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Yukun Zhoua, Jianlong Chena,∗

aSchool of Mathematics, Southeast University, Nanjing 210096, China

Abstract. Let R be a ring with involution and e, f ∈ R be Hermitian and invertible. We first present
some equivalent conditions for paq to be {1, 3 f }-invertible, assuming that p, a, q ∈ R with p′pa = a = aqq′ for
some p′, q′ ∈ R and a is {1, 3e}-invertible. Then, these results are applied to give the sufficient and necessary
conditions under which Jacobson’s lemma and Cline’s formula for weighted pseudo core inverses hold.
Also, Jacobson’s lemma for weighted Moore-Penrose inverses is investigated.

1. Introduction

Let R be a unitary ring and a, b ∈ R. It is known as Jacobson’s lemma that if 1 − ab is invertible, then so
is 1 − ba. In this case, (1 − ba)−1 = 1 + b(1 − ab)−1a. Naturally, many scholars considered whether Jacobson’s
lemma can work for kinds of generalized inverses and gave quantities of interesting results. For instance,
if 1 − ab is regular with an inner inverse c, then 1 − ba is regular with an inner inverse 1 + bca. In 2010,
Castro-González et al. [3] investigated Jacobson’s lemma for reflexive inverses, group inverses and Drazin
inverses. Another famous conclusion is Cline’s formula. In 1965, Cline [6] proved that if ab is Drazin
invertible, then so is ba, in which case, (ba)D = b[(ab)D]2a. Cline’s formulas for generalized Drazin inverses
and pseudo Drazin inverses were established by Liao et al. [16] and Wang et al. [27], respectively. For more
details, readers are referred to [10, 14–16, 19, 29, 34].

However, in the case of pseudo core inverses, Shi et al. [26] found that Jacobson’s lemma and Cline’s
formula do not hold, either. In order to investigate under what conditions Jacobson’s lemma and Cline’s
formula for pseudo core inverses hold, they first proved that if a ∈ R is {1, 3}-invertible, then paq is {1, 3}-
invertible if and only if p∗paa(1,3) + 1 − aa(1,3) is invertible, where p, q ∈ R with p′pa = a = aqq′ for some
p′, q′ ∈ R. Then, from this result, they gave some characterizations of the pseudo core invertibility of 1 − ba
(resp., ba) by means of a unit, when 1 − ab (resp., ab) is pseudo core invertible. Also, Jacobson’s lemma for
Moore-Penrose inverses was considered.

The theme of this article can be described as the relevant research of Jacobson’s lemma and Cline’s
formula for weighted generalized inverses with weights e, f , where e, f are Hermitian and invertible.
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We first present some sufficient and necessary conditions for paq to be {1, 3 f }-invertible when a is {1, 3e}-
invertible, from which a new characterization of the {1, 3}-invertibility of paq is given. Then, Cline’s formula
and Jacobson’s lemma for weighted pseudo core inverses are discussed. At last, Jacobson’s lemma for
weighted Moore-Penrose inverses is studied.

2. Preliminaries

For convenience, R denotes a unitary ring with an involution ∗ throughout this paper. Firstly, recall the
definition of the Moore-Penrose inverse.

Definition 2.1. [23] Let a ∈ R. Then a is said to be Moore-Penrose invertible if there exists x ∈ R such that the
following four equations hold:

(1) axa = a, (2) xax = x, (3) (ax)∗ = ax, (4) (xa)∗ = xa.

Such an x is called the Moore-Penrose inverse of a. If such an x exists, then it is unique and denoted by a†.

If the equation (1) holds, then a is called regular and x is called a {1}-inverse of a (or an inner inverse). If
x satisfies equations (1) and (3) (resp., (1) and (4)), then x is called a {1, 3}-inverse (resp., {1, 4}-inverse) of a.
We use a(1,3) (resp., a(1,4)) to denote a {1, 3}-inverse (resp., {1, 4}-inverse) of a.

Now, we recall the definition of the weighted Moore-Penrose inverse. An element a ∈ R is called
Hermitian if a∗ = a. Throughout this paper, e, f ∈ R are Hermitian and invertible.

Definition 2.2. [25] Let a ∈ R. Then a is said to have a weighted Moore-Penrose inverse with weights e, f if there
exists x ∈ R such that the following four equations hold:

(1) axa = a, (2) xax = x, (3e) (eax)∗ = eax, (4f) ( f xa)∗ = f xa.

Such an x is called the weighted Moore-Penrose inverse of a with weights e, f . If x exists, then it is unique and
denoted by a†e, f .

If x satisfies equations (1) and (3e) (resp., (1) and (4f)), then x is called a {1, 3e}-inverse (resp., {1, 4 f }-
inverse) of a. We use a(1,3e) (resp., a(1,4 f )) to denote a {1, 3e}-inverse (resp., {1, 4 f }-inverse) of a. The set of all
{1, 3e}-inverses (resp., {1, 4 f }-inverses) of a is denoted by a{1, 3e} (resp., a{1, 4 f }).

In 1958, Drazin [11] introduced the pseudo inverse in rings and semigroups, which was called the Drazin
inverse later. For more results of the Drazin inverse, readers are referred to [6–9, 14, 15, 22].

Definition 2.3. [11] Let a ∈ R. If there exist x ∈ R and k ∈N+ such that

xak+1 = ak, ax2 = x, xa = ax,

then x is called the Drazin inverse of a. It is unique and denoted by aD when the Drazin inverse exists.

If k is the smallest positive integer such that the above equations hold, then k is called the Drazin index of a
and denoted by i(a). In particular, x is called the group inverse of a and denoted by a# when k = 1.When a
is Drazin invertible, the idempotent 1 − aaD is called the spectral idempotent of a, denoted by aπ.

In 2010, Baksalary and Trenkler [1] introduced the core inverse of a complex matrix. In 2014, the core
inverse of a complex matrix was extented to the core-EP inverse of a complex matrix by Manjunatha Prasad
et al. [17]. In 2018, Gao et al. [13] generalized the core-EP inverse of a complex matrix to an element in a
ring with involution. For more results of the pseudo core inverse, readers are referred to [5, 12, 24, 28].

Definition 2.4. [13] Let a ∈ R. If there exist x ∈ R and k ∈N+ such that

xak+1 = ak, ax2 = x, (ax)∗ = ax,

then x is called the pseudo core inverse of a. It is unique and denoted by a DO when the pseudo core inverse exists.
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The smallest positive integer k satisfying the above equations is called the pseudo core index of a. In
particular, x is called the core inverse of a and denoted by a #O when k = 1.

In 2018, Mosić et al. [21] introduced the weighted core inverse in a ring with involution. In 2020, Zhu
and Wang [32] introduced the notion of the weighted pseudo core inverse.

Definition 2.5. [32] Let a ∈ R. If there exist x ∈ R and k ∈N+ such that

xak+1 = ak, ax2 = x, (eax)∗ = eax,

then x is called the pseudo e-core inverse of a. It is unique and denoted by ae, DO when the pseudo e-core inverse exists.

If k is the smallest positive integer such that above equations hold, then k is called the pseudo e-core index
of a. In particular, x is called the e-core inverse of a and denoted by ae, #O when k = 1. If a is pseudo e-core
invertible, then a is Drazin invertible and the pseudo e-core index is equal to the Drazin index. For ease
of notations, we still use i(a) to denote the pseudo e-core index of a. The pseudo f -dual core inverse of an
element is defined as follows.

Definition 2.6. [32] Let a ∈ R. If there exist x ∈ R and k ∈N+ such that

ak+1x = ak, x2a = x, ( f xa)∗ = f xa,

then x is called the pseudo f -dual core inverse of a. It is unique and denoted by a f , DO when the pseudo f -dual core
inverse exists.

The symbols R{1,3}, R{1,3e}, R{1,4}, R{1,4 f }, R†, R†e, f , RD, R DO, Re, DO, R f , DO denote the sets of all {1, 3}-invertible,
{1, 3e}-invertible, {1, 4}-invertible, {1, 4 f }-invertible, Moore-Penrose invertible, Moore-Penrose invertible
with weights e, f , Drazin invertible, pseudo core invertible, pseudo e-core invertible, pseudo f -dual core
invertible elements in R, respectively.

In 2011, Mary [18] introduced the notion of the inverse along an element. In 2016, Zhu [31] defined the
one-side inverse along an element.

Definition 2.7. [18] Let a, d ∈ R. If there exists y ∈ R such that

y ∈ dR ∩ Rd, yad = d = day,

then a is said to be invertible along d. If such y exists, then it is unique and denoted by a∥d.

Definition 2.8. [31] Let a, d ∈ R. If there exists y ∈ R such that

y ∈ dR, d = day, (resp., y ∈ Rd, d = yad, )

then a is said to be right (resp., left) invertible along d.

3. The {1, 3 f }-invertibility and {1, 4 f }-invertibility of paq

In this section, we consider the {1, 3 f }-invertibility and {1, 4 f }-invertibility of paq. At first, we give an
auxiliary lemma.

Lemma 3.1. Let a, d ∈ R be Hermitian. Then the following statements are equivalent:

(1) a is invertible along d;

(2) a is left invertible along d;

(3) a is right invertible along d.

In this case, a∥d is Hermitian.
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Proof. From [31, Theorems 2.3 and 2.4], we get that a is left (resp., right) invertible along d if and only if
Rd = Rdad (resp., dR = dadR). Since a, d ∈ R are Hermitian, we can get that Rd = Rdad if and only if
dR = dadR. The rest of the proof is clear by [20, Theorem 2.2].

In this case, we can verify that (a∥d)∗ is also the inverse of a along d. Thus, a∥d = (a∥d)∗.

Theorem 3.2. Let p, a, q ∈ R with p′pa = a = aqq′ for some p′, q′ ∈ R. If a ∈ R{1,3e}, then the following statements
are equivalent:

(1) paq ∈ R{1,3 f };

(2) (p∗ f p)∥aa(1,3e)e−1 exists;

(3) 1 − aa(1,3e) + aa(1,3e)e−1p∗ f p is invertible.

In this case,
(p∗ f p)∥aa(1,3e)e−1

= aq(paq)(1,3 f ) f−1(p′)∗,

q′a(1,3e)(p∗ f p)∥aa(1,3e)e−1
p∗ f ∈ (paq){1, 3 f }.

Proof. (1) ⇒ (2): Take z = aq(paq)(1,3 f ) f−1(p′)∗. It is easy to obtain that z ∈ aa(1,3e)e−1R. Since paq(paq)(1,3 f ) f−1

is Hermitian and p′pa = a, we conclude that z = p′paq(paq)(1,3 f ) f−1(p′)∗ is Hermitian, which together with
aa(1,3e)z = z implies that z ∈ R(aa(1,3e))∗ = Reaa(1,3e)e−1 = Raa(1,3e)e−1. Then

zp∗ f paa(1,3e)e−1 = z∗p∗ f paa(1,3e)e−1

= p′(aq(paq)(1,3 f ) f−1)∗p∗ f paa(1,3e)e−1

= p′(paq(paq)(1,3 f ) f−1)∗ f paa(1,3e)e−1

= p′paq(paq)(1,3 f ) f−1 f paa(1,3e)e−1

= p′paq(paq)(1,3 f )paqq′a(1,3e)e−1

= p′paqq′a(1,3e)e−1

= aa(1,3e)e−1.

Because p∗ f p, z and aa(1,3e)e−1 are all Hermitian, we can get

aa(1,3e)e−1p∗ f pz = (zp∗ f paa(1,3e)e−1)∗ = aa(1,3e)e−1.

Therefore, (p∗ f p)∥aa(1,3e)e−1
exists and (p∗ f p)∥aa(1,3e)e−1

= aq(paq)(1,3 f ) f−1(p′)∗.

(2)⇒ (1): Set y = q′a(1,3e)(p∗ f p)∥aa(1,3e)e−1 p∗ f . By Lemma 3.1, it follows that (p∗ f p)∥aa(1,3e)e−1
is Hermitian. This

together with aa(1,3e)(p∗ f p)∥aa(1,3e)e−1
= (p∗ f p)∥aa(1,3e)e−1

implies that

f paqy = f paqq′a(1,3e)(p∗ f p)∥aa(1,3e)e−1
p∗ f = f p(p∗ f p)∥aa(1,3e)e−1

p∗ f

is Hermitian. And

paqypaq = paqq′a(1,3e)(p∗ f p)∥aa(1,3e)e−1
p∗ f paq

= p[aa(1,3e)(p∗ f p)∥aa(1,3e)e−1
]p∗ f paq

= p(p∗ f p)∥aa(1,3e)e−1
p∗ f paa(1,3e)e−1eaq

= paa(1,3e)e−1eaq = paq.

Therefore, paq ∈ R{1,3 f } and q′a(1,3e)(p∗ f p)∥aa(1,3e)e−1 p∗ f ∈ (paq){1, 3 f }.
(2)⇔ (3): It is clear by [20, Theorem 3.2].

Corollary 3.3. Let p, a, q ∈ R with p′pa = a = aqq′ for some p′, q′ ∈ R. If a ∈ R{1,3e}, then the following statements
are equivalent:
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(1) paq ∈ R{1,3 f };

(2) p∗ f p is left invertible along aa(1,3e)e−1;

(3) p∗ f p is right invertible along aa(1,3e)e−1;

(4) 1 − aa(1,3e) + aa(1,3e)e−1p∗ f p is left invertible;

(5) 1 − aa(1,3e) + aa(1,3e)e−1p∗ f p is right invertible.

Proof. (1)⇔ (2)⇔ (3): By Theorem 3.2, we get that (1) holds if and only if p∗ f p is invertible along aa(1,3e)e−1.
Noting that p∗ f p and aa(1,3e)e−1 are Hermitian, we can complete the proof by Lemma 3.1.

(2)⇔ (4) and (3)⇔ (5): They are clear by [31, Corollaries 3.3 and 3.5].

From the above results, we can immediately get the relevant result for {1, 3}-invertibility, in which the
equivalence between (1) and (3) can be found in [26, Theorem 4.3].

Corollary 3.4. Let p, a, q ∈ R with p′pa = a = aqq′ for some p′, q′ ∈ R. If a ∈ R{1,3}, then the following statements
are equivalent:

(1) paq ∈ R{1,3};

(2) (p∗p)∥aa(1,3) exists;

(3) 1 − aa(1,3) + aa(1,3)p∗p is invertible.

In this case,
(p∗p)∥aa(1,3)

= aq(paq)(1,3)(p′)∗,

q′a(1,3)(p∗p)∥aa(1,3)
p∗ ∈ (paq){1, 3}.

Dually, we consider the {1, 4 f }-invertibility of paq and get the following theorem whose proof is omitted.

Theorem 3.5. Let p, a, q ∈ R with p′pa = a = aqq′ for some p′, q′ ∈ R. If a ∈ R{1,4e}, then the following statements
are equivalent:

(1) paq ∈ R{1,4 f };

(2) (q f−1q∗)∥ea(1,4e)a exists;

(3) 1 − a(1,4e)a + q f−1q∗ea(1,4e)a is invertible.

In this case,
(q f−1q∗)∥ea(1,4e)a = (q′)∗ f (paq)(1,4 f )pa,

f−1q∗(q f−1q∗)∥ea(1,4e)aa(1,4e)p′ ∈ paq{1, 4 f }.

Inspired by [4, Theorem 3.2], we obtain the next result which presents some equivalent conditions for
paq to be {1, 4 f }-invertible when a is {1, 3e}-invertible.

Proposition 3.6. Let p, a, q ∈ R with p′pa = a = aqq′ for some p′, q′ ∈ R. If a ∈ R{1,3e}, then the following statements
are equivalent:

(1) paq ∈ R{1,4 f };

(2) aq ∈ R†e, f ;

(3) (aq)∥ f−1(aq)∗e exists;
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(4) aq f−1(eaq)∗ + 1 − aa(1,3e) is invertible.

In this case,
(aq)†e, f = (paq)(1,4 f )paa(1,3e), (aq)†e, f p

′
∈ (paq){1, 4 f }.

Proof. (1)⇒ (2): Take z = (paq)(1,4 f )paa(1,3e). By direct computation, we get

(aq)z(aq) = aq(paq)(1,4 f )paa(1,3e)aq = p′paq(paq)(1,4 f )paq
= p′paq = aq,

z(aq)z = (paq)(1,4 f )paa(1,3e)aq(paq)(1,4 f )paa(1,3e)

= (paq)(1,4 f )paq(paq)(1,4 f )paqq′a(1,3e)

= (paq)(1,4 f )paa(1,3e) = z.

Since

e(aq)z = eaq(paq)(1,4 f )paa(1,3e) = ep′paq(paq)(1,4 f )paqq′a(1,3e)

= ep′paqq′a(1,3e) = eaa(1,3e)

and
f z(aq) = f (paq)(1,4 f )paa(1,3e)aq = f (paq)(1,4 f )paq,

we conclude that e(aq)z and f z(aq) are Hermitian. Therefore, aq ∈ R†e, f .
(2) ⇒ (1): Take y = (aq)†e, f p

′. Then (paq)y(paq) = paq(aq)†e, f p
′paq = paq and f y(paq) = f (aq)†e, f p

′paq =
f (aq)†e, f aq is Hermitian. So, paq ∈ R{1,4 f }.

(2)⇔ (3): By a similar proof to [2, Theorem 3.2], we can complete it.
(3) ⇔ (4): It is clear that e−1(q′a(1,3e))∗ f is an inner inverse of f−1(aq)∗e and (e−1(q′a(1,3e))∗ f )( f−1(aq)∗e) =

aa(1,3e). The rest of the proof is obvious by [20, Theorem 3.2].

Dually, we get the following proposition.

Proposition 3.7. Let p, a, q ∈ R with p′pa = a = aqq′ for some p′, q′ ∈ R. If a ∈ R{1,4 f }, then the following
statements are equivalent:

(1) paq ∈ R{1,3e};

(2) pa ∈ R†e, f ;

(3) (pa)∥ f−1(pa)∗e exists;

(4) f−1(pa)∗epa + 1 − a(1,4 f )a is invertible.

In this case,
(pa)†e, f = a(1,4 f )aq(paq)(1,3e), q′(pa)†e, f ∈ (paq){1, 3e}.

4. The relation between xy ∈ Re, DO and yx ∈ R f, DO

In this section, we investigate Cline’s formula for weighted pseudo core inverses. Firstly, some auxiliary
lemmas are given. The following lemma can be seen as a generalization of [26, Lemma 3.2].

Lemma 4.1. Let t ∈ R be idempotent. Then t ∈ R{1,3 f } if and only if 1 − t ∈ R{1,4 f }.

Proof. It is easy to obtain that t ∈ R{1,3 f } if and only if there exists p = p2
∈ R such that ( f p)∗ = f p and tR = pR.

Noting that tR = pR is equivalent to R(1− t) = R(1− p), we get that t ∈ R{1,3 f } if and only if 1− t ∈ R{1,4 f }.
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Lemma 4.2. [13, Lemma 2.1] Let a ∈ R. If there exist x ∈ R and k ∈N+ such that

xak+1 = ak, ax2 = x,

then

(1) ax = amxm for arbitrary positive integer m;

(2) xax = x;

(3) a is Drazin invertible, aD = xk+1ak and i(a) ≤ k.

In [30], the authors denote

Tl(a) = {x ∈ R : xak+1 = ak, ax2 = x for some positive integer k}.

Lemma 4.3. [30, Lemma 2.2] Let a ∈ RD, k1, ..., kn, s1, ..., sn ∈N and x1, ..., xn ∈ Tl(a). If sn , 0, then

n∏
i=1

aki xsi
i = akxs

n, where k =
n∑

i=1

ki and s =
n∑

i=1

si.

Lemma 4.4. [6] Let x, y ∈ R. If α = xy ∈ RD, then β = yx ∈ RD. In this case, βD = y(αD)2x.

The following lemma can be seen as a generalization of [26, Theorem 3.3].

Lemma 4.5. If a ∈ RD, then the following statements are equivalent:

(1) a ∈ R f , DO;

(2) there exists x ∈ R{1,3 f } such that xR = aaDR;

(3) aπ ∈ R{1,4 f }.

In this case, a f , DO = aD(aaD)(1,3 f ) = aD(1 − (aπ)(1,4 f )aπ).

Proof. Let i(a) = k.
(1)⇒ (2): By [32, Theorem 3.9], it follows that ak is {1, 3 f }-invertible. Take x = ak. Then xR = akR = aaDR.
(2)⇒ (1): Since xR = aaDR = akR, it follows that there exists t ∈ R such that akt = xx(1,3 f ). We can verify

that t is a {1, 3 f }-inverse of ak. Similarly, aaD is {1, 3 f }-invertible and ak(ak)(1,3 f ) = aaD(aaD)(1,3 f ). It follows
from [32, Theorem 3.9] that a ∈ R f , DO and a f , DO = aD[ak(ak)(1,3 f )] = aD[aaD(aaD)(1,3 f )] = aD(aaD)(1,3 f ).

(2)⇔ (3): It follows from Lemma 4.1.

Now, we give the main result of this section.

Theorem 4.6. Let x, y ∈ R. If α = xy ∈ Re, DO, then the following statements are equivalent:

(1) β = yx ∈ R f , DO;

(2) yαDx ∈ R{1,3 f };

(3) (y∗ f y)∥αα
e, DOe−1 exists.

In this case, β f , DO = yαe, DO(y∗ f y)∥αα
e, DOe−1 y∗ f .



Y.K. Zhou, J.L. Chen / Filomat 37:16 (2023), 5313–5324 5320

Proof. (1)⇔ (2): It follows from Lemma 4.4 that β ∈ RD and ββD = yαDx. Therefore, β ∈ R f , DO if and only if
yαDx ∈ R{1,3 f } according to Lemma 4.5.

(2) ⇔ (3): Take p = y, a = αD, q = x and p′ = αDx, q′ = yαD. Then, we can verify that a = p′pa = aqq′.
It follows from Lemmas 4.2 and 4.3 that αDα2αe, DOαD = α2(αD)3 = αD and (eαDα2αe, DO)∗ = (eααe, DO)∗ = eααe, DO.
That is, a = αD

∈ R{1,3e} with a {1, 3e}-inverse α2αe, DO. Thus, paq ∈ R{1,3 f } if and only if (p∗ f p)∥aa(1,3e)e−1
exists by

Theorem 3.2. Since aa(1,3e) = αDα2αe, DO = ααe, DO, we get that yαDx ∈ R{1,3 f } if and only if (y∗ f y)∥α(α)e, DOe−1
exists.

In this case, it follows from Theorem 3.2 that yαDα2(α)e, DO(y∗ f y)∥αα
e, DOe−1 y∗ f ∈ (yαDx){1, 3 f }. Then, by

Lemmas 4.2, 4.3 and 4.5, we get

β f , DO = βD(ββD)(1,3 f )

= y(αD)2xyαDα2(α)e, DO(y∗ f y)∥αα
e, DOe−1

y∗ f

= yα3(αe, DO)4(y∗ f y)∥αα
e, DOe−1

y∗ f

= yαe, DO(y∗ f y)∥αα
e, DOe−1

y∗ f .

Remark 4.7. In Theorem 4.6, it is easy to verify that the condition (3) holds if and only if 1 − ααe, DO + ααe, DOe−1y∗ f y
is invertible by [20, Theorem 3.2]. Due to the limited space, we will omit the similar equivalence when studying
Jacobson’s lemma for weighted generalized inverses.

The equivalence between (1) and (2) in the following corollary can be found in [26, Theorem 4.5].

Corollary 4.8. Let x, y ∈ R. Suppose α = xy ∈ R DO. Then the following statements are equivalent:

(1) β = yx ∈ R DO;

(2) yαDx ∈ R{1,3};

(3) (y∗y)∥αα
DO exists.

In this case, β DO = yα DO(y∗y)∥αα
DO y∗.

Using Proposition 3.6, we can get the following proposition by an analogous method to Theorem 4.6.

Proposition 4.9. Let x, y ∈ R. If α = xy ∈ Re, DO, then the following statements are equivalent:

(1) β = yx ∈ R f , DO;

(2) yαDx ∈ R{1,4 f };

(3) (αDx)†e, f exists.

In this case, β f , DO = (αDx)†e, f (α
D)2x.

5. The relation between 1 − xy ∈ Re, DO and 1 − yx ∈ R f, DO

In 2009, Patrı́cio et al. [22] asked whether Jacobson’s lemma holds for Drazin inverses. Castro-González
et al. [3], Cvetković-Ilić and Harte [10] gave a positive answer to this question, respectively. Later, Lam and
Nielsen [14] also investigated it.

Lemma 5.1. [14, Theorem 2.4] Let x, y ∈ R. If α = 1− xy ∈ RD with i(α) = k, then β = 1− yx ∈ RD with i(β) = k.
Moreover, βπ = yαπrx, where r = 1 + α + · · · + αk−1.

The main result of this section is presented as follows.
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Theorem 5.2. Let x, y ∈ R. Suppose α = 1−xy ∈ Re, DO with i(α) = k. Then the following statements are equivalent:

(1) β = 1 − yx ∈ R f , DO;

(2) yαπrx ∈ R{1,4 f }, where r = 1 + α + · · · + αk−1;

(3) (x f−1x∗)∥e(1−ααe, DO) exists.

In this case, β f , DO = (1 + yαDx)(1 − f−1x∗tx), where t = (x f−1x∗)∥e(1−ααe, DO).

Proof. (1) ⇔ (2): It is clear by Lemma 4.5 that β ∈ R f , DO if and only if βπ ∈ R{1,4 f }. Then, by Lemma 5.1 we
can get βπ = yrαπx.

(2)⇔ (3): Since αDα = ααD, it follows yαπrx = yrαπx. Then,

x(yrαπ) = (1 − α)rαπ = (1 − αk)απ = απ,

(απx)yr = απ(1 − α)r = απ(1 − αk) = απ.

Take a = απ, p = yr, q = x and p′ = x, q′ = yr. It is clear that a = p′pa = aqq′. By Lemma 4.5, we get
απ ∈ R{1,4e} and 1 − ααe, DO

∈ απ{1, 4e}. Therefore, it follows from Theorem 3.5 that yαπrx ∈ R{1,4 f } if and only
if (x f−1x∗)∥e(1−ααe, DO) exists.

In this case, a {1, 4 f }-inverse of βπ is (βπ)(1,4 f ) = f−1x∗(x f−1x∗)∥e(1−ααe, DO)(1−ααe, DO)x. Since (x f−1x∗)∥e(1−ααe, DO)
∈

Re(1 − ααe, DO) = Rαπ, it follows
(βπ)(1,4 f ) = f−1x∗(x f−1x∗)∥e(1−ααe, DO)x,

which implies

(βπ)(1,4 f )βπ = f−1x∗(x f−1x∗)∥e(1−ααe, DO)xyrαπx

= f−1x∗(x f−1x∗)∥e(1−ααe, DO)απx

= f−1x∗(x f−1x∗)∥e(1−ααe, DO)x.

Then, by Lemma 4.5 and [26, (3.3)], we can get

β f , DO = βD(1 − (βπ)(1,4 f )βπ)

= (1 + yαDx)(1 − βπ)(1 − (βπ)(1,4 f )βπ)

= (1 + yαDx)(1 − (βπ)(1,4 f )βπ)

= (1 + yαDx)(1 − f−1x∗(x f−1x∗)∥e(1−ααe, DO)x).

The equivalence between (1) and (2) in the following corollary can be found in [26, Theorem 3.10].

Corollary 5.3. Let x, y ∈ R. Suppose α = 1− xy ∈ R DO with i(α) = k. Then the following statements are equivalent:

(1) β = 1 − yx ∈ R DO;

(2) yαπrx ∈ R{1,4}, where r = 1 + α + · · · + αk−1;

(3) (xx∗)∥(1−αα
DO) exists.

In this case, β DO = (1 + yαDx)(1 − x∗tx), where t = (xx∗)∥(1−αα
DO).

By a similar method to Theorem 5.2, we have the following proposition.

Proposition 5.4. Let x, y ∈ R. Suppose α = 1 − xy ∈ Re, DO with i(α) = k. Then the following statements are
equivalent:
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(1) β = 1 − yx ∈ R f , DO;

(2) yαπrx ∈ R{1,3 f }, where r = 1 + α + · · · + αk−1;

(3) (yαπ)†f ,e exists.

In this case, β f , DO = [1 − yαπ(yαπ)†f ,e](1 + yαDx).

6. The relation between 1 − xy ∈ R†
e1, f1

and 1 − yx ∈ R†
e2, f2

In this section, Jacobson’s lemma for weighted Moore-Penrose inverses is discussed. The elements
e1, e2, f1, f2 ∈ R are always Hermitian and invertible in this section. Firstly, by a similar proof to [26,
Lemma 5.1], we give a lemma as follows.

Lemma 6.1. If a ∈ R is regular with an inner inverse a−, then a ∈ R{1,3e} if and only if aa− ∈ R{1,3e}. In this case,

aa(1,3e)
∈ (aa−){1, 3e} and a−(aa−)(1,3e)

∈ a{1, 3e},

for any (aa−)(1,3e)
∈ (aa−){1, 3e}.

Let x, y ∈ R. It is well known that if 1− xy is regular, then 1− yx is regular. In this case, if (1− xy)− is an
inner inverse of 1 − xy, then 1 + y(1 − xy)−x is an inner inverse of 1 − yx.

Proposition 6.2. Let x, y ∈ R. Suppose α = 1 − xy ∈ R{1,3e1}. Then the following statements are equivalent:

(1) β = 1 − yx ∈ R{1,3e2};

(2) 1 − yαπr x ∈ R{1,3e2};

(3) yαπr x ∈ R{1,4e2};

(4) (xe−1
2 x∗)∥e1απr exists,

where απr = 1 − αα(1,3e1). In this case,

(1 + yα(1,3e1)x)(1 − e−1
2 x∗(xe−1

2 x∗)∥e1απr x) ∈ β{1, 3e2}.

Proof. Since α is regular, we conclude that β is regular with an inner inverse β− = (1 + yα(1,3e1)x).
(1) ⇔ (2): It is clear that ββ− = 1 − yαπr x. So, by Lemma 6.1 we can get that β = 1 − yx ∈ R{1,3e2} if and

only if 1 − yαπr x ∈ R{1,3e2}.
(2)⇔ (3): It is obvious by Lemma 4.1.
(3) ⇔ (4): Take p = y, a = απr , q = x and p′ = απr x, q′ = y. It is easy to verify that p′pa = a = aqq′. Since

e1απr is Hermitian and απr is idempotent, we get that απr is {1, 4e1}-invertible. Then, by Theorem 3.5 we get
that paq ∈ R{1,4e2} if and only if (qe−1

2 q∗)∥e1a(1,4e1)a exists. That is, yαπr x ∈ R{1,4e2} if and only if (xe−1
2 x∗)∥e1απr exists.

In this case, by Lemma 6.1 we can get β−(ββ−)(1,3e2)
∈ β{1, 3e2}. According to Theorem 3.5 and (xe−1

2 x∗)∥e1απr ∈

Rαπr , we conclude that
e−1

2 x∗(xe−1
2 x∗)∥e1απr απr α

π
r x = e−1

2 x∗(xe−1
2 x∗)∥e1απr x

is a {1, 4e2}-inverse of yαπr x. Therefore, (yαπr x)(1,4e2)yαπr x = e−1
2 x∗(xe−1

2 x∗)∥e1απr x, which implies (ββ−)(1,3e2) =

1 − e−1
2 x∗(xe−1

2 x∗)∥e1απr x. Thus, β−(ββ−)(1,3e2) = (1 + yα(1,3e1)x)(1 − e−1
2 x∗(xe−1

2 x∗)∥e1απr x).

Dually, we have the following result.

Proposition 6.3. Let x, y ∈ R. Suppose α = 1 − xy ∈ R{1,4 f1}. Then the following statements are equivalent:

(1) β = 1 − yx ∈ R{1,4 f2};
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(2) 1 − yαπl x ∈ R{1,4 f2};

(3) yαπl x ∈ R{1,3 f2};

(4) (y∗ f2y)∥α
π
l f−1

1 exists,

where απl = 1 − α(1,4 f1)α. In this case,

(1 − y(y∗ f2y)∥α
π
l f−1

1 y∗ f2)(1 + yα(1,4 f1)x) ∈ β{1, 4 f2}.

It is well known that a ∈ R is Moore-Penrose invertible if and only if a ∈ R{1,3}∩R{1,4}. A similar conclusion
also holds for the weighted Moore-Penrose inverse.

Lemma 6.4. [33, Theorem 2.1] Let a ∈ R. Then a is Moore-Penrose invertible with weights e, f if and only if
a ∈ R{1,3e}

∩ R{1,4 f }. In this case, a†e, f = a(1,4 f )aa(1,3e), for any a(1,3e)
∈ a{1, 3e} and a(1,4 f )

∈ a{1, 4 f }.

Theorem 6.5. Let x, y ∈ R. Suppose α = 1 − xy ∈ R†e1, f1
. Then the following statements are equivalent:

(1) β = 1 − yx ∈ R†e2, f2
;

(2) 1 − yαπr x ∈ R{1,3e2} and 1 − yαπl x ∈ R{1,4 f2};

(3) yαπr x ∈ R{1,4e2} and yαπl x ∈ R{1,3 f2};

(4) (xe−1
2 x∗)∥e1απr and (y∗ f2y)∥α

π
l f−1

1 exist,

where απr = 1 − αα†e1, f1
and απl = 1 − α†e1, f1

α. In this case,

β†e2, f2
= (1 − y(y∗ f2y)∥α

π
l f−1

1 y∗ f2)(1 + yα†e1, f1
x)(1 − e−1

2 x∗(xe−1
2 x∗)∥e1απr x).

Proof. The equivalence of the conditions (1) − (4) clearly follows from Propositions 6.2 and 6.3, Lemma 6.4.
Next, we give a formula of β†e2, f2

.

It is clear that 1 + yα†e1, f1
x is an inner inverse of β. If (4) holds, from the proof to Proposition 6.2, we get

ββ−(ββ−)(1,3e2) = (1 − yαπr x)(1 − (yαπr x)(1,4e2)yαπr x)

= 1 − (yαπr x)(1,4e2)yαπr x
= = 1 − e−1

2 x∗(xe−1
2 x∗)∥e1απr x.

Also, from Proposition 6.3, we get β(1,4 f2) = (1 − y(y∗ f2y)∥α
π
l f−1

1 y∗ f2)(1 + yα†e1, f1
x). Therefore,

β†e2, f2
= β(1,4 f2)ββ(1,3e2)

= β(1,4 f2)ββ−(ββ−)(1,3e2)

= (1 − y(y∗ f2y)∥α
π
l f−1

1 y∗ f2)(1 + yα†e1, f1
x)(1 − e−1

2 x∗(xe−1
2 x∗)∥e1απr x).

The equivalence among (1) − (3) in the following corollary can be found in [26, Theorem 5.8].

Corollary 6.6. Let x, y ∈ R. Suppose α = 1 − xy ∈ R†. Then the following statements are equivalent:

(1) β = 1 − yx ∈ R†;

(2) 1 − yαπr x ∈ R{1,3} and 1 − yαπl x ∈ R{1,4};
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(3) yαπr x ∈ R{1,4} and yαπl x ∈ R{1,3};

(4) (xx∗)∥απr and (y∗y)∥α
π
l exist,

where απr = 1 − αα† and απl = 1 − α†α. In this case,

β† = (1 − y(y∗y)∥α
π
l y∗)(1 + yα†x)(1 − x∗(xx∗)∥α

π
r x).
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