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Abstract. In this paper, we consider the computation of the Aluthge, Duggal, and Mean transforms of
n× n matrices using the singular valued decomposition. We provide examples to illustrate the superiority
of our technique in finding iterated Aluthge transform of a matrix over the more traditional methods. From
the observations using Python, we know that the iterated Aluthge and Mean transforms of the matrices
become normal. However, the iterated Duggal transform of the matrices may not be normal.

1. Introduction

Let H be a separable complex Hilbert space and let L(H) denote the algebra of all bounded linear
operators onH . An operator T ∈ L(H) has the unique polar decomposition T = U|T|where |T| = (T∗T)

1
2 and

U is the appropriate partial isometry satisfying ker(U) = ker(|T|) = ker(T). Here, ker(T) = {x ∈ H | Tx = 0}.
In 1990, A. Aluthge([2]) introduced the Aluthge transform T̃ of T ∈ L(H) given by

T̃ = |T|
1
2 U|T|

1
2 .

For an operator T ∈ L(H), the sequence {T̃(n)
} of the Aluthge iterates of T is defined by T̃(0) = T and

T̃(n) =
˜̃T(n−1) for n ∈NwhereN denotes the set of positive integers.

The main advantages of the Aluthge transformation of operators are as follows.

(i) If T is p-hyponormal with 0 < p < 1
2 , then (̃T̃) is hyponormal ( see [2]).

(ii) If T is a quasiaffinity, i.e., it has trivial kernel and dense range, then Lat(T) is nontrivial if and only if
Lat(T̃) is nontrivial (see [6]).

The Duggal transform T̃D of T ∈ L(H) is given by T̃D := |T|U (see [7]). The mean transform T̂ of T is defined
by T̃M := 1

2 (T + T̃D) (see [8]). Now, we state important concepts, that is, “pseudo inverse” and “singular
valued decomposition” in linear algebra for our study.
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Definition 1.1. Let m,n ∈ N. For a matrix T ∈ Cm×n, a pseudo inverse of T is defined as matrix T† ∈ Cn×m

satisfying all of the following four criteria, known as the Moore-Penrose conditions:

TT†T = T,T†TT† = T†, (TT†)∗ = TT†, and (T†T)∗ = T†T. (1)

Since the pseudo inverse exists and is unique for any matrix T, there is precisely one matrix T†.

Theorem 1.2. The singular value decomposition (SVD) of an m×n complex matrix T is the factorization of the
form

T =WΣV∗

where Σ is an m × n rectangular diagonal matrix with non-negative real numbers on the diagonal, W is an
m ×m complex unitary matrix, and V is an n × n complex unitary matrix.

In 2017-2018, D. Pappas, W. N. Kataikis, and I. P. Stanimirovic ([9] and [10]) developed algorithms for
symbolic computation of the Aluthge and Duggal transforms of a polynomial matrix, respectively. Like this
study, we study the Aluthge, Duggal and Mean transforms with a newly developed algorithm(see Section
3) and determine whether the iterated transformations become normal.

In this paper, we study the computation of the iterated Aluthge, Duggal, and Mean transforms of n × n
matrices using the singular value decomposition. We provide examples to illustrate the superiority of
our technique in finding iterated Aluthge transform of a matrix over the more traditional methods. From
the observations using Python, we know that the iterated Aluthge and Mean transforms of n × n matrices
become normal. But, the iterated Duggal transform of n × n matrices may not be normal.

2. Main results

In this section, we focus on the computation of the (iterated) Aluthge transform of n × n matrices. In
general, it is not easy to directly calculate the Aluthge transform after finding the polar decomposition of
a matrix. So we use the singular value decomposition to find the Aluthge transform of a matrix. We start
with the following lemma.

Lemma 2.1. With the same matrices W,V,Σ as in Theorem 1.2, let WΣV∗ be the singular value decomposition of
T ∈ Cn×n. Then T† = VΣ†W∗ is the pseudo inverse of T, where

Σ† =

 σi
−1, if σi , 0

0, otherwise
for i ∈ {1, 2, · · · ,n} (2)

and σi is the entries of the diagonal matrix Σ.

The following theorem provides the form of the Aluthge transform of matrices T using the singular
value decomposition.

Theorem 2.2. Let T be an n × n matrix. If WΣV∗ is the singular value decomposition of T, then the Aluthge
transform of T has the following form

T̃ = Σ̂WV∗Σ̂

where Σ̂ = VΣ
1
2 V∗.

Proof. Let T = U|T| be a polar decomposition of T and let T = WΣV∗ be the singular value decomposition
of T. Since |T|2 = T∗T = VΣ2V∗ = (VΣV∗)2, it follows that

|T| = VΣV∗ and |T|† = (VΣV∗)† = VΣ†V∗ (3)
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where V is unitary and it holds that V∗ = V†. Consider U =WΣΣ†V∗, we obtain from Definition 1.1 and (3)
that

U|T| = (WΣΣ†V∗)(VΣV∗)

=WΣΣ†V∗VΣV∗

=WΣΣ†ΣV∗

=WΣV∗

= T.

(4)

Since (ΣΣ†)∗ = ΣΣ†, we get that

UU∗U = (WΣΣ†V∗)(WΣΣ†V∗)∗(WΣΣ†V∗)

= (WΣΣ†V∗)(VΣΣ†W∗)(WΣΣ†V∗)

=WΣΣ†V∗VΣΣ†W∗WΣΣ†V∗

=W(ΣΣ†Σ)(Σ†ΣΣ†)V∗

=WΣΣ†V∗

= U.

(5)

Therefore, Σ
1
2 (Σ

1
2 )† = (Σ

1
2 )†Σ

1
2 implies that

T̃ = |T|
1
2 U|T|

1
2 = VΣ

1
2 V∗WΣΣ†V∗VΣ

1
2 V∗ (= Σ̂WΣΣ†V∗Σ̂)

= VΣ
1
2 V∗WΣΣ†Σ

1
2 V∗

= VΣ
1
2 V∗WΣ

1
2Σ

1
2 (Σ†)

1
2 (Σ†)

1
2Σ

1
2 V∗

= VΣ
1
2 V∗WΣ

1
2Σ

1
2 (Σ

1
2 )†(Σ

1
2 )†Σ

1
2 V∗

= VΣ
1
2 V∗WΣ

1
2 (Σ

1
2 )†Σ

1
2 (Σ

1
2 )†Σ

1
2 V∗

= VΣ
1
2 V∗WΣ

1
2 (Σ

1
2 )†Σ

1
2 V∗

= VΣ
1
2 V∗WΣ

1
2 V∗

= (VΣ
1
2 V∗)WV∗(VΣ

1
2 V∗)

= Σ̂WV∗Σ̂.

Hence the Aluthge transform of T is T̃ = Σ̂WV∗Σ̂where Σ̂ = VΣ
1
2 V∗(= |T|

1
2 ).

Remark 2.3. From the proof of Theorem 2.2, we know that

T̃ = Σ̂WΣΣ†V∗Σ̂ = Σ̂WV∗Σ̂.

So, there is no need to find U or check the existence of an inverse of T to find the Aluthge transform.

Corollary 2.4. Let T be an n×n matrix. If WΣV∗ is the singular value decomposition of T, then T = (WΣΣ†V∗)(VΣV∗)
is the unique polar decomposition of T.

Proof. Let U =WΣΣ†V∗. We now want to show that

ker(WΣΣ†V∗) = ker(VΣV∗) = ker(WΣV∗).
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If x ∈ ker(WΣΣ†V∗), then WΣΣ†V∗x = 0 and so Σ†V∗x = Σ†ΣΣ†V∗x = 0 and ker(Σ) = ker(Σ†). Thus ΣV∗x = 0
and so VΣV∗x = 0. Therefore x ∈ ker(VΣV∗). The converse implication hold by a similar method. Moreover,
ker(VΣV∗) = ker(WΣV∗) holds clearly. Thus U is a partial isometry by(5) and |T| = VΣV∗ holds by (3) the
proof of Theorem 2.2. Hence

T = (WΣΣ†V∗)(VΣV∗)

is the unique polar decomposition of T.

We now give the form of the iterated Aluthge transform of an matrix T using the singular value
decomposition.

Theorem 2.5. Let T be an n × n matrix in Cn×n. If T = WΣV∗ is the singular value decomposition of T, then the
n-th iterated Aluthge transform of T is

T̃(n) = Σ̂n−1Wn−1V∗n−1Σ̂n−1

where Σ̂n−1 = Vn−1Σ
1
2
n−1V∗n−1 for each n ≥ 1, Σ̂0 = Σ̂ ,W0 =W, and V∗0 = V∗.

Proof. If n = 1, then it is clear by Theorem 2.2. Assume that the n-th iterated Aluthge transform of T is

T̃(n) = Σ̂n−1Wn−1V∗n−1Σ̂n−1

where Σ̂n−1 = Vn−1Σ
1
2
n−1V∗n−1 for each n ≥ 1. Then we can find the singular value decomposition of T̃(n) as

follows;
T̃(n) =WnΣnV∗n.

By the similar way of Theorem 2.2, we obtain that the (n + 1)-th iterated Aluthge transform of T is

T̃(n+1) = Σ̂nWnV∗nΣ̂n

where Σ̂n = VnΣ
1
2
n V∗n. So, we complete the proof.

We say that a matrix N in Cn×n is normal if NN∗ = N∗N where N∗ is an adjoint matrix of N.

Corollary 2.6. If T is an n × n matrix, then the limit points of the sequence {T̃(n)
}n∈N are normal where T̃(n) =

Σ̂n−1Wn−1V∗n−1Σ̂n−1 for each n ≥ 1.

Proof. The proof follows from Theorem 2.5 and [5] (or[1, Proposition 1]).

Next, we give several examples of the iterated Aluthge transform of a matrix T by Theorems 2.2 and 2.5.

Example 2.7. Let T ∈ C3×3 be defined as

T =

0 0 1
1 1 0
1 −1 0

 .
Then |T| is clearly invertible and the singular value decomposition (SVD) of T is as follows.

T =WΣV∗ =


0 0 −1
−2−

1
2 −2−

1
2 0

2−
1
2 −2−

1
2 0


2

1
2 0 0

0 2
1
2 0

0 0 1


 0 −1 0
−1 0 0
0 0 −1

 .
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Therefore we have

Σ̂ = VΣ
1
2 V∗

=

 0 −1 0
−1 0 0
0 0 −1


2

1
4 0 0

0 2
1
4 0

0 0 1


 0 −1 0
−1 0 0
0 0 −1


=

2
1
4 0 0

0 2
1
4 0

0 0 1


and WV∗ =


0 0 −1
−2−

1
2 −2−

1
2 0

2−
1
2 −2−

1
2 0


 0 −1 0
−1 0 0
0 0 −1

 =


0 0 1
2−

1
2 2−

1
2 0

2−
1
2 −2−

1
2 0

 .
Hence the Aluthge transform of T is

T̃ = Σ̂WV∗Σ̂

=

2
1
4 0 0

0 2
1
4 0

0 0 1




0 0 1
2−

1
2 2−

1
2 0

2−
1
2 −2−

1
2 0


2

1
4 0 0

0 2
1
4 0

0 0 1


=

 0 0 2
1
4

1 1 0
2−

1
4 −2−

1
4 0

 .
On the other hand, the singular valued decomposition of T̃ is

T̃ =W1Σ1V∗1 =

 0 0 −1
−1 0 0
0 1 0



2

1
2 0 0

0 2
1
4 0

0 0 2
1
4


−2−

1
2 −2−

1
2 0

2−
1
2 −2−

1
2 0

0 0 −1

 .
Therefore we have

Σ̂1 = V1Σ
1
2
1 V∗1

=

−2−
1
2 2−

1
2 0

−2−
1
2 −2−

1
2 0

0 0 −1



2

1
4 0 0

0 2
1
8 0

0 0 2
1
8


−2−

1
2 −2−

1
2 0

2−
1
2 −2−

1
2 0

0 0 −1


=


2−

3
4 + 2−

7
8 2−

3
4 − 2−

7
8 0

2−
3
4 − 2−

7
8 2−

3
4 + 2−

7
8 0

0 0 2
1
8


and W1V∗1 =

 0 0 −1
−1 0 0
0 1 0


−2−

1
2 −2−

1
2 0

2−
1
2 −2−

1
2 0

0 0 −1

 =


0 0 1
2−

1
2 2−

1
2 0

2−
1
2 −2−

1
2 0

 .
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Hence the 2-th iterated Aluthge transform of T̃(2) is

T̃(2) = Σ̂1W1V∗1Σ̂1

=


2−

3
4 + 2−

7
8 2−

3
4 − 2−

7
8 0

2−
3
4 − 2−

7
8 2−

3
4 + 2−

7
8 0

0 0 2
1
8




0 0 1
2−

1
2 2−

1
2 0

2−
1
2 −2−

1
2 0



2−

3
4 + 2−

7
8 2−

3
4 − 2−

7
8 0

2−
3
4 − 2−

7
8 2−

3
4 + 2−

7
8 0

0 0 2
1
8


=


1
2 − 2−

9
8 1

2 − 2−
9
8 2−

5
8 + 2−

3
4

1
2 + 2−

9
8 1

2 + 2−
9
8 2−

5
8 − 2−

3
4

2−
1
4 −2−

1
4 0

 .

Example 2.8. Let T ∈ C4×4 be defined as

T =


0 1 0 0
0 0 2 0
0 0 0 1
0 0 0 0

 .
Then T is obviously non-invertible matrix and the singular value decomposition of T is as follows:

T =WΣV∗ =


0 1 0 0
1 0 0 0
0 0 1 0
0 0 0 1



2 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0




0 0 1 0
0 1 0 0
0 0 0 1
−1 0 0 0

 .

Thus

Σ̂ = VΣ
1
2 V∗

=


0 0 0 −1
0 1 0 0
1 0 0 0
0 0 1 0



2

1
2 0 0 0

0 1 0 0
0 0 1 0
0 0 0 0




0 0 1 0
0 1 0 0
0 0 0 1
−1 0 0 0


=


0 0 0 0
0 1 0 0
0 0 2

1
2 0

0 0 0 1


and

WV∗ =


0 1 0 0
1 0 0 0
0 0 1 0
0 0 0 1




0 0 1 0
0 1 0 0
0 0 0 1
−1 0 0 0

 =


0 1 0 0
0 0 1 0
0 0 0 1
−1 0 0 0

 .
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Hence the Aluthge transform of T is

T̃ = Σ̂WV∗Σ̂

=


0 0 0 0
0 1 0 0
0 0 2

1
2 0

0 0 0 1




0 1 0 0
0 0 1 0
0 0 0 1
−1 0 0 0



0 0 0 0
0 1 0 0
0 0 2

1
2 0

0 0 0 1


=


0 0 0 0
0 0 2

1
2 0

0 0 0 2
1
2

0 0 0 0

 .
On the other hand, the singular valued decomposition of T̃ is

T̃ =W1Σ1V∗1 =


0 0 1 0
0 1 0 0
1 0 0 0
0 0 0 1



2

1
2 0 0 0

0 2
1
2 0 0

0 0 0 0
0 0 0 0



0 0 0 1
0 0 1 0
1 0 0 0
0 1 0 0

 .
Thus we get that

Σ̂1 = V1Σ
1
2
1 V∗1

=


0 0 1 0
0 0 0 1
0 1 0 0
1 0 0 0



2

1
4 0 0 0

0 2
1
4 0 0

0 0 0 0
0 0 0 0



0 0 0 1
0 0 1 0
1 0 0 0
0 1 0 0


=


0 0 0 0
0 0 0 0
0 0 2

1
4 0

0 0 0 2
1
4


and

W1Σ1V∗1 =


0 0 1 0
0 1 0 0
1 0 0 0
0 0 0 1



0 0 0 1
0 0 1 0
1 0 0 0
0 1 0 0

 =

1 0 0 0
0 0 1 0
0 0 0 1
0 1 0 0

 .
Hence the 2-th iterated Aluthge transform of T̃(2) is

T̃(2) = Σ̂1W1V∗1Σ̂1

=


0 0 0 0
0 0 0 0
0 0 2

1
4 0

0 0 0 2
1
4



1 0 0 0
0 0 1 0
0 0 0 1
0 1 0 0



0 0 0 0
0 0 0 0
0 0 2

1
4 0

0 0 0 2
1
4


=


0 0 0 0
0 0 0 0
0 0 0 2

1
2

0 0 0 0

 .
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Remark 2.9. In Example 2.7, ΣΣ† =

2
1
2 0 0

0 2
1
2 0

0 0 1


2

1
2 0 0

0 2
1
2 0

0 0 1


†

is the identity matrix. But, in Example 2.8,

ΣΣ† =


2 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0



2 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0


†

is not the identity matrix.

Remark 2.10. For a given matrix T in Cn×n, it is not always easy to find the polar decomposition of T.
However, from the method in Theorem 2.2, we can obtain the polar decomposition of the given matrix T
as follows.

(i) If T =

0 0 1
1 1 0
1 −1 0

, then by Corollary 2.4, U =WΣΣ†V† =


0 0 1

2−
1
2 2−

1
2 0

2−
1
2 −2−

1
2 0

 and |T| =

2
1
2 0 0

0 2
1
2 0

0 0 1

. Hence

we get that

U|T| =


0 0 1

2−
1
2 2−

1
2 0

2−
1
2 −2−

1
2 0


2

1
2 0 0

0 2
1
2 0

0 0 1

 =
0 0 1
1 1 0
1 −1 0

= T

is the polar decomposition of T.

(ii) Let T =


0 1 0 0
0 0 2 0
0 0 0 1
0 0 0 0

 . Then U = WΣΣ†V† =


0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0

 and |T| =


0 0 0 0
0 1 0 0
0 0 2 0
0 0 0 1

 from Corollary

2.4. Therefore we obtain that

U|T| =


0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0



0 0 0 0
0 1 0 0
0 0 2 0
0 0 0 1

 =

0 1 0 0
0 0 2 0
0 0 0 1
0 0 0 0


is the polar decomposition of T.

Recall that the Duggal transform T̃D of T is given by T̃D := |T|U. The mean transform T̃M of T is defined by
T̂M := 1

2 (T + T̃D).

Proposition 2.11. Let T be an n × n matrix. If WΣV∗ is the singular value decomposition of T, then the following
statements hold.
(i) T̃D = VΣV∗WΣΣ†V∗ is the Duggal transform of T.
(ii) T̃M = 1

2

(
WΣV∗ + VΣV∗WΣΣ†V∗

)
is the mean transform of T.

Proof. Since U =WΣΣ†V∗ is a partial isometry and |T| = VΣV∗, the proof follows from the proof of Theorem
2.2 and the definitions of Duggal and Mean transforms of T, respectively.

Example 2.12. (i) If T =

0 0 1
1 1 0
1 −1 0

, then Remark 2.10 gives that

T̃D =


√

2 0 0
0

√
2 0

0 0 1




0 0 1
1
√

2
1
√

2
0

1
√

2
−

1
√

2
0

 =


0 0
√

2
1 1 0
1
√

2
−

1
√

2
0
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and T̃M = 1
2

( 0 0 1
1 1 0
1 −1 0

 +


0 0
√

2
1 1 0
1
√

2
−

1
√

2
0

 ) =


0 0 1+
√

2
2

1 1 0
2+
√

2
4 −

2+
√

2
4 0

 .Moreover, we have

(T̃D)(2) =


1+
√

2
2

−1+
√

2
2 0

−1+
√

2
2

1+
√

2
2 0

0 0
√

2




0 0 1
√

2
2

√
2

2 0
√

2
2 −

√
2

2 0

 =


2−
√

2
4

2−
√

2
4

1+
√

2
2

2+
√

2
4

2+
√

2
4

−1+
√

2
2

1 −1 0


and

(T̃M)(2) =
1
2

(T̃M +
˜(T̃M)

D
)

=
1
2

( 
0 0 1+

√
2

2
1 1 0

2+
√

2
4 −

2+
√

2
4 0

 +


2−
√

2
8

2−
√

2
8

1+3
√

2
4

6+
√

2
8

6+
√

2
8

−1+
√

2
4

2+
√

2
4 −

2+
√

2
4 0


)

=


2−
√

2
16

2−
√

2
16

3+5
√

2
8

14+
√

2
16

14+
√

2
16

−1+
√

2
8

2+
√

2
4 −

2+
√

2
4 0

 .

(ii) Let T =


0 1 0 0
0 0 2 0
0 0 0 1
0 0 0 0

 . Then Remark 2.10 implies that

T̃D =


0 0 0 0
0 1 0 0
0 0 2 0
0 0 0 1



0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0

 =

0 0 0 0
0 0 1 0
0 0 0 2
0 0 0 0



and T̃M = 1
2

( 
0 1 0 0
0 0 2 0
0 0 0 1
0 0 0 0

+

0 0 0 0
0 0 1 0
0 0 0 2
0 0 0 0


)
=


0 1

2 0 0
0 0 3

2 0
0 0 0 3

2
0 0 0 0

 .Moreover, by a similar way, we have˜(T̃M)
D
=


0 0 0 0
0 0 1

2 0
0 0 0 3

2
0 0 0 0

 and

(T̃M)(2) =
1
2

(T̃M +
˜
(T̃M)

D

) =


0 1

4 0 0
0 0 1 0
0 0 0 3

2
0 0 0 0

 .

Theorem 2.13. Let T be an n × n matrix. If T =WΣV∗ is the singular value decomposition of T, then the following
statements hold.
(i) The n-th iterated Duggal transform of T is

T̃D
(n)
= Vn−1Σn−1V∗n−1Wn−1Σn−1Σn−1

†V∗n−1
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for n ≥ 1 where Σ̂0 = Σ̂ ,W0 =W, and V∗0 = V∗.
(ii) The n-th iterated mean transform of T is

T̃M
(n)
=

1
2

(
Wn−1Σn−1V∗n−1 + Vn−1Σn−1V∗n−1Wn−1Σn−1Σ

†

n−1V∗n−1

)
where Σ̂0 = Σ̂ ,W0 =W, and V∗0 = V∗.

Proof. (i) If n = 1, then it is clear by Proposition 2.11. Assume that the n-th iterated Duggal transform of T is

Vn−1Σn−1V∗n−1Wn−1Σn−1Σn−1
†V∗n−1

for each n ≥ 1. Then we can find the singular value decomposition of T̃D
(n)

as follows;

T̃D
(n)
=WnΣnV∗n.

By the similar way of Proposition 2.11, we get that the (n + 1)-th iterated Duggal transform of T is

T̃D
(n+1)

= VnΣnV∗nWnΣnΣn
†V∗n.

(ii) If n = 1, then it is clear by Proposition 2.11. Assume that the n-th iterated mean transform of T is

T̃M
(n)
=

1
2

(
Wn−1Σn−1V∗n−1 + Vn−1Σn−1V∗n−1Wn−1Σn−1Σ

†

n−1V∗n−1

)
for each n ≥ 1. Then we can find the singular value decomposition of T̃M

(n)
as follows;

T̃M
(n)
=WnΣnV∗n.

By the similar way of Proposition 2.11, we obtain that the (n + 1)-th iterated mean transform of T is

1
2

(
WnΣnV∗n + VnΣnV∗nWnΣnΣ

†

nV∗n
)
.

So, we complete the proof.

Remark 2.14. Let T ∈ Cn×n be a polar decomposition of T. If T is normal, then U|T| = |T|U holds from [4].
Hence we have

T̃ = T̃D = T̃M.

For the matrix T in Examples 2.7 and 2.8, we know that T is not normal. There exists a k ∈ N such that
T̃(k), (T̃D)(k), and (T̃M)(k) are not normal. But, the limit points of the sequences {T̃(k)

} and {(T̃M)(k)
} become

normal.

3. Algorithm: Python code implement

3.1. Directionality
We aim to create a module that can perform a lot of iterations with a small amount of computation. We

want to check when each iterated transforms of a matrix becomes a normal matrix. We iterate transforma-
tions of each matrix defined in Examples 2.7 and 2.8 via Python and observe the results.

3.2. Process
We decompose the input matrix into three matrices through the singular value decomposition to make

the necessary materials for transformation. Then we reconstruct them to perform the transformation we
want. After repeating this process several times and saving the series of processes, we visually show that
the result of the transformation gradually satisfies the normality through the Frobenius norm. The table
below briefly shows what each method does.
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Table 1: Methods

Class : Transformation
Method Name description

Transform The three transformations (Aluthge, Duggal and Mean) are
executed as many times as the number of iterations re-
ceived and the outputs are saved in the form of list
(Transformation.total info).

Transformation.total info=
[ Transformation.Aluthge info,
Transformation.Duggal info,
Transformation.Mean info ]

Normal calculator Computing the Frobenius norm and normal characteristic - ||T̃||
and ||T̃T̃∗− T̃∗T̃|| - of matrices in the Transformation.total info.
Then each result values are stored in Transformation.norm info
and Transformation.normal info in the form of list,
respectively.

Computing Aluthge transformation does not use the pseudo-inverse as the result is the same whether
ΣΣ† is invertible or not. However, since our purpose is to look at the flow within the same number of
iterations for not only Aluthge transformation but also Duggal transformation and Mean transformation,
we compute it by applying U =WΣΣ†V∗ uniformly.

Algorithm 1 Algorithm of only one ciycle
Input: T ∈ Cn×n

Output: T̃, T̃D, T̃M

W,Σ,V∗ ← singular value decomposition of T
|T| ← VΣV∗

Σ
1
2 ← element-wise square root of Σ

U←WΣΣ†V∗

Σ̂← VΣ
1
2 V∗

T̃← Σ̂UΣ̂; T̃D
← |T|U; T̃M

←
1
2 (T + T̃D)

3.3. Example
Example 3.1. Let T define the same as in the Example 2.7. Then the graph of the 10-th iterated Aluthge,
Duggal, and Mean transform of T are as follows. Each of the three transformations is iterated 10 times
using the Python code, and the results of the two iterations are summarized in the table below (display up
to 4 decimal places).
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Table 2: Example 3.1

Matrix = [ [ 0 , 0 , 1] , [ 1 , 1 , 0 ] , [ 1 , -1 , 0 ] ]
Transformation Output

Aluthge Transform [ [ 0 , 0 , 1.1892] , [ 1 , 1 , 0 ] , [ 0.8409 , -0.8409 , 0 ] ]

[ [ 0.0415 , 0.0415 , 1.243 ] , [ 0.9585 , 0.9585 , 0.0538 ] , [ 0.8409 , -0.8409 , 0 ] ]

Duggal Transform [ [ 0 , 0 , 1.4142 ] , [ 1 , 1 , 0 ] , [ 0.7071 , -0.7071 , 0 ] ]

[ [ 0.1464 , 0.1464 , 1.2071 ] , [ 0.8536 , 0.8536 , 0.2071] , [ 1 , -1 , 0 ] ]

Mean Transform [ [ 0 , 0 , 1.2071] , [ 1 , 1 , 0 ] , [ 0.8536 , -0.8536 , 0 ] ]

[ [ 0.0366 , 0.0366 , 1.2589 ] , [ 0.9634 , 0.9634 , 0.0518 ] , [ 0.8536 , -0.8536 , 0 ] ]

The following is a plot of the normal characteristic of each transformation.

Figure 1: Example 3.1

It is confirmed that the Mean transformation converges to the normal matrix slightly faster than the
Aluthge transformation, but Duggal Transformation does not converge to the normal matrix.

Example 3.2. Let T define the same as in the Example 2.8. All the steps are same as the previous example.
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Table 3: Example 3.2

Matrix = [ [ 0 , 1 , 0 , 0 ] , [ 0 , 0 , 2 , 0 ] , [ 0 , 0 , 0 , 1 ] , [ 0 , 0 , 0 , 0 ] ]
Transformation Output

Aluthge Transform [ [ 0 , 0 , 0 , 0 ] , [ 0 , 0 , 1.4142 , 0 ] , [ 0 , 0 , 0 , 1.4142 ] , [ 0 , 0 , 0 , 0 ] ]

[ [ 0 , 0 , 0 , 0 ] , [ 0 , 0 , 0 , 0 ] , [ 0 , 0 , 0 , 1.4142 ] , [ 0 , 0 , 0 , 0] ]

Duggal Transform [ [ 0 , 0 , 0 , 0 ] , [ 0 , 0 , 1 , 0 ] , [ 0 , 0 , 0 , 2 ] , [ 0 , 0 , 0 , 0] ]

[ [ 0 , 0 , 0 , 0 ] , [ 0 , 0 , 0 , 0 ] , [ 0 , 0 , 0 , 1 ] , [ 0 , 0 , 0 , 0] ]

Mean Transform [ [ 0 , 0.5 , 0 , 0 ] , [ 0 , 0 , 1.5 , 0 ] , [ 0 , 0 , 0 , 1.5 ] , [ 0 , 0 , 0 , 0] ]

[ [ 0 , 0.25 , 0 , 0 ] , [ 0 , 0 , 1 , 0 ] , [ 0 , 0 , 0 , 1.5 ] , [ 0 , 0 , 0 , 0] ]

The following is a plot of the normal characteristic of each transformation.

Figure 2: Example 3.2

Unlike the previous Example 3.1, it is confirmed that Aluthge transformation and Duggal transformation
converge to the normal matrix after the third iteration, and the Mean transformation converges relatively
slowly.

If you would like to use our open source code and additional examples, please follow the address.
https://github.com/MinwooPark96/Aluthge-Duggal-and-Mean-Transformation.git

https://github.com/MinwooPark96/Aluthge-Duggal-and-Mean-Transformation.git
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4. Conclusion

In general, it is not easy to find the Aluthge transform, the Duggal transform, and the Mean transform
using the polar decomposition of an n × n matrix. By applying SVD, we can more easily obtain Aluthge
transform, Duggal transform, and Mean transform of an n×n matrix (see Theorem 2.2 and Proposition 2.11).
Through an algorithm with Python, we verify that the n-th iterated Aluthge transform and n-th iterated
Mean transform of a matrix converge to a normal matrix. However, in the case of the Duggal transform, it
is confirmed through several examples that the matrix obtained by the n-th iterated Duggal transform does
not necessarily become a normal operator (see Figures 1 and 2).
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