formed when the open cover is replaced by a cover of generalized open sets.

A subset *A* of a space *X* is said to be:

- θ -open if for each element $x \in A$, there is an open subset *B* of space *X* such that $x \in B \subset Cl(B) \subset A$ [32];
- α -open if $A \subset Int(Cl(Int(A)))$, or equivalently, if there is an open subset *B* of space *X* such that $B \subset A \subset Int(Cl(B))$ [22];
- semi-open if there exists an open subset *B* of space *X* such that $B \subset A \subset Cl(B)$, or equivalently, if $A \subset Cl(Int(A))$ [18] and SO(X) denotes the set of all semi-open sets.

Clearly, we have the following implications:

clopen $\Rightarrow \theta$ -open \Rightarrow open $\Rightarrow \alpha$ -open \Rightarrow semi-open.

Using the semi-open sets Sabah et.al [26] defined the semi-Menger property which is stronger than the Menger property and Kočinac [12] introduced mildy Menger spaces using the clopen sets. Recently, Kočinac [13] introduced and investigated the covering properties θ -Menger and α -Menger using θ -open sets and α -open sets, respectively.

- Received: 04 September 2022; Revised: 24 November 2022; Accepted: 25 November 2022
- Communicated by Ljubiša D.R. Kočinac

²⁰²⁰ Mathematics Subject Classification. Primary 54D20; Secondary 54A10, 54D10.

Keywords. Menger space; θ -Menger space; θ -continuity; *S*-paracompact; Extremally disconnected space.

The first author acknowledges the fellowship grant of University Grant Commission, India.

Email addresses: gaurav.maths.du9419@gmail.com (Gaurav Kumar), brijkishore.tyagi@gmail.com (Brij K. Tyagi)

A space *X* is said to have semi-Menger [26] (resp., α -Menger [13], θ -Menger [13], mildly-Menger [12]) if for each sequence ($\mathcal{A}_k : k \in \mathbb{N}$) of semi-open (resp., α -open, θ -open, clopen) covers of *X* there exists a sequence ($\mathcal{B}_k : k \in \mathbb{N}$), where \mathcal{B}_k is a finite subset of \mathcal{A}_k for each *k*, such that $X = \bigcup_{k \in \mathbb{N}} \cup \mathcal{B}_k$.

The above properties are also written in a form of selection principle. Let \mathcal{A} and \mathcal{B} be the collections of subsets of a space X. Then a space X satisfies the selection principle : $S_{fin}(\mathcal{A}, \mathcal{B})$ (resp., $U_{fin}(\mathcal{A}, \mathcal{B})$) if for each sequence ($\mathcal{A}_k : k \in \mathbb{N}$) in \mathcal{A} there exists a sequence ($\mathcal{B}_k : k \in \mathbb{N}$), where for each k, \mathcal{B}_k is a finite subset of \mathcal{A}_k such that $\bigcup_{k\in\mathbb{N}} \mathcal{B}_k \in \mathcal{B}$ (resp., { $\bigcup \mathcal{B}_k : k = 1, 2, 3, ...$ } is in \mathcal{B}) (see, [14, 15]). Let O, CO, θ -O, α -O, s-O, denote the collection of all open, clopen, θ -open, α -open, semi-open covers of a space X, respectively. Then the Menger, mildly Menger, θ -Menger, α -Menger, semi-Menger, property of X is the property $S_{fin}(O, O)$, $S_{fin}(CO, CO)$, $S_{fin}(\theta$ -O, θ -O), $S_{fin}(\alpha$ -O, α -O), $S_{fin}(s$ -O, s-O), respectively.

In 1968, Velichko [32] introduced θ -closure operator to study *H*-closed spaces. For a subset *A* of a space *X*, the θ -closure of *A* denoted by $Cl_{\theta}(A)$ and defined as $Cl_{\theta}(A) = \{x \in X : \text{ for each neighbourhood } U \text{ of } x, Cl(U) \cap A \neq \phi\}$. A subset *A* of space *X* is called θ -closed if $Cl_{\theta}(A) = A$ and *A* is θ -open if its complement is θ -closed. Many papers have been published on θ -closure operator (see [3, 6, 7, 16, 21]). Recently, using the θ -closure operator Kočinac [13, Remark 3.6] generalized almost Menger and weakly Menger properties namely introduced θ -almost Menger and θ -weakly Menger properties, respectively. In this paper, we further continue the study of θ -Menger, θ -almost Menger and θ -weakly Menger properties.

2. θ -Menger spaces

For a topological space *X*, we denote:

- 1. Ω : the collection of ω covers of X: An open cover \mathcal{A} of X is a ω -cover if no element of \mathcal{A} contains X, and each finite subset of X is contained in some element of \mathcal{A} .
- θ-Ω: the collection of θ-ω-covers of X: A cover A of X is a θ-ω-cover if it is a θ-open cover of X such that no element of A contains X, and each finite subset of X is a subset of some element of A.
- 3. Γ : the collection of γ -covers of X: An infinite open cover \mathcal{A} of X is γ -cover if, for each x in X, the set $\{U \in \mathcal{A} : x \notin U\}$ is finite.
- 4. θ - Γ : the collection of θ - γ -covers of X: An infinite θ -open cover \mathcal{A} of X is θ - γ -cover if, for each x in X, the set { $U \in \mathcal{A} : x \notin U$ } is finite.

Theorem 2.1. For a space X the following statements are equivalent:

- 1. *X* has the θ -Menger property;
- 2. *X* satisfies $S_{fin}(\theta \Omega, \theta O)$.

Proof. $1 \Rightarrow 2$ It follows from the fact that each θ - ω -cover of X is a θ -open cover of X.

 $2 \Rightarrow 1$ Let $(\mathcal{A}_k : k \in \mathbb{N})$ be a sequence of θ -open covers of X. Let $\mathbb{N} = Y_1 \cup Y_2 \cup ... \cup Y_m \cup ...$ be a partition of \mathbb{N} into countably many pairwise disjoint infinite subsets. For each k, let \mathcal{B}_k contained all sets of the form $A_{k_1} \cup A_{k_2} \cup ... \cup A_{k_n}, k_1 \leq ... \leq k_n, k_i \in Y_k, A_{k_i} \in \mathcal{A}_k, i \leq n, n \in \mathbb{N}$. Then for each k, \mathcal{B}_k is a θ - ω -cover of X. Applying $S_{fin}(\theta - \Omega, \theta - O)$ on the sequence $(\mathcal{B}_k : k \in \mathbb{N})$, there is a sequence $(C_k : k \in \mathbb{N})$, where for each k, C_k is a finite subset of \mathcal{B}_k such that $X = \bigcup_{k \in \mathbb{N}} \cup \{C : C \in C_k\}$. Suppose $C_k = \{C_k^1, ..., C_k^{m_k}\}$, then from the construction, each $C_k^i = A_k^{k_{i_1}} \cup ..., \cup A_k^{k_{i_n}}$. Therefore for each k, we can construct a finite subset \mathcal{A}'_k of \mathcal{A}_k such that $\cup C_k \subseteq \cup \mathcal{A}'_k$. Hence X has the θ -Menger property. \Box

Sheepers et al. ([31, Theorem 3.9] proved the following equivalence.

Theorem 2.2. ([31]) For a space X the following statements are equivalent:

- 1. Every finite power of X has property $S_{fin}(O, O)$;
- 2. *X* has property $S_{fin}(\Omega, \Omega)$.

We prove the similar result for θ -Menger spaces in Theorem 2.7. In the following example we also observe that square of θ -Menger space need not be θ -Menger.

Example 2.3. There exists a θ -Menger space *X* such that X^2 is not θ -Menger.

Proof. Let $i: S \to \mathbb{R}$ be the identity map from the Sorgenfrey line *S* to the real line \mathbb{R} . If $A \subset \mathbb{R}$, then denote $A_S = i^{-1}(A)$. In [17], Lelek proved that L_S has the Menger property for each Lusin set *L* in \mathbb{R} . He also stated that if $(L \times L) \cap \{(a, b) : a + b = 0\}$ is an uncountable set, then $L_S \times L_S$ does not have the Menger property. Then L_S is a θ -Menger space but L_S^2 is not θ -Menger, $L_S \times L_S$ being a regular space and in regular spaces the θ -Menger property coincides with the Menger property. \Box

Recall that a space *X* is called extremally disconnected if the closure of each open set in *X* is open [25].

Lemma 2.4. Let X be an extremally disconnected space and A be a θ -open set in the product space X^k , $k \in \mathbb{N}$, then for each $(a_1, a_2, ..., a_k) \in A$, there exists θ -open set U_i containing a_i such that $(a_1, a_2, ..., a_k) \in \prod_{i=1}^k U_i \subseteq A$.

Proof. Let *A* be a θ -open set of X^k , $n \in \mathbb{N}$. Then for each $(a_1, a_2, ..., a_k) \in A$ there exists open set U_i containing a_i such that $(a_1, a_2, ..., a_k) \in \prod_{i=1}^k U_i \subseteq \prod_{i=1}^k Cl(U_i) \subseteq A$, moreover $Cl(U_i)$ is θ -open, *X* being an extremally disconnected. \Box

Proposition 2.5. Let X be an extremally disconnected space. For each θ - ω -cover \mathcal{A} of X^k , $k \in \mathbb{N}$, there exists a θ - ω -cover \mathcal{B} of X such that the θ -open cover $\{B^k : B \in \mathcal{B}\}$ of X^k refines \mathcal{A} .

Proof. Let \mathcal{A} be a θ - ω -cover of X^k . Let F be a finite subset of X, thus F^k is a finite subset of X^k . Then there is a θ -open set $A \in \mathcal{A}$ such that $F^k \subset A$. Since X is extremally disconnected, from Lemma 2.4, for each $(x_1, ..., x_k) \in F^k$, there is a θ -open set A_{x_i} containing x_i such that $(x_1, ..., x_k) \in \prod_{i=1}^k A_{x_i} \subset A$. For each $x \in F$, consider A_x is the intersection of all A_{x_i} containing x. Let $B_F = \bigcup_{x \in F} A_x$. Then B_F is a θ -open set of Xcontaining F, thus $F^k \subset B_F^k \subset A$. Put $\mathcal{B} = \{B_F : F \text{ is a finite subset of } X\}$. Then \mathcal{B} is a required θ - ω -cover of Xsuch that the θ -open cover $\{B^k : B \in \mathcal{B}\}$ refines \mathcal{A} . \Box

Theorem 2.6. Let X be an extremally disconnected space. If X has the property $S_{fin}(\theta - \Omega, \theta - \Omega)$, then for each $n \in \mathbb{N}$, X^n also has this property.

Proof. Let $(\mathcal{A}_k: k \in \mathbb{N})$ be a sequence of θ - ω -covers of X^n . Then by Proposition 2.5, for each k, there exists a θ - ω -cover \mathcal{B}_k of X such that $\{B^n: B \in \mathcal{B}_k\}$ refines \mathcal{A}_k . Now apply the condition $S_{fin}(\theta$ - Ω, θ - $\Omega)$ of X on the sequence $(\mathcal{B}_k: k \in \mathbb{N})$, for each k, there exists a finite subset C_k of \mathcal{B}_k such that $\bigcup_{k=1}^{\infty} C_k$ forms θ - ω -cover of X. Since for each k, $\{B^n: B \in \mathcal{B}_k\}$ refines \mathcal{A}_k , for each $C \in C_k$ there is a $A \in \mathcal{A}_k$ such that $C^n \subset A$. Hence for each k, we can find a finite subset \mathcal{A}'_k of \mathcal{A}_k such that $\bigcup_{k=1}^{\infty} \mathcal{A}'_k$ forms a θ - ω -cover of X^n . \Box

Theorem 2.7. For an extremally disconnected space X the following statements are equivalent:

- 1. Every finite power of X has the property $S_{fin}(\theta O, \theta O)$;
- 2. *X* has the property $S_{fin}(\theta \Omega, \theta \Omega)$.

Proof. (1) \Rightarrow (2) Already done by Kočinac [13, Theorem 3.12].

 $(2) \Rightarrow (1)$ The result follows directly from Theorem 2.6 and Theorem 2.1.

In [29] Scheepers proved that for a Lindelöf space, $S_{fin}(O, O) = U_{fin}(\Gamma, O)$. In the following theorem, we show the similar result for θ -Lindelöf spaces. First, recall that a space *X* is called θ -compact (resp., θ -Lindelöf) if each θ -open cover of *X* has finite (resp., countable) subcover.

Theorem 2.8. For a θ -Lindelöf space X, $S_{fin}(\theta - O, \theta - O)$ if and only if $U_{fin}(\theta - \Gamma, \theta - O)$.

Proof. The forward part is obvious. For the converse part, assume that *X* satisfies $U_{fin}(\theta - \Gamma, \theta - O)$. Let $(\mathcal{A}_k : k \in \mathbb{N})$ be a sequence of θ -open covers of *X*. We may assume that *X* is not θ -compact and for each $k \in \mathbb{N}$, \mathcal{A}_k is countably infinite with no finite subset which covers *X*. For each k, let $\mathcal{A}_k = (A_k^n : n = 1, 2, 3, ...)$. Thus $\mathcal{B}_k = \{B_m : B_m = \bigcup_{n=1}^m A_k^n, m \in \mathbb{N}\}$ forms θ - γ -cover of *X*. Since *X* satisfying $U_{fin}(\theta - \Gamma, \theta - O)$, choose a finite set C_k of \mathcal{B}_k , such that $\{\cup C_k : k \in \mathbb{N}\}$ is a θ -open cover of *X*. Then for each k, disassembling the members of C_k . Thus for each k, we can find a finite subset \mathcal{A}'_k of \mathcal{A}_k such that $\bigcup_{k=1}^{\infty} \mathcal{A}'_k$ forms θ -open cover of *X*. \Box

Definition 2.9. ([13, Definition 5.2]) A space *X* is called nearly Menger if for each sequence $(\mathcal{A}_k : k \in \mathbb{N})$ of open covers of *X* there is a sequence $(\mathcal{B}_k : k \in \mathbb{N})$ such that for each \mathcal{B}_k is a finite subset of \mathcal{A}_k and $X = \bigcup_{k \in \mathbb{N}} \bigcup \{Int(Cl(B)) : B \in \mathcal{B}_k\}.$

Each nearly-Menger space is almost Menger and Kočinac [13, Theorem 3.5] showed that an almost Menger space is θ -Menger. Thus we have the following implications:

semi-Menger $\Rightarrow \alpha$ -Menger \Rightarrow Menger \Rightarrow nearly Menger $\Rightarrow \theta$ -Menger \Rightarrow mildy Menger.

But the reverse implications do not hold in general. In the following example we show that a θ -Menger space need not be nearly-Menger. For the details about other reverse implications see [13, 24]

Example 2.10. Let $X = \{a, b, c_i, a_{ij}, b_{ij} : i \in A, j \in \mathbb{N}\}$, where $A = [0, \Omega)$ and Ω is the smallest uncountable ordinal number. We topololize X as follows: $B_{c_i}^n = \{c_i, a_{ij}, b_{ij}\}_{j \ge n}$, $B_a^{\alpha} = \{a, a_{ij}\}_{i \ge \alpha, j \in \mathbb{N}}$ and $B_b^{\alpha} = \{b, b_{ij}\}_{i \ge \alpha, j \in \mathbb{N}}$ are the fundamental system of neighborhoods of the points c_i, a, b respectively, and $\{a_{ij}\}, \{b_{ij}\}$ are isolated points. Then the space X is not nearly Menger ([24, Example 2.6]). Now, we show that the space X is θ -Menger. Let $(\mathcal{U}_k : k \in \mathbb{N})$ be a sequence of θ -open covers of X. For each k and each $x \in X$ there is an open set U'_x such that $x \in U'_x \subset Cl(U'_x) \subset U$ for some $U \in \mathcal{U}_k$. Put $\mathcal{U}'_k = \{U'_x : x \in X\}$. Then $(\mathcal{U}'_k : k \in \mathbb{N})$ is a sequence of open covers of X. For each k and each $x \in X$ there is an open set U'_x such that $x \in U'_x \subset Cl(U'_x) \subset U$ for some $U \in \mathcal{U}_k$. Put $\mathcal{U}'_k = \{U'_x : x \in X\}$. Then $(\mathcal{U}'_k : k \in \mathbb{N})$ is a sequence of open covers of X. For fixed $k_1 \in \mathbb{N}$, there are open sets U'_a , U'_b in \mathcal{U}'_{k_1} such that $a \in U'_a$ and $b \in U'_b$. Thus $\exists \alpha_1, \alpha_2 \in A$ such that $B_a^{\alpha_1} \subset U'_a, B_b^{\alpha_2} \subset U'_b$. It is clear that the set $X \setminus (\overline{B_a^{\alpha_1} \cup B_b^{\alpha_2}})$ is countable, hence the set $X \setminus (\overline{U'_a \cup U'_b})$ is also countable. Thus we can find a sequence $(\mathcal{V}'_k : k \in \mathbb{N} \setminus k_1)$, such that, $k \in \mathbb{N} \setminus k_1, \mathcal{V}'_k$ is a finite subset of \mathcal{U}'_k and $X \setminus (\overline{U'_a \cup U'_b}) \subset \bigcup_{k \in \mathbb{N} \setminus k_1} \cup \{Cl(V') : V' \in \mathcal{V}'_k\}$. Fixed $\mathcal{V}'_k = \{U'_a, U'_b\}$. Then we have a sequence $(\mathcal{V}'_k : k \in \mathbb{N})$, where for each k, \mathcal{V}'_k is a finite subset of \mathcal{U}_k such that $X = \bigcup_{k \in \mathbb{N}} \cup \{Cl(V') : V' \in \mathcal{V}'_k\}$. For each $V' \in \mathcal{V}'_k$ we can find a $U_{V'} \in \mathcal{U}_k$ such that $V' \subset Cl(V') \subset U_{V'}$. Let $\mathcal{W}_k = \{U_{V'} : V' \in \mathcal{V}'_k\}$, then for each k, \mathcal{W}_k is a finite subset of \mathcal{U}_k and $X = \bigcup_{k \in \mathbb{N}} \cup \mathcal{W}_k$. Hence X is a θ -Menger space.

Recall that a space *X* is called semi-regular [4] if for each element $x \in X$ and for each semi-closed set *U* such that $x \notin U$, there exist disjoint semi-open subsets *A* and *B* of *X* such that $x \in A$ and $U \subset B$.

Lemma 2.11. ([4]) For a space X the following statements are equivalent:

(i) X is semi-regular;

(ii) For each element $x \in X$ and $A \in SO(X)$ with $x \in A$, there is a $B \in SO(X)$ such that $x \in B \subset sCl(B) \subset A$, sCl(A) denotes the semi-closure of A.

Now we prove that for an extremally disconnected semi regular space, all the above mentioned variants of Menger property are equivalent.

Theorem 2.12. For extremally disconnected semi-regular spaces X, the following statements are equivalent:

- 1. X is semi-Menger;
- 2. X is α -Menger;
- 3. X is Menger;
- 4. X is nearly Menger;
- 5. *X* is θ -Menger;
- 6. X is mildly Menger.

Proof. Obviously $(1) \Rightarrow (2) \Rightarrow (3) \Rightarrow (4) \Rightarrow (5) \Rightarrow (6)$.

For (6) \Rightarrow (1), let ($\mathcal{A}_k : k \in \mathbb{N}$) be a sequence of semi-open covers of *X*. Then for each $x \in X$ there is a $B_{k,x} \in SO(X)$ such that $x \in B_{k,x} \subset sCl(B_{k,x}) \subset A$ for some $A \in \mathcal{A}_k$, *X* being a semi-regular space. Let for $k \in \mathbb{N}$, $\mathcal{B}_k = \{B_{k,x} : x \in X\}$. Then ($\mathcal{B}_k : k \in \mathbb{N}$), is a sequence of semi-open covers of *X*. Since *X* is extremally disconnected, from [8, Proposition 4.1], we have $B \subset Int(Cl(B))$ for each $B \in SO(X)$. Further, Cl(Int(Cl(B))) is a clopen subset of *X* for each $B \in SO(X)$. Put $C_k = \{Cl(Int(Cl(B))) : B \in \mathcal{B}_k\}$. Thus ($C_k : k \in \mathbb{N}$) is a sequence of clopen covers of *X*. As *X* is mildly Menger, there is a sequence $(C'_k : k \in \mathbb{N})$, where C'_k is a finite subset of C_k for each $k \in \mathbb{N}$ such that $\bigcup_{k \in \mathbb{N}} \bigcup C'_k = X$. Note that, $Int(Cl(A)) \subset sCl(A)$ for each subset *A* of space *X* and by extremal disconnectedness of *X*, sCl(A) = Cl(A) for each $A \in SO(X)$. Then from the above construction, for each $C' \in C'_k$ there is a $A_{C'} \in \mathcal{A}_k$ such that $C' \subset A_{C'}$. Thus for $k \in \mathbb{N}$, let $\mathcal{A}'_k = \{A_{C'} : C' \in C'_k\}$. Hence for each k, \mathcal{A}'_k is a finite subset of \mathcal{A}_k such that $\bigcup_{k \in \mathbb{N}} \bigcup \mathcal{A}'_k = X$. This means that *X* is semi-Menger. \Box

In the following examples, we show that the extremally disconnectedness and semi-regularity are necessary conditions in Theorem 2.12.

Example 2.13. Consider the real line \mathbb{R} with usual topology. Then clearly, \mathbb{R} is not an extremally disconnected space but it is semi-regular mildly Menger space being a regular Menger space. On the other hand, \mathbb{R} is not semi-Menger [26].

Example 2.14. Let *X* be an uncountable cofinite space, that is uncountable set *X* with cofinite topology. Then *X* is an extremally disconnected mildly Menger space. On the other hand *X* it not semi-Menger, since a semi-open cover $\{X \setminus \{x\} : x \in X\}$ has no countable subcover.

Since in extremally disconnected spaces, zero-dimensionality is equivalent to semi-regularity [25, Theorem 6.4], we have the following corollary:

Corollary 2.15. For extremally disconnected, zero-dimensional spaces X, the following statements are equivalent:

- 1. X is semi-Menger;
- 2. *X* is α -Menger;
- 3. X is Menger;
- 4. X is nearly Menger;
- 5. *X* is θ -Menger;
- 6. X is mildly Menger.

A space *X* is called *S*-paracompact [1] if for each open cover of *X* has a locally finite semi-open refinement. A Hausdorff *S*-paracompact space *X* is semi-regular [1, Corollary 2.3]. Hence all the properties mentioned in Theorem 2.12 are also equivalent for an extremally disconnected Hausdorff *S*-paracompact space.

It may be noted that the Stone-Čech compactification of a discrete space is extremally disconnected compact Hausdorff space. Then the class of Stone-Čech compactifications of discrete spaces is a subclass of extremally disconnected S-paracompact Hausdorff spaces which is in turn the subclass of extremally disconnected semi-regular spaces.

Theorem 2.16. For a space *X*, the following statements are equivalent:

- 1. X is θ -Menger;
- 2. For each non-empty subset A of X and for each sequence $(\mathcal{U}_k : k \in \mathbb{N})$ of collections of θ -open sets in X such that $Cl_{\theta}(A) \subset \cup \mathcal{U}_k$, $k \in \mathbb{N}$, there is a sequence $(\mathcal{V}_k : k \in \mathbb{N})$, for each $k \in \mathbb{N}$, \mathcal{V}_k is a finite subset of \mathcal{U}_k such that $A \subset \bigcup_{k \in \mathbb{N}} \cup \mathcal{V}_k$.

Proof. $2 \Rightarrow 1$ obvious.

1 ⇒ 2 Let *A* be a non-empty subset of *X* and ($\mathcal{U}_k : k \in \mathbb{N}$) is a sequence of collections of θ -open sets in *X* such that $Cl_{\theta}(A) \subset \cup \mathcal{U}_k, k \in \mathbb{N}$. For each $k \in \mathbb{N}$, put $\mathcal{V}_k = \mathcal{U}_k \cup \{X \setminus Cl_{\theta}(A)\}$. Then ($\mathcal{V}_k : k \in \mathbb{N}$) is a sequence of θ -open covers of *X*. By assumption *X* is θ -Menger, there exists a sequence ($\mathcal{V}'_k : k \in \mathbb{N}$) such that \mathcal{V}'_k is a finite subset of \mathcal{V}_k for each $k \in \mathbb{N}$ and $\bigcup_{k \in \mathbb{N}} \cup \mathcal{V}'_k = X$. Consider $\mathcal{U}'_k = \mathcal{V}'_k \setminus \{X \setminus Cl_{\theta}(A)\}$. Then ($\mathcal{U}'_k : k \in \mathbb{N}$) is a sequence of θ -open sets in *X*, where for each $k \in \mathbb{N}$, \mathcal{U}'_k is finite subset of \mathcal{U}_k such that with $A \subset \bigcup_{k \in \mathbb{N}} \cup \mathcal{U}'_k$. \Box

In the next theorem we provide a sufficient condition for a space to be θ -Menger.

Theorem 2.17. A space X is θ -Menger if for each sequence $(\mathcal{A}_k : k \in \mathbb{N})$ of closed covers of X there exists a sequence $(\mathcal{B}_k : k \in \mathbb{N})$, where for each k, \mathcal{B}_k is a finite subset of \mathcal{A}_k , such that $X = \bigcup_{k \in \mathbb{N}} \cup \mathcal{B}_k$.

Proof. Let $(\mathcal{A}_k : k \in \mathbb{N})$ be a sequence of θ -open covers of X. For each $x \in X$ and each $k \in \mathbb{N}$ there exists a $A_{x,k} \in \mathcal{A}_k$ and an open set $B_{x,k}$ such that $x \in B_{x,k} \subset \overline{B_{x,k}} \subset A_{x,k}$. For each k, put $\mathcal{B}_k = \{\overline{B_{x,k}} : x \in X\}$. Then $(\mathcal{B}_k : k \in \mathbb{N})$ is a sequence of closed covers of X. From the assumption, there is a sequence $(C_k : k \in \mathbb{N})$, where for each k, C_k is a finite subset of \mathcal{B}_k , such that $X = \bigcup_{k \in \mathbb{N}} \cup C_k$. Since for each $C_k \in C_k$, there is a $A'_{C_k} \in \mathcal{A}_k$ such that $C_k \subset A'_{C_k}$. Let for $k \in \mathbb{N}$, $\mathcal{A}'_k = \{A'_{C_k} : C_k \in C_k\}$. Thus for each k, \mathcal{A}'_k is a finite subset of \mathcal{A}_k such that $\bigcup C_k \subset \bigcup \mathcal{A}'_k$. Hence X is θ -Menger space. \Box

A space *X* is called almost Menger [11], if for each sequence $(\mathcal{A}_k : k \in \mathbb{N})$ of open covers of *X* there exists a sequence $(\mathcal{B}_k : k \in \mathbb{N})$, where \mathcal{B}_k is a finite subset of \mathcal{A}_k for each $k \in \mathbb{N}$, such that $\bigcup_{k \in \mathbb{N}} \cup \{\overline{B} : B \in \mathcal{B}_k\} = X$.

We prove that for the class of an extremally disconnected spaces the θ -Menger property is equivalent to the almost-Menger property:

Theorem 2.18. For an extremally disconnected space X, the following statements are equivalent:

- 1. *X* is θ -Menger; item For each sequence ($\mathcal{A}_k : k \in \mathbb{N}$) of θ -open covers of *X* there exists a sequence ($\mathcal{B}_k : k \in \mathbb{N}$), where for each $k \in \mathbb{N}$, \mathcal{B}_k is a finite subset of \mathcal{A}_k , such that $\bigcup_{k \in \mathbb{N}} \cup \{\overline{B} : B \in \mathcal{B}_k\} = X$;
- 2. X is almost Menger.

Proof. (1) \Rightarrow (2) Obvious.

 $(2) \Rightarrow (3)$ Let $(\mathcal{A}_k : k \in \mathbb{N})$ be a sequence of open covers of *X*. Since *X* is extremally disconnected, for each $k, \mathcal{A}'_k = \{\overline{A} : A \in \mathcal{A}_k\}$ is a θ -open cover of *X*. Thus $(\mathcal{A}'_k : k \in \mathbb{N})$ is a sequence of θ -open covers of *X*. From the assumption, there exists a sequence $(\mathcal{B}_k : k \in \mathbb{N})$, where for each k, \mathcal{B}_k is a finite subset of \mathcal{A}_k , such that $\bigcup_{k \in \mathbb{N}} \cup \{\overline{B} : B \in \mathcal{B}_k\} = X$. Thus *X* is almost Menger.

 $(3) \Rightarrow (1)$ It is proved in [13, Theorem 3.5]. \Box

3. θ -almost Menger and θ -weakly Menger spaces

In this section we studied θ -almost Menger and θ -weakly Menger spaces. First we recall some definitions.

A space *X* is said to be weakly Menger [2] if for each sequence $(\mathcal{A}_k : k \in \mathbb{N})$ of open covers of *X* there is a sequence $(\mathcal{B}_k : k \in \mathbb{N})$ such that for each *k*, \mathcal{B}_k is a finite subset of \mathcal{A}_k and $X = Cl(\bigcup_{k \in \mathbb{N}} \cup \mathcal{B}_k)$.

Definition 3.1. ([13, Remark 3.6]) A space *X* is said to be θ -almost Menger (resp., θ -weakly Menger) if for each sequence ($\mathcal{A}_k : k \in \mathbb{N}$) of open covers of *X* there is a sequence ($\mathcal{B}_k : k \in \mathbb{N}$), where for each *k*, \mathcal{B}_k is a finite subset of \mathcal{A}_k , such that $X = \bigcup_{k \in \mathbb{N}} \cup \{Cl_{\theta}(Cl(B)) : B \in \mathcal{B}_k\}$, (resp., $X = Cl_{\theta}(Cl(\bigcup_{k \in \mathbb{N}} \cup \mathcal{B}_k)))$).

From the definitions it is clear that each θ -almost Menger space is θ -weakly Menger. In the following example, we show that weakly Menger (hence θ -weakly Menger) space need not be θ -almost Menger.

Example 3.2. There is a Tychonoff weakly Menger (hence, θ -weakly Menger) space which is not θ -almost Menger.

Proof. Let *D* be a discrete space with cardinality ω_1 , and $D^* = D \cup \{d^*\}$ is an one-point compactification of *D*, where $d^* \notin D$, let

$$X = (D^* \times [0, \omega]) \setminus \{ < d^*, \omega > \}$$

be the subspace of the product space $D^* \times [0, \omega]$.

Note that, $D^* \times \omega$ is a σ -compact dense subset of *X*, that means the space *X* is weakly Menger (hence θ -weakly Menger).

Now, we prove that the space *X* is not an θ -almost Menger. We enumerate *D* as $\{d_{\alpha} : \alpha < \omega_1\}$ because cardinality of *D* is ω_1 . Let $A_{\alpha} = \{d_{\alpha}\} \times [0, \omega]$, for each $\alpha < \omega_1$. Then

$$A_{\alpha} \cap A_{\alpha'} = \phi$$
 if $\alpha \neq \alpha'$, and $Cl_{\theta}(Cl(A_{\alpha})) = A_{\alpha}$ for each $\alpha < \omega_1$.

Let $B_k = D^* \times \{k\}$, for each $k \in \omega$. Then

$$Cl_{\theta}(Cl(B_k)) = B_k$$
 for each $k \in \omega$.

Let

$$\mathcal{A}_k = \{A_\alpha : \alpha < \omega_1\} \cup \{B_k : k \in \omega\}, \text{ for each } k \in \mathbb{N}.$$

Observe that for each $k \in \mathbb{N}$, \mathcal{A}_k is an open cover of the space *X*. Let us consider the sequence $(\mathcal{A}_k : k \in \mathbb{N})$ of open covers of *X*.

Claim: For any sequence $(\mathcal{B}_k : k \in \mathbb{N})$, where \mathcal{B}_k is a finite subset of \mathcal{A}_k for each $k \in \mathbb{N}$, $\bigcup_{k \in \mathbb{N}} \cup \{Cl_{\theta}(Cl(B)) : B \in \mathcal{B}_k\} \neq X$.

Let $(\mathcal{B}_k : k \in \mathbb{N})$ be any sequence, where for each k, \mathcal{B}_k is a finite subset of \mathcal{A}_k . Since \mathcal{B}_k is a finite subset of \mathcal{A}_k for each $k \in \mathbb{N}$, then there is a $\alpha_k < \omega_1$ such that $A_\alpha \notin \mathcal{B}_k$ for each $\alpha > \alpha_k$. Put $\alpha' = sup\{\alpha_k : k \in \mathbb{N}\}$. Then $\alpha' < \omega_1$. We can choose $\alpha_0 > \alpha'$. Then

$$< d_{\alpha_0}, \omega > \notin \bigcup_{k \in \mathbb{N}} \bigcup \{Cl_{\theta}(Cl(B)) : B \in \mathcal{B}_k\}.$$

Note that, A_{α_0} is the only element of \mathcal{A}_k which contain $\langle d_{\alpha_0}, \omega \rangle$ for each $k \in \mathbb{N}$. It is easy to see that $\bigcup_{k \in \mathbb{N}} \cup \{B : B \in \mathcal{B}_k\} = \bigcup_{k \in \mathbb{N}} \cup \{Cl_{\theta}(Cl(B)) : B \in \mathcal{B}_k\}$ from the construction of the sequence $(\mathcal{A}_k : k \in \mathbb{N})$ of open covers of *X*. Thus $\langle d_{\alpha_0}, \omega \rangle \notin \bigcup_{k \in \mathbb{N}} \cup \{Cl_{\theta}(Cl(B)) : B \in \mathcal{B}_k\}$ that means the space *X* is not an θ -almost Menger. \Box

Recall that a topological space *X* is said to be *P*-space [10] if every intersection of countably many open sets of *X* is open. For *P*-spaces, we prove the following result:

Theorem 3.3. Let X be a θ -weakly Menger P-space, then X is θ -almost Menger.

Proof. Let $(\mathcal{A}_k : k \in \mathbb{N})$ be a sequence of open covers of *X*. Since the space *X* is θ -weakly Menger, then for each *k*, there exists a finite subset \mathcal{B}_k of \mathcal{A}_k such that $X = Cl_{\theta}(Cl(\bigcup_{k \in \mathbb{N}} \cup \mathcal{B}_k))$. Since *X* is a *P*-space, $\bigcup_{k \in \mathbb{N}} \cup \{Cl(B) : B \in \mathcal{B}_k\}$ is a closed subset of *X* and $Cl(\bigcup_{k \in \mathbb{N}} \cup \mathcal{B}_k)$ is the least closed set contains $\bigcup_{k \in \mathbb{N}} \cup \mathcal{B}_k$, hence $Cl(\bigcup_{k \in \mathbb{N}} \cup \mathcal{B}_k) \subseteq \bigcup_{k \in \mathbb{N}} \cup \{Cl(B) : B \in \mathcal{B}_k\}$. Also observe that if $x \notin \bigcup_{k \in \mathbb{N}} \cup \{Cl_{\theta}(Cl(B)) : B \in \mathcal{B}_k\}$, then $x \notin Cl_{\theta}(\bigcup_{k \in \mathbb{N}} \cup \{Cl(B) : B \in \mathcal{B}_k\})$. Thus, we have $X = Cl_{\theta}(Cl(\bigcup_{k \in \mathbb{N}} \cup \mathcal{B}_k)) \subseteq Cl_{\theta}(\bigcup_{k \in \mathbb{N}} \cup \{Cl(B) : B \in \mathcal{B}_k\}) =$ $\bigcup_{k \in \mathbb{N}} \cup \{Cl_{\theta}(Cl(B)) : B \in \mathcal{B}_k\}$. Hence *X* is θ -almost Menger. \Box

However in general, it remains open question whether a θ -almost Menger space is almost Menger or not. But in the following results, we provide a class of spaces in which θ -almost Menger property is equivalent to almost Menger property.

Theorem 3.4. *X* is an extremally disconnected almost Menger space if and only if X is θ -almost Menger.

Proof. The forward part is obvious. Conversely, let $(\mathcal{A}_k : k \in \mathbb{N})$ be a sequence of open covers of X. Since X is θ -almost Menger, there exists a sequence $(\mathcal{B}_k : k \in \mathbb{N})$, where \mathcal{B}_k is a finite subset of \mathcal{A}_k for each $k \in \mathbb{N}$, such that $X = \bigcup_{k \in \mathbb{N}} \cup \{Cl_{\theta}(Cl(B)) : B \in \mathcal{B}_k\}$. Also by the extremally disconnectedness of X, $Cl_{\theta}(Cl(B)) = Cl(B)$ for each open set B of X. Hence $X = \bigcup_{k \in \mathbb{N}} \cup \{Cl(B) : B \in \mathcal{B}_k\}$. \Box

Theorem 3.5. Let X be a regular θ -almost Menger space, then X is Menger.

Proof. Let $(\mathcal{A}_k : k \in \mathbb{N})$ be a sequence of open covers of *X*. Since *X* is regular, for each *k* and for each $x \in X$ there exist open sets $B_{x,k}, C_{x,k}$ such that $x \in C_{x,k} \subset Cl(C_{x,k}) \subset B_{x,k} \subset Cl(B_{x,k}) \subset A$ for some $A \in \mathcal{A}_k$. Thus for $k \in \mathbb{N}, C_k = \{C_{x,k} : x \in X\}$ is an open cover of *X*. Also *X* is θ -almost Menger, there is a sequence $(C'_k : k \in \mathbb{N})$, where for each *k*, C'_k is a finite subset of C_k such that $\bigcup_{k \in \mathbb{N}} \bigcup \{Cl_\theta(Cl(C')) : C' \in C'_k\} = X$. For each *k*, for each $C'_{k,x} \in C'_k$, there is an open set $B_{k,x}$ and $A_{C'_{x,k}} \in \mathcal{A}_k$ such that $Cl(C'_{x,k}) \subset B_{x,k} \subset Cl(B_{x,k}) \subset A_{C_{x,k}}$. Thus $Cl_\theta(Cl(C'_{x,k})) \subseteq Cl(B_{x,k}) \subset A_{C'_{x,k}}$. Let $\mathcal{A}'_k = \{A_{C'_{x,k}} : C'_{x,k} \in C'_k\}$. Then the sequence $(\mathcal{A}'_k : k \in \mathbb{N})$ witnesses that the space *X* is Menger. \Box

5081

From Theorem 3.3 and Theorem 3.5, we have the following corollary:

Corollary 3.6. *Let X be a regular P-space. Then the following statements are equivalent:*

- 1. X is θ -Menger;
- 2. X is Menger;
- 3. *X* is almost Menger;
- 4. X is weakly Menger;
- 5. X is θ -weakly Menger;
- 6. *X* is θ -almost Menger.

From the following examples, it is clear that θ -almost Menger (θ -weakly Menger) properties are not hereditary.

Example 3.7. A closed subset of an θ -weakly Menger space need not be θ -weakly Menger.

Proof. Let \mathbb{R} be the set of real numbers, \mathbb{Q} and \mathbb{I} denotes the set of rational and irrational numbers respetively. For each $a \in \mathbb{I}$, we choose a sequence $\{a_i : i \in \omega\}$ of rational numbers which converge to a in the Euclidean topology. The rational sequence topology τ (see [30], Example 65) is defined as declaring each rational open and the sets $A_k(a) = \{a_{k,i} : i \in \omega\} \cup \{a\}$ as a basis for the irrational point a. Then the set \mathbb{I} is a closed subset of (\mathbb{R}, τ) and as a subspace \mathbb{I} is not θ -weakly Menger, \mathbb{I} being an uncountable discrete subspace. On the other hand, (\mathbb{R}, τ) is θ -weakly Menger, because \mathbb{Q} is a countable dense subset of (\mathbb{R}, τ) . \Box

Example 3.8. Let *X* be the same space as in [28, Example 2.1]: Consider $U = \{u_{\alpha} : \alpha < \omega_1\}$, $V = \{v_i : i \in \omega\}$ and $W = \{\langle u_{\alpha}, v_i \rangle : \alpha < \omega_1, i \in \omega\}$, where ω , ω_1 are the first infinite cardinal and the first uncountable cardinal respectively. Let $X = \{x\} \cup W \cup U$, where *x* does not belongs to $W \cup U$. We topologize *X* as follows: the basic neighborhood of *x* is of the form $A_x(\alpha) = \{x\} \cup \bigcup \{\langle u_{\beta}, v_i \rangle : \beta > \alpha, i \in \omega\}$, $\alpha < \omega_1$, for $u_{\alpha} \in U$ for each $\alpha < \omega_1$, the basic neighborhood of u_{α} is of the form $A_{u_{\alpha}}(i) = \{u_{\alpha}\} \cup \{\langle u_{\alpha}, v_j \rangle : j \geq i\}$, $i \in \omega$, and each member of *W* are isolated. In [28] Song showed that *X* is an almost Menger space having uncountable discrete closed subset, $U = \{u_{\alpha} : \alpha < \omega_1\}$. Thus *X* is a θ -almost Menger space need not be θ -almost Menger.

Proposition 3.9. The closed and open subspace of θ -almost Menger space is θ -almost Menger.

Proof. Let *Y* be a closed and open subspace of the space *X*, let $(\mathcal{A}_k : k \in \mathbb{N})$ be a sequence of open covers of *Y*. Then for each $k, \mathcal{B}_k = \mathcal{A}_k \cup \{X \setminus Y\}$ is an open cover of *X*. Since *X* is θ -almost Menger, for each *k* there is a finite subset \mathcal{B}'_k of \mathcal{B}_k such that $X = \bigcup_{k \in \mathbb{N}} \cup \{Cl_{\theta}(Cl(\mathcal{B}')) : \mathcal{B}' \in \mathcal{B}_k\}$. Since *Y* is a closed and open subspace *X*, $Cl_{\theta}(Cl(X \setminus Y)) = X \setminus Y$ and $Cl(U) \subset Y$ for each open subset *U* of *Y*, which implies that $Cl_{\theta}(Cl(\mathcal{B})) \subseteq Cl_{\theta_Y}(Cl_Y(\mathcal{B}))$ for each open set *B* of *Y*. Thus, $Y \subseteq \bigcup_{k \in \mathbb{N}} \cup \{Cl_{\theta}(Cl(\mathcal{B}')) : \mathcal{B}' \in \mathcal{B}'_k \setminus \{X \setminus Y\}\} \subseteq \bigcup_{k \in \mathbb{N}} \cup \{Cl_{\theta_Y}(Cl_Y(\mathcal{B}')) : \mathcal{B}' \in \mathcal{B}'_k \setminus \{X \setminus Y\}\}$. Hence *Y* is θ -almost Menger. \Box

Similarly, we can prove that closed and open subset of a θ -weakly Menger space is θ -weakly Menger.

Note that, from Theorem 3.5 and Example 2.3, it is clear that the product space X^2 of a θ -almost Menger space X need not be θ -almost Menger. In the following theorem we give the necessary and sufficient conditions for the product space X^k to be θ -almost Menger for each $k \in \mathbb{N}$.

Theorem 3.10. Let X be a topological space. Then the product space X^n is θ -almost Menger for each $n \in \mathbb{N}$ if and only if for each sequence $(\mathcal{A}_k : k \in \mathbb{N})$ of ω -covers of X there exists a sequence $(\mathcal{B}_k : k \in \mathbb{N})$, where for each k, \mathcal{B}_k is a finite subset of \mathcal{A}_k , such that for every finite set $F \subset X$, there exists $k \in \mathbb{N}$, such that $F \subset Cl_{\theta}(Cl(\mathcal{B}))$ for some $B \in \mathcal{B}_k$.

Proof. Let for each $n \in \mathbb{N}$, X^n be an θ -almost Menger space. Let $(\mathcal{A}_k : k \in \mathbb{N})$ be a sequence of ω -covers of X. Let $\mathbb{N} = N_1 \cup N_2 \cup ... \cup N_n \cup \cdots$ be a partition of \mathbb{N} into countably many pairwise disjoint infinite subsets. For each $n \in \mathbb{N}$ and each $j \in N_n$, let $\mathcal{B}_j = \{A^n : A \in \mathcal{A}_j\}$. Then $(\mathcal{B}_j : j \in N_n)$ is a sequence of

open covers of X^n . Since for $n \in \mathbb{N}$, X^n is θ -almost Menger, we can find a sequence $(C_j : j \in N_n)$ such that for each j, $C_j = \{A_{j_1}^n, A_{j_2}^n, ..., A_{j_{k(j)}}^n\}$ is a finite subset of \mathcal{B}_j and $X^n = \bigcup_{j \in N_n} \{Cl_\theta(Cl(C)) : C \in C_j\}$. Let $F = \{x_1, x_2, ..., x_q\}$ be a finite subset of X. Then $(x_1, x_2, ..., x_q) \in X^q$, there is a $r \in N_q$ and $1 \le l \le k(r)$ such that $(x_1, x_2, ..., x_q) \in Cl_\theta(Cl(A_{r_l}^q)) = (Cl_\theta(Cl(A_{r_l})))^q$. Hence $F \subset Cl_\theta(Cl(A_{r_l}))$.

Conversely, let $n \in \mathbb{N}$ be fixed and $(\mathcal{A}_k : k \in \mathbb{N})$ be a sequence of open covers of X^n , where $\mathcal{A}_k = \{A_{k,j} : j \in J_k\}$, J_k is an indexing set. Let $F \subset X$ be a finite set. Then F^n is a finite subset of X^n , thus compact subset of X^n . Then for each k, there exists a finite subset J_k^F of J_k such that $F^n \subset \bigcup_{j \in J_k^F} A_{k,j}$. By the Wallace theorem (see 3.2.10. [5]), there is an open set B_F in X such that $F \subset B_F$ and $B_F^n \subset \bigcup_{j \in J_k^F} A_{k,j}$. For each k, put $\mathcal{B}_k = \{B_F : F \text{ is a finite subset of } X\}$. Thus $(\mathcal{B}_k : k \in \mathbb{N})$ is a sequence of ω -covers of X. From the assumption, there exists a sequence $(C_k : k \in \mathbb{N})$, where for each k, C_k is a finite subset of \mathcal{B}_k such that for every finite subset F of X, there is $k \in \mathbb{N}$, such that $F \subset Cl_{\theta}(Cl(\mathbb{C}))$ for some $C \in C_k$. Let $\mathcal{H}_k = \{A_{k,j} : j \in J_k^F, F \subset B_F \in C_k\}$. Then for each k, \mathcal{H}_k is a finite subset of \mathcal{A}_k . Let $x = (x_1, ..., x_n) \in X^n$. Thus $F = \{x_1, ..., x_n\}$ is a finite subset of X, there exists a $k \in \mathbb{N}$ and $C \in C_k$ such that $F \subset Cl_{\theta}(Cl(\mathbb{C}))$. Since $C \in C_k$, then $C = B_{F'}$, for some finite subset F' of X such that $B_{F'}^n \subset \bigcup_{j \in J_k^F} A_{k,j}$. We have $F^n \subset Cl_{\theta}(Cl(B_{F'}))^n = Cl_{\theta}(Cl(B_{F'})) \subset Cl_{\theta}(Cl(\bigcup_{j \in J_k^F} A_{k,j})) = \bigcup_{j \in J_k^F} Cl_{\theta}(Cl(A_{k,j}))$, hence $X^n \subseteq \bigcup_{k \in \mathbb{N}} \cup \{Cl_{\theta}(Cl(H)) : H \in \mathcal{H}_k\}$. That means X^n is almost Menger. \Box

4. Preservation properties

In this section, we study the preservation of θ -almost Menger property under varies type of mappings.

Theorem 4.1. The continuous image of θ -almost Menger space is θ -almost Menger.

Proof. Let $f : X \to Y$ be a continuous map from an θ -almost Menger space onto a space Y. Let $(\mathcal{A}_k : k \in \mathbb{N})$ be a sequence of open covers of Y. Then for each k, $\{f^{-1}(A) : A \in \mathcal{A}_k\}$ is an open cover of X. Since X is an almost Menger, for each k, there exists a finite subset \mathcal{B}_k of \mathcal{A}_k such that $X = \bigcup_{k \in \mathbb{N}} \cup \{Cl_{\theta}(Cl(f^{-1}(B)) : B \in \mathcal{B}_k\})$. Thus we have, $Y = f(X) = f(\bigcup_{k \in \mathbb{N}} \cup \{Cl_{\theta}(Cl(f^{-1}(B)) : B \in \mathcal{B}_k\}) = \bigcup_{k \in \mathbb{N}} \cup \{f(Cl_{\theta}(Cl(f^{-1}(B)))) : B \in \mathcal{B}_k\}$. From the continuity of f it follows that for each $y \in f(Cl_{\theta}(Cl(f^{-1}(B))))$ and each neighbourhood U of $y, Cl(U) \cap Cl(B) \neq \emptyset$ that means $y \in Cl_{\theta}(Cl(B))$. Then $\bigcup_{k \in \mathbb{N}} \cup \{f(Cl_{\theta}(Cl(f^{-1}(B)))) : B \in \mathcal{B}_k\} \subseteq \bigcup_{k \in \mathbb{N}} \cup \{Cl_{\theta}(Cl((B)))) : B \in \mathcal{B}_k\}$. Hence Y is θ -almost Menger. \Box

We show that the preimage of an θ -almost Menger space under a closed continuous map need not be θ -almost Menger. Recall the Alexandroff duplicate A(X) of a space X: The underlying set of A(X) is $X \times \{0, 1\}$ which is topologized as follows: let U be a neighborhood of x in X then a basic neighborhood of a point $\langle x, 0 \rangle \in X \times \{0\}$ is of the form $(U \times \{0\}) \cup ((U \times \{1\}) \setminus \{\langle x, 1 \rangle\})$ and each points of $X \times \{1\}$ is isolated.

Example 4.2. The preimage of a θ -almost Menger space under a closed continuous map need not be θ -almost Menger.

Proof. Let *X* be the same space as Example 3.8. Since $U = \{u_{\alpha} : \alpha < \omega_1\}$ is an uncountable discrete closed subset of *X*. Then the Alexandroff duplicate A(X) of *X* is not θ -almost Menger, since $U \times \{1\}$ is an uncountable infinite discrete closed and open set in A(X) and every open and closed subset of an θ -almost Menger space is θ -almost Menger. Let us consider the projection map $f : A(X) \to X$. Then *f* is a required closed continuous map. \Box

Definition 4.3. A map $f : X \to Y$ said to be θ -almost open if for each open subset A of Y, $f^{-1}(Cl_{\theta}(Cl(A))) \subseteq Cl_{\theta}(Cl(f^{-1}(A)))$.

A map *f* is called θ -open [27] if the image of every open set is θ -open. It may be noted that injective θ -open maps are θ -almost open.

Theorem 4.4. Let $f : X \to Y$ be an θ -almost open, perfect continuous map and Y is an θ -almost Menger space, then X is θ -almost Menger.

Proof. Let $(\mathcal{A}_k : k \in \mathbb{N})$ be a sequence of open covers of *X*. Let $y \in Y$, since $f^{-1}(y)$ is compact, for each $k \in \mathbb{N}$ there is a finite sub-collection \mathcal{A}_{k_y} of \mathcal{A}_k such that $f^{-1}(y) \subset \bigcup \mathcal{A}_{k_y}$ and for each $A \in \mathcal{A}_{k_y}, A \cap f^{-1}(y) \neq \phi$. Let $B_{k_y} = Y \setminus f(X \setminus \bigcup \mathcal{A}_{k_y})$. Since *f* is closed, B_{k_y} is an open neighbourhood of *y* in *Y* such that $f^{-1}(B_{k_y}) \subseteq \bigcup \{A : A \in \mathcal{A}_{k_y}\}$. For each $k \in \mathbb{N}$, put $\mathcal{B}_k = \{B_{k_y} : y \in Y\}$. Thus $(\mathcal{B}_k : k \in \mathbb{N})$ is a sequence of open covers of *Y*. Since *Y* is an θ -almost Menger space, there is a sequence $(\mathcal{B}'_k : k \in \mathbb{N})$, where for each k, \mathcal{B}'_k is a finite subset of \mathcal{B}_k such that $\bigcup_{k \in \mathbb{N}} \bigcup \{Cl_\theta(Cl(B')) : B' \in \mathcal{B}'_k\} = Y$. By the above construction there is a sequence $(\mathcal{A}'_k : k \in \mathbb{N})$, where for each k, \mathcal{A}'_k is finite subset of \mathcal{A}_k , such that $\bigcup \{f^{-1}(B') : B' \in \mathcal{B}'_k\} \subseteq \bigcup \{A' : A' \in \mathcal{A}'_k\}$. Then we have,

 $\begin{aligned} X &= f^{-1}(Y) = f^{-1}(\bigcup_{k \in \mathbb{N}} \cup \{Cl_{\theta}(Cl(B')) : B' \in \mathcal{B}'_{k}\}) \\ &= \bigcup_{k \in \mathbb{N}} \cup \{f^{-1}(Cl_{\theta}(Cl(B'))) : B' \in \mathcal{B}'_{k}\} \\ &\subseteq \bigcup_{k \in \mathbb{N}} \cup \{Cl_{\theta}(Cl(f^{-1}(B'))) : B' \in \mathcal{B}'_{k}\} \\ &\subseteq \bigcup_{k \in \mathbb{N}} \cup \{Cl_{\theta}(Cl(A')) : A' \in \mathcal{A}'_{k}\}. \end{aligned}$

Hence *X* is θ -almost Menger. \Box

Acknowledgements

The authors would like to thanks the referees for their careful reading and comments on the paper.

References

- [1] K.Y. Al-zoubi, S-paracompact spaces, Acta Math. Hungarica 110 (2006) 165–174.
- [2] P. Daniels, Pixley-Roy spaces over subsets of the reals, Topol Appl. 29 (1988) 93-106.
- [3] R.F. Dickman, J.R. Porter, θ -closed subsets of Hausdorff spaces, Pac. J. Appl. Math. 59 (1975) 407–415.
- [4] C. Dorsett, Semi-regular spaces, Soochow J. Math. 8 (1982) 45–53.
- [5] R. Engelking, General Topology, PWN, Warszawa, 1977
- [6] M.S. Espelie, J.E. Joseph, Some properties of θ-Closure, Can. J. Math. 32 (1981) 142–149.
- [7] D. Evans, Role of θ -closure in the study of *H*-closed spaces, Thesis, Morgan State University.
- [8] D. Janković, A note on mappings of extremally disconnected spaces, Acta Math. Hungarica 46 (1985) 83–92.
- [9] D. Kocev, Almost Menger and related spaces, Mat. Vesnik 61 (2009) 173–180.
- [10] D. Kocev, Menger-type covering properties of topological spaces, Filomat 29 (2015) 99–106.
- [11] Lj.D.R. Kočinac, Star-Menger and related spaces, II, Filomat 13 (1999) 129-140.
- [12] Lj.D.R. Kočinac, On mildly Hurewicz spaces, Internat. Math. Forum 11 (2016) 573–582.
- [13] Lj.D.R. Kočinac, Generalized open sets and selection properties, Filomat 33 (2019) 1485–1493.
- [14] Lj.D.R. Kočinac, Variations of classical selection principles: an overview, Quaest. Math. 43 (2020) 1121–1153.
- [15] Lj.D.R. Kočinac, Selected results on selection principles, In: Proc. Third Sem. Geometry Topology, July 15-17, 2004, Tabriz, Iran, 71–104.
- [16] J.K. Kohli, A.K. Das, A class of spaces containing all generalized absolutely closed (almost compact) spaces, Appl. Gen. Topol. 7 (2006) 233–244.
- [17] A. Lelek, Some cover properties of spaces, Fund. Math. 64 (1964) 209-218.
- [18] N. Levine, Semi-open sets and semi-continuity in topological spaces, Amer. Math. Monthly 70 (1963) 36-41.
- [19] K. Menger, Einige Uberdeckungssätze der Punltmengenlehre, Sitzungsberichte Abt. 2a, Mathematik, Astronomie, Physik, Meteorologie und Mechanik (Wiener Akademie, Wien), 133 (1924), 421–444.
- [20] S. Mrowka, On completely regular spaces, Fund. Math. 41 (1954) 105–106.
- [21] M. Mršević, D. Andrijević, On θ -connectedness and θ -closure spaces, Topology Appl. 123 (2002) 157–166
- [22] O. Njästad, On some classes of nearly open sets, Pacific J. Math. 15 (1965) 961–970.
- [23] B.A. Pansera, Weaker forms of the Menger property, Quaest. Math. 35 (2012) 161-169.
- [24] A. Parvej, M.D. Khan, On nearly Menger and nearly star-Menger spaces, Filomat 33 (2019) 6219-6227.
- [25] J.R. Porter, G. Woods, Extensions and Absolutes of Hausdorff Spaces, Springer-Verlag New York Berlin Heidelberg London Paris Tokyo.
- [26] A. Sabah, M. Khan, Lj.D.R. Kočinac, Covering properties defined by semi-open sets, J. Nonlinear Sci. Appl. 9 (2016) 4388–4398.
- [27] M. Saleh, On θ-closed sets and some forms of continuity, Arch. Math. 40 (2004) 383–393.
- [28] Y.K. Song, Some Remarks on Almost Menger spaces and weakly Menger spaces, Publ. Inst. Math. 98 (2015) 193–198.
- [29] M. Scheepers, Combinatorics of open covers I: Ramsey theory, Topology Appl. 69 (1996) 31–62.
- [30] L.A. Steen, J.A. Seebach, Counterexamples in Topology, Dover Publications, New York, 1995.

[31] J. Winfried, A.W. Miller, M. Scheepers, P. J. Szeptycki, The combinatorics of open covers II, Topology Appl. 73 (1996) 241–266.
[32] N.V. Velichko, H-closed topological spaces, Mat. Sbobnik 70 (1966) 98–112 (Amer. Math. Soc. Transl. 78 (1968) 103–118).