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Abstract. Study on existence of fixed points of contraction and contractive (type) mappings in topological
spaces is a challenging task. The main goal of this article is to deal with this challenging task. To achieve
our goal, we define two new contractive type mappings, namely, h-A-contractive and h-A1-contractive
mappings on a topological space X, where h : X × X → R+ is a function and A, A1 are two collections of
implicit functions. Then, we obtain some fixed point results concerning such contractive type mappings.
Finally, as an application of one of the above mentioned fixed point results, we obtain a newer version of
the implicit function theorem in topological spaces.

1. Introduction

Investigations of fixed points of various kinds of contraction and contractive type mappings is an
essential tool in non-linear analysis. Throughout the last century, a significant number of research have
been initiated concerning the finding of fixed points of various classes of contraction or contractive type
mappings. Most of such contraction and contractive mappings have been studied at first in metric spaces,
and then in several generalized abstract spaces (mainly metric type spaces). However, all such abstract
spaces are just simple generalizations of metric spaces and many of them are found to be metrizable. Also
we know that among different existing abstract spaces, the topological space is the most general one and
it is neither a generalization of metric spaces nor metrizable. So it is now logical to examine whether the
notions of contraction and contractive mappings can be extended in topological spaces or not. For early
contributions, see [3, 5, 10, 11]. In 1992, Hicks (see [8]) proposed the concept of d-complete topological
spaces and obtained some fixed point results concerning some contraction mappings in such spaces. We
first recall the definition of d-complete topological spaces.

Definition 1.1. [8] Let (X, τ) be a topological space and let d : X × X → [0,∞) be a mapping such that d(x, y) = 0

if and only if x = y. Then X is said to be d-complete if for any sequence {xn} in X, the relation
∞∑

n=1

d(xn, xn+1) < ∞
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Research supported by Ministry of Education, Government of India
Email addresses: lahasupriti@gmail.com (Supriti Laha), hiran.garai24@gmail.com (Hiranmoy Garai),
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implies that the sequence {xn} is convergent in (X, τ).

After introducing the notion of d-complete topological spaces, Hicks obtained the following interesting
fixed point result.

Theorem 1.2. [8] Let (X, τ) be a d-complete topological space, T : X → X be an operator and ϕ : X → [0,∞) be a
given mapping. Suppose that there exists an x ∈ X such that

d(y,Ty) ≤ ϕ(y) − ϕ(Ty) for all y ∈ {x,Tx,T2x, . . . }.

Then the following hold:

(a) lim
n→∞

Tnx = x∗ exists;

(b) Tx∗ = x∗ if and only if the map G(x) = d(x,Tx) is T-orbitally lower semicontinuous.

After this, a number of authors have shown interests in obtaining fixed point, common fixed point, best
proximity point results in topological spaces and therefore many articles related to such direction have been
published. For some remarkable results of them, one may see [1, 4, 7, 12–15] and the references therein.

If we go through all such results, then we can note down that all the results are related to different
kinds of contraction mappings. So it now becomes logical to think about contractive (type) mappings in
topological spaces and obtain some fixed point results. On the other hand, one knows that there are many
type of contractive mappings in the literature such as Edelstein type, Kannan type, Chatterjee type, Ćirić
type etc. But recently Garai et al. [6] introduced two new contractive type mappings, viz., A-contractive
and A′-conractive mappings, which contains all the aforementioned contractive mappings as particular
cases. So in order to study different contractive type mappings in topological spaces, it is enough to study
some contractive mappings similar to A-contractive and A′-conractive mappings. Influenced by these
facts, in this article, our main goal is to introduce two new contractive mappings similar to the above two
mappings, which we designate as h-A-contractive and h-A1-contractive mappings. With the help of these
two contractive mappings, we obtain some fixed point results in topological spaces. Also, we authenticate
our obtained results by suitable examples. As an application of our derived results, we obtain a new version
of implicit function theorem in topological spaces.

Before going to our main findings, we recall the notions of orbit and orbital continuity of a mapping in
a topological space.

Definition 1.3. Let X be a topological space and T : X → X a mapping. Then the set O(x,∞) = {x,Tx,T2x, . . . } is
called the orbit of T at x. T is called orbitally continuous if for any sequence {xn} ∈ O(x,∞) that converges to x∗ ∈ X
the sequence {Txn} converges to Tx∗ for all x ∈ X.

2. h-A-contractive mappings

Following Garai et al., we denote by A the set of all functions f : R3
+ → R+ satisfying the following

conditions:

(a) f is continuous;

(b) if v > 0 and u < f (u, v, v) or u < f (v,u, v), or u < f (v, v,u), then u < v;

(c) f (u, v,w) ≤ u + v + w for all u, v,w ∈ R+.

Next, we introduce a new type of contractive mappings on a topological space (X, τ).

Definition 2.1. Let X be a topological space and let T : X→ X be a mapping. Then T is said to be an h-A-contractive
mapping if there exist f ∈ A and a continuous mapping h : X × X→ R+ such that

h(Tx,Ty) < f (h(x, y), h(x,Tx), h(y,Ty)) for all x, y ∈ X with x , y.
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Next, we obtain a result concerning fixed points of the newly defined contractive mappings.

Theorem 2.2. Let X be a topological space and let T : X → X be an h-A-contractive mapping which is orbitally
continuous. Also assume that h(x, y) = 0 if and only if x = y for all x, y ∈ X. Let S = {s ∈ X : {Tn(s)} has
a convergent subsequence in X }. If S , ∅ (i.e. there exists s ∈ S and a sequence of iterates {Tn(s)} which has a
convergent subsequence {Tn j (s)} converging to some a∗ ∈ X), then a∗ is the unique fixed point of T.

Proof. Let s0 ∈ S. Then the sequence of iterates {Tn(s0)} has a convergent subsequence. Let {Tn j (s0)} be
a convergent subsequence of {Tn(s0)} such that lim j→∞ Tn j (s0) = a∗, a∗ ∈ X. Assume that sn = Tn(s0) and
pn = h(sn, sn+1) for all n ∈ N. Then lim j→∞ sn j = a∗. The remaining part of the proof of existence and
uniqueness of fixed point of T follows from the proof of case (1) of [Theorem 3.4 [6]]. Proceeding in this
manner we get that a∗ is the unique fixed point of T.

As a consequence of the above result, we have the following corollary:

Corollary 2.3. Let X be a topological space and let Y be a sequentially compact topological space. Let T : X×Y→ Y
be an h-A-contractive mapping on Y uniformly in X, i.e.,

h(T(x, y1),T(x, y2)) < f (h(y1, y2), h(y1,T(x, y1)), h(y2,T(x, y2))).

for all x ∈ X, and for all y1, y2 ∈ Y. Also, assume that T is orbitally continuous and h(x, y) = 0 if and only if x = y.
Then, for every x ∈ X, the map y→ T(x, y) has a unique fixed point 1(x).

Next, we provide a supporting example.

Example 2.4. Let us consider the space Y = Z+ ×R+ with dictionary order topology. Let X = SΩ be the section of Y
by Ω = 2 × π. Then X is a topological space with the subspace topology. Also define h : X × X→ R+, f : R3

+ → R+
and T : X→ X by

h((x1, y1), (x2, y2)) = (x1 − x2)2 + |y1 − y2| for all (x1, y1), (x2, y2) ∈ X;
f (x1, x2, x3) = x1 for all x1, x2, x3 ∈ R+;

T(x, y) =
(
1,

y
2

)
for all (x, y) ∈ X.

Then h is continuous; h(x, y) = 0 ⇐⇒ x = y; f ∈ A; and T is orbitally continuous. Let x = (x1, y1), y = (x2, y2) ∈ X
be arbitrary with x , y. Then h(x, y) = (x1 − x2)2 + |y1 − y2| and h(Tx,Ty) = |y1−y2 |

2 . So

h(Tx,Ty) < f (h(x, y), h(x,Tx), h(y,Ty)).

Therefore, T is an h-A-contractive mapping. If we take the point (1, 1) ∈ X, then T(1, 1) = (1, 1
2 ) , . . . , Tn j (1, 1) =

(1, 1
2nj ). This implies lim j→∞ Tn j (1, 1) = limn j→∞(1, 1

2nj ) = (1, 0). This shows that (1, 1) ∈ S, i.e., S , ∅. Hence by
Theorem 2.2, T has a unique fixed point in X. Note that (1, 0) is the unique fixed point of T.

Here we provide another important example which illuminates that our Theorem 2.2 is more general
than some existing other fixed point theorems in topological spaces.

Example 2.5. Let us take X = N \ {3, 5} and consider the discrete topology on X. We define a mapping T : X → X
by

T(x) =

2 if x ∈ {2n : n ∈N}
4 if x ∈ {2n − 1 : n ∈N \ {2, 3}}.

Let h : X × X→ R+ be defined as
h(x, y) = |x − y|.
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Then clearly, h is continuous and h(x, y) = 0⇔ x = y. Also we take f ∈ A defined by

f (x1, x2, x3) = max{x1, x2, x3}.

Now whenever x, y ∈ X with x , y, we get the following cases:
Case I: Both x, y ∈ {2n : n ∈N}. Then h(Tx,Ty) = h(2, 2) = 0 < h(x, y) and so

h(Tx,Ty) < f (h(x, y), h(x,Tx), h(y,Ty)).

Case II: Both x, y ∈ {2n − 1 : n ∈N \ {2, 3}}. Then h(Tx,Ty) = h(4, 4) = 0 < h(x, y) and so

h(Tx,Ty) < f (h(x, y), h(x,Tx), h(y,Ty)).

Case III: x ∈ {2n : n ∈ N} and y ∈ {2n − 1 : n ∈ N \ {2, 3}}. So, h(Tx,Ty) = h(2, 4) = 2. For x = 2, y = 1, we
have h(x, y) = 1, h(x,Tx) = 0, h(y,Ty) = 3. So h(Tx,Ty) < h(y,Ty).

Again for y ≥ 7, we have h(y,Ty) ≥ 3. So again h(Tx,Ty) < h(y,Ty). Therefore,

h(Tx,Ty) < f (h(x, y), h(x,Tx), h(y,Ty)).

Case IV: x ∈ {2n − 1 : n ∈N \ {2, 3}} and y ∈ {2n : n ∈N}. Then we can similarly show that

h(Tx,Ty) < f (h(x, y), h(x,Tx), h(y,Ty)).

Therefore, T is an h-A-contractive mapping. Note that T is orbitally continuous and also the sequence {Tn(2)}
converges to 2. Thus all the hypotheses of Theorem 2.2 hold. Also T has a unique fixed point 2.

Next, we note down some interesting facts about the above example.

Remark 2.6. Note that T is nether (Edelstein’s) contractive mapping nor Kannan type contractive mapping. Also,
Edelstein’s fixed point theorem in topological spaces [10, Theorem 1] is not applicable in this example. So we see that
some existing well-known fixed point can’t guarantee the existence of the fixed point of T but our obtained result
(Theorem 2.2) does.

Now we introduce the notion of h-completeness of a topological space.

Definition 2.7. Let (X, τ) be a topological space and let h : X × X → [0,∞) be a mapping. Then X is said to be

h-complete if for any sequence {xn} in X with
∞∑

n=1

h(xn, xn+1) < ∞, the sequence {xn} is convergent in (X, τ).

Next, we show by an example that in Theorem 2.2 if S = ∅, then an h-A-contractive mapping need not
posses a fixed point even if the underlying space is h-complete.

Example 2.8. Let X = { 1
n : n ∈ N} be a topological space with discrete topology. Let h : X × X→ [0,∞) be defined

by

h(x, y) =

0 if x = y;
1 + |x − y| if x , y.

Then h is continuous, h(x, y) = 0⇔ x = y, and, X is h-complete.
Let T : X→ X be defined by T(x) = x

2 for all x ∈ X. Then T is continuous and T is an h-A-contractive mapping
for f (x1, x2, x3) = x1 for all x1, x2, x3 ∈ R+. Also S = {s ∈ X : {Tn(s)} has a convergent subsequence in X } = ∅. Here,
T has no fixed point.

Remark 2.9. We see from the above example that an h-A-contractive mapping on an h-complete topological space
need not have a fixed point. Thus, if the underlying topological space is h-complete, then in order to get the guaranty
of existence of fixed points of an h-A-contractive mapping, we need some additional assumptions. We present such
an additional assumption in the following theorem.
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Theorem 2.10. Let X be a topological space and let T : X → X be an h-A-contractive mapping such that either T
is orbitally continuous, or Tk is continuous for some k ∈ N and h is symmetric in all orbits of T. Also assume that
h(x, y) = 0 if and only if x = y for all x, y ∈ X and X is h-complete. Also assume that for any ϵ > 0, there exists a
δ > 0 such that

f (h(x, y), h(x,Tx), h(y,Ty)) < ϵ + δ⇒ h(T2x,T2y) ≤
ϵ
4

for all x, y ∈ X. (1)

Then T has a unique fixed point.

Proof. Let x0 ∈ X be arbitrary and let xn = Tn(x0); pn = h(xn, xn+1) for all n ∈ N. Our assertion is that,
{pn} → 0 as n→∞. If xn = xn+1 for some n ∈N, then it is trivial. So, we assume that xn , xn+1 for all n ≥ 1.
Then following Theorem 2.2, {pn} is a strictly decreasing sequence and hence it converges to some p ≥ 0.We
claim that p = 0. If not, then p > 0, and so by (1) there exists δ > 0 such that

f (h(x, y), h(x,Tx), h(y,Ty)) < 4p + δ⇒ h(T2x,T2y) ≤ p for all x, y ∈ X.

Again since limn→∞ pn = p, for the above δ > 0, there exists an n ∈N such that

pn < p +
δ
4
.

Therefore,

f (h(xn, xn+1), h(xn, xn+1), h(xn+1, xn+2)) ≤ h(xn, xn+1) + h(xn, xn+1) + h(xn+1, xn+2)
= pn + pn + pn+1 < 4p + δ.

Therefore, h(xn+2, xn+3) ≤ p ⇒ pn+2 ≤ p, which leads to a contradiction to the fact that {pn} is strictly
decreasing and pn → p as n→∞. Hence p = 0, i.e., limn→∞ h(xn, xn+1) = 0.

Next, we show that
∑
∞

n=1 h(xn, xn+1) < ∞. For this, let ϵ > 0 be arbitrary. Then there exists δ > 0 such that
(1) holds. Without loss of generality, we assume that 0 < δ < ϵ. Since h(xn, xn+1)→ 0 as n→ ∞, there exists
N ∈N such that

h(xn, xn+1) <
δ
3
<
ϵ
3
< ϵ for all n ≥ N.

Now

f (h(xN, xN+1), h(xN, xN+1), h(xN+1, xN+2)) ≤ h(xN, xN+1) + h(xN, xN+1) + h(xN+1, xN+2)

<
δ
3
+
δ
3
+
δ
3
<
ϵ
3
+

2δ
3
<
ϵ
3
+ δ.

Then by (1), we get h(xN+2, xN+3) ≤ ϵ
3.4 . Also,

f (h(xN+1, xN+2), h(xN+1, xN+2), h(xN+2, xN+3)) ≤ h(xN+1, xN+2) + h(xN+1, xN+2) + h(xN+2, xN+3)

<
δ
3
+
δ
3
+

ϵ
3.4

<
ϵ

3.4
+ δ.

This implies h(xN+3, xN+4) ≤ ϵ
3.42 . Continuing in this way, we can show that

h(xN+m, xN+m+1) <
ϵ

3.4m−1 for all m ≥ 2.
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Therefore,

∞∑
n=1

h(xn, xn+1)

=M +
∞∑

n=N

h(xn, xn+1), where M = h(x1, x2) + h(x2, x3) + ... + h(xN−1, xN)

< M +
ϵ
3
+
ϵ
3
+

ϵ
3.4
+

ϵ

3.42 + · · ·

=M +
ϵ
3
+
ϵ
3

[1 +
1
4
+

1
42 + · · · ]

=M +
7ϵ
9
< ∞.

Then by h-completeness of X, there exists z ∈ X such that {xn} converges to z, i.e., limn→∞ xn = z. Next, we
prove that Tz = z.

First, we assume that T is orbitally continuous. Then limn→∞ Txn = Tz. Therefore,

lim
n→∞

h(xn, z) = h( lim
n→∞

xn, z) = h(z, z) = 0

and so
0 = lim

n→∞
h(xn+1, z) = lim

n→∞
h(Txn, z) = h( lim

n→∞
Txn, z) = h(Tz, z).

Thus Tz = z.
Next, we assume that Tk is continuous for some k ∈ N. Then, as above, we can show that Tkz = z. If

Tz , z, then Tk−1z , z also. Therefore,

h(Tz, z) = h(Tz,Tkz)

< f (h(z,Tk−1z), h(z,Tz), h(Tk−1z,Tkz))

= f (h(Tkz,Tk−1z), h(z,Tz), h(Tk−1z,Tkz)).

Using (b), we have h(Tz, z) < h(Tkz,Tk−1z). But, h(Tkz,Tk−1z) < h(Tk−1z,Tk−2z) < h(Tk−2z,Tk−3z) < · · · <
h(Tz, z), which is a contradiction. So Tz = z.

Thus z is a fixed point of T. The uniqueness of the fixed point follows from Theorem 2.2.

Afterwards, we present an example in support of the above theorem.

Example 2.11. Let us consider the topological space (X, τ) where X = N and τ is the discrete topology. We define
h : X × X→ R+, f : R3

+ → R+ and T : X→ X by

h(x, y) = |x2
− xy| for all x, y ∈ X;

f (x1, x2, x3) = max{x1, x2, x3} for all x1, x2, x3 ∈ R+;

Tx =

 x
2 , if x is even;
1, if x is odd.

Clearly h is continuous and h(x, y) = 0⇔ x = y. Also note that
∑
∞

n=1 h(xn, xn+1) < ∞ if and only if {xn} is eventually
constant. So X is h-complete.

Now we show that T is an h-A-contractive mapping. Let x, y ∈ X with x , y. Then three cases arise.
Case I: Let x and y both be even. Therefore,

h(Tx,Ty) = h
(x

2
,

y
2

)
=

∣∣∣x2
− xy

∣∣∣
4

< |x2
− xy| = h(x, y).
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Case II: Let x and y both be odd. Therefore,

h(Tx,Ty) = h(1, 1) = |1 − 1| = 0 < |x2
− xy| = h(x, y).

Case III: Let x be odd and y be even. Therefore,

h(Tx,Ty) = h
(
1,

y
2

)
=

∣∣∣∣1 − y
2

∣∣∣∣ < y2

2
= h(y,Ty).

Thus h(Tx,Ty) < f (h(x, y), h(x,Tx), h(y,Ty)) for all x, y ∈ X with x , y. Therefore, T is an h-A-contractive
mapping. Again for any ϵ > 0, if we choose δ = ϵ, then one can easily verify that (1) holds good. Further, T is
orbitally continuous. Therefore, all the conditions of Theorem 2.10 hold here. So by the consequence of this theorem T
has a unique fixed point in X. Indeed, 1 is the unique fixed point of T.

3. h-A1-contractive mappings

In this section, we introduce another new type of contractive mappings. Before this, we consider
another class of functionsA1, which is the collection of all mappings f : R2

+ → R+ satisfying the following
conditions:

(d) f is continuous;

(e) if v > 0 and u < f (u, v) or u < f (v,u), then u < v;

(f) f (u,u) ≤ u; for all u ∈ R+;

(g) f (u, v) ≤ u + v; for all u, v ∈ R+.

Definition 3.1. Let X be a topological space and let T : X→ X be a mapping. Then T is said to be an h-A1-contractive
mapping if there exist f ∈ A1 and a continuous mapping h : X × X→ R+ such that

h(Tx,Ty) < f (h(x, y),min{h(x,Ty), h(Tx, y)}) for all x, y ∈ X with x , y.

The upcoming theorem deals with the existence of fixed points of the above kind of contractive mappings.

Theorem 3.2. Let X be a topological space and let T : X → X be an h-A1-contractive mapping. Also, assume that
T is orbitally continuous and h(x, y) = 0 ⇔ x = y. Let S = {s ∈ X : {Tn(s)} has a convergent subsequence in X}.
If S , ∅ (i.e., if there exists s ∈ S and a sequence of iterates {Tn(s)}, which has a convergent subsequence {Tn j (s)}
converging to some b∗ ∈ X). Then, b∗ is the unique fixed point of T.

Proof. Let s ∈ S and let sn = Tn(s). So the sequence {sn} has a convergent subsequence. Let {sni } be one
such subsequence and let limi→∞ sni = b∗. Again, we consider a sequence of non-negative real numbers {qn}

defined by qn = h(sn, sn+1) for all n ∈N. Some modifications of the proof of first part of [Theorem 3.10, [6]]
implies that qn → 0 as n → ∞, and hence T has a fixed point b∗. Uniqueness of the fixed point of T also
follows from aforementioned theorem.

Next, we present an example in support of the above theorem.

Example 3.3. Let X = R and consider the lower limit topology on X. We define h : X×X→ R+ by h(x, y) = (x− y)2

for all x, y ∈ X; f : R2
+ → R+ by f (x1, x2) = x1 for all x1, x2,∈ R+; and T : X→ X by

T(x) =

1 if x < 0;
1 + x

2 if x ≥ 0.
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Then h is continuous and h(x, y) = 0⇔ x = y and f ∈ A1. Next, we show that T is an h-A1-contractive mapping.
Let x, y ∈ X with x , y. Then four cases may arise.
Case I: Let x, y < 0. Then Tx = Ty and so

h(Tx,Ty) < f (h(x, y),min{h(x,Ty), h(Tx, y)}).

Case II: Let x, y ≥ 0. Then

h(Tx,Ty) =
(
1 +

x
2
− 1 −

y
2

)2
=

(x − y)2

4
< (x − y)2.

Therefore,
h(Tx,Ty) < f (h(x, y),min{h(x,Ty), h(Tx, y)}).

Case III: Let x < 0, y ≥ 0. Then

h(Tx,Ty) =
(
1 − 1 −

y
2

)2
=

y2

4
< (x − y)2.

Thus
h(Tx,Ty) < f (h(x, y),min{h(x,Ty), h(Tx, y)}).

Case IV: Let x ≥ 0, y < 0. Then

h(Tx,Ty) =
(
1 +

x
2
− 1

)2
=

x2

4
< (x − y)2.

Therefore,
h(Tx,Ty) < f (h(x, y),min{h(x,Ty), h(Tx, y)}).

Hence T is an h-A1-contractive mapping.
Now for 1 ∈ X, T(1) = 1 + 1

2 , T2(1) = 1 + 1
2 +

1
22 , . . . ,Tn j (1) =

∑n j

k=0
1
2k and hence limn j→∞ Tn j (1) =

limn j→∞

∑n j

k=0
1
2k = 2. Therefore, 1 ∈ S and by Theorem 3.2, 2 is the unique fixed point of T. Indeed, it is so.

In the following example, we show that similar to h-A-contractive mappings, an h-A1-contractive mapping
need not have a fixed point in h-complete topological spaces.

Example 3.4. Let us choose X =N and take the discrete topology on X. We define h : X × X→ R+ by

h(x, y) =

0 if x = y;

1 +
∣∣∣∣ 1

x −
1
y

∣∣∣∣ if x , y;

f : R2
+ → R+ by f (x1, x2) = max{x1, x2} for all x1, x2,∈ R+; and T : X → X by Tx = 2x for all x ∈ X. Then h is

continuous and h(x, y) = 0⇔ x = y and f ∈ A1. Also, for x, y ∈ X with x , y, we have

h(Tx,Ty) = 1 +
∣∣∣∣∣ 1
2x
−

1
2y

∣∣∣∣∣ = 1 +
1
2

∣∣∣∣∣1x − 1
y

∣∣∣∣∣
and

h(x, y) = 1 +
∣∣∣∣∣1x − 1

y

∣∣∣∣∣ .
Then,

h(Tx,Ty) < h(x, y) ≤ max{h(x, y),min{h(x,Ty), h(Tx, y)}}.

Therefore, T is an h-A1-contractive mapping. Also, X is h-complete and T has no fixed point.
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Remark 3.5. By the above example, we notice that, in order to reach the existence of fixed points of an h-A1-
contractive mapping in h-complete topological spaces, we need some extra conditions. In the upcoming theorem, we
affirm that the extra condition which is considered in Theorem 2.10 also works for h-A1-contractive mappings.

Theorem 3.6. Let X be a topological space and let T : X → X be an h-A1-contractive mapping such that either
T is orbitally continuous, or Tk is continuous for some k ∈ N and h is symmetric in T-orbits. Also assume that
h(x, y) = 0 if and only if x = y for all x, y ∈ X and X is h-complete. Also assume that for any ϵ > 0, there exists a
δ > 0 such that

f (h(x, y),min{h(x,Ty), h(Tx, y)}) < ϵ + δ⇒ h(T2x,T2y) ≤
ϵ
4
. (2)

Then T has a unique fixed point.

Proof. Let us choose x0 ∈ X and consider two sequences {xn} and {qn} where xn = Tnx0 and qn = h(xn, xn+1)
for all n ∈ N. We now prove that qn → 0 as n → ∞. If xn = xn+1 for some n ∈ N, then we are done. So we
assume that xn , xn+1 for all n ≥ 1. Then {qn} is strictly decreasing. Hence {qn} is convergent to some q ≥ 0.
We assume that q > 0. Then by (2) there exists δ > 0 such that

f (h(x, y),min{h(x,Ty), h(Tx, y)}) < 4q + δ⇒ h(T2x,T2y) ≤ q.

Since qn → q, we get a natural number n such that

qn < q +
δ
2
, i.e., h(xn, xn+1) < q +

δ
2
.

Then

f (h(xn, xn+1),min{h(xn, xn+2), h(xn+1, xn+1)}) = f (h(xn, xn+1), 0)

≤ h(xn, xn+1) + 0 < q +
δ
2
< q + δ.

This implies that h(xn+2, xn+3) ≤ q, i.e., qn+2 ≤ q, which is a contradiction. Therefore, q = 0, i.e., limn→∞ h(xn, xn+1) =
0. Next, we show that

∑
∞

n=1 h(xn, xn+1) < ∞. For this let ϵ > 0 be arbitrary. Then there exists δ > 0 with δ < ϵ
such that

f (h(x, y),min{h(x,Ty), h(Tx, y)}) < 4ϵ + δ⇒ h(T2x,T2y) ≤ ϵ. (3)

Since, limn→∞ h(xn, xn+1) = 0, for the above δ > 0, we get N ∈N such that

h(xn, xn+1) <
δ
3
<
ϵ
3
< ϵ for all n ≥ N.

Now

f (h(xN, xN+1),min{h(xN, xN+2), h(xN+1, xN+1)}) = f (h(xN, xN+1), 0)

< h(xN, xN+1) + 0 <
ϵ
3
<
ϵ
3
+ δ.

Then by (3), we have h(xN+2, xN+3) ≤ ϵ
3.4 . Again

f (h(xN+1, xN+2),min{h(xN+1, xN+3), h(xN+2, xN+2)}) = f (h(xN+1, xN+2), 0)

< h(xN+1, xN+2) + 0 <
ϵ
3
<
ϵ
3
+ δ.

This implies that h(xN+3, xN+4) ≤ ϵ
3.4 . Also,

f (h(xN+2, xN+3),min{h(xN+2, xN+4), h(xN+3, xN+3)}) = f (h(xN+2, xN+3), 0)

< h(xN+2, xN+3) + 0 <
ϵ

3.4
<

ϵ
3.4
+ δ.
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This implies that h(xN+4, xN+5) ≤ ϵ
3.42 . Further,

f (h(xN+3, xN+4),min{h(xN+3, xN+5), h(xN+4, xN+4)}) = f (h(xN+3, xN+4), 0)

< h(xN+3, xN+4) + 0 <
ϵ

3.4
<

ϵ
3.4
+ δ.

Therefore, h(xN+5, xN+6) ≤ ϵ
3.42 . Proceeding in this way, we can show that for any even integers p,

h(xN+p, xN+p+1) ≤
ϵ

3.4
p
2

and h(xN+p+1, xN+p+2) ≤
ϵ

3.4
p
2

.

Therefore, if M := h(x1, x2) + h(x2, x3) + ... + h(xN−1, xN), then
∞∑

n=1

h(xn, xn+1) < M +
∞∑

n=N

h(xn, xn+1) =M +
ϵ
3
+
ϵ
3
+

ϵ
3.4
+

ϵ
3.4
+

ϵ

3.42 + ...

=M + 2 [
ϵ
3
+

ϵ
3.4
+

ϵ

3.42 + ...] =M +
8ϵ
9
< ∞.

So by h-completeness of X, there exists z ∈ X, such that {xn} converges to z. The fact that z is the unique fixed
point of T can be similarly obtained as that of Theorem 2.10 and Theorem 3.2.

We complete this section by presenting the following supporting example:

Example 3.7. Let X = [0, 1] be equipped with the usual topology of R. We define h : X × X→ R+ by

h(x, y) = |x2
− y2
| for all x, y ∈ X.

Then h is continuous, h(x, y) = 0 ⇔ x = y and clearly X is h-complete. Further, we define f : R2
+ → R+ is

defined by f (x1, x2) = max{x1, x2} for all x1, x2 ∈ R+ and T : X→ X by

T(x) = cos
(

x2

4

)
for all x ∈ X.

Then T is orbitally continuous. Let x, y ∈ X with x , y. Then

h(Tx,Ty) =

∣∣∣∣∣∣cos2

(
x2

4

)
− cos2

(
y2

4

)∣∣∣∣∣∣ =
∣∣∣∣∣∣sin2

(
x2

4

)
− sin2

(
y2

4

)∣∣∣∣∣∣ =
∣∣∣∣∣∣sin

x2 + y2

4
sin

x2
− y2

4

∣∣∣∣∣∣
≤
|x2
− y2
|

4
< f (h(x, y),min{h(x,Ty), h(Tx, y)}).

Therefore, T is an h-A1-contractive mapping. Let ϵ > 0 be arbitrary and take δ = ϵ. We have

h(T2x,T2y) = h

cos

cos2( x2

4 )
4

 , cos2

cos2( y2

4 )
4


 =

∣∣∣∣∣∣∣cos2

cos2( x2

4 )
4

 − cos2

cos2( y2

4 )
4


∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣sin2

cos2( x2

4 )
4

 − sin2

cos2( y2

4 )
4


∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣sin

cos2( x2

4 )
4

+
cos2( y2

4 )
4

 sin

cos2( x2

4 )
4

−
cos2( y2

4 )
4


∣∣∣∣∣∣∣

≤

∣∣∣∣∣∣∣sin

cos2( x2

4 )
4

−
cos2( y2

4 )
4


∣∣∣∣∣∣∣ ≤

∣∣∣∣∣∣∣cos2( x2

4 ) − cos2( y2

4 )
4

∣∣∣∣∣∣∣ ≤ 1
16
|x2
− y2
|.

Thus

h(T2x,T2y) ≤
1

16
|x2
− y2
| =

h(x, y)
16

.

Therefore, f (h(x, y),min{h(x,Ty), h(Tx, y)}) < ϵ + δ ⇒ h(T2x,T2y) ≤ ϵ
4 . Thus all the assumptions of Theorem 3.6

hold and so T has a unique fixed point.
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4. Application to implicit function theorem

Implicit function theorem has an important application in change of co-ordinate systems (parametriza-
tions) and in dealing with non-linear programming problems. There are a number of different forms of
implicit function theorem in various branches of mathematics. Some of these forms depend on Jacobian
matrices. In some practical problems, these forms fail to hold because Jacobian matrix becomes singular. In
1978, Jittorntrum [9] introduced the non-differential form of implicit function theorem, which is as follows:

Theorem 4.1. [9] Suppose that F : D ⊂ Rn
×Rm

→ Rn is a continuous mapping with

F(x0, y0) = 0.

Assume that there exists open neighbourhoods A ⊂ Rn and B ⊂ Rn of x0 and y0 respectively such that for all y ∈ B,
F(., y) : A ⊂ Rn

→ Rn is locally one-one. Then, there exist open neighbourhoods A0 ⊂ A and B0 ⊂ B of x0 and y0

respectively such that for all y ∈ B0, the equation

F(x, y) = 0

has a unique solution
x = Hy ∈ A0

and the mapping H : A0 → Rn is continuous.

We extend the non-differential form of implicit function theorem from Rn to linear topological spaces
over real field as an application of the Theorem 2.2. In the upcoming theorem, we present such non-
differential form.

Theorem 4.2. Let X1 be a locally path connected topological space and let X2 be a connected locally compact linear
topological space over the real field. Let ϕ : X1 ×X2 → X2 be a continuous function, where X1 ×X2 is equipped with
the product topology. Assume that for each x ∈ X1, ϕx : X2 → X2 be defined by ϕx(y) = ϕ(x, y) is locally one-one
function. Then there exists a neighbourhood U × V of (a, b) ∈ X1 × X2 and a continuous function ψ : U → V such
that ϕ(x, ψ(x)) = ϕ(a, b) for all x ∈ U. Furthermore, this ψ is unique.

Proof. Since X2 is locally compact and ϕx is locally one-one on X2, there exists a compact neighbourhood V
of b in X2 such that (ϕa)−1(ϕ(a, b))∩V = b. Let Vk be a compact neighbourhood of b contained in the interior
of V. We claim that for any such Vk, there exist a neighbourhood U of a in X1 such that

(ϕx|V )−1(ϕ(a, b)) ⊂ Vk for all x ∈ U. (4)

If not then there exists b′ ∈ V \ Vk such that (ϕa′
|V

)−1(ϕ(a, b)) = b′ for some a′ ∈ U. Then we can construct
a sequence {(an, bn)}n∈N in U × (V \ Vk) as mentioned in theorem 4.1 of [2] such that ϕ(an, bn) = ϕ(a, b) and
limn→∞ an = a. Since {bn} is contained in the compact subset V \ V◦k , so {bn} has a convergent subsequence,
which has a limit point b∗ ∈ V \ V◦k . Therefore (a, b∗) is a limit point of some subsequence {(ank , bnk )}k∈N of
{(an, bn)}n∈N. Now the continuity of f gives ϕ(a, b∗) = limk→∞ ϕ(ank , bnk ) = ϕ(a, b). Since ϕx is locally one-one
we have b∗ = b, which gives a contradiction. Therefore our assumption (4) holds good. Now we define a
mapping T : U × Vk → Vk such that,

T(x, y) =
1
2

(y + (ϕx|V )−1(ϕ(a, b)).

Then T is continuous on U × Vk. We also define, h : Vk × Vk → [0,∞) such that,

h(y1, y2) = |y1 − y2|,

for all y1, y2 ∈ Vk. Then h is continuous and h(y1, y2) = 0⇔ y1 = y2. Also,

h(T(x, y1),T(x, y2)) =
1
2
|y1 − y2|.
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Let f (u, v,w) = u, for all u, v,w ∈ R+. Then

f (h(y1, y2), h(y1,T(x, y1)), h(y2,T(x, y2)) = |y1 − y2|.

Therefore,
h(T(x, y1),T(x, y2)) < f (h(y1, y2), h(y1,T(x, y1)), h(y2,T(x, y2))

for all y1, y2 ∈ Vk with y1 , y2 and for all x ∈ U. Therefore, T is an h-A-contractive mapping on X2 uniformly
in X1. Thus by Corollary 2.3, T has a unique fixed point y∗ such that

T(x, y∗) =
1
2

(y∗ + (ϕx|V )−1(ϕ(a, b)) = y∗ ⇒ y∗ = (ϕx|V )−1(ϕ(a, b)).

Therefore, for each x ∈ U, there exists unique y ∈ Vk such that y = (ϕx|V )−1(ϕ(a, b)), i.e., for each x ∈ U there
exists unique ψ(x) ∈ Vk such that ϕ(x, ψ(x)) = ϕ(a, b) for all x ∈ U.

The continuity of ψ follows from the last part of Theorem 4.1 of [2].
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