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Abstract. The main purpose of this paper is to study complex valued metric-like spaces as an extension
of metric-like spaces, complex valued partial metric spaces, partial metric spaces, complex valued metric
spaces and metric spaces. In this article, the concepts such as quasi-equal points, completely separate
points, convergence of a sequence, Cauchy sequence, cluster points and complex diameter of a set are
defined in a complex valued metric-like space. Moreover, this paper is an attempt to present compatibility
definitions for the complex distance between a point and a subset of a complex valued metric-like space
and also for the complex distance between two subsets of a complex valued metric-like space. In addition,
the topological properties of this space are also investigated.

1. Introduction and preliminaries

Distance is an important and fundamental notion in mathematics and there exist many generalizations
of this concept in the literature (see [6]). One of such generalizations is the partial metric which was
introduced by Matthews (see [11]). It differs from a metric in that points are allowed to have non-zero ”self-
distances” (i.e., d(x, x) ≥ 0), and the triangle inequality is modified to account for positive self-distances.
O’Neill [12] extended Matthews definition to partial metrics with ”negative distances”. Before describing
the material of this paper, let us recall some definitions and set the notations which we use in what follows.

Definition 1.1. A mapping p : X × X → R+, where X is a non-empty set, is said to be a partial metric on X if for
any x, y, z ∈ X, the following four conditions hold true:
(i) x = y if and only if p(x, x) = p(y, y) = p(x, y);
(ii) p(x, x) ≤ p(x, y);
(iii) p(x, y) = p(y, x);
(iv) p(x, z) ≤ p(x, y) + p(y, z) − p(y, y).

The pair (X, p) is then called a partial metric space. A sequence {xn} in a partial metric space (X, p) converges
to a point x0 ∈ X if limn→∞ p(xn, x0) = p(x0, x0). A sequence {xn} of elements of X is called Cauchy if the limit
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limm,n→∞ p(xn, xm) exists and is finite. The partial metric space (X, p) is called complete if for each Cauchy
sequence {xn}, there is some x ∈ X such that

lim
n→∞
p(xn, x) = p(x, x) = lim

m,n→∞
p(xn, xm).

An example of a partial metric space is the pair (R+, p), where p(x, y) = max{x, y} for all x, y ∈ R+. For more
material about the partial metric spaces, see, e.g. [3, 5, 9] and references therein.

In 2012, A. Amini-Harandi [1] introduced a new extension of the concept of partial metric space, called a
metric-like space. After that, the concept of b-metric-like space which generalizes the notions of partial metric
space, metric-like space, and b-metric space was introduced by Alghamdi et al. in [4]. Recently, Zidan and
Mostefaoui [14] introduced the double controlled quasi metric-like spaces and studied some topological
properties of this space. Here, we state the concept of a metric-like space.

Definition 1.2. A mapping D : X × X→ R+, where X is a non-empty set, is said to be a metric-like on X if for any
x, y, z ∈ X, the following three conditions hold true:
(i) D(x, y) = 0⇒ x = y;
(ii) D(x, y) = D(y, x);
(iii) D(x, y) ≤ D(x, z) +D(z, y).

The pair (X,D) is called a metric-like space. A metric-like on X satisfies all of the conditions of a metric
except that D(x, x) may be positive for some x ∈ X. The study of partial metric spaces has wide area of
application, especially in computer sciences, see, e.g. [5, 10, 13] and references therein. That is why working
on this topic can be very useful in practice. Since metric-likes are generalizations of partial metrics, knowing
them can therefore provide us more applicable fields. In fact, this is our motivation to study the metric-like
spaces. Each metric-like D on X generates a topology τD on X whose base is the family of open balls. An
open ball in a metric-like space (X,D), with center x and radius r > 0, is the set

B(x, r) = {y ∈ X : |D(x, y) −D(x, x)| < r}.

It is clear that a sequence {xn} in the metric-like space (X,D) converges to a point x ∈ X if and only if
limn→∞D(xn, x) = D(x, x). A sequence {xn} of elements of a metric-like space (X,D) is called Cauchy if
the limit limn,m→∞D(xn, xm) exists and is finite. The metric-like space (X,D) is called complete if for each
Cauchy sequence {xn}, there is some x0 ∈ X such that

lim
n→∞
D(xn, x0) = D(x0, x0) = lim

n,m→∞
D(xn, xm).

For more details on this topic, see, e.g. [1, 7]. Note that every partial metric space is a metric-like space.
But, the converse is not true in general. For example, let X = R, and let D(x, y) = max{|x − 5|, |y − 5|} for
all x, y ∈ R. Then (X,D) is a metric-like space, but since D(0, 0) ≰ D(1, 2), then (X,D) is not a partial metric
space. We now state another extension of the notion of distance that allows distance to be a complex value.
Azam et al., [2] introduced the concept of a complex valued metric space and obtained sufficient conditions
for the existence of common fixed points of a pair of mappings satisfying contractive type conditions. In
that article, they consider a partial order ≾ on the set of complex numbers C and then introduce a complex
valued metric. The partial order ≾ is as follows:

z1 ≾ z2 ⇔ Re(z1) ≤ Re(z2), Im(z1) ≤ Im(z2).

Let X be a non-empty set. Suppose that the mapping D : X × X→ C satisfies the following conditions:
(i) 0 ≾ D(x, y) for all x, y ∈ X;
(ii) D(x, y) = 0⇔ x = y;
(iii) D(x, y) = D(y, x) for all x, y ∈ X;
(iv) D(x, y) ≾ D(x, z) +D(z, y) for all x, y, z ∈ X.
Then D is called a complex valued metric on X , and (X,D) is called a complex valued metric space.
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Combining the two concepts complex valued metric spaces and metric-like spaces, we get complex valued
metric-like spaces. Also, we introduce the notion of a complex valued partial metric space. As will be
seen, the notion of complex valued metric-like space is a generalization of the notions of metric-like space,
complex valued metric space, partial metric space, complex valued partial metric space and metric space.
Therefore, it is interesting to investigate this general notion.

In this article, we focus on the structure of complex valued metric-like spaces and study some topological
properties of this space. For instance, we introduce some concepts such as quasi-equal points, completely
separate points, convergence of a sequence, Cauchy sequence, cluster point, limit point, complex absolute
value, complex distance between a point and a subset of a complex valued metric-like space, and complex
distance between two subsets of a complex valued metric-like space.

Additionally, we present several results about complex valued metric-like spaces.

2. Results and proofs

Let C be the set of complex numbers and z1, z2 ∈ C. Following [2], we define a partial order ≾ on C as
follows:

z1 ≾ z2 ⇔ Re(z1) ≤ Re(z2), Im(z1) ≤ Im(z2).

Hence, z1 ≾ z2 if one of the following conditions is satisfied:
(i) Re(z1) = Re(z2) and Im(z1) < Im(z2);
(ii) Re(z1) < Re(z2) and Im(z1) = Im(z2);
(iii) Re(z1) < Re(z2) and Im(z1) < Im(z2);
(iv) Re(z1) = Re(z2) and Im(z1) = Im(z2).

We write z1 ⋨ z2 if z1 , z2 and one of (i), (ii), and (iii) is satisfied. Also, we write z1 ≺ z2 if only (iii) is
satisfied. Note that

0 ≾ z1 ⋨ z2 ⇒ |z1| < |z2|,

z1 ≾ z2 ≺ z3 ⇒ z1 ≺ z3

z1 ≾ z2 + z3 ⇒ z1 − z2 ≾ z3

for z1, z2, z3 ∈ C. But note that if 0 ≺ z1 ≾ z2, then the inequality z−1
2 ≾ z−1

1 is not true in general. For
example, if z1 = 1 + i and z2 = 4 + i, then it is clear that 0 ≺ z1 ≾ z2. One can easily see that z−1

1 ≺ z−1
2 . Also,

z2 ≿ z1 (resp. z2 ≻ z1) means that z1 ≾ z2 (resp. z1 ≺ z2). Throughout the paper, the set {z ∈ C | z ≿ 0} is
denoted by C ≿ 0, i.e. C ≿ 0 = {z ∈ C | z ≿ 0}. A complex number z is called positive if 0 ≺ z.

Definition 2.1. Let X be a non-empty set. A mapping d : X × X→ C ≿ 0 is called a complex valued metric-like on
X if for any x, y, z ∈ X, the following conditions hold:
(D1) d(x, y) = 0⇒ x = y;
(D2) d(x, y) = d(y, x);
(D3)d(x, y) ≾ d(x, z) + d(z, y).

The pair (X, d) is then called a complex valued metric-like space. Indeed, a complex valued metric-like
on X satisfies all of the conditions of complex valued metric except that may be 0 ⋨ d(x, x) for some x ∈ X.
For convenience, we write (CVML) for ”complex valued metric-like”.

Definition 2.2. Let X be a non-empty set. A mapping Π : X × X → C ≿ 0 is said to be a complex valued partial
metric on X if for any x, y, z ∈ X, the following conditions hold:

• x = y⇔ Π(x, x) = Π(y, y) = Π(x, y);

• max{Π(x, x),Π(y, y)} ≾ Π(x, y);
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• Π(x, y) = Π(y, x);

• Π(x, z) ≾ Π(x, y) +Π(y, z) −Π(y, y).

The pair (X,Π) is called a complex valued partial metric space.

Definition 2.3. A complex valued metric-like d is called non-Archimedean if instead of axiom (D3), it satisfies the
following better inequality:

d(x, y) ≾ max{d(x, z), d(z, y)}, f or all x, y, z ∈ X.

Definition 2.4. Let X be a non-empty set. A mapping d : X × X → C ≿ 0 is called a complex valued pseudometric
on X if for all x, y, z ∈ X, the following conditions hold:

• x = y⇒ d(x, y) = 0;

• d(x, y) = d(y, x);

• d(x, y) ≾ d(x, z) + d(z, y).

Below, we present some examples of complex valued metric-like spaces and complex valued partial
metric spaces.

Example 2.5. Let X = C. A mapping d : C × C → C defined by d (z1, z2) = eiθ (|z1| + |z2|), where 0 ⩽ θ ⩽ π2 is a
CVML on C.

Example 2.6. Let X = R. A mapping d : R ×R→ C defined by d(x1, x2) = (1 + i)(|x1| + |x2|) is a CVML on R.

Example 2.7. Consider

X1 = {z ∈ C : Re(z) ⩾ 0, Im(z) = 0},

X2 = {z ∈ C : Im(z) ⩾ 0,Re(z) = 0}

and X = X1 ∪ X2. Define a mapping d : X × X→ C as follows:

d (z1, z2) =


(x1 + x2) (1 + i); z1, z2 ∈ X1(
y1 + y2

)
(1 + i); z1, z2 ∈ X2(

x1 + y1
)

(1 + i); z1 ∈ X1, z2 ∈ X2(
x2 + y1

)
(1 + i); z1 ∈ X2, z2 ∈ X1

A straightforward verification shows the (X, d) is a CVML space.

Example 2.8. Let X = C and D : C × C→ C defined by D(z1, z2) = (1 + i)|z1 − z2| for all z1, z2, z ∈ C. We define a
mapping Π : C × C→ C by

Π (z1, z2) =
D (z1, z2) + i (|z1| + |z2|)

2
for all z1, z2, z ∈ C. We show thatΠ is a complex valued partial metric on C. Clearly,Π (z1, z2) ≿ 0 for all z1, z2 ∈ C.
Suppose that z1 = z2. Then, D (z1, z2) = 0 and we have

Π (z1, z2) =
0 + 2i |z1|

2
= i |z1| = Π (z1, z1) = Π (z2, z2) = i |z2|

Now, suppose that Π(z1, z2) = Π(z1, z1) = Π(z2, z2). We shall to show that z1 = z2. Since we are assuming that
Π(z1, z2) = Π(z1, z1), we have the following expressions:

D (z1, z2) + i (|z1| + |z2|)
2

= |z1| i
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Then,

D(z1, z2) = 2|z1|i − i|z1| − i |z2| = |z1|i − i|z2| = i(|z1| − |z2|), (1)

which means that

(1 + i)|z1 − z2| = i (|z2| − |z1|) (2)

It follows from (2) that z1 = z2. Now, we are going to show that

max {Π (z1, z1) ,Π (z2, z2)} ≾ Π (z1, z2) .

It is evident that for all z1, z2 ∈ C, we have

||z1| − |z2|| ⩽ |z1 − z2| .

So i (|z1| − |z2|) ≾ (i + 1) |z1 − z2| and also

2i |z1| − i|z1| − i|z2| ≾ (1 + i) |z1 − z2| = D (z1, z2)

Hence, we see that
2i |z1| ≾ D (z1, z2) + i (|z1| + |z2|)

and consequently,

Π (z1, z1) = i |z1| ≾
D (z1, z2) + i (|z1| + |z2|)

2
= Π (z1, z2)

for all z1, z2 ∈ C. Similarly, we have Π (z2, z2) ≾ Π (z1, z2, ) for all z1, z2 ∈ C. Therefore,

max {Π (z1, z1) ,Π (z2, z2)} ≾ Π (z1, z2)

for all z1, z2 ∈ C. Evidently, Π (z1, z2) = Π (z2, z1) for all z1, z2 ∈ C. Moreover, for any z1, z2, z3 ∈ C, we have

D (z1, z2) + i (|z1| + |z2|)
2

≾
D(z1, z3) + i (|z1| + |z3|) +D (z3, z2) + i (|z3| + |z2|)

2
− i |z3|

and so
Π(z1, z2) ≾ Π(z1, z3) +Π(z3, z2) −Π(z3, z3).

Notice that every complex valued partial metric space is a complex valued metric-like space, but the
converse is not true in general.

Example 2.9. Let X = C and d1, d2 : C × C→ C defined by

d1(z1, z2) =
{

2i z1 = z2 = 0
i otherwise and d2(z1, z2) = i max{|z1 − 5|, |z2 − 5|} for all z1, z2 ∈ C. Then, a straightforward

verification shows that both d1 and d2 are CVML on C. But note that d1(0, 0) � d1(1, 2) and d2(0, 0) � d2(2, 1).
Hence, both (X, d1) and (X, d2) are not complex valued partial metric spaces.

Example 2.10. Suppose that (X, d1) is a CVML space. It is easy to check that

d(x, y) =
{

0 x = y ,
d1(x, y) x , y

is a complex valued metric on X. Also, d(x, y) = |d1(x, c) − d1(c, y)| is a complex valued pseudometric on X, where c
is an arbitrary fixed element of X.
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In the following, we introduce the complex absolute value of z ∈ Cwhich is denoted by | · |c.

|z|c = |Re(z)| + i |Im(z)|

for any z ∈ C. Clearly, 0 ≾ |z|c for all z ∈ C. In the next proposition, we present some properties of the
complex absolute value.

Proposition 2.11. The complex absolute value has the following properties:
(i) |z1 + z2|c ≾ |z1|c + |z2|c;
(ii) ||z|c| = |z|;
(iii) |z|c ≾ r⇔ −r ≾ z ≾ r (r ∈ C ≿ 0);
(iv) z ≾ |z|c ≾ (1 + i)|z|
for all z1, z2, z ∈ C.

Proof. We prove (iii) and leave the rest to the interested reader. Let r be an arbitrary element of C ≿ 0.
Suppose that |z|c ≾ r for some z ∈ C. So |Re(z)| + i|Im(z)| ≾ Re(r) + iIm(r) and this yields that |Re(z)| ≤ Re(r)
and |Im(z)| ≤ Im(r). It follows from the previous equalities that

− Re(r) ≤ Re(z) ≤ Re(r)
− iIm(r) ≾ iIm(z) ≾ iIm(r)

We now get that −r ≾ z ≾ r. Conversely, suppose that −r ≾ z ≾ r. This implies that

−Re(r) − iIm(r) ≾ Re(z) + iIm(z) ≾ Re(r) + iIm(r)

The previous equalities imply that |Re(z)| ≤ Re(r) and |Im(z)| ≤ Im(r). Therefore, |Re(z)| + i|Im(z)| ≾ Re(r) +
iIm(r), which means that |z|c ≾ r, as desired.

Definition 2.12. Let (X, d) be a CVML space and A ⊆ X.
(i) An open ball with center x0 ∈ X and radius 0 ≺ r ∈ C is the set

N(x0; r) =
{
y ∈ X : |d(x0, y) − d(x0, x0)|c ≺ r

}
.

(ii) a ∈ A is called an interior point of A, whenever there is a complex number 0 ≺ r such that N(a; r) ⊆ A. The set of
all interior points of A is denoted by A◦. Obviously, A◦ ⊆ A.
(iii) A is called an open set, whenever each element of A is an interior point of A, i.e. A ⊆ A◦.

Note that the family F = {N(x; r) : x ∈ X, 0 ≺ r ∈ C} is a sub-basis for a topology on X.
In the following, we provide an example of an open ball in a CVML space.

Example 2.13. Let X = R. A straightforward verification shows that the mapping d : R × R → C defined by
d(x, y) = (1 + i)max{|x|, |y|} is a CVML on R. For x0 = 2 and r0 = 1 + i, we have

N(2; 1 + i) = {x ∈ R : |d(x, 2) − d(2, 2)|c ≺ 1 + i}

=
{
x ∈ R :

∣∣∣∣(1 + i)max{|x|, |2|} − (1 + i)max{|2|, |2|}
∣∣∣∣
c
≺ 1 + i

}
=
{
x ∈ R :

∣∣∣∣(1 + i)
(
max{|x|, |2|} − 2

)∣∣∣∣
c
≺ 1 + i

}
=
{
x ∈ R :

∣∣∣∣max{|x|, |2|} − 2
∣∣∣∣ + i
∣∣∣∣max{|x|, |2|} − 2

∣∣∣∣ ≺ 1 + i
}

=
{
x ∈ R :

∣∣∣∣max{|x|, |2|} − 2
∣∣∣∣ < 1
}

= {x ∈ R : 1 < max{|x|, |2|} < 3}
= (−3, 3)
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Definition 2.14. Let (X, d) be a CVML space, let {xn}n≥1 be a sequence of X and let x0 ∈ X. We say that

• The sequence {xn}n⩾1 converges to x0 if for every 0 ≺ r ∈ C there exists n0 ∈ N such that xn ∈ N(x0, r) for
all n > n0, i.e. |d(xn, x0) − d(x0, x0)|c ≺ r for all n > n0. We denote this by limn→+∞ xn = x0, or xn → x0 as
n→ +∞.

• The sequence {xn}n⩾1 is called Cauchy if limm,n→+∞ d(xn, xm) exists and is finite. It means that sequence {xn}n⩾1
is Cauchy if and only if limm,n→+∞ d(xn, xm) = z0 for some z0 ∈ C.

• The complex valued metric-like space (X, d) is complete if every Cauchy sequence of X is convergent. On the
other hand, the complex valued metric-like space (X, d) is complete if for each Cauchy sequence {xn}, there is
some x ∈ X such that

lim
n→+∞

d(xn, x) = d(x, x) = lim
m,n→+∞

d(xn, xm)

In the following, we give an example of a convergent sequence in a CVML space which is not Cauchy!.

Example 2.15. Let X =
{
⃝,△,□

}
. We define a mapping d : X × X→ C as follows:

d(△,△) = d(△,□) = d(□,△) = d(□,□) = i
d(⃝,□) = d(□,⃝) = d(⃝,△) = d(△,⃝) = d(⃝,⃝) = 1 + 3i

It is easy to check that d is a CVML on X. Considering the sequence

xn =


△ ; n = 3k
⃝ ; n = 3k + 1
□ ; n = 3k +2

we have

d(xn, xm) =


i ; n = 3k,m = 3q
1 + 3i ; n = 3k, n = 3q + 1
i ; n = 3k, m = 3q +2
1 + 3i ; n = 3k+1, m = 3q +1
1 + 3i ; n = 3k+1, m = 3q +2

It means that {xn} is not a Cauchy sequence of (X, d). But note that

d(xn,⃝) − d(⃝,⃝) =


0 ; n = 3k
0 ; n = 3k + 1
0 ; n = 3k+2

This means that xn →⃝, as n→∞.

Definition 2.16. Let X be a vector space over a complex or real field F. A complex valued norm on X is a map
∥ · ∥c : X −→ C ≿ 0 satisfying the following three conditions:
(i) ∥x∥c = 0⇔ x = 0;
(ii) ∥λx∥c = |λ|∥x∥c for all x ∈ X, λ ∈ F;
(iii) ∥x + y∥c ≾ ∥x∥c + ∥y∥c for all x, y ∈ X.
A complex valued normed space is a pair (X, ∥.∥c), where X is a complex or real vector space and ||.||c is a complex
valued norm on X. For example, let (X, ||.||) be a normed space. Define ||.||c : X → C+ by ∥x∥c = i∥x∥ for all x ∈ X.
Clearly, ∥ · ∥c is a complex valued norm on X.
Now, suppose that ||.||c is a complex valued norm an X. If we define d : X × X→ C ≿ 0 by d(x, y) = ∥x − y∥c, then d
is a complex valued metric on X. Moreover, if ∥ · ∥c is a complex valued norm an X, then the mapping d : X×X −→ C
defined by d(x, y) = ∥x∥c + ∥y∥c is a CVML on X.
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Proposition 2.17. Let (X, d) be a complex valued metric-like space, and let x0 be an arbitrary element of X. Then
d(x0,x0)

2 ≾ d(x, x0) for all x ∈ X.

Proof. Suppose that there exists an element x ∈ X such that d(x, x0) ≺ d(x0,x0)
2 . Therefore, we have

d(x0, x0) ≾ d(x0, x) + d(x, x0) ≺
d(x0, x0)

2
+

d(x0, x0)
2

= d(x0, x0),

which is a contradiction. This contradiction shows that d(x0,x0)
2 ≾ d(x, x0) for all x ∈ X.

It follows immediately from the above proposition that if (X, d) is a CVML space and x0 is an arbitrary
element of X, then {x ∈ X | d(x, x0) ≺ d(x0,x0)

2 } = ∅. Hence, we deduce that

max
{d(x, x)

2
,

d(y, y)
2

}
≾ d(x, y)

for all x, y ∈ X.

Remark 2.18. Note that in CVML spaces the limit of a convergent sequence is not necessarily unique and this means
that topology of these spaces is not necessarily a Hausdorff topology. For instance, suppose that X = C and d(x, y) =
i max{|x|, |y|} for each x, y ∈ X. Putting xn =

i
n , we have limn→∞ d( i

n , i) = limn→∞ i max{| in |, |i|} = i = d(i, i). It
means that the sequence { i

n } converses to i, i.e. i
n → i. Moreover, we have limn→∞ d( i

n , 2i) = limn→∞ i max{| in |, |2i|} =
2i = d(2i, 2i), and consequently, i

n → 2i as well. This demonstrates that the sequence { i
n } converges to two different

points.

The above example leads us to the next definition.

Definition 2.19. (Quasi-equal points) Let (X, d) be a CVML space. The points x, y ∈ X are called quasi-equal
points if there exists a sequence {xn} of X converging to both x and y, i.e. xn → x and xn → y.

From the previous remark, one can easily deduce that if X = C and d(x, y) = i max{|x|, |y|} for each x, y ∈ C,
then i and 2i are two quasi-equal points.

Definition 2.20. (Completely separate points) Let (X, d) be a CVML space. The points x, y of X are called completely
separate points if the following condition holds true:

d(x, x) + d(y, y) ≺ d(x, y)

Example 2.21. Let X be a non-empty set. Define the mapping d1 : X×X→ C by d1(x, y) =
{

0 x = y
1 + 4i otherwise

. A straightforward verification shows that d1 is a complex valued metric on X. Now we define d : X × X → C
byd(x, y) = i+d1(x, y). Clearly, d is a CVML on X. Note that d(x, x) = i = d(y, y) for all x, y ∈ X. If x, y are distinct,
i.e. x , y, then 1 + 4i = d1(x, y) ≻ i and this yields that

d(x, x) + d(y, y) ≺ d(x, y)

This shows that every two distinct points of X are completely separate points. Obviously, in this space, a sequence
{xn} of X converges to a point x0 ∈ X if and only if there exists a positive integer N such that xn = x0 for all n > N.

Theorem 2.22. Let (X, d) be a CVML space. Then there are no convergent sequences to two completely separate
points.
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Proof. Suppose that x, y are two completely separate points. To obtain a contradiction, let {xn} be a sequence
of X converging to both x, y. Put r1 =

1
3 r, where r = d(x, y) − d(x, x) − d(y, y) ≻ 0. Since xn → x and xn → y,

for ε = r1, there exist two positive integers N1 and N2 such that

max{|d(xN, x) − d(x, x)|c, |d(xN, y) − d(y, y)|c} ≺ r1

for all n ≥ N = max{N1,N2}. Therefore,

d(x, y) = |d(x, y)|c ≾ |d(x, xN) + d(xN, y)|c
= |d(x, xN) + d(xN, y) − d(x, x) + d(x, x) − d(y, y) + d(y, y)|c
≾ |d(x, xN) − d(x, x)|c + |d(xN, y) − d(y, y)|c + d(x, x) + d(y, y)
≺ r1 + r1 + d(x, x) + d(y, y)
= 2r1 + d(x, x) + d(y, y)

=
2
3

[
d(x, y) − d(x, x) − d(y, y)

]
+ d(x, x) + d(y, y)

=
2
3

d(x, y) +
1
3

d(x, x) +
1
3

d(y, y).

So we obtain that d(x, y) ≺ d(x, x) + d(y, y), a contradiction. This contradiction proves our claim.

Immediate conclusion from the above theorem demonstrates that completely separate points are not quasi-
equal.

Theorem 2.23. Let (X, d) be a CVML space. Then the points x1, x0 of X are quasi-equal if and only if N(x0; r) ∩
N(x1; r) , ϕ for all 0 ≺ r ∈ C.

Proof. Suppose that x0, x1 are two quasi-equal points of X. Hence, there exists a sequence {xn} of X such that
xn → x0 and xn → x1. Assume that there exists a positive complex number r such that N(x0; r)∩N(x1; r) = ϕ.
Since xn → x0 and xn → x1, for ε = r, there exist two positive integers N1 and N2 such that xn ∈ N(x0; r)
and also xn ∈ N(x1; r) for all n ≥ M = max{N1,N2}. We see that xM ∈ N(x0; r) ∩N(x1; r) = ϕ, a contradiction.
Conversely, assume that N(x0; r) ∩ N(x1; r) , ϕ for all 0 ≺ r ∈ C. Our next task is to show that there is a
sequence {xn} ⊆ X converging to both x0 and x1. Putting rn =

i
n and using our assumption, we deduce that

for any positive integer n, there exists an element xn ∈ X such that xn ∈ N(x0; i
n ) ∩ N(x1; i

n ). It is clear that,
for a given positive complex number r, there is a natural number N ∈ N such that i

N ≺ r. Thus, for each
n ≥ N, we have

xn ∈ N(x0;
i
n

) ∩N(x1;
i
n

) ⊆ N(x0;
i

N
) ∩N(x1;

i
N

) ⊆ N(x0; r) ∩N(x1; r).

It means that for any positive complex number r, there exists a positive integer N such that xn ∈ N(x0; r)
and xn ∈ N(x1; r) for all n ≥ N. This means that the sequence {xn} converges to both x0 and x1, i.e. xn → x0,
xn → x1. Consequently, x0 and x1 are quasi-equal points, as desired.

There is a consequence of the above theorem as follows:

Corollary 2.24. Let (X, d) be a CVML space. The points x0, x1 of X are not quasi-equal if and only if there exists a
positive complex number r such that N(x0; r) ∩N(x1; r) = ϕ.

It is clear that if x, y are two completely separate points of a CVML space (X, d), then there is a positive
complex number r such that N(x; r)∩N(y; r) = ϕ. It is enough to assume that r = 1

2

[
d(x, y)− d(x, x)− d(y, y)

]
.

Below, we show that the converse of this statement is not true in general. To see this, let X = C, d(x, y) =
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(1+ i)(|x|+ |y|), x0 = i and x1 = 4i. Obviously, d(x0, x1) ≺ d(x0, x0)+ d(x1, x1) and it means that the points x0, x1
are not completely separate points. We claim that N(x0; 1+ i)∩N(x1; 1+ i) = ϕ. To show the claim, we have

N(x0; 1 + i) = N(i; 1 + i) = {z ∈ C : |d(z, i) − d(i, i)|c ≺ 1 + i}

= {z ∈ C :
∣∣∣(1 + i)(|z| + 1) − 2(1 + i)

∣∣∣
c ≺ 1 + i}

= {z ∈ C :
∣∣∣(1 + i)(|z| − 1)

∣∣∣
c ≺ 1 + i}

= {z ∈ C : ||z| − 1| + i||z| − 1| ≺ 1 + i}
= {z ∈ C : ||z| − 1| < 1}
= {z ∈ C : −1 < |z| − 1 < 1}
= {z ∈ C : 0 < |z| < 2}

= {(x, y) ∈ R2 : 0 < x2 + y2 < 4}

Moreover,

N(x1; 1 + i) = N(4i; 1 + i) = {z ∈ C : |d(z, 4i) − d(4i, 4i)|c ≺ 1 + i}

= {z ∈ C :
∣∣∣(1 + i)(|z| − 4)

∣∣∣
c ≺ 1 + i}

= {z ∈ C : ||z| − 4| + i||z| − 4| ≺ 1 + i}
= {z ∈ C : ||z| − 4| < 1}
= {z ∈ C : 3 < |z| < 5}

= {(x, y) ∈ R2 : 9 < x2 + y2 < 25},

It is observed that N(i; 1 + i) ∩N(4i; 1 + i) = ϕ.

Checking the following properties for CVML spaces is straightforward and we leave it to the interested
reader. Let (X, d) be a CVML space.

1. If x0, x1 are completely separate points, then there exists a positive complex number r such that
N(x0; r) ∩N(x1; r) = ϕ.

2. The points x0, x1 are not quasi-equal if and only if there exists a positive complex number r such that
N(x0; r) ∩N(x1; r) = ϕ.

3. If x0, x1 are completely separate points, then they are not quasi-equal points.

Remark 2.25. We know that topology of CVML space is not necessarily a Hausdorff topology, since the limit of a
convergent sequence in these spaces is not always unique. In a CVML space, completely separate points help us to
obtain a Hausdorff subspace of that space. Indeed, let (X, d) be a CVML space and let Z be the set of all completely
separate points of X. Then the subspace (Z, d) of (X, d) is a Hausdorff space.

Definition 2.26. (Cluster points) Let (X, d) be a CVML space and let A be a subset of X. A point x0 ∈ X is
said to be a cluster point of A if for every positive complex number r there exists an element a ∈ A such that
|d(a, x0) − d(x0, x0)|c ≺ r.

As usual, the set of all cluster points of A is called the closure of A and is denoted by A. Note that x0 ∈ A if
and only if N(x0; r) ∩ A , ϕ for all 0 ≺ r ∈ C. Indeed, we have

A =
{
x0 ∈ X : N(x0; r) ∩ A , ϕ f or all 0 ≺ r ∈ C

}
It is clear that if (X, d) is a CVML space and A is a subset of X, then A ⊆ A. In the following, we establish

a theorem to present a necessary and sufficient condition for cluster points in the CVML spaces. First, we
prove a theorem about the convergence of sequences in CVML spaces.
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Theorem 2.27. Let (X, d) be a CVML space and let {xn} be a sequence of X. Then {xn} converges to x if and only if
limn→+∞

∣∣∣∣d (xn, x) − d(x, x)
∣∣∣∣ = 0.

Proof. Suppose that {xn} converges to x. Let ε = α
√

2
+ i α√

2
= α
√

2
(1 + i), where α is a given positive real

number. Since {xn} converges to x, there exists a positive integer N such that |d (xn, x) − d(x, x)|c ≺ ε for all
n > N. Therefore, ∣∣∣∣|d (xn, x) − d(x, x)|c

∣∣∣∣ < |ε| = α
for all n > N, which means that |d (xn, x) − d(x, x)| < α for all n > N. So

lim
n→+∞

|d (xn, x) − d(x, x)| = 0.

Conversely, suppose that limn→+∞ |d (xn, x) − d(x, x)| = 0. Therefore, for each positive real number α,
there exists a positive integer N such that |d(xn, x) − d(x, x)| < α for all n > N. It is clear that for any 0 ≺ ε ∈ C,
there exists a positive real number α such that α + iα = (1 + i)α ≺ ε. Since limn→+∞ |d (xn, x) − d(x, x)| = 0,
there exists a positive integer n0 ∈N such that |d (xn, x) − d(x, x)| < α for all n ≥ n0. Hence, for all n ≥ n0, we
have

|d (xn, x) − d(x, x)|c ≾ (1 + i) |d (xn, x) − d (x, x) | ≺ (1 + i)α ≺ ε

Indeed, we get that for all 0 ≺ ε ∈ C there exists a positive integer n0 such that |d (xn, x) − d(x, x)|c ≺ ε for all
n ≥ n0, and this means that limn→+∞ xn = x, as desired.

Theorem 2.28. Let (X, d) be a CVML space and let A be a subset of X. Then x0 ∈ A if and only if there is a sequence
{an} ⊆ A converging to x0.

Proof. Suppose that x0 ∈ A. So for each rn =
1+i
n (n ∈ N), there is an element an ∈ A such that |d(an, x0) −

d(x0, x0)|c ≺ 1+i
n . It implies that limn→+∞ |d(an, x0) − d(x0, x0)| = 0, and it follows from Theorem 2.27 that the

sequence {an} ⊆ A converges to x0. Conversely, assume that {an} is a sequence of A converging to x0. We
must to show that x0 ∈ A. Let r be an arbitrary positive complex number. Therefore, there exists a positive
number N such that an ∈ N(x0, r) for all n ≥ N. It means that A ∩N(x0; r) , ϕ. Since we are assuming that r
is an arbitrary positive complex number, it is deduced that x0 ∈ A, as desired.

Example 2.29. Let X = C, A = {z ∈ C : |z| < 1}, and let z0 be an arbitrary complex number. Considering
d(z1, z2) = i max{|z1|, |z2|} for each z1, z2 ∈ C, we have

lim
n→+∞

d(
i
n
, z0) = lim

n→∞
i max{

1
n
, |z0|} = i|z0| = d(z0, z0),

which means that i
n → z0. Since { i

n } ⊆ A and also z0 is an arbitrary element of C, A = C.

Definition 2.30. (Limit points) Let (X, d) be a CVML space and let A be a subset of X. A point x0 ∈ X is said to be
a limit point of A if N(x0; r) ∩ (A − {x0}) , ϕ for all positive complex numbers r.

As usual, the set of all limit points of A is denoted by A′. A subset A of X is called a closed set, whenever
each limit point of A belongs to itself, i.e. A′ ⊆ A. One can easily prove the following theorem.

Theorem 2.31. Let (X, d) be a CVML space and let A be a subset of X. Then A = A ∪ A′.

In the following, we define the ”complex distance” between a point and a subset of a CVML space.
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Definition 2.32. Let (X, d) be a CVML space and let A be a non-empty subset of X. The complex distance between a
point x0 ∈ X and A is defined as follows:

d(x0,A) = inf
{
|d(x0, a) − d(x0, x0)|c : a ∈ A

}
= inf

{
|Re(d(x0, a) − d(x0, x0))| + i|Im(d(x0, a) − d(x0, x0))| : a ∈ A

}
= inf

{
|Re(d(x0, a) − d(x0, x0))| : a ∈ A

}
+

i inf
{
|Im(d(x0, a) − d(x0, x0))| : a ∈ A

}
.

Example 2.33. (i) Let X = C, d(z1, z2) = i max{|z1|, |z2|} for each z1, z2 ∈ C and let A = {n + i
n | n ∈ N}. Then we

have

d(1,A) = inf
{∣∣∣∣i max{|n +

i
n
|, |1|} − i max{|1|, |1|}

∣∣∣∣
c

: n ∈N
}

= inf
{∣∣∣∣i max{

√
n2 +

1
n2 , 1} − i

∣∣∣∣
c

: n ∈N
}

= inf
{∣∣∣∣i√n2 +

1
n2 − i

∣∣∣∣
c

: n ∈N
}

= inf
{
i
∣∣∣∣√n2 +

1
n2 − 1

∣∣∣∣ : n ∈N
}

=
√

2 − 1.

(ii) As another example in this regard, let X = R, let d(x, y) = eiθ(|x| + |y|), where 0 ⩽ θ ⩽ π2 , let A = (−1, 1) and let
x0 = 4. Then we have

d(x0,A) = d(4,A) = inf
{∣∣∣d(4, 4) − d(4, a)

∣∣∣
c : a ∈ A

}
= inf

{
|eiθ(|a| − 4)|c : a ∈ A

}
= inf

{
||a| − 4||eiθ

|c : a ∈ A
}

= 3|eiθ
|c.

The next theorem demonstrates a relationship between the complex distance of a set and its closure.

Theorem 2.34. Let (X, d) be a CVML space and let A be a non-empty subset of X. Then A = {x ∈ X : d(x,A) = 0}.

Proof. We first show that A ⊆ {x ∈ X : d(x,A) = 0}. We have the following expressions:

x0 ∈ A⇒ ∀r ≻ 0,N(x0, r) ∩ A , ϕ,
⇒ ∀r ≻ 0,∃a0 ∈ A : |d(x0, x0) − d(x0, a0)|c ≺ r,
⇒ ∀r ≻ 0, d(x0,A) ≺ r,
⇒ d(x0,A) = 0.

Hence, A ⊆ {x ∈ X : d(x,A) = 0}. Conversely, we show that if d(x0,A) = 0, then x0 ∈ A. Since d(x0,A) = 0,
for each rn =

1+i
n (n ∈ N), there is an element an ∈ A such that |d(x0, x0) − d(x0, an)|c ≺ 1+i

n . It follows from
Theorem 2.27 that the sequence {an} of A converges to x0, and according to Theorem 2.28, x0 ∈ A. So we get
that {x ∈ X : d(x,A) = 0} ⊆ A, and the theorem is now proved.
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Meanwhile, one can easily prove the following proposition:

d(x0,A) = 0⇔ ∀r ≻ 0,∃a ∈ A : |d(x0, x0) − d(x0, a)|c ≺ r.

Now we illustrate the previous theorem by the following example.

Example 2.35. Let X = C, A = {z ∈ C : |z| < 1}, and let d(z1, z2) = i max{|z1|, |z2|} for each z1, z2 ∈ C. In Example
2.29 it was shown that A = C. Below, we show that {z ∈ C : d(z,A) = 0} = C. Suppose z0 ∈ C, with |z0| ≥ 1. Then
for each z ∈ A, d(z, z0) = i max{|z|, |z0|} = i|z0|. In this case, we have

d(z0,A) = inf
{
|d(z0, z0) − d(z0, z)|c : z ∈ A

}
= inf

{
|i|z0| − i|z0||c : z ∈ A

}
= 0.

Obviously, for each arbitrary element z0 of A, we have d(z0,A) = 0. Therefore,

{z ∈ C : d(z,A) = 0} = C = A.

Below, we define the distance between two non-empty subsets of a CVML space.

Definition 2.36. Let (X, d) be a CVML space and let A,B be two non-empty subsets of X. The complex distance
between A and B is defined as follows:

d(A,B) := min
{

inf{d(a,B) : a ∈ A}, inf{d(b,A) : b ∈ B}
}
.

Example 2.37. Suppose that X = R and d(x, y) = (1 + i)(|x| + |y|). We want to calculate the complex distance
between the sets A = (−1, 1) and B = (3, 4) in the CVML space (X, d). For an arbitrary element a ∈ A, we have

d(a,B) = inf
{
|d(a, a) − d(a, b)|c : b ∈ B

}
= inf

{∣∣∣∣(1 + i)(|a| − |b|
∣∣∣∣
c

: b ∈ B
}

= inf
{
||a| − |b|| + i||a| − |b|| : b ∈ B

}
= (3 − |a|) + i(3 − |a|).

So inf{d(a,B) : a ∈ A} = inf{(1 + i)(3 − |a|) : a ∈ A} = 2 + 2i. Moreover, if b is an arbitrary element of B, then

d(b,A) = inf
{
|d(a, b) − d(b, b)|c : a ∈ A

}
= inf{|b − |a|| + i|b − |a|| : a ∈ A}
= (b − 1) + i(b − 1).

Hence, inf{d(b,A) : b ∈ B} = inf{(b − 1)(1 + i) : b ∈ B} = 2 + 2i. Thus, the complex distance between A and B is
d(A,B) = min{2 + 2i, 2 + 2i} = 2 + 2i.

Definition 2.38. Let (X, d) be a CVML space and let A be a subset of X. The complex diameter of A is defined as
follows:

diam(A) := sup
{
|d(x, y) − d(x, x)|c, |d(x, y) − d(y, y)|c : x, y ∈ A

}
.

If |diam(A)| < ∞, then the subset A ⊆ X is said to be bounded.
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Example 2.39. Let X = C, d(x, y) = (1 + i)(|z1| + |z2|), and let A = {z ∈ C : 3 < |z| < 5}. In this case, we have

diam(A) = sup
{
|d(z1, z2) − d(z1, z1)|c, |d(z1, z2) − d(z2, z2)|c : z1, z2 ∈ A

}
= sup

{∣∣∣|z1| − |z2|
∣∣∣ + i
∣∣∣|z1| − |z2|

∣∣∣ : z1, z2 ∈ A
}

= sup
{∣∣∣|z1| − |z2|

∣∣∣(1 + i) : z1, z2 ∈ A
}

= 2(1 + i).

Example 2.40. Let Let 0 ≾ z0 ∈ C, X = C, d(x, y) = z0 max{|x|, |y|} and let A = { in
n+1 : n ∈N}. Hence, we have

diam(A) = sup
{∣∣∣∣d(

mi
m + 1

,
ni

n + 1
) − d(

mi
m + 1

,
mi

m + 1
)
∣∣∣∣
c
,
∣∣∣∣d(

mi
m + 1

,
ni

n + 1
)−

d(
ni

n + 1
,

ni
n + 1

)
∣∣∣∣
c

: m,n ∈N,m ≥ n
}

= sup
{∣∣∣∣z0 max{

m
m + 1

,
n

n + 1
} −

z0m
m + 1

∣∣∣∣
c
,
∣∣∣∣z0 max{

m
m + 1

,
n

n + 1
} −

z0n
n + 1

∣∣∣∣
c

:

m,n ∈N,m ≥ n
}

= sup
{∣∣∣∣ z0m

m + 1
−

z0m
m + 1

∣∣∣∣
c
,
∣∣∣∣ z0m
m + 1

−
z0n

n + 1

∣∣∣∣
c

: m,n ∈N,m ≥ n
}

= sup
{∣∣∣∣z0(

m
m + 1

−
n

n + 1
)
∣∣∣∣
c

: m,n ∈N,m ≥ n
}

= sup
{
(

m
m + 1

−
n

n + 1
)|z0|c : m,n ∈N,m ≥ n

}
=

1
2
|z0|c.

Convergence of sequences plays a fundamental role in CVML spaces. The following theorem shows that
in a CVML space every convergent sequence is bounded.

Theorem 2.41. Suppose that (X, d) is a CVML space and sequence {xn} converges to x ∈ X. Then the set A = {xn :
n ∈N} is a bounded subset of X.

Proof. Let r0 be a positive complex number. Since the sequence {xn} converges to the point x, there exists a
positive integer N such that |d(xn, x)− d(x, x)|c ≺ r0 for all n ≥ N. Using Proposition 2.11(iii), we deduce that
d(xn, x) ≺ r0 + d(x, x) for all n ≥ N. Hence, for all m,n ≥ N, we have

|d(xn, xm) − d(xn, xn)|c ≾ |d(xm, xn)|c + |d(xn, xn)|c
≾ |d(xm, x) + d(x, xn)|c + |d(xn, x) + d(x, xn)|c
≾ |d(xm, x)|c + |d(x, xn)|c + |d(xn, x)|c + |d(x, xn)|c
≺ 4(r0 + d(x, x)).

Reasoning like the above-mentioned argument, we can achieve that
|d(xn, xm) − d(xm, xm)|c ≺ 4(r0 + d(x, x)), for all m,n ≥ N. Hence, diam(A) ≾ 4(r0 + d(x, x)), and it implies that A
is a bounded set in the CVML space (X, d).

We conclude the article with the following remark.

Remark 2.42. Let (X, d) be a CVML space. If we define D(x, y) = |d(x, y)| for all x, y ∈ X, then it is observed that
(X,D) is a metric-like space. We can provide a sequence {zn} in C ≿ 0 such that limn→∞||zn| − |z0|| = 0 for some

z0 ∈ C ≿ 0, but limn→∞|zn − z0| , 0. Let zn = 2 + i
n and z0 =

√
3 + i. It is clear that |zn| =

√
4 + 1

n2 , |z0| = 2 and

zn, z0 ∈ C ≿ 0 for all n ∈N. We have limn→∞|

√
4 + 1

n2 − 2| = 0, but it is easy to see that limn→∞|2+ i
n −
√

3− i| , 0.
Hence, one can present a CVML space (X, d) in which limn→∞||d(xn, x0)| − |d(x0, x0)|| = |D(xn, x0) − D(x0, x0)| = 0,
but limn→∞|d(xn, x0) − d(x0, x0)| , 0. Therefore, the topologies of the spaces (X, d) and (X,D) are not equivalent.
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