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Abstract. In this paper we further study 6-Menger, 6-almost Menger and 9-weakly Menger properties
[13] and investigate their relationships with other selective covering properties. We prove that in extremally
disconnected semi-regular spaces, the properties viz. Menger, semi-Menger, a-Menger, -Menger, midly

Menger are equivalent; and every finite power of a space X has the selection property S;,(6-O, 6-O) if and
only if X has the property S;,(6-Q, 6-Q).

1. Introduction and preliminaries

The Menger property [19] is a classical covering property: a space X is said to have the Menger property
if for each sequence (A : k € IN) of open covers of X there is a sequence (B : k € IN) such that for each k, By

is a finite subset of Ay and X = (Jyen UBk. After that several weak variants of the Menger covering property
occurred in the mathematical literature such as almost Menger and weakly Menger ([2, 11]). A new variant

of the Menger property is also formed when the open cover is replaced by a cover of generalized open sets.
A subset A of a space X is said to be:

e O-open if for each element x € A, there is an open subset B of space X such that x € B ¢ CI(B) ¢ A[32];

e a-open if A C Int(Cl(Int(A))), or equivalently, if there is an open subset B of space X such that
B c A c Int(CI(B)) [22];

e semi-open if there exists an open subset B of space X such that B ¢ A c CI(B), or equivalently, if
A c Cl(Int(A)) [18] and SO(X) denotes the set of all semi-open sets.

Clearly, we have the following implications:

clopen = 0-open = open = a-open = semi-open.

Using the semi-open sets Sabah et.al [26] defined the semi-Menger property which is stronger than the
Menger property and Kocinac [12] introduced mildy Menger spaces using the clopen sets. Recently,

Kocinac [13] introduced and investigated the covering properties 6-Menger and a-Menger using 0-open
sets and a-open sets, respectively.
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A space X is said to have semi-Menger [26] (resp., a-Menger [13], -Menger [13], mildly-Menger [12])
if for each sequence (A : k € IN) of semi-open (resp., a-open, 0-open, clopen) covers of X there exists a
sequence (By : k € IN), where By is a finite subset of Ay for each k, such that X = (e UBk.

The above properties are also written in a form of selection principle. Let A and 8 be the collections
of subsets of a space X. Then a space X satisfies the selection principle : S¢;,(A, B) (resp., Uy, (A, B)) if for
each sequence (A : k € IN) in A there exists a sequence (B : k € IN), where for each k, By is a finite subset
of Ay such that Ui Br € B (resp., {UB, : k =1,2,3,..} is in B) (see, [14, 15]). Let O, CO, 6-0O, a-0, s-O,
denote the collection of all open, clopen, 6-open, a-open, semi-open covers of a space X, respectively. Then
the Menger, mildly Menger, 0-Menger, a-Menger, semi-Menger, property of X is the property S¢;,(O, 0),
Sfin(CO,CO), S¢in(0-0, 0-0), S fin(a-0, a-0), S £in(s-0, s-0), respectively.

In 1968, Velichko [32] introduced 6-closure operator to study H-closed spaces. For a subset A of a space
X, the O-closure of A denoted by Cly(A) and defined as Clg(A) = {x € X : for each neighbourhood U of x,
Cl(U)N A # ¢}. A subset A of space X is called O-closed if Clg(A) = A and A is G-open if its complement
is O-closed. Many papers have been published on 0-closure operator (see [3, 6, 7, 16, 21]). Recently, using
the 0-closure operator Kocinac [13, Remark 3.6] generalized almost Menger and weakly Menger properties
namely introduced 0-almost Menger and 0-weakly Menger properties, respectively. In this paper, we
further continue the study of 9-Menger, 0-almost Menger and 0-weakly Menger properties.

2. 0-Menger spaces

For a topological space X, we denote:

1. Q: the collection of w covers of X: An open cover A of X is a w-cover if no element of A contains X,
and each finite subset of X is contained in some element of A.

2. 0-0): the collection of O-w-covers of X: A cover A of X is a O-w-cover if it is a O-open cover of X such
that no element of A contains X, and each finite subset of X is a subset of some element of A.

3. I': the collection of y-covers of X: An infinite open cover A of X is y-cover if, for each x in X, the set
{UeA:x¢ U} is finite.

4. O-T: the collection of 0-y-covers of X: An infinite 0-open cover A of X is 0-y-cover if, for each x in X,
the set {U € A : x ¢ U} is finite.

Theorem 2.1. For a space X the following statements are equivalent:

1. X has the O-Menger property;
2. X satisfies Sfin(6-Q, 6-0).

Proof. 1 = 2 It follows from the fact that each 0-w-cover of X is a 6-open cover of X.

2 =1 Let (A : k € N) be a sequence of 8-open covers of X. LetIN = Y; UY,U...UY,, U ... be a partition
of N into countably many pairwise disjoint infinite subsets. For each k, let By contained all sets of the form
Ay UAL UL UAL, ki < .0 < ky, ki € Yy, Ax, € Ay, i < n, n € N. Then for each k, By is a 6-w-cover of
X. Applying S, (60-Q, 6-O) on the sequence (8 : k € IN), there is a sequence (Cy : k € IN), where for each
k, Ci is a finite subset of By such that X = (Jyn U{C : C € Ci}. Suppose Cx = {C} C;"k}, then from the

. ; ki ..
construction, eachC; = A, U....U A:’”. Therefore for each k, we can construct a finite subset A of Ay such
that UC, € UA,. Hence X has the 6-Menger property. [

Sheepers et al. ([31, Theorem 3.9] proved the following equivalence.

Theorem 2.2. ([31]) For a space X the following statements are equivalent:
1. Every finite power of X has property Si,(O,0);
2. X has property Sin(Q, Q).

We prove the similar result for 6-Menger spaces in Theorem 2.7. In the following example we also
observe that square of 0-Menger space need not be 0-Menger.
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Example 2.3. There exists a O-Menger space X such that X? is not 6-Menger.

Proof. Leti:S — R be the identity map from the Sorgenfrey line S to the real line R. If A C R, then denote
Ags =i1(A). In [17], Lelek proved that Ls has the Menger property for each Lusin set L in R. He also stated
that if (L X L) N {(a,b) : a + b = 0} is an uncountable set, then Ls X Ls does not have the Menger property.
Then Ls is a O-Menger space but Ls* is not 6-Menger, Ls X Ls being a regular space and in regular spaces
the 0-Menger property coincides with the Menger property. [

Recall that a space X is called extremally disconnected if the closure of each open set in X is open [25].

Lemma 2.4. Let X be an extremally disconnected space and A be a O-open set in the product space X*, k € IN, then
for each (a1, a, ....ax) € A, there exists O-open set U; containing a; such that (a1, a, ..., ax) € Hle U; C A.

Proof. Let A be a 0-open set of X*, n € N. Then for each (a1, a5, ...a;) € A there exists open set U; containing
a; such that (a1,4az,...,a;) € H;‘:l u; C H;{:l Cl(U;) € A, moreover CI(l;) is 0-open, X being an extremally
disconnected. [

Proposition 2.5. Let X be an extremally disconnected space. For each O-w-cover A of X, k € IN, there exists a
O-w-cover B of X such that the 6-open cover {B* : B € B} of X* refines A.

Proof. Let A be a 0-w-cover of Xk. Let F be a finite subset of X, thus F¥ is a finite subset of X¥. Then
there is a 0-open set A € A such that F* c A. Since X is extremally disconnected, from Lemma 2.4, for
each (xi, ..., x,) € F¥, there is a 0-open set Ay, containing x; such that (xy,......, x¢) € H?:l Ay, € A. For each
x € F, consider A, is the intersection of all A,, containing x. Let By = UrerA,. Then Br is a 6-open set of X
containing F, thus F* c BX ¢ A. Put 8 = {Br : F is a finite subset of X}. Then B is a required 6-w-cover of X
such that the 9-open cover {B* : B € B} refines A. [0

Theorem 2.6. Let X be an extremally disconnected space. If X has the property S, (6-Q, 6-Q), then for each n € N,
X" also has this property.

Proof. Let (A, : k € IN) be a sequence of 0-w-covers of X". Then by Proposition 2.5, for each k, there exists
a 0-w-cover By of X such that {B" : B € By} refines Ay. Now apply the condition S;,,(6-2, 0-Q) of X on the
sequence (By : k € IN), for each k, there exists a finite subset C of By such that | J;_; Cx forms 6-w-cover of
X. Since for each k, {B" : B € By} refines Ay, for each C € Cy there is a A € Ay such that C* C A. Hence for
each k, we can find a finite subset AL of Ay such that ;2 A forms a 6-w-cover of X". [

Theorem 2.7. For an extremally disconnected space X the following statements are equivalent:

1. Every finite power of X has the property S¢;,(6-O, 0-O);
2. X has the property S 7;,(0-Q, 6-Q2).

Proof. (1) = (2) Already done by Ko¢inac [13, Theorem 3.12].
(2) = (1) The result follows directly from Theorem 2.6 and Theorem 2.1. [J

In [29] Scheepers proved that for a Lindeldf space, S7;,(O,0) = Uy, (T, 0). In the following theorem,
we show the similar result for 6-Lindelof spaces. First, recall that a space X is called 6-compact (resp.,
O-Lindeldf) if each 0-open cover of X has finite (resp., countable) subcover.

Theorem 2.8. For a 0-Lindeldf space X, S, (0-O, 6-O) if and only if Uy;,(0-T, 6-O).

Proof. The forward part is obvious. For the converse part, assume that X satisfies Ug;,(0-T,0-O). Let
(A : k € N) be a sequence of O-open covers of X. We may assume that X is not 6-compact and for each
k € N, Ay is countably infinite with no finite subset which covers X. For each k, let Ay = (A} :n=1,2,3,...).
Thus By = {By : B = Ujy Al,m € IN} forms 0-y-cover of X. Since X satisfying Uy, (0-', 0-O), choose
a finite set Cy of By, such that {UCy : k € IN} is a 0-open cover of X. Then for each k, disassembling the
members of Cy. Thus for each k, we can find a finite subset A; of A such that [ J;Z; A, forms 6-open cover
of X. O
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Definition 2.9. ([13, Definition 5.2]) A space X is called nearly Menger if for each sequence (A : k € IN)
of open covers of X there is a sequence (B : k € IN) such that for each By is a finite subset of A, and
X = Ugens ULInHCI(B)) : B € By).

Each nearly-Menger space is almost Menger and Kocinac [13, Theorem 3.5] showed that an almost
Menger space is 9-Menger. Thus we have the following implications:

semi-Menger= a-Menger= Menger= nearly Menger = 0-Menger= mildy Menger.

But the reverse implications do not hold in general. In the following example we show that a 6-Menger
space need not be nearly-Menger. For the details about other reverse implications see [13, 24]

Example 2.10. Let X = {a,b,c;,aij,bij : i € A,j € N}, where A = [0,Q) and Q is the smallest uncountable
ordinal number. We topololize X as follows: B, = {c;, aij, bij}j>n, Bf = {4, aij}iza,jen and By = {b, bij}iza,jen are
the fundamental system of neighborhoods of the points ¢;, , b respectively, and {a;;}, {b;j} are isolated points.
Then the space X is not nearly Menger ([24, Example 2.6]). Now, we show that the space X is 0-Menger.
Let (U : k € IN) be a sequence of 6-open covers of X. For each k and each x € X there is an open set U,
such that x € Uy ¢ CI(U}) c U for some U € Uy. Put U, = {U} : x € X}. Then (U] : k € N) is a sequence
of open covers of X. For fixed k; € IN, there are open sets Uy, Uj in U; such thata € U; and b € U;. Thus

Jaq, @y € A such that B! c U, BZ‘Z C U;. It is clear that the set X '\ (B U BZ‘Z) is countable, hence the set
X\ (U; U U}) is also countable. Thus we can find a sequence (V- k € IN\ kq), such that, k € N\ kq, V. is
a finite subset of U} and X\ (U; U U}) C Ueni, VICI(V) : V7 € V] }. Fixed (V,;l ={U,, U;}. Then we have a
sequence (V; : k € N), where for each k, V is a finite subset of U such that X = e U{CI(V) : V" € V] }.

For each V' € V| we can find a Uy € Uy such that V' c CI(V’) € Uy. Let W, ={Uy : V' € V1, then for
each k, W) is a finite subset of Uy and X = Uy UWi. Hence X is a O-Menger space.

Recall that a space X is called semi-regular [4] if for each element x € X and for each semi-closed set U
such that x ¢ U, there exist disjoint semi-open subsets A and B of X such that x € A and U C B.

Lemma 2.11. ([4]) For a space X the following statements are equivalent:
(i) X is semi-regqular;

(ii) For each element x € X and A € SO(X) with x € A, there is a B € SO(X) such that x € B C sCI(B) C A, sCI(A)
denotes the semi-closure of A.

Now we prove that for an extremally disconnected semi regular space, all the above mentioned variants
of Menger property are equivalent.

Theorem 2.12. For extremally disconnected semi-regular spaces X, the following statements are equivalent:

1. X is semi-Menger;
X is a-Menger;

X is Menger;

X is nearly Menger;
X is O-Menger;

X is mildly Menger.

SANBSLEN- S

Proof. Obviously (1) = (2) = (3) = (4) = (5) = (6).

For (6) = (1), let (Ax : k € IN) be a sequence of semi-open covers of X. Then for each x € X there is
a By € SO(X) such that x € By, C sCl(Bxy) C A for some A € A, X being a semi-regular space. Let for
k € N, Bx = {By : x € X}. Then (B : k € N), is a sequence of semi-open covers of X. Since X is extremally
disconnected, from [8, Proposition 4.1], we have B C Int(CI(B)) for each B € SO(X). Further, CI(Int(CI(B))) is
a clopen subset of X for each B € SO(X). Put Cx = {CI(Int(CI(B))) : B € Bx}. Thus (Ck : k € IN) is a sequence
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of clopen covers of X. As X is mildly Menger, there is a sequence (C, : k € IN), where C, is a finite subset of
Cx for each k € IN such that ey UC;, = X. Note that, Int(CI(A)) C sCI(A) for each subset A of space X and
by extremal disconnectedness of X, sCI(A) = CI(A) for each A € SO(X). Then from the above construction,
for each C’ € C; there is a Ac: € Ay such that C" € Ac. Thus for k € N, let A = {Ac : C’' € C;}. Hence for
each k, A, is a finite subset of Ay such that i UA; = X. This means that X is semi-Menger. [

In the following examples, we show that the extremally disconnectedness and semi-regularity are
necessary conditions in Theorem 2.12.

Example 2.13. Consider the real line R with usual topology. Then clearly, R is not an extremally discon-
nected space but it is semi-regular mildly Menger space being a regular Menger space. On the other hand,
R is not semi-Menger [26].

Example 2.14. Let X be an uncountable cofinite space, that is uncountable set X with cofinite topology.
Then X is an extremally disconnected mildly Menger space. On the other hand X it not semi-Menger, since
a semi-open cover {X \ {x} : x € X} has no countable subcover.

Since in extremally disconnected spaces, zero-dimensionality is equivalent to semi-regularity [25, The-
orem 6.4], we have the following corollary:

Corollary 2.15. For extremally disconnected, zero-dimensional spaces X, the following statements are equivalent:

1. X is semi-Menger;
X is a-Menger;

X is Menger;

X is nearly Menger;
X is O-Menger;

X is mildly Menger.

oGk W N

A space X is called S-paracompact [1] if for each open cover of X has a locally finite semi-open refinement.
A Hausdorff S-paracompact space X is semi-regular [1, Corollary 2.3]. Hence all the properties mentioned
in Theorem 2.12 are also equivalent for an extremally disconnected Hausdorff S-paracompact space.

It may be noted that the Stone-Cech compactification of a discrete space is extremally disconnected
compact Hausdorff space. Then the class of Stone-Cech compactifications of discrete spaces is a subclass
of extremally disconnected S-paracompact Hausdorff spaces which is in turn the subclass of extremally
disconnected semi-regular spaces.

Theorem 2.16. For a space X, the following statements are equivalent:

1. X'is 0-Menger;
2. For each non-empty subset A of X and for each sequence (Uy : k € IN) of collections of O-open sets in X such

that Clg(A) € UUy, k € IN, there is a sequence (Vi : k € IN), for each k € IN, V. is a finite subset of Uy such

Proof. 2 = 1 obvious.

1 = 2 Let A be a non-empty subset of X and (U : k € IN) is a sequence of collections of 0-open sets
in X such that Clg(A) € UUy, k € IN. For each k € IN, put Vi = U, U {X \ Clg(A)}. Then (Vi : ke N)isa
sequence of 6-open covers of X. By assumption X is 6-Menger, there exists a sequence (V] : k € IN) such
that V. isa finite subset of Vj for each k € N and (e UV, =X Consider ‘L(,Q =V {X \ Clg(A)}. Then
(U : k € N) is a sequence of 6-open sets in X, where for each k € IN, U] is finite subset of U such that with
AC Upen VU, O

In the next theorem we provide a sufficient condition for a space to be 6-Menger.
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Theorem 2.17. A space X is 0-Menger if for each sequence (Ay : k € IN) of closed covers of X there exists a sequence
(Br : k € N), where for each k, By, is a finite subset of Ay, such that X = Uren UBk.

Proof. Let (Ax : k € IN) be a sequence of 0-open covers of X. For each x € X and each k € IN there exists
a Ayr € Ar and an open set B, such that x € B, ; C a C Ay For each k, put By = {K/k :x € X}. Then
(B : k € N) is a sequence of closed covers of X. From the assumption, there is a sequence (Cx : k € IN), where
for each k, Cy is a finite subset of By, such that X = [Jiqy UCk. Since for each Ci € Cy, there is a A’Ck € Ay
such that C; C A’Ck. Let fork € N, A, = {Asz : Cx € Cy}. Thus for each k, A isa finite subset of A such that
UCk c UA,. Hence X is 6-Menger space. [J

A space X is called almost Menger [11], if for each sequence (A : k € IN) of open covers of X there exists
a sequence (By : k € IN), where By is a finite subset of Ay for each k € IN, such that | Jien UB:Be B =X

We prove that for the class of an extremally disconnected spaces the 0-Menger property is equivalent to
the almost-Menger property:

Theorem 2.18. For an extremally disconnected space X, the following statements are equivalent:

1. Xis O-Menger; item For each sequence (Ay : k € IN) of O-open covers of X there exists a sequence (By : k € IN),
where for each k € IN, By is a finite subset of Ay, such that | Jgepn U{B : B € B} = X;
2. X is almost Menger.

Proof. (1) = (2) Obvious.

(2)= (3) Let (A : k € IN) be a sequence of open covers of X. Since X is extremally disconnected, for each
k, A = {A: A € Ay is a O-open cover of X. Thus (A, : k € N) is a sequence of 6-open covers of X. From
the assumption, there exists a sequence (B : k € IN), where for each k, By is a finite subset of Ay, such that
Uken UIB : B € By} = X. Thus X is almost Menger.

(3)= (1) Itis proved in [13, Theorem 3.5]. O

3. 0-almost Menger and 0-weakly Menger spaces

In this section we studied 0-almost Menger and 0-weakly Menger spaces. First we recall some defini-
tions.

A space X is said to be weakly Menger [2] if for each sequence (A : k € IN) of open covers of X there is
a sequence (By : k € IN) such that for each k, By is a finite subset of Ay and X = CI(Uen UBk).

Definition 3.1. ([13, Remark 3.6]) A space X is said to be 0-almost Menger (resp., -weakly Menger) if for
each sequence (A : k € IN) of open covers of X there is a sequence (8 : k € IN), where for each k, By is a
finite subset of Ay, such that X = | Jyep U{Clo(CI(B)) : B € By}, (resp., X = Clo(CI((Uen YBK)))-

From the definitions it is clear that each 0-almost Menger space is 0-weakly Menger. In the following
example, we show that weakly Menger (hence 6-weakly Menger) space need not be 8-almost Menger.

Example 3.2. There is a Tychonoff weakly Menger (hence, 0-weakly Menger) space which is not 0-almost
Menger.

Proof. Let D be a discrete space with cardinality w;, and D* = D U {d*} is an one-point compactification of
D, where d* ¢ D, let

X=(Dx[0,w]) \ {<d, w >}

be the subspace of the product space D* x [0, w].

Note that, D* X w is a o-compact dense subset of X, that means the space X is weakly Menger (hence
0-weakly Menger).

Now, we prove that the space X is not an -almost Menger. We enumerate D as {d, : @ < w1} because
cardinality of D is w1. Let A, = {d.} X [0, w], for each @ < w;. Then
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Ay NAy =¢ifa+a,and Clp(Cl(A)) = A, for each @ < w;.
Let B, = D* X {k}, for each k € w. Then
Clg(CI(Bk)) = By for each k € w.
Let
A ={As : a < 01} U{By : k € w}, for each k € IN.

Observe that for each k € IN, A is an open cover of the space X. Let us consider the sequence (A : k € IN)
of open covers of X.

Claim: For any sequence (B : k € IN), where B is a finite subset of A for each k € IN, [yep U{Clo(CI(B)) :
B e B} # X.
Let (B : k € N) be any sequence, where for each k, By is a finite subset of Ay. Since By is a finite subset of
Ay for each k € N, then there is a @y < wq such that A, ¢ By for each a > . Put @’ = sup{ay : k € N}. Then
a’ < w1. We can choose ag > a’. Then

< dyy, > ¢ Upen U(CIo(CI(B)) : B € By).

Note that, A,, is the only element of A, which contain < d,,,w > for each k € IN. It is easy to see that
Uken UIB @ B € By} = Ugen VICIg(CI(B)) : B € By} from the construction of the sequence (A : k € IN) of
open covers of X. Thus < dy,, @ > & Uren UICIg(CI(B)) : B € By} that means the space X is not an 0-almost
Menger. O

Recall that a topological space X is said to be P-space [10] if every intersection of countably many open
sets of X is open. For P-spaces, we prove the following result:

Theorem 3.3. Let X be a O-weakly Menger P-space, then X is O-almost Menger.

Proof. Let (A : k € IN) be a sequence of open covers of X. Since the space X is O-weakly Menger, then
for each k, there exists a finite subset B of Ay such that X = Clg(Cl(Ugen UBk)). Since X is a P-space,
Uken V{CI(B) : B € By} is a closed subset of X and CI({Uep UBk) is the least closed set contains | Jien UBk,
hence Cl(Ugen YBk) € Uken Y{CI(B) : B € By}. Also observe that if x ¢ (Jen U{Clo(CI(B)) : B € B4}, then
x ¢ Clo(Ugen YICI(B) : B € By}). Thus, we have X = Clo(Cl(Uen YBk)) S Clo(Ukenw VICI(B) : B € By)) =
Ukenw VICIo(CI(B)) : B € By}. Hence X is 0-almost Menger. [J

However in general, it remains open question whether a 9-almost Menger space is almost Menger
or not. But in the following results, we provide a class of spaces in which 8-almost Menger property is
equivalent to almost Menger property.

Theorem 3.4. X is an extremally disconnected almost Menger space if and only if X is 0-almost Menger.

Proof. The forward part is obvious. Conversely, let (A : k € IN) be a sequence of open covers of X. Since
X is 0-almost Menger, there exists a sequence (B : k € IN), where B is a finite subset of A for each k € IN,
such that X = (Uyen V{Clo(CI(B)) : B € By}. Also by the extremally disconnectedness of X, Cly(CI(B)) = CI(B)
for each open set B of X. Hence X = [y UICI(B) : B€ B}, O

Theorem 3.5. Let X be a reqular 0-almost Menger space, then X is Menger.

Proof. Let (A : k € IN) be a sequence of open covers of X. Since X is regular, for each k and for each x € X
there exist open sets By, Cy such that x € C,x C CI(Cyx) C Byx C Cl(Byx) C A for some A € Ay. Thus for
k €N, Cr = {Cyx : x € X} is an open cover of X. Also X is 6-almost Menger, there is a sequence (C} : k € N),
where for each k, C; is a finite subset of Cy such that [y U{CIo(CI(C")) : C’" € C}} = X. For each k, for
each Cl’c,x € Cj, there is an open set By, and ACL,k € Ay such that Cl(C;’k) C Byx C CI(Byx) C Ac,,. Thus
Cl@(Cl(C;/k)) C Cl(Byx) C ACL,k' Let A, = {AC.L,k : C;/k € Ci}. Then the sequence (A, : k € N) witnesses that the
space X is Menger. [J
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From Theorem 3.3 and Theorem 3.5, we have the following corollary:

Corollary 3.6. Let X be a regular P-space. Then the following statements are equivalent:

1. Xis 0-Menger;

X is Menger;

X is almost Menger;

X is weakly Menger;
X is O-weakly Menger;
X is 0-almost Menger.

Ul W

From the following examples, it is clear that O-almost Menger (0-weakly Menger) properties are not
hereditary.

Example 3.7. A closed subset of an 6-weakly Menger space need not be 0-weakly Menger.

Proof. Let Rbe the set of real numbers, Q and I denotes the set of rational and irrational numbers respetively.
For each a € I, we choose a sequence {g; : i € w} of rational numbers which converge to a in the Euclidean
topology. The rational sequence topology 7 (see [30], Example 65) is defined as declaring each rational open
and the sets Ax(a) = {ax; : i € w} U {a} as a basis for the irrational point a. Then the set I is a closed subset of
(R, 7) and as a subspace I is not O-weakly Menger, I being an uncountable discrete subspace. On the other
hand, (R, 7) is O-weakly Menger, because Q is a countable dense subset of (R, 7). [

Example 3.8. Let X be the same space as in [28, Example 2.1]: Consider U = {u, : @ < w1}, V = {v; 1 i € )
and W = {< u,,v; > a < w1,i € w}, where w, w; are the first infinite cardinal and the first uncountable
cardinal respectively. Let X = {x} U W U U, where x does not belongs to W U LL. We topologize X as follows:
the basic neighborhood of x is of the form A,(a) = {x} U U{< ug,vi >: p > a,i € w}, @ < w1, for u, € U
for each a < w1, the basic neighborhood of u, is of the form A, (i) = {ua} U {< us,v; > j 2 i}, i € w, and
each member of W are isolated. In [28] Song showed that X is an almost Menger space having uncountable
discrete closed subset, U = {u, : a < w1}. Thus X is a 6-almost Menger space with uncountable discrete
closed subset. Hence we can conclude that closed subset of §-almost Menger space need not be 0-almost
Menger.

Proposition 3.9. The closed and open subspace of 6-almost Menger space is 0-almost Menger.

Proof. Let Y be a closed and open subspace of the space X, let (A : k € IN) be a sequence of open covers of
Y. Then for each k, B, = A U {X \ Y} is an open cover of X. Since X is 0-almost Menger, for each k there is a
finite subset B, of By such that X = Jyen U{Clo(CI(B’)) : B’ € By}. Since Y is a closed and open subspace X,
Clp(CI(X\Y)) = X\ Y and CI(U) C Y for each open subset U of Y, which implies that Cly(CI(B)) € Cly, (Cly(B))
for each open set B of Y. Thus, Y C ey U{Clo(CI(B")) : B" € B, \ {X \ Y}} C Ugen U{Clo,(CIy(B)) : B" €
B, \ {X\ Y}}. Hence Y is 6-almost Menger. [J

Similarly, we can prove that closed and open subset of a -weakly Menger space is 0-weakly Menger.

Note that, from Theorem 3.5 and Example 2.3, it is clear that the product space X? of a 0-almost Menger
space X need not be 0-almost Menger. In the following theorem we give the necessary and sufficient
conditions for the product space X* to be 6-almost Menger for each k € IN.

Theorem 3.10. Let X be a topological space. Then the product space X" is 0-almost Menger for each n € N if and
only if for each sequence (Ay : k € IN) of w-covers of X there exists a sequence (By : k € IN), where for each k, By is a
finite subset of Ay, such that for every finite set F C X, there exists k € N, , such that F C Cly(CI(B)) for some B € B.

Proof. Let for each n € IN, X" be an 6-almost Menger space. Let (A : k € IN) be a sequence of w-covers
of X. Let N = Ny UN;, U.... UN,U- be a partition of IN into countably many pairwise disjoint infinite
subsets. For each n € IN and each j € N, let B; = {A" : A € A;}. Then (8;: j € N,) is a sequence of
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open covers of X". Since for n € IN, X" is 6-almost Menger, we can find a sequence (C; : j € N;) such
that for each j, C; = {A?I,A7Z,...,Az(j)} is a finite subset of B; and X" = UjeN”{Clg(Cl(C)) : CeCj}. Let
F = {x1,x3,..., x4} be a finite subset of X. Then (x1,x,...,x;) € X7, thereisar € N; and 1 < I < k(r) such that
(x1,x2,...,Xg) € Clg(Cl(Af,)) = (Clp(Cl(Ay)))1. Hence F c Clp(CI(Ay)).

Conversely, let n € IN be fixed and (A : k € IN) be a sequence of open covers of X", where Ay = {Ay; :
j € Ji), Jk is an indexing set. Let F C X be a finite set. Then F" is a finite subset of X", thus compact
subset of X". Then for each k, there exists a finite subset ]]f of Jx such that F* c | et Ay j. By the Wallace
theorem (see 3.2.10. [5]), there is an open set Br in X such that F C Br and B} C Ufeff Ay,j. For each k, put
By = {Br : Fis a finite subset of X}. Thus (8B : k € IN) is a sequence of w-covers of X. From the assumption,
there exists a sequence (Cy : k € IN), where for each k, Cy is a finite subset of B such that for every finite subset
Fof X, there is k € IN, such that F C Clg(CI(C)) for some C € Cy. Let Hy = {A;: j € ]f,F C Br € Cy}. Then for
each k, H, is a finite subset of Ay. Letx = (x1, ..., x,) € X". ThusF = {x3, ..., x,,} is a finite subset of X, there exists
ak € N and C € Cy such that F c Clg(CI(C)). Since C € Cy, then C = Bp,, for some finite subset F’ of X such
that Bf, C UjE]f’ Ayj. We have F" C Clg(CI(Bp))" = Clg(CI(B},)) C ClQ(Cl(UjeLf’ Arj) = Uje]f’ Clo(Cl(Ax))),
hence X" C Ugen VICIg(CI(H)) : H € Hj}. That means X" is almost Menger. [

4. Preservation properties
In this section, we study the preservation of 0-almost Menger property under varies type of mappings.
Theorem 4.1. The continuous image of 6-almost Menger space is O-almost Menger.

Proof. Let f : X — Y be a continuous map from an 6-almost Menger space onto a space Y. Let (A : k € IN) be
a sequence of open covers of Y. Then for each k, {f"}(A) : A € Ay} is an open cover of X. Since X is an almost
Menger, for each k, there exists a finite subset By of Ay such that X = Uyen U{Clo(CI(f~1(B)) : B € Bx}. Thus
we have, Y = f(X) = f(Uken YIClo(CI(f"1(B)) : B € Bx}) = Urew VIf(Clo(CI(f1(B)))) : B € By}. From the
continuity of f it follows that for each y € f(Clo(Cl(f~1(B)))) and each neighbourhood U of y, CU)NCI(B) # 0
that means y € Clg(CI(B)). Then Uep Y{f(Clo(CL(f~1(B)))) : B € By} € Uken Y{Clo(CI((B))) : B € By}. Hence
Y is 0-almost Menger. [

We show that the preimage of an 0-almost Menger space under a closed continuous map need not be
0-almost Menger. Recall the Alexandroff duplicate A(X) of a space X: The underlying set of A(X) is Xx {0, 1}
which is topologized as follows: let U be a neighborhood of x in X then a basic neighborhood of a point
(x,0) € X x {0} is of the form (U x {0}) U (U x {1}) \ {{x, 1)}) and each points of X x {1} is isolated.

Example 4.2. The preimage of a 0-almost Menger space under a closed continuous map need not be
0-almost Menger.

Proof. Let X be the same space as Example 3.8. Since U = {u, : @ < w1} is an uncountable discrete closed
subset of X. Then the Alexandroff duplicate A(X) of X is not 8-almost Menger, since U X {1} is an uncountable
infinite discrete closed and open set in A(X) and every open and closed subset of an §-almost Menger space
is 0-almost Menger. Let us consider the projection map f : A(X) — X . Then f is a required closed
continuous map. [J

Definition 4.3. A map f : X — Y said to be 9-almost open if for each open subset A of Y, f~1(Clg(CI(A))) C
Clo(CI(f(A))).

A map f is called 0-open [27] if the image of every open set is O-open. It may be noted that injective
0-open maps are 0-almost open.

Theorem 4.4. Let f : X — Y be an 6-almost open, perfect continuous map and Y is an 0-almost Menger space, then
X is 0-almost Menger.
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Proof. Let (A : k € IN) be a sequence of open covers of X. Let y € Y, since f~(y) is compact, for each k € N
there is a finite sub-collection Ay, of Ay such that f~'(y) C UA;, and for each A € A, AN f7(y) # . Let

By,

=Y\ f(X\ UA,). Since f is closed, By, is an open neighbourhood of y in Y such that f~!(By,) € U{A :

A€ ﬂky}. For each k € N, put By = {Bky : y € Y}. Thus (B : k € IN) is a sequence of open covers of Y. Since
Y is an 6-almost Menger space, there is a sequence (8, : k € IN), where for each k, B, is a finite subset of
By such that Uen U{Clp(CI(B")) : B’ € B;} = Y. By the above construction there is a sequence (A; : k € N),
where for each k, A, is finite subset of A, such that U{f I(B):B € B} CU{A" 1 A” € A ). Then we have,

X=f1(Y) = f (Uren YICIo(CI(B")) : B’ € By))
= Uren UIf ' (Clo(CI(B")) : B’ € By}
C Uren YIClo(CI(f71(B"))) : B’ € By}

C Usen UICIo(CI(A) : A” € A).

Hence X is 0-almost Menger. [J
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