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Abstract. In the present study, we define cyclic codes over the commutative principal ideal ring F2 ×

(F2 + vF2) with v2 = v and obtain some results on cyclic codes over F2 × (F2 + vF2). We also investigate
the dual of a cyclic code over F2 × (F2 + vF2) depending on two inner products. We determine a generator
polynomial of cyclic codes and give the calculation of the number of cyclic codes over F2 × (F2 + vF2).
Furthermore, we show that the Gray images of a cyclic code over F2 × (F2 + vF2) of length n are binary
quasi-cyclic codes of length 3n and of index 3. We find numerous binary codes as Gray images of cyclic
codes over F2 × (F2 + vF2) and tabulate the optimal ones. Moreover, we show that it is possible to obtain
binary quantum error-correcting codes (QECCs) from cyclic codes over F2 × (F2 + vF2).

1. Introduction

Cyclic codes (C-codes) have been studied by coding theorists because of their algebraic structure. Since
C-codes can be described as polynomials or vectors, they present a different perspective in coding theory
and provide ease of use in application.

Codes over rings have gained attention after the seminal paper by Hammons et al. [1]. Hammons et
al. show in the paper that numerous good non-linear binary codes correspond to the Gray images of linear
codes (L-codes) overZ4. In light of this paper, codes over rings have been investigated by many researchers
[2–6]. For example, Zhu et al. [6] study on C-codes over F2 + vF2 of order 4 with v2 = v. Later, by using
non-trivial ring automorphism on F2 + vF2, Abualrub et al. [2] consider θ-C-codes over F2 + vF2. They
give the definition of θ-C-codes and characterize the generators of these codes over the ring F2 + vF2.

Recently, many researchers have focused on codes over mixed alphabets [4, 7–11]. In most studies, for
two positive integers r and s, codes are considered as B-submodules of Ar

× Bs, where A and B are two
rings [7, 9, 10]. Besides, Çalışkan and Aksoy [8] consider codes as A × B-submodules of (A × B)n, where
A = F2, B = F2 + vF2 with v2 = v and n is a positive integer. They study the L-codes over the product ring
A×B and give the weight enumerators of these codes. Later, Aksoy and Çalışkan [11] investigate self-dual
codes over A ×B.

QECCs play a pivotal role in protecting quantum information. The first examples of QECCs were given
by Shor [12] and Steane [13]. In the notable paper by Calderbank et al. [14], it is shown that QECCs can
be constructed from error-correcting codes over GF(4). Hence, researchers have sought to determine good
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QECCs from C-codes over finite fields. Later, a lot of research on the theory of QECCs has been directed to
finite rings. We refer the reader to [15–18] for more details.

We focus in the present study on C-codes over the commutative Frobenius ring F2 × (F2 + vF2) of order
8 with v2 = v. We show that a C-code over F2× (F2+vF2) is principally generated. Moreover, we determine
the generator polynomial of a C-code and find the number of C-codes depending on their length. We
obtain some optimal binary codes by using C-codes over F2 × (F2 + vF2). We tabulate the optimal binary
codes as Gray images of C-codes over F2 × (F2 + vF2). Therefore, we show that C-codes over the ring
F2 × (F2 + vF2) can be used to construct optimal binary L-codes. Finally, as an application, we establish
QECCs from Euclidean dual containing C-codes over F2 × (F2 + vF2).

The organization of this paper is as follows. In Section 2, we mention some basic properties of the ring
F2× (F2+vF2) and recall the L-codes over F2× (F2+vF2), which are presented in [8]. We give the definition
of a C-code over F2 × (F2 + vF2) in Section 3. Also, we describe the form of the generator polynomial and
the parity-check polynomial of a C-code over F2 × (F2 + vF2). We show that the binary image of a C-code
over F2 × (F2 + vF2) with respect to two Gray maps is a quasi-C-code of index 3. Moreover, we obtain
a number of optimal codes as binary images of C-codes over F2 × (F2 + vF2). We construct QECCs from
dual-containing C-codes over F2 × (F2 + vF2) in Section 4. We use Magma software [19] in all calculations.

2. Preliminaries

The finite commutative ring H := F2 × (F2 + vF2) was introduced by Çalışkan and Aksoy [8], where F2
is the binary field and F2 + vF2 is the finite commutative ring with v2 = v. They also studied the L-codes
over H in [8]. In this section of the paper, we mention the properties of the ring H and L-codes over H.

The ringH is a Frobenius ring of characteristic 2. It can also be obtained thatH is a Boolean and principal
ideal ring. Moreover, the ring is not a local ring.

Let h = (h1, h2 + vh3) and a = (κ, ξ + vτ) be two elements in H. The multiplication on H given as
ha = (h1κ, h2ξ + v(h3ξ + (h2 + h3)τ)) can be extended to Hn as

h α = ((h1κ1, h2ξ1 + v(h3ξ1 + (h2 + h3)τ1)), . . . , (h1κn, h2ξn + v(h3ξn + (h2 + h3)τn))),

where α = (a1, . . . , an) ∈ Hn such that ai = (κi, ξi + vτi) ∈ H for 1 ≤ i ≤ n. Hn is an H-module with this
multiplication. A L-code ∁ over H of length n is an H-submodule of Hn.

Two Gray maps over H are defined in [8]. The first Gray map Φ1 : H → F3
2 defined as Φ1((κ, ξ + vτ)) =

(κ, ξ, ξ + τ) is a ring isomorphism. Its extension to Hn is

ϕ1((κ, ξ + vτ)) = (κ, ξ, ξ + τ)

for any κ, ξ, τ ∈ Fn
2 . Let wH(κ) be the Hamming weight of κ ∈ F2 and w∗L(ξ + vτ) be the Lee weight of

ξ+ vτ ∈ F2 + vF2. The Lee weight of (κ, ξ+ vτ) ∈ H is wL((κ, ξ+ vτ)) = wH(κ)+w∗L(ξ+ vτ). The second Gray
map Φ2 : H → F3

2 defined as Φ2((κ, ξ + vτ)) = (κ + ξ, κ + τ, κ + ξ + τ) is extended to Hn as

ϕ2((κ, ξ + vτ)) = (κ + ξ, κ + τ, κ + ξ + τ)

for any κ, ξ, τ ∈ Fn
2 . The Gray weight of a ∈ H is wG(a) = 0 if a = (0, 0), wG(a) = 1 if a = (1, 1), (1, v), (1, 1 + v),

wG(a) = 2 if a = (0, 1), (0, v), (0, 1 + v) and wG(a) = 3 if a = (1, 0). The Lee weight (or the Gray weight) of an
element inHn is the sum of the Lee weights (or Gray weights) of its components. We note that the Gray map
ϕ1 is distance-preserving from (Hn, Lee distance-dL) to (F3n

2 , Hamming distance-dH) and the Gray map ϕ2

is distance preserving from (Hn, Gray distance-dG) to (F3n
2 , Hamming distance-dH).

Let x = (x1, x2, ..., xn), y = (y1, y2, ..., yn) ∈ (F2 + vF2)n. We recall that the Euclidean inner product and

the Hermitian inner product of x and y are defined as ⟨x, y⟩E =
n∑

i=1
xiyi and [x, y]H =

n∑
i=1

xiyi, respectively,

where yi = y′i + vy′′i = (y′i + y′′i ) + vy′′i for all y′i , y
′′

i ∈ F2. Let α = (a1, . . . , an), β = (b1, . . . , bn) ∈ Hn and

κ, ξ, τ,ζ,η,λ ∈ Fn
2 . The Euclidean inner product of α and β is given as ⟨α,β⟩ =

n∑
i=1

aibi and can be defined as

⟨ (κ, ξ + vτ), (ζ,η + vλ) ⟩ = (κ · ζ, ⟨ ξ + vτ, η + vλ ⟩E),
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where ‘·’ denotes the dot product in Fn
2 . Also, the Hermitian inner product of α and β is given as [α,β] =

n∑
i=1

aibi, where bi = (ζi, ηi + vλi) = (ζi, ηi + λi + vλi) for all ζi, ηi, λi ∈ F2, and can be defined as

[(κ, ξ + vτ), (ζ,η + vλ)] = (κ · ζ, [ ξ + vτ, η + vλ ]H).

Let ∁ be a code over Hn. The Euclidean dual ∁⊥E of ∁ is defined as ∁⊥E = {β ∈ Hn
| ⟨α,β⟩ = (0, 0), ∀α ∈ Hn

}

and the Hermitian dual ∁⊥H of ∁ is defined as ∁⊥H = {β ∈ Hn
| [α,β] = (0, 0), ∀α ∈ Hn

}.
One can obtain equivalent codes by permuting the coordinates of any code and interchanging the

elements v and 1 + v of all coordinates in necessary cases. Now, let us remind the following properties
about L-codes over H.

Remark 2.1. [8] A L-code ∁ over H of length n is permutation equivalent to ∁1 ×∁2 where ∁1 is a binary L-code of
length n and ∁2 is a L-code over F2 + vF2 of length n, which is denoted as ∁ = (∁1,∁2).

Lemma 2.2. [8] Let ∁⊥E be the Euclidean dual of a L-code ∁. Then ϕ1(∁⊥E ) = (ϕ1(∁))⊥E , where (ϕ1(∁))⊥E is the
Euclidean dual of ϕ1(∁) as a binary code.

3. C-codes over H

We study on C-codes over the ring H in this section. We find that both the Euclidean dual and the
Hermitian dual of C-codes over H are also cyclic. Also, we seek the Gray images of C-codes over H based
on the Gray map ϕ1 and the Gray map ϕ2. Then, we obtain that the Gray images of any C-code over H of
length n are binary quasi-C-codes of length 3n and index 3. Therefore, the benefit of working on C-codes
over H of length n is that it is easier than working on binary L-codes of length 3n in application.

Definition 3.1. Let ρ(c) = (cn−1, c0, . . . , cn−2) be the cyclic shift of any element c = (c0, c1, . . . , cn−1) in a code ∁ over
H. ∁ is called a C-code over H if ∁ is a L-code over H and ρ(∁) = ∁.

Let k be an integer and c = (c0, c1, . . . , cn−1) be an element in ∁. Then the k-th cyclic shift of c is defined as
ρk(c) = (c0−k, c1−k, . . . , cn−1−k) where all the subscripts are computed modulo n. We note that ρ1(c) = ρ(c) and
ρ−1(c) = ρn−1(c).

Theorem 3.2. (∁1,∁2) is a C-code over H of length n if and only if ∁1 is a binary C-code of length n and ∁2 is a
C-code over F2 + vF2 of length n.

Proof. It is easy to see from Definition 3.1 and Remark 2.1.

Proposition 3.3. The Euclidean dual ∁⊥E of a C-code ∁ over H is also cyclic.

Proof. Let c = (c0, c1, . . . , cn−1) be an element of a C-code ∁ of length n over H. If u = (u0,u1, . . . ,un−1) ∈ ∁⊥E ,
then we have

⟨c, u⟩ = c0u0 + c1u1 + . . . + cn−1un−1 = 0.

Since ∁ is cyclic, ρk(c) ∈ ∁ for every integer k. Then ⟨ρk(c), u⟩ = 0. Hence, for k = n − 1, we have

0 = ⟨ρn−1(c), u⟩

= c1u0 + c2u1 + . . . + c0un−1

= c0un−1 + c1u0 + . . . + cn−1un−2

= ⟨c, ρ(u)⟩,

which implies ρ(u) ∈ ∁⊥E . Therefore, ∁⊥E is cyclic.
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Proposition 3.4. The Hermitian dual ∁⊥H of a C-code ∁ over H is also cyclic.

Proof. The proof can be done analogously as in the proof of Proposition 3.3.

Let p(t) be a polynomial in the ring H[t]. It may be useful to consider p(t) as

p(t) = p0 + p1t + . . . + pn−1t
n−1

= (r0, s0 + vt0) + (r1, s1 + vt1)t + . . . + (rn−1, sn−1 + vtn−1)tn−1

= (r0 + r1t + . . . + rn−1t
n−1, s0 + s1t + . . . + sn−1t

n−1 + v(t0 + t1t + . . . + tn−1t
n−1))

= (r(t), s(t) + vt(t)),

where r(t), s(t), t(t) ∈ F2[t]. Moreover, for two polynomials k(t) and l(t) in H[t], we note that

k(t)l(t) = (k1(t), k2(t) + vk3(t))(l1(t), l2(t) + vl3(t))

= (k1(t)l1(t), k2(t)l2(t) + v(k2(t)l3(t) + k3(t)l2(t) + k3(t)l3(t))),

where ki(t), li(t) ∈ F2[t] for i = 1, 2, 3.
Let Hn = H[t]/(1tn − 1), where 1 = (1, 1) ∈ H. There is a one-to-one correspondence between the element

c = (c0, c1, . . . , cn−1) in Hn and the polynomial c(t) = c0 + c1t + . . . + cn−1t
n−1 in Hn, where ci = (ai, bi + vdi) for

ai, bi, di ∈ F2 and 0 ≤ i ≤ n − 1. Note that we can denote a codeword of ∁ as an element c = (c0, c1, . . . , cn−1)
in Hn or as a polynomial c(t) = c0 + c1t + . . . + cn−1t

n−1 in Hn interchangeably.
Let c(t) = (a(t), b(t) + vd(t)) be a polynomial in Hn. If we operate on c(t) with the polynomial e(t) = (t, t),

then we have

e(t)c(t) = (t, t)(a(t), b(t) + vd(t))

= (t, t)(a0 + a1t + . . . + an−1t
n−1, b0 + b1t + . . . + bn−1t

n−1 + v(d0 + d1t + . . . + dn−1t
n−1))

= (a0t + a1t
2 + . . . + an−1t

n, b0t + b1t
2 + . . . + bn−1t

n + v(d0t + d1t
2 + . . . + dn−1t

n))

= (an−1 + a0t + . . . + an−2t
n−1, bn−1 + b0t + . . . + bn−2t

n−1 + v(dn−1 + d0t + . . . + dn−2t
n−1)).

Therefore, the product e(t)c(t) in Hn corresponds to the cyclic shift of c(t). Since the codewords of a C-code
∁ over H can be considered as polynomials in Hn, we have the following result.

Theorem 3.5. A code ∁ over H of length n is a C-code if and only if ∁ is an ideal of Hn.

We note that every binary C-code∁1 of length n corresponds to a principal ideal of the ring F2[t]/(tn−1).
A binary C-code ∁1 can be generated by the unique monic polynomial 11(t) of minimal degree in ∁1 such
that 11(t) | tn − 1, and |∁1| = 2n−deg(11(t)). Also every C-code ∁2 over F2 + vF2 of length n is a principal
ideal of (F2 + vF2)[t]/(tn − 1). A C-code ∁2 can be generated by the unique polynomial 1(t) in ∁2, where
1(t) = (1 + v)12(t) + v13(t) for 12(t) | tn − 1 and 13(t) | tn − 1. If 12(t) = 13(t), then 1(t) = 12(t). Also
|∁2| = 22n−deg(12(t))−deg(13(t)). For more details, we refer the reader to [6].

Theorem 3.6. There is a unique polynomial f (t) for a C-code ∁ over H of length n such that ∁ = ⟨ f (t)⟩, where
f (t) = (11(t), (1 + v)12(t) + v13(t)) and 1i(t) | tn − 1 for i = 1, 2, 3. Moreover, |∁| = 23n−deg(11(t))−deg(12(t))−deg(13(t)).

Proof. In light of Remark 2.1 and Theorem 3.2, we observe that ∁ = ⟨(11(t), (1 + v)12(t) + v13(t))⟩, where
∁1 = ⟨11(t)⟩ and ∁2 = ⟨(1 + v)12(t) + v13(t)⟩ such that ∁ = (∁1,∁2). We have |∁| = 23n−de1(11(t))−de1(12(t))−de1(13(t))

since |∁| = |∁1||∁2|.

From Theorem 3.5 and Theorem 3.6, the following corollary which provides to consider C-codes over H
as principal ideals can be obtained.
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Corollary 3.7. Hn is a principal ideal ring.

Now, we give the form of a parity-check polynomial of a C-code ∁ over H of length n. We consider the
polynomial hi(t) = t

n
−1
1i(t)

(i = 1, 2, 3). Let h̃i(t) = tdeg(hi(t))hi(t−1) be the reciprocal polynomial of hi(t) (i = 1, 2, 3).
In light of Theorem 3.6, we have the next results.

Corollary 3.8. Let ∁⊥E be the Euclidean dual of ∁ over H. We have ∁⊥E = ⟨(̃h1(t), (1 + v)̃h2(t) + ṽh3(t))⟩ and
|∁⊥E | = 2de1(11(t))+de1(12(t))+de1(13(t)).

Corollary 3.9. Let ∁⊥H be the Hermitian dual of ∁ over H. We have ∁⊥H = ⟨(̃h1(t), ṽh2(t) + (1 + v)̃h3(t))⟩ and
|∁⊥H | = 2de1(11(t))+de1(12(t))+de1(13(t)).

The number of C-codes over H of length n can be obtained for a given n using the next result.

Theorem 3.10. Let tn−1 =
∏s

k=1 pαk
k (t) in F2[t], where pk(t) are pairwise relatively prime nonzero polynomials. The

number of C-codes over the ring H of length n is
∏s

k=1(αk + 1)3.

Proof. The number of binary C-codes is
∏s

k=1(αk+1) and the number of C-codes overF2+vF2 is
∏s

k=1(αk+1)2

[6]. Thus, we obtain the result.

Quasi-C-codes have been considered to obtain good L-codes in the literature. We recall the next concept
before giving the definition of quasi-C-codes. For an integer k, let c be an element of Fkn

2 . We can write

c = (c0, c1, . . . , ckn−1)

= (c(0)|c(1)| . . . |c(k−1)),

where c(i) ∈ Fn
2 for i = 0, 1, . . . , k − 1. Let us consider the map

ψk : Fkn
2 → F

kn
2 , ψk(c) = (ρ(c(0))| ρ(c(1))| . . . |ρ(c(k−1))),

where ρ is the cyclic shift operator.

Definition 3.11. A binary code ∁ of length nk is called a quasi-C-code of index k if ψk(∁) = ∁. In particular, a
quasi-C-code of index 1 is a C-code.

Lemma 3.12. Let ρ be the cyclic shift operator. We have ϕ1ρ = ψ3ϕ1 and ϕ2ρ = ψ3ϕ2.

Proof. If κ, ξ, τ ∈ Fn
2 , then

(ϕ1ρ)((κ, ξ + vτ)) = ϕ1(ρ(κ), ρ(ξ) + vρ(τ)) = (ρ(κ), ρ(ξ), ρ(ξ) + ρ(τ)).

On the other hand, we obtain

(ψ3ϕ1)((κ, ξ + vτ)) = ψ3(κ, ξ, ξ + τ) = (ρ(κ), ρ(ξ), ρ(ξ) + ρ(τ)).

Therefore, we have the desired equality. The second equality can also be obtained in the same way.

We give the following theorem in order to characterize the images of C-codes over H depending on the
Gray maps ϕ1 and ϕ2.

Theorem 3.13. Let ∁ be a C-code over H of length n. The binary images ϕ1(∁) and ϕ2(∁) are binary quasi-C-codes
of length 3n and of index 3.
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Proof. We know that ρ(∁) = ∁ since ∁ is a C-code over H. Therefore, we have

ϕ1(ρ(∁)) = ϕ1(∁).

Hence, by using Lemma 3.12, we obtain

ψ3(ϕ1(∁)) = ϕ1(∁).

Likewise, we have that ϕ2(∁) is a binary quasi-C-code of length 3n and of index 3.

Here we give some examples to exemplify the obtained results. We obtain C-codes over H of lengths
≤ 15. However, we tabulate the generator polynomials of C-codes over H for lengths 2, 3, 7 and 15 and the
parameters of the corresponding Gray images of C-codes over H. Especially, we give generator matrices of
C-codes over H of length 2. We restrict our results to optimal binary codes for lengths 3, 7 and 15. These
are the lengths that we obtained more optimal codes than the others. For the given length and dimension,
by an optimal binary code, we mean a code which has the highest minimum distance over F2. We note
that the notation [n, k, d] in the tables means the parameters of a binary L-code of length n, dimension k and
minimum distance d. In the tables, the column Number shows the number of codes of the same parameter
and the column Generator polynomial indicates the generator polynomial of one of the codes with the same
parameters.

Example 3.14. The factorization of the polynomial t2 − 1 in F2 is

t2 − 1 = (1 + t)2.

The number of nonzero C-codes overH of length 2 is 26. In Table 1, we list all the nonzero C-codes with their generator
matrices, generator polynomials and their binary images under the Gray maps ϕ1 and ϕ2.

Example 3.15. The factorization of the polynomial t3 − 1 in F2 is

t3 − 1 = (1 + t)(1 + t + t2).

The number of nonzero C-codes over H of length 3 is 63. In Table 2, we give the generator polynomials of C-codes
whose Gray images under ϕ2 are optimal binary codes. Here, we consider the Gray images under the map ϕ2 rather
than the map ϕ1 since the Gray images under ϕ2 have better minimum distance than the Gray images under ϕ1 for
the same length and dimension.

Example 3.16. The polynomial t7 − 1 in F2 can be factorized as

t7 − 1 = (1 + t)(1 + t + t3)(1 + t2 + t3).

The number of nonzero C-codes over H of length 7 is 511. In Table 3, we tabulate the generator polynomials of C-codes
whose Gray images under the map ϕ2 are optimal codes over F2.

Example 3.17. The polynomial t15
− 1 can be uniquely expressed in F2 as

t15
− 1 = (1 + t)(1 + t + t2)(1 + t + t4)(1 + t3 + t4)(1 + t + t2 + t3 + t4).

The number of nonzero C-codes over H of length 15 is 32767. In Table 4, we give the generator polynomials of C-codes
whose Gray images under the map ϕ2 are optimal binary codes.
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Table 1: C-codes over H of Length 2

Generator matrix Generator polynomial Gray image (ϕ1) Gray image (ϕ2)
[ (0, v) (0, v) ] (0, v) + (0, v)t [6,1,2] [6,1,4]

[ (0, 1 + v) (0, 1 + v) ] (0, 1 + v) + (0, 1 + v)t [6,1,2] [6,1,4]

[ (1, 0) (1, 0) ] (1, 0) + (1, 0)t [6,1,2] [6,1,6]

[ (1, v) (1, v) ] (1, v) + (1, v)t [6,2,2] [6,2,2]

[ (1, 1 + v) (1, 1 + v) ] (1, 1 + v) + (1, 1 + v)t [6,2,2] [6,2,2][
(0, v) (0, 0)
(0, 0) (0, v)

]
(0, v) [6,2,1] [6,2,2][

(0, 1 + v) (0, 0)
(0, 0) (0, 1 + v)

]
(0, 1 + v) [6,2,1] [6,2,2][

(1, 0) (0, 0)
(0, 0) (1, 0)

]
(1, 0) [6,2,1] [6,2,3]

[ (0, 1) (0, 1) ] (0, 1) + (0, 1)t [6,2,2] [6,2,4]

[ (1, 1) (1, 1) ] (1, 1) + (1, 1)t [6,3,2] [6,3,2][
(0, 1) (0, 1 + v)
(0, 1 + v) (0, 1)

]
(0, 1) + (0, 1 + v)t [6,3,1] [6,3,2][

(0, 1) (0, v)
(0, v) (0, 1)

]
(0, 1) + (0, v)t [6,3,1] [6,3,2][

(1, v) (1, 0)
(1, 1) (1, v)

]
(1, v) + (1, 0)t [6,3,1] [6,3,2][

(1, 1 + v) (1, 0)
(1, 0) (1, 1 + v)

]
(1, 1 + v) + (1, 0)t [6,3,1] [6,3,2][

(1, v) (0, v)
(0, v) (1, v)

]
(1, v) + (0, v)t [6,3,1] [6,3,2][

(1, 1 + v) (0, 1 + v)
(0, 1 + v) (1, 1 + v)

]
(1, 1 + v) + (0, 1 + v)t [6,3,1] [6,3,2][

(1, v) (0, 0)
(0, 0) (1, v)

]
(1, v) [6,4,1] [6,4,1][

(1, 1 + v) (0, 0)
(0, 0) (1, 1 + v)

]
(1, 1 + v) [6,4,1] [6,4,1][

(0, 1) (0, 0)
(0, 0) (0, 1)

]
(0, 1) [6,4,1] [6,4,2][

(1, 1) (0, 1)
(0, 1) (1, 1)

]
(1, 1) + (0, 1)t [6,4,1] [6,4,2][

(1, 1) (1, 1 + v)
(1, 1 + v) (1, 1)

]
(1, 1) + (1, 1 + v)t [6,4,1] [6,4,2][

(1, 1) (1, v)
(1, v) (1, 1)

]
(1, 1) + (1, v)t [6,4,1] [6,4,2][

(1, 1) (0, 1 + v)
(0, 1 + v) (1, 1)

]
(1, 1) + (0, 1 + v)t [6,5,1] [6,5,1][

(1, 1) (0, v)
(0, v) (1, 1)

]
(1, 1) + (0, v)t [6,5,1] [6,5,1][

(1, 1) (1, 0)
(1, 0) (1, 1)

]
(1, 1) + (1, 0)t [6,5,1] [6,5,2][

(1, 1) (0, 0)
(0, 0) (1, 1)

]
(1, 1) [6,6,1] [6,6,1]
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Table 2: Optimal Binary Codes Derived from C-codes over H of Length 3

Number Generator polynomial Gray image (ϕ2)
1 (1, 0) + (1, 0)t + (1, 0)t2 [9,1,9]
2 (1, 0) + (1, 0)t [9,2,6]
6 (1, 1 + v) + (1, 1 + v)t + (0, 1 + v)t2 [9,3,4]
2 (1, 1) + (1, 1)t + (0, 1)t2 [9,4,4]
2 (1, 1) + (0, 1)t + (0, 1)t2 [9,5,3]
8 (1, 1) + (1, v)t + (0, v)t2 [9,6,2]
4 (1, 1) + (1, 1 + v)t [9,7,2]
1 (1, 1) + (1, 0)t [9,8,2]
1 (1, 1) [9,9,1]

Table 3: Optimal Binary Codes Derived from C-codes over H of Length 7

Number Generator polynomial Gray image (ϕ2)
1 (1, 0) + (1, 0)t + (1, 0)t2 + (1, 0)t3 + (1, 0)t4 + (1, 0)t5 + (1, 0)t6 [21,1,21]
1 (0, 1) + (0, 1)t + (0, 1)t2 + (0, 1)t3 + (0, 1)t4 + (0, 1)t5 + (0, 1)t6 [21,2,14]
2 (1, 0) + (1, 0)t + (1, 0)t2 + (1, 0)t4 [21,3,12]
4 (1, v) + (1, v)t + (1, v)t2 + (0, v)t3 + (1, v)t4 + (0, v)t5 + (0, v)t6 [21,4,10]
2 (1, 1) + (1, 1)t + (1, 1)t2 + (0, 1)t3 + (1, 1)t4 + (0, 1)t5 + (0, 1)t6 [21,5,10]
8 (1, 1 + v) + (1, 0)t + (1, 1 + v)t2 + (0, 1 + v)t3 + (1, 1 + v)t4 [21,6,8]
6 (1, 1) + (1, 1)t + (1, 1)t2 + (1, 0)t3 + (1, 1)t4 + (1, 0)t5 + (1, 0)t6 [21,7,8]
2 (1, 1) + (0, 1)t + (1, 1)t2 + (1, 0)t3 + (1, 1)t4 [21,9,8]
2 (1, 1) + (1, 1)t2 + (1, 1)t3 + (1, 0)t4 [21,11,6]
2 (1, 1) + (0, 1)t + (1, 0)t2 + (1, 1)t3 [21,12,5]

25 (1, 1) + (0, 1)t + (1, 0)t2 + (1, v)t3 + (1, 0)t4 [21,13,4]
8 (1, 1) + (1, v)t + (0, 1 + v)t2 + (0, 1)t3 [21,14,4]
2 (1, 1) + (1, 1)t + (1, 0)t2 + (1, 0)t4 [21,15,4]
2 (1, 1) + (0, 1)t + (1, 0)t2 + (1, 0)t3 [21,16,3]

14 (1, 1) + (0, 1 + v)t + (0, v)t2 + (0, v)t3 [21,17,2]
3 (1, 1) + (1, 1)t [21,18,2]
3 (1, 1) + (1, v)t [21,19,2]
1 (1, 1) + (1, 0)t [21,20,2]
1 (1, 1) [21,21,1]
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Table 4: Optimal Binary Codes Derived from C-codes over H of Length 15

Number Generator polynomial Gray image (ϕ2)
1 (1, 0) + (1, 0)t + (1, 0)t2 + (1, 0)t3 + (1, 0)t4 + (1, 0)t5 + (1, 0)t6 + (1, 0)t7 + (1, 0)t8 + (1, 0)t9 + (1, 0)t10 + (1, 0)t11 + (1, 0)t12 + (1, 0)t13 + (1, 0)t14 [45,1,45]
2 (1, 0) + (1, 0)t + (1, 0)t3 + (1, 0)t4 + (1, 0)t6 + (1, 0)t7 + (1, 0)t9 + (1, 0)t10 + (1, 0)t12 + (1, 0)t13 [45,2,30]
2 (1, 0) + (1, 0)t + (1, 0)t2 + (1, 0)t3 + (1, 0)t5 + (1, 0)t7 + (1, 0)t8 + (1, 0)t11 [45,4,24]
4 (1, v) + (1, v)t + (1, v)t2 + (1, v)t3 + (0, v)t4 + (1, v)t5 + (0, v)t6 + (1, v)t7 + (1, v)t8 + (0, v)t9 + (0, v)t10 + (1, v)t11 + (0, v)t12 + (0, v)t13 + (0, v)t14 [45,5,22]
2 (1, 1) + (1, 1)t + (1, 1)t2 + (1, 1)t3 + (0, 1)t4 + (1, 1)t5 + (0, 1)t6 + (1, 1)t7 + (1, 1)t8 + (0, 1)t9 + (0, 1)t10 + (1, 1)t11 + (0, 1)t12 + (0, 1)t13 + (0, 1)t14 [45,6,22]
4 (1, 1) + (0, 1)t + (0, v)t2 + (1, 1)t3 + (1, 1)t4 + (0, v)t5 + (1, 1)t6 + (0, 1)t7 + (1, v)t8 + (1, 1)t9 + (1, 1)t10 + (1, v)t11 + (0, 1)t12 + (0, 1)t13 + (0, v)t14 [45,7,20]
2 (1, 1) + (1, 1)t + (1, 0)t2 + (1, 1)t3 + (0, 1)t4 + (1, 0)t5 + (0, 1)t6 + (1, 1)t7 + (1, 0)t8 + (0, 1)t9 + (0, 1)t10 + (1, 0)t11 + (0, 1)t12 + (0, 1)t13 [45,8,20]
8 (1, 1) + (1, 1)t + (1, 1 + v)t2 + (0, 1)t3 + (1, v)t4 + (1, 1 + v)t5 + (0, v)t6 + (0, 1)t7 + (1, 1 + v)t8 + (0, v)t9 + (1, v)t10 + (0, 1 + v)t11 + (0, v)t12 + (0, v)t13 [45,11,16]
2 (1, 1) + (0, 1)t + (0, 1)t2 + (1, 1)t3 + (1, 0)t4 + (0, 1)t5 + (1, 0)t6 + (0, 1)t7 + (1, 1)t8 + (1, 0)t9 + (1, 0)t10 + (1, 1)t11 [45,12,16]
2 (1, 1) + (1, 0)t2 + (0, 1)t3 + (0, 1)t4 + (1, 0)t5 + (1, 1)t6 + (1, 1)t8 + (1, 1)t9 + (1, 1)t10 + (0, 1)t11 [45,13,16]
4 (1, 1) + (0, 1)t + (1, 1)t2 + (0, 1)t4 + (1, 1)t5 + (1, 0)t6 + (1, 1)t8 + (1, 0)t9 + (1, 1)t10 [45,15,14]
4 (1, 1) + (1, 0)t + (1, 0)t2 + (0, 1)t3 + (1, 1)t4 + (1, 1)t5 + (1, 1)t8 + (0, 1)t9 + (1, 0)t10 [45,17,12]

18 (1, 1) + (1, 1 + v)t2 + (0, 1)t3 + (1, 1)t4 + (1, v)t5 + (0, 1 + v)t6 + (0, v)t8 + (0, v)t9 [45,25,8]
10 (1, 1) + (1, v)t + (1, 1 + v)t2 + (0, v)t3 + (0, 1 + v)t4 + (1, 1 + v)t5 + (1, 0)t6 + (1, v)t7 [45,26,8]
2 (1, 1) + (1, 1)t + (1, 0)t2 + (0, 1)t3 + (1, 1)t5 + (1, 0)t6 + (1, 0)t7 [45,28,8]
2 (1, 1) + (0, 1)t + (1, 0)t2 + (1, 1)t3 + (1, 0)t4 + (0, 1)t5 + (1, 0)t6 [45,29,7]

28 (1, 1) + (0, v)t + (1, v)t2 + (0, 1)t3 + (1, 1 + v)t4 + (1, 0)t5 + (0, v)t6 [45,30,6]
10 (1, 1) + (1, 1 + v)t + (0, v)t2 + (1, 0)t3 + (0, 1)t4 + (1, v)t5 [45,31,6]
2 (1, 1) + (1, 1)t + (1, 0)t3 + (0, 1)t4 + (1, 0)t5 [45,32,6]

56 (1, 1) + (1, v)t + (1, 1 + v)t3 + (0, 1 + v)t4 + (1, 0)t5 [45,35,4]
18 (1, 1) + (0, 1)t + (1, v)t2 + (1, 0)t3 + (1, 0)t4 + (1, 0)t6 [45,36,4]
6 (1, 1) + (1, 1)t + (0, v)t2 + (1, 0)t3 + (1, 0)t5 [45,37,4]
2 (1, 1) + (1, 1)t + (1, 0)t3 + (1, 0)t5 [45,38,4]
2 (1, 1) + (0, 1)t + (1, 0)t3 + (1, 0)t4 [45,39,3]

33 (1, 1) + (0, v)t + (0, v)t2 + (1, 0)t3 [45,40,2]
15 (1, 1) + (0, v)t + (0, 1 + v)t3 [45,41,2]
8 (1, 1) + (1, v)t + (0, v)t2 [45,42,2]
4 (1, 1) + (1, 0)t + (1, 0)t2 [45,43,2]
1 (1, 1) + (1, 0)t [45,44,2]
1 (1, 1) [45,45,1]
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4. QECC from C-codes over H

A q-ary QECC of length n is defined to be a qk dimensional subspace of the qn dimensional Hilbert
space (Cq)⊗n and denoted by [[n, k, d]], where q, ⊗n and d are a prime power, the tensor product of vector
spaces and the minimum Hamming distance of the QECC, respectively. There are some methods used to
obtain QECC. One of them, the Calderbank-Shor-Steane (CSS) construction, is an important method given
to construct QECCs from L-codes over finite fields. Now, let us give the CSS construction.

Theorem 4.1. [14] Let ∁ and ∁′ be linear [n, k1, d1] code and [n, k2, d2] code over GF(q). There exists an [[n, k1 +
k2 − n,min{d1, d2}]] QECC if ∁⊥E ⊆ ∁′. Specially, there exists an [[n, 2k1 − n, d1]] QECC if ∁⊥E ⊆ ∁.

Next, we give dual-containing conditions both for C-codes over F2 and F2 + vF2, respectively.

Lemma 4.2. [14] Let∁ be a binary C-code with the generating polynomial f (t) and f̃ (t) be the reciprocal polynomial
of f (t). The code ∁ contains its dual if and only if tn − 1 ≡ 0 (mod f (t) f̃ (t)).

Lemma 4.3. [20] Suppose ∁ = ⟨1(t)⟩ is a C-code of length n over F2 + vF2, where 1(t) = (1+ v)11(t)+ v12(t). Then
∁⊥E ⊆ ∁ if and only if tn − 1 ≡ 0 (mod 1i(t)1̃i(t)), where 1̃i(t) is the reciprocal polynomial of 1i(t) for i = 1, 2.

∁ is called a Euclidean dual-containing code if ∁⊥E ⊆ ∁. Now, we give a result about the Euclidean
dual-containing C-codes over H.

Theorem 4.4. Let∁ = ⟨ f (t)⟩ be a C-code of length n overH, where f (t) = (11(t), (1+v)12(t)+v13(t)) and 1i(t) | tn−1
for i = 1, 2, 3. ∁⊥E ⊆ ∁ if and only if tn − 1 ≡ 0 (mod 1i(t)1̃i(t)), where 1̃i(t) is the reciprocal polynomial of 1i(t) for
i = 1, 2, 3.

Proof. In light of Theorem 3.2, the result can be obtained by using Lemma 4.2 and Lemma 4.3.

The following result can be obtained as a consequence of Theorem 4.4.

Corollary 4.5. Let ∁ = (∁1,∁2) be a C-code of length n over H. ∁⊥E ⊆ ∁ if and only if ∁⊥E
1 ⊆ ∁1 and ∁⊥E

2 ⊆ ∁2.

Next, we give a result to obtain QECCs from dual-containing C-codes over the ring H.

Theorem 4.6. Let ∁ be a C-code over H of length n with minimum Lee weight dL. If ∁⊥E ⊆ ∁, then there exists a
binary QECC with parameters [[3n, 2k − 3n, dL]], where k is the dimension of ϕ1(∁).

Proof. Suppose ∁⊥E ⊆ ∁. We know that ϕ1(∁⊥E ) = ϕ1(∁)⊥E from Lemma 2.2. Let c ∈ ϕ1(∁⊥E ). There exists
c′ ∈ ∁⊥E such that c = ϕ1(c′), since ϕ1 is a ring isomorphism. From c′ ∈ ∁⊥E and ∁⊥E ⊆ ∁, we have c′ ∈ ∁.
Then c = ϕ1(c′) ∈ ϕ1(∁) which means ϕ1(∁)⊥E ⊆ ϕ1(∁). Here ϕ1(∁) is a binary L-code [3n, k, dL]. From
Theorem 4.1, there exists a binary [[3n, 2k − 3n, dL]] QECC.

Example 4.7. The polynomial t8 − 1 has the factorization as

t8 − 1 = (1 + t)8 in F2.

Let
11(t) = 1 + t, 12(t) = 1 + t2 and 13(t) = 1 + t + t2 + t3.

Then, ∁ = ⟨(1 + t, 1 + vt + t2 + vt3)⟩, which we can write as ∁ = ⟨(1, 1) + (1, v)t + (0, 1)t2 + (0, v)t3⟩, is a C-code
over H of length 8 with minimum Lee weight 2. By Theorem 3.13, ϕ1(∁) is a binary quasi-C-code of index 3 with
parameters [24, 18, 2]. We obtain that

1̃1(t) = 1 + t, 1̃2(t) = 1 + t2 and 1̃3(t) = 1 + t + t2 + t3.

Thus, 1i(t)1̃i(t) | t8 − 1 for i = 1, 2, 3. Therefore, by Theorem 4.4, we have ∁⊥E ⊆ ∁. Hence, there exists a binary
QECC with parameters [[24, 12, 2]] by Theorem 4.6.

In Table 5, we give binary QECCs obtained from the C-codes over H of lengths ≤ 15. The first column
denotes the lengths of the C-codes that we used to obtain binary QECCs. The second column consists of
the generator polynomials of the C-codes. The third column shows the parameters of the Gray image of
the C-code under the map ϕ1. The last column indicates the parameters of the binary QECCs.



F. Çalışkan, R. Aksoy / Filomat 37:15 (2023), 5137–5147 5147

Table 5: Binary QECCs Derived from C-codes over H

Length Generator polynomial Gray image (ϕ1) [[n, k, d]]
2 (1, 1) + (1, 1)t [6,3,2] [[6,0,2]]
3 (1, 1) [9,9,1] [[9,9,1]]
4 (1, 1) + (1, 1 + v)t + (0, v)t2 [12,8,2] [[12,4,2]]
5 (1, 1) [15,15,1] [[15,15,1]]
6 (1, 1) + (1, 1)t + (1, v)t2 [18,13,2] [[18,8,2]]
7 (1, 1) + (1, v)t + (0, 1 + v)t2 + (1, 1)t3 [21,12,3] [[21,3,3]]
8 (1, 1) + (0, 1)t + (1, v)t2 + (0, v)t3 [24,18,2] [[24,12,2]]
9 (1, 1) [27,27,1] [[27,27,1]]

10 (1, 1) + (1, v)t + (0, 1 + v)t5 [30,23,2] [[30,16,2]]
11 (1, 1) [33,33,1] [[33,33,1]]
12 (1, 1) + (1, 1)t + (0, v)t3 + (0, v)t4 [36,30,2] [[36,24,2]]
13 (1, 1) [39,39,1] [[39,39,1]]
14 (1, 1) + (0, v)t + (1, 1)t2 + (0, v)t3 + (1, 1)t6 + (0, v)t7 [42,23,3] [[42,4,3]]
15 (1, 1) + (1, v)t + (0, 1 + v)t3 + (1, 1)t4 [45,33,3] [[45,21,3]]
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