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Abstract. This paper studies the behavior of the multifractal Hewitt-Stromberg measures and dimensions
under projections onto almost all m-dimensional subspaces.

1. Introduction

Recently, the projection behavior of dimensions and multifractal spectra of sets and measures have
generated large interest in the mathematical literature [5, 7, 9, 17, 18, 24–26, 34, 35, 37]. Hewitt-Stromberg
measures were introduced in [22, Exercise (10.51)]. Since then, they have been investigated by several
authors, highlighting their importance in the study of local properties of fractals and products of fractals.
One can cite, for example [4, 10–13, 20, 21, 27, 31, 39, 40, 42]. In particular, Edgar’s textbook [14, pp.
32-36] provides an excellent and systematic introduction to these measures. Such measures appear also
explicitly, for example, in Pesin’s monograph [33, 5.3] and implicitly in Mattila’s text [29]. Motivated by
the above papers, the authors in [2, 3, 38] introduced and studied a multifractal formalism based on the
Hewitt-Stromberg measures. However, we point out that this formalism is completely parallel to Olsen’s
multifractal formalism introduced in [30] which is based on the Hausdorff and packing measures.

In the present paper we pursue those kinds of studies and consider the multifractal formalism developed
in [32]. We will start by introducing the multifractal Hewitt-Stromberg measures and dimensions which
slightly differ from those introduced in [2, 3, 38]. Our approach is to consider the behavior of multifractal
Hewitt-Stromberg functions dimensions under projections onto (almost) all m-dimensional subspaces.

We will now give a brief description of the organization of the paper. In Section 2 we introduce the mul-
tifractal Hewitt-Stromberg measures and separator functions which slightly differ from those introduced
in [2, 3], and study their properties. Section 3 contain our main results. The proofs are given in Sections 4-5.

2. Multifractal Hewitt-Stromberg measures and separator functions

Our main reason for modifying the definitions in [2, 3, 38] is to allow us to prove results for non
necessary doubling measures. One main cause and motivation is the fact that such characteristics is not in
fact preserved under projections. In the following, we will set up, for q, t ∈ R and a compactly supported
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probability measure µ on Rn, the lower and upper multifractal Hewitt-Stromberg measures Hq,t
µ and Pq,t

µ

(see also [39]). For E ⊆ suppµ, the pre-measure of E is defined by

Cq,t
µ (E) = lim sup

r→0
Mq
µ,r(E) rt,

where

Mq
µ,r(E) = sup

∑
i

µ
(
B
(
xi,

r
3

))q ∣∣∣∣ (B(xi, r)
)

i
is a packing of E

 .
Observe that Cq,t

µ is increasing and Cq,t
µ (∅) = 0. However it is not σ-additive. For this, we introduce the

Pq,t
µ -measure defined by

Pq,t
µ (E) = inf

∑
i

Cq,t
µ (Ei)

∣∣∣∣ E ⊆⋃
i

Ei and the E′i s are bounded

 .
In a similar way we define

Lq,t
µ (E) = lim inf

r→0
Mq
µ,r(E) rt.

Since Lq,t
µ is not countably subadditive, one needs a standard modification to get an outer measure. Hence,

we modify the definition as follows

Hq,t
µ (E) = inf

∑
i

Lq,t
µ (Ei)

∣∣∣∣ E ⊆⋃
i

Ei and the E′i s are bounded



The measure Hq,t
µ is of course a multifractal generalization of the lower t-dimensional Hewitt-Stromberg

measure Ht, whereas Pq,t
µ is a multifractal generalization of the upper t-dimensional Hewitt-Stromberg

measures Pt (see [39]). In fact, it is easily seen that, for t > 0, one has

H0,t
µ = Ht and P0,t

µ = Pt.

The following result describes some of the basic properties of the multifractal Hewitt-Stromberg mea-
sures including the fact that Hq,t

µ and Pq,t
µ are (metric) outer measures and summarises the basic inequalities

satisfied by the multifractal Hewitt-Stromberg measures, the multifractal Hausdorffmeasure and the mul-
tifractal packing measure.

Theorem 2.1. Let q, t ∈ R. Then for every set E ⊆ Rn we have

1. the set functions Hq,t
µ and Pq,t

µ are outer measures and thus they are measures on the Carathéodory-measurable
algebra.

2. The function Hq,t
µ is a metric outer measure and thus it is a measure on the Borel algebra.

3. The function Pq,t
µ is not necessarily a metric outer measure.

4. There exists an integer ξ ∈N, such that
H

q,t
µ (E) ≤ ξHq,t

µ (E)

and
Lq,t
µ (E) ≤ Cq,t

µ (E) ≤P
q,t
µ (E)

∨l ∨l ∨l

Hq,t
µ (E) ≤ Pq,t

µ (E) ≤P
q,t
µ (E),
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where H
q,t
µ , P

q,t
µ and P

q,t
µ denote, respectively, the Hausdorff, packing and prepacking multifractal measures intro-

duced in [32].

Proof. The proof of the first and second parts is straightforward and mimics that in [2, Theorem 2.1]. The
proof of the third part is a straightforward application of Besicovitch’s covering theorem and we omit it
here (for more details we can see also [2, Theorem 2.1]).

The measures Hq,t
µ and Pq,t

µ and the pre-measures Lq,t
µ and Cq,t

µ assign in the usual way a multifractal
dimension to each subset E of Rn, they are respectively denoted by bq

µ(E), Bq
µ(E), L

q
µ (E) and ∆q

µ(E).

Proposition 2.2. Let q ∈ R and E ⊆ Rn. Then

1. there exists a unique number bq
µ(E) ∈ [−∞,+∞] such that

Hq,t
µ (E) =


∞ if t < bq

µ(E),

0 if bq
µ(E) < t,

2. there exists a unique number Bq
µ(E) ∈ [−∞,+∞] such that

Pq,t
µ (E) =


∞ if t < Bq

µ(E),

0 if Bq
µ(E) < t,

3. there exists a unique number ∆q
µ(E) ∈ [−∞,+∞] such that

Cq,t
µ (E) =


∞ if t < ∆q

µ(E),

0 if ∆q
µ(E) < t,

4. there exists a unique number L
q
µ (E) ∈ [−∞,+∞] such that

Lq,t
µ (E) =


∞ if t < L

q
µ (E),

0 if L
q
µ (E) < t.

In addition, we have
bq
µ(E) ≤ Bq

µ(E) ≤ ∆q
µ(E).

The number bq
µ(E) is an obvious multifractal analogue of the lower Hewitt-Stromberg dimension dimMB(E) of

E whereas Bq
µ(E) is an obvious multifractal analogues of the upper Hewitt-Stromberg dimension dimMB(E)

of E. Observe that the number L
q
µ (E) is an obvious multifractal analogue of the lower box-dimension

dimB(E) of E whereas ∆q
µ(E) is an obvious multifractal analogues of the upper box-dimension dimB(E) of E.

In fact, it follows immediately from the definitions that

L 0
µ (E) = dimB(E), ∆0

µ(E) = dimB(E)

and
b0
µ(E) = dimMB(E), B0

µ(E) = dimMB(E).

See [3, 12, 27, 31] for precise definitions of these dimensions.
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Remark 2.3. It follows from Theorem 2.1 that

L
q
µ (E) ≤ ∆q

µ(E) ≤ Λq
µ(E)

∨l ∨l ∨l

bq
µ(E) ≤ bq

µ(E) ≤ Bq
µ(E) ≤ Bq

µ(E)

where bq
µ, Bq

µ and Λq
µ denote, respectively, the Hausdorff, packing and prepacking multifractal measures introduced in

[32].

The definition of these dimension functions makes it clear that they are counterparts of the τµ-function
which appears in the multifractal formalism. This being the case, it is important that they have the properties
described by the physicists. The next theorem shows that these functions do indeed have some of these
properties.

Theorem 2.4. Let q ∈ R and E ⊆ Rn.

1. The functions q 7→ Hq,t
µ (E), Pq,t

µ (E), Cq,t
µ (E) are decreasing.

2. The functions t 7→ Hq,t
µ (E), Pq,t

µ (E), Cq,t
µ (E) are decreasing.

3. The functions q 7→ bq
µ(E), Bq

µ(E), ∆q
µ(E) are decreasing.

4. The functions q 7→ Bq
µ(E), ∆q

µ(E) are convex.

Proof. The proof of this is straightforward and mimics that in [3, Theorem 3].

We note that for all q ∈ R
bq
µ(∅) = Bq

µ(∅) = ∆
q
µ(∅) = −∞,

and if µ(E) = 0, then
bq
µ(E) = Bq

µ(E) = ∆q
µ(E) = −∞ for q > 0.

Next, we define the separator functions ∆µ, Bµ and bµ : R→ [−∞,+∞] by,

∆µ(q) = ∆q
µ(suppµ), Bµ(q) = Bq

µ(suppµ) and bµ(q) = bq
µ(suppµ).

The multifractal formalism based on the Hewitt-Stromberg measures Hq,t
µ and Pq,t

µ and the Hewitt-Stromberg
dimension functions bµ, Bµ and ∆µ provides a natural, unifying and very general multifractal theory
which includes all the hitherto introduced multifractal parameters, i.e., the multifractal spectra functions
α 7→ fµ(α) =: dimMBEµ(α) and α 7→ Fµ(α) =: dimMBEµ(α), the multifractal box dimensions. The Hewitt-
Stromberg dimension functions bµ and Bµ are intimately related to the spectra functions fµ and Fµ (see
[3, 10–12, 38]), whereas the dimension function ∆µ is closely related to the upper box spectrum (more
precisely, to the upper multifractal box dimension function τµ, see Proposition 5.2).

3. Main results

Let µ be a compactly supported probability measure on Rn and q ∈ R. In the following, we require an
alternative characterization of the upper and lower multifractal box-counting dimensions of µ in terms of a
potential obtained by convolving µwith a certain kernel. For this purpose let us introduce some interesting
notations. For 1 ≤ s ≤ n and r > 0 we define the function

ϕs
r : Rn

−→ R

x 7−→ min
{
1, rs
|x|−s
}
,
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and

µ ∗ ϕs
r(x) =

∫
min
{
1, rs
|x − y|−s

}
dµ(y).

Let E be a compact subset of suppµ. For 1 ≤ s ≤ n and q > 1, write

Nq,s
µ,r(E) =

∫
E

(
µ ∗ ϕs

r/3(x)
)q−1

dµ(x),

and

τq,s
µ (E) = lim sup

r→0

log Nq,s
µ,r(E)

− log r
and τq,s

µ (E) = lim inf
r→0

log Nq,s
µ,r(E)

− log r
.

These definitions are, frankly, messy, indirect and unappealing. In an attempt to make the concept more
attractive, we present here an alternative approach to the dimensions τq,s

µ and τq,s
µ , and their applications to

projections in terms of a potential obtained by convolving µwith a certain kernel. For E a compact subset of
suppµwe can try to decompose E into a countable number of pieces E1,E2, ... in such a way that the largest
piece has as small a dimension as possible. The present approach was first used by Falconer in [15, Section
3.3] and further developed by O’Neil and Selmi in [32, 36, 39]. This idea leads to the following modified
dimensions in terms of the convolutions:

T
q,s
µ (E) = inf

 sup
1≤i<∞

τq,s
µ (Ei)

∣∣∣∣ E ⊆⋃
i

Ei with each Ei compact

 ,
T

q,s
µ (E) = inf

 sup
1≤i<∞

τq,s
µ (Ei)

∣∣∣∣ E ⊆⋃
i

Ei with each Ei compact


and

T
s
µ(q) = Tq,s

µ (suppµ) and T
s
µ(q) = T

q,s
µ (suppµ) for all s ≥ 1.

Let m be an integer with 0 < m ≤ n and Gn,m the Grassmannian manifold of all m-dimensional linear
subspaces of Rn. Denote by γn,m the invariant Haar measure on Gn,m such that γn,m(Gn,m) = 1. For V ∈ Gn,m,
we define the projection map πV : Rn

−→ V as the usual orthogonal projection onto V. Then, the set
{πV, V ∈ Gn,m} is compact in the space of all linear maps from Rn to Rm and the identification of V with
πV induces a compact topology for Gn,m. Also, for a Borel probability measure µ with compact support
suppµ ⊂ Rn and for V ∈ Gn,m, we denote by µV, the projection of µ onto V, i.e.,

µV(A) = µ ◦ π−1
V (A) ∀A ⊆ V.

Since µ is compactly supported and suppµV = πV(suppµ) for all V ∈ Gn,m, then, for any continuous
function f : V −→ R, we have ∫

V
f dµV =

∫
f (πV(x))dµ(x),

whenever these integrals exist. Then for all V ∈ Gn,m, x ∈ Rn and 0 < r < 1, we have

µ ∗ ϕm
r (x) =

∫
µV(B(xV, r))dV =

∫
min
{
1, rm

|x − y|−m
}
dµ(y).

In the following, we compare the lower and upper multifractal Hewitt-Stromberg dimensions of a set E
of Rn with respect to a measure µwith those of their projections onto m-dimensional subspaces.
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Theorem 3.1. Let µ be a compactly supported probability measure on Rn and E ⊆ suppµ. For q ≤ 1 and all
V ∈ Gn,m, we have

L
q
µV

(πV(E)) ≤ L
q
µ (E), ∆q

µV
(πV(E)) ≤ ∆q

µ(E)

and
bq
µV

(πV(E)) ≤ bq
µ(E), Bq

µV
(πV(E)) ≤ Bq

µ(E).

The next result presents alternative expressions of the multifractal dimension functions L
q
µ (E) and∆q

µ(E)
of a set E and that of its orthogonal projections.

Theorem 3.2. Let E be a compact subset of suppµ. Then, we have

1. for all q > 1 and V ∈ Gn,m,
L

q
µV

(πV(E)) ≥ τq,m
µ (E) ≥ L

q
µ (E)

and
∆

q
µV

(πV(E)) ≥ τq,m
µ (E) ≥ ∆q

µ(E).

2. For all 1 < q ≤ 2 and γn,m-almost every V ∈ Gn,m,

∆
q
µV

(πV(E)) = τq,m
µ (E) = max

(
m(1 − q),∆q

µ(E)
)

and
L

q
µV

(πV(E)) = τq,m
µ (E).

3. For all q > 2 and γn,m-almost every V ∈ Gn,m,

(a) If ∆q
µ(E) ≥ −m then ∆q

µV
(πV(E)) = τq,m

µ (E) = ∆q
µ(E).

(b) L
q
µV

(πV(E)) = max
(
m(1 − q), τq,m

µ (E)
)
.

In Theorem 3.3, we show that the upper multifractal Hewitt-Stromberg function Bq
µ(E) is preserved

under γn,m-almost every orthogonal projection for q > 1.

Theorem 3.3. Let E be a compact subset of suppµ and q > 1.

1. For all V ∈ Gn,m, we have
Bq
µV

(πV(E)) ≥ Bq
µ(E).

2. If 1 < q ≤ 2, one has

Bq
µV

(πV(E)) = T
q,m
µ (E) = max

(
m(1 − q),Bq

µ(E)
)
, for γn,m-almost every V ∈ Gn,m.

3. If q > 2 and (Ei)i is a cover of E by a countable collection of compact sets is such that ∆q
µ(Ei) ≥ −m for all i, then

Bq
µV

(πV(E)) = T
q,m
µ (E) = Bq

µ(E), for γn,m-almost every V ∈ Gn,m.

The following theorem enables us to study the lower multifractal Hewitt-Stromberg dimension of the
projection of sets on m-dimensional linear subspaces for q > 1. In particular, we prove that bq

µ(E) is not
preserved under γn,m-almost every orthogonal projection for q > 1.

Theorem 3.4. Let E be a compact subset of suppµ and q > 1.

1. For all V ∈ Gn,m, we have
bq
µV

(πV(E)) ≥ bq
µ(E).
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2. If 1 < q ≤ 2, one has
bq
µV

(πV(E)) = Tq,m
µ (E), for γn,m-almost every V ∈ Gn,m.

3. If q > 2, then
bq
µV

(πV(E)) = max
(
m(1 − q),Tq,m

µ (E)
)
, for γn,m-almost every V ∈ Gn,m.

For an integer s with 1 ≤ m ≤ s < n, we define the s-energy of a measure µ by

Is(µ) =
∫ ∫

|x − y|−sdµ(x)dµ(y).

Frostman [19] showed that the Hausdorff dimension of a Borel subset E of Rn is the supremum of the
positive reals s for which there exists a Borel probability measure µ charging E and for which the s-energy
of µ is finite. This characterization is used by Kaufmann [28] and Mattila [29] to prove their results on
the preservation of the Hausdorff dimension. The condition Is(µ) < ∞ implies that dimH(µ) ≥ s. On the
other hand, if µ(B(x, r)) ≤ rs, for all x and all sufficiently small r then µ has a finite s-energy. Notice that
Mattila [29] proved that if Im(µ) is finite, then for almost every m-dimensional subspace V, the measure µV
is absolutely continuous with respect to Lebesgue measure Lm

V on V identified with Rm and µV ∈ L2(V),
where Lm

V(E) = Lm(E ∩ V) for E ⊂ Rm. Theorem 3.5 enables us to describe the behavior of large measures
under projection.

Theorem 3.5. Suppose that µ is a compactly supported Radon measure on Rn and 0 < m ≤ s < n are such that
Is(µ) < ∞. Then

1. if 2m < s < n, then for γn,m-almost every V ∈ Gn,m and q ≥ 0

bµV (q) = BµV (q) = m(1 − q),

2. if m ≤ s ≤ 2m, then for γn,m-almost every V ∈ Gn,m and q ≥ 0

m(1 − q) ≤ bµV (q) ≤ BµV (q) ≤ max
(
m(1 − q),−

sq
2

)
.

Remark 3.6. Fix 0 < m ≤ n and let µ be a self-similar measure on Rn with support equal to K such that dimP(K) =
s ≤ m. Let q ≥ 0 and (Ei)i be a cover of E by a countable collection of compact sets is such that ∆q

µ(Ei) ≥ −m for all i.
By using Theorems 3.3 and 3.4 and [32, Corollary 5.12], we have for γn,m-almost every V ∈ Gn,m

BµV (q) = bµV (q) = BµV (q) = bµV (q) = bµ(q) = bµ(q) = Bµ(q) = Bµ(q) = Tm
µ (q) = T

m
µ (q).

4. Proof of Theorem 3.1

When q < 0 it suffice to observe that if
(
B (xi, r)

)
i∈N

is a centered packing of πV(E) then
(
B
(
yi, r
) )

i∈N
is a

centered packing of E where yi ∈ E is such that xi = πV
(
yi
)

which implies that µV(B
(
xi

r
3

)
)q
≤ µ(B

(
yi, r

3

)
)q.

This easily gives the desired result.

For 0 ≤ q ≤ 1, fix V ∈ Gn,m and let
(
B(xi, r)

)
i∈N

be a packing of πV(E). For each i we consider the collection
of balls as follows {

B
(
y,

r
9

) ∣∣∣∣ y ∈ E ∩ π−1
V

(
V ∩ B

(
xi,

r
3

))}
,

and let Ei = E ∩ π−1
V

(
V ∩ B(xi, r

3 )
)
. So Besicovitch’s covering theorem (see [32, Theorem 2.2]) provides

a positive integer ξ = ξ(n) and index sets, Ii1, Ii2, ..., Iiξ such that Ei ⊂
⋃ξ

j=1

⋃
i∈I j

B
(
y, r

9

)
and the subset
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B(y, r

9 )
∣∣∣ y ∈ Ii j

}
is a disjoint family for each j. Also, we observe that for a fixed i and j, we may make a

simple volume estimate to further subdivide Ji j into at most 7n disjoint subfamilies, Ji j1, Ji j2, ..., Ji j7n such that
for each j and k,

{
B
(
y, r

3

) ∣∣∣ y ∈ ∪iIi jk

}
is a centered packing of E. Since 0 < q ≤ 1, we have

∑
i

µV

(
B
(
xi,

r
3

))q
≤

∑
i

µ

 ξ⋃
j=1

7n⋃
k=1

⋃
y∈Ii jk

B
(
y,

r
9

)
q

≤

∑
i

ξ∑
j=1

7n∑
k=1

∑
y∈Ii jk

µ
(
B
(
y,

r
9

))q
≤ ξ7nMq

µ, r3
(E).

This implies that
Mq
µV ,r(πV(E)) ≤ ξ7nMq

µ, r3
(E).

Letting r ↓ 0, now yields

Lq,t
µV

(πV(E)) ≤ 3tξ7nLq,t
µ (E) and Cq,t

µV
(πV(E)) ≤ 3tξ7nCq,t

µ (E).

We deduce from the previous inequalities that

L
q
µV

(πV(E)) ≤ L
q
µ (E) and ∆

q
µV

(πV(E)) ≤ ∆q
µ(E).

Now, let t > Bq
µ(E) which implies that Pq,t

µ (E) < ∞, then we can choose (Ei)i a covering of E such that∑
i

Cq,t
µ (Ei) < 1.We therefore conclude that πV(E) ⊆

⋃
i

πV(Ei) and

Pq,t
µV

(πV(E)) ≤
∑

i

Cq,t
µV

(πV(Ei)) ≤ 3tξ7n
∑

i

Cq,t
µ (Ei) ≤ 3tξ7n < ∞.

This implies that
Bq
µV

(πV(E)) ≤ t for all t > Bq
µ(E).

We now infer that

Bq
µV

(πV(E)) ≤ Bq
µ(E). (4.1)

The proof of the statement bq
µV

(πV(E)) ≤ bq
µ(E) is identical to the proof of the statement (4.1) and is therefore

omitted.

5. Proof of Theorems 3.2, 3.3, 3.4 and 3.5

We present the tools, as well as the intermediate results, which will be used in the proof of our main
theorems.

5.1. Preliminary results
Let µ be a compactly supported probability measure on Rn and q ∈ R. Recall that the upper and lower

multifractal box-counting dimensions τq
µ and τq

µ of E are defined respectively by

τq
µ(E) = lim sup

r→0

log Mq
µ,r(E)

− log r
and τq

µ(E) = lim inf
r→0

log Mq
µ,r(E)

− log r
.

For technical convenience we shall assume that, if r ∈ (0, 1): log 0
− log r = −∞.

The next result is essentially a restatement of [6, Proposition 4.2] and [8, Proposition 5.1] (see also [16,
Lemma 2.6 (a)] and [41]), and has recently been obtained in [36, Proposition 4.2].
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Proposition 5.1. Let E be a compact subset of suppµ. For q > 1, we have

τq
µ(E) = lim inf

r→0

1
− log r

log
∫

E
µ
(
B
(
x,

r
3

))q−1
dµ(x)

and

τq
µ(E) = lim sup

r→0

1
− log r

log
∫

E
µ
(
B
(
x,

r
3

))q−1
dµ(x).

In the next we investigate the relation between the lower and upper multifractal Hewitt-Stromberg
functions bµ and Bµ and the multifractal box dimension, the multifractal packing dimension and the
multifractal pre-packing dimension.

Proposition 5.2. Let q ∈ R and µ be a compact supported Borel probability measure on Rn. Then for every
E ⊆ suppµ we have

L
q
µ (E) = τq

µ(E) and ∆
q
µ(E) = τq

µ(E) = Λq
µ(E).

Proof. We will prove the first equality, the second one is similar. Suppose that

τq
µ(E) > L

q
µ (E) + ϵ for some ϵ > 0.

Then we can find δ > 0 such that for any r ≤ δ,

Mq
µ,r(E) rL

q
µ (E)+ϵ > 1 and then L

q,L q
µ (E)+ϵ

µ ≥ 1

which is a contradiction. We therefore infer

τq
µ(E) ≤ L

q
µ (E) + ϵ for any ϵ > 0.

The proof of the following statement

τq
µ(E) ≥ L

q
µ (E) − ϵ for any ϵ > 0

is identical to the proof of the above statement and is therefore omitted.

We have the following additional property.

Proposition 5.3. Let q ∈ R and µ be a compact supported Borel probability measure on Rn. Then for every
E ⊆ suppµ we have

bq
µ(E) = inf

sup
i

L
q
µ (Ei)

∣∣∣∣ E ⊆⋃
i

Ei, Ei are bounded in Rn


and

Bq
µ(E) = inf

sup
i
∆

q
µ(Ei)

∣∣∣∣ E ⊆⋃
i

Ei, Ei are bounded in Rn

 .
Proof. Denote

β = inf

sup
i

L
q
µ (Ei)

∣∣∣∣ E ⊆⋃
i

Ei, Ei are bounded in Rn

 .
Assume that β < bq

µ(E) and take α ∈ (β,bq
µ(E)). Then we can choose {Ei} of bounded subset of E such that

E ⊆ ∪iEi, and supi L
q
µ (Ei) < α. Observe that Lq,α

µ (Ei) = 0 which implies that Hq,α
µ (E) = 0. It is a contradiction.

Now suppose that bq
µ(E) < β, then, for any α ∈ (bq

µ(E), β), we have Hq,α
µ (E) = 0. Thus, there exists {Ei} of
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bounded subset of E such that E ⊆ ∪iEi, and supi Lq,α
µ (Ei) < ∞. We conclude that, supi L

q
µ (Ei) ≤ α. It is also

a contradiction. The proof of the second statement is identical to the proof of the statement in the first part
and is therefore omitted.

The following proposition is a consequence of Propositions 5.2 and 5.3.

Proposition 5.4. Let E be a compact subset of suppµ and q ∈ R. One has

bq
µ(E) = inf

 sup
1≤i<∞

τq
µ(Ei)

∣∣∣∣ E ⊆⋃
i

Ei with each Ei compact


and

Bq
µ(E) = inf

 sup
1≤i<∞

τq
µ(Ei)

∣∣∣∣ E ⊆⋃
i

Ei with each Ei compact


= inf

 sup
1≤i<∞

Λ
q
µ(Ei)

∣∣∣∣ E ⊆⋃
i

Ei with each Ei compact

 .
Proposition 5.5. Let E be a subset of suppµ and q ∈ R. Then we have

Bq
µ(E) = Bq

µ(E).

Proof. It follows immediately from Proposition 5.4 and [36, Proposition 4.1].

The following result presents alternative expressions of the upper and lower multifractal box-counting
dimensions in terms of the convolutions as well as general relations between the upper and lower multi-
fractal box-counting dimensions of a measure and that of its orthogonal projections. This result has recently
been obtained in [36, Theorem 4.1].

Theorem 5.6. Let E be a compact subset of suppµ. Then, we have

1. for all q > 1 and V ∈ Gn,m,

τq
µV

(πV(E)) ≥ τq,m
µ (E) and τq

µV
(πV(E)) ≥ τq,m

µ (E).

2. For all 1 < q ≤ 2 and γn,m-almost every V ∈ Gn,m,

τq
µV

(πV(E)) = τq,m
µ (E) = max

(
m(1 − q), τq

µ(E)
)

and
τq
µV

(πV(E)) = τq,m
µ (E).

3. For all q > 2 and γn,m-almost every V ∈ Gn,m,

(a) If −m ≤ τq
µ(E) then τq

µV
(πV(E)) = τq,m

µ (E) = τq
µ(E).

(b) τq
µV

(πV(E)) = max
(
m(1 − q), τq,m

µ (E)
)
.

The assertion (2) is essentially a restatement of the main result of Hunt et al. in [23] and Falconer et al. in
[16, Theorem 3.9]. The assertion (3) extends the result of Hunt and Kaloshin (of Falconer and O’Neil) to the
case q > 2 untreated in their work.

5.2. Proof of Theorem 3.2
Follows directly from Proposition 5.2 and Theorem 5.6.
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5.3. Proof of Theorem 3.3

The proof of the first part of Theorem 3.3 follows from Theorem 5.6 (1.), Proposition 5.3 and since
τq,m
µ (E) ≥ τq

µ(E). By using Proposition 5.5, then the proof of the second and the third part of Theorem 3.3 has
recently been obtained in [36, Theorem 3.2].

5.4. Proof of Theorem 3.4

1. The proof of the first part of Theorem 3.4 follows from Theorem 5.6 (1.), Proposition 5.3 and since
τq,m
µ (E) ≥ τq

µ(E).
2. If s > Tq,m

µ (E) we may cover E by a countable collection of sets Ei, which we may take to be compact,
such thatτq,m

µ (Ei) < s. By using Theorem 5.6 (2.), we haveτq
µV

(πV(Ei)) ≤ s forγn,m-almost every V ∈ Gn,m.

Proposition 5.4 implies that bq
µV

(πV(E)) ≤ s for γn,m-almost every V ∈ Gn,m and so, bq
µV

(πV(E)) ≤ Tq,m
µ (E)

for γn,m-almost every V ∈ Gn,m.

Now, if s < Tq,m
µ (E). Fix V ∈ Gn,m and let (Ẽi)i be a cover of the compact set πV(E) by a countable

collection of compact sets. Put for each i, Ei = E ∩ π−1
V (Ẽi), then supi τ

q,m
µ (Ei) > s. By using Theorem

5.6 (1.), we have supi τ
q
µV

(πV(Ei)) ≥ s and supi τ
q
µV

(Ẽi) ≥ s, this implies that bq
µV

(πV(E)) ≥ s. Therefore,
we obtain bq

µV
(πV(E)) ≥ Tq,m

µ (E).

3. First we suppose that Tq,m
µ (E) ≥ m(1 − q). If s > Tq,m

µ (E) we may cover E by a countable collection
of sets Ei, which we may take to be compact, such that τq,m

µ (Ei) < s. By using Theorem 5.6 (3.) we
have τq

µV
(πV(Ei)) ≤ s for γn,m-almost every V ∈ Gn,m. Proposition 5.4 implies that bq

µV
(πV(E)) ≤ s for

γn,m-almost every V ∈ Gn,m and so, bq
µV

(πV(E)) ≤ Tq,m
µ (E) for γn,m-almost every V ∈ Gn,m. The proof of

bq
µV

(πV(E)) ≥ Tq,m
µ (E) for all V ∈ Gn,m, is identical to the proof of the above statement and is therefore

omitted.
Now, we suppose that Tq,m

µ (E) ≤ m(1 − q). It follows from Proposition 5.4 and Theorem 5.6 (3.) that
bq
µV

(πV(E)) = m(1 − q) for γn,m-almost every V ∈ Gn,m.

5.5. Proof of Theorem 3.5

The proof of Theorem 3.5 is straightforward from Remark 2.3 and [32, Corollary 4.4].
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