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Abstract. In this article, we have proved some best proximity point theorems for a non-self mapping by
using generalized proximal contraction in a complete metric space. An example is also given in the support
of our result.

1. Introduction and Preliminaries

In 1922, Banach[3] has given fixed point theorem in complete metric space by using a contraction condi-
tion defined on a self map P : U→ U and obtain a unique fixed point. But in nonlinear functional analysis
there is no restriction to be a map always a self map to get fixed point theorems. During last decades a
question arises by the researchers that what happend when the mapping is non-self map, then how can we
find fixed point. Answer of this question is the origin of best proximity point.
A non-self mapping P : E → G does not necessarily have a fixed point. If the fixed point equation Pu = u
has no exact solution, then we have to find an approximate solution u such that the d(u,Pu) is minimum.
Now what is best proximty point? Let E and G be non-empty subsets of a metric space (U, d). Let P : E→ G
is a non-self mapping there exists a point u ∈ E is called best proximity point if d(u,Pu) = d(E,G), where
d(E,G) = inf{d(e, 1) : e ∈ E, 1 ∈ G}.
In 2010, Basha[4] by considering the concept of best proximity point has given extensions of Banach con-
traction principle and researchers can see more generalized fixed point theorems on best proximity point
by refering [1], [2], [5], [8], [9], [10], [12].

In this article, U,R+,N,N0 denote the non-empty set, set of positive real number, set of positive inte-
ger, and set of non-negative integer respectively.

Now we recall some fundamental concepts of best proximity points.
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Ðekić), umadevipatel@yahoo.co.in (Uma Devi Patel), sahu.pusplata14@gmail.com (Pusplata Sahu)



P. P. Murthy et al. / Filomat 37:16 (2023), 5181–5193 5182

If E and G are non-empty subsets of U, then we denote by.

d(e,G) = inf{d(e, 1) : 1 ∈ G}, e ∈ E,
E0 = {e ∈ E : d(e, 1) = d(E,G) for some 1 ∈ G},
G0 = {1 ∈ G : d(e, 1) = d(E,G) for some e ∈ E}.

Wardowski [13] introduced a new class of functions to defined the notion of F-contractions and proved the
following fixed point theorem, where ℑ denote the family of all functions F : R+ → R.

Definition 1.1. [13] Let (U, d) is a metric space and P be a self mapping on U. Then P is called an F-contraction, if
there exists F ∈ ℑ and τ ∈ R+ such that

τ + F(d(Pu,Pv)) ≤ F(d(u, v)),

for all u, v ∈ U with d(Pu,Pv) > 0.

Definition 1.2. [11] Let (U, d) be a metric space and (E,G) be a pair of non-empty subsets of (U, d) with E0 , ϕ. If
for every u1,u2 ∈ E and every v1, v2 ∈ G, d(u1,u2) = d(v1, v2) whenever d(u1, v1) = d(E,G) and d(u2, v2) = d(E,G),
then the pair (E,G) is said to have the p-property.

Definition 1.3. [6] A set G is called approximately compact with respect to E if every sequence {1n} of G with
d(e, 1n)→ d(e,G) for some e ∈ E has a convergent subsequence.

2. Main Results

In this section, Ismat et al. [7] introduced a new generalization of F-proximal contractions of the first
and second kind and proved some best proximity point theorems for generalized F-proximal contractions
of first and second kind on complete metric space. They used family of the functions ℑ having such kind
of property.
Let ℑ denote the family of all functions F : R+ → R satisfying the following properties:
(F1) F is strictly increasing;
(F2) for each sequence {αn} of positive number, we have

lim
n→+∞

αn = 0 if and only if lim
n→+∞

F(αn) = −∞;

(F3) there exists k ∈ (0, 1) such that lim
α→0+

αkF(α) = 0.

When we study the Ismat et. al.[7] paper and found that without using (F2) and (F3) properties by only
consideration of (F1) we can prove the Theorem 2.4, 2.7 and 2.10. Now we are going to rewrite the Defintion
2.1 and 2.2 and also prove Theorem 2.4, 2.7 and 2.10 according to our assumptions.

Definition 2.1. A mapping P : E→ G is said to be a generalized proximal contraction of the first kind if F is strictly
increasing function defined of F : R+ → R and a, b, c, h, τ > 0 with a+ b+ c+ 2h = 1, c , 1 and 0 < a+ 2h ≤ 1 such
that the conditions

d(u1,Pv1) = d(E,G)
d(u2,Pv2) = d(E,G)

}
implies τ + F(d(u1,u2)) ≤F(ad(v1, v2) + bd(u1, v1) + cd(u2, v2)

+ h(d(v1,u2) + d(v2,u1)))

for all u1,u2, v1, v2 ∈ E and u1 , u2.
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Definition 2.2. A mapping P : E → G is said to be a generalized proximal contraction of the second kind if F is
strictly increasing function defined of F : R+ → R and a, b, c, h, τ > 0 with a+b+c+2h = 1, c , 1 and 0 < a+2h ≤ 1
such that the coditions

d(u1,Pv1) = d(E,G)
d(u2,Pv2) = d(E,G)

}
implies τ + F(d(Pu1,Pu2)) ≤F(ad(Pv1,Pv2) + bd(Pu1,Pv1) + cd(Pu2,Pv2)

+ h(d(Pv1,Pu2) + d(Pv2,Pu1)))

for all u1,u2, v1, v2 ∈ E and Pu1 , Pu2.

Definition 2.3. Let P : E → G be a mapping and u0 ∈ E be any arbitrary point. Then P has q-property if for a
sequence {un} defined by

d(un+1,Pun) = d(E,G).

There exists subsequences {up(n)}n∈N and {uq(n)}n∈N of {un} such that

lim
n→+∞

d(up(n),uq(n)) = 0,

where p(n) > q(n) > n, n ∈N, then

d(up(n),Pup(n)−1) = d(E,G) and d(uq(n),Puq(n)−1) = d(E,G).

Now, we are ready to state and prove our main results.

Theorem 2.4. Let (U, d) be a complete metric space and (E,G) be a pair of non-empty closed subsets of (U, d). If G is
approximately compact with respect to E and P : E→ G satisfy the following conditions:
(i) P(E0) ⊆ G0 and (E,G) satisfies the p -property;
(ii) P is a generalized proximal contraction of the first kind;
(iii) P has q-property.
Then, there exists a unique u ∈ E such that d(u,Pu) = d(E,G). Moreover, for any fixed element u0 ∈ E0, sequence
{un} defined by

d(un+1,Pun) = d(E,G),

converges to the best proximity point u.

Proof. Let u0 ∈ E0. Since, P(E0) ⊆ G0, By the definition of G0, there is an element u1 ∈ E0 satisfying

d(u1,Pu0) = d(E,G).

Again, in veiw of the fact that Pu1 ∈ P(E0) ⊆ G0, it is guranteed that there exists an element u2 ∈ E0 such that

d(u2,Pu1) = d(E,G).

Continuing in this way, we can construct a sequence {un} ∈ E0 such that

d(un+1,Pun) = d(E,G), (1)

for all non-negative integer n.
From the p-property and (1) we get

d(un,un+1) = d(Pun−1,Pun), for all n ∈N.
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If for some n0, d(un0 ,un0+1) = 0, consequently

d(Pun0−1,Pun0 ) = 0 implies Pun0−1 = Pun0 implies d(un0 ,Pun0 ) = d(E,G).

Thus the enclusion is immediate.
So let for any n ≥ 0, d(un,un+1) > 0. By our hypothesis P is a generalized proximal contraction of first kind,
we have

τ + F(d(un,un+1)) ≤F(ad(un−1,un) + bd(un−1,un) + cd(un,un+1)
+ h(d(un−1,un+1) + d(un,un)))
≤F(ad(un−1,un) + bd(un−1,un) + cd(un,un+1)
+ h(d(un−1,un) + d(un,un+1)))
=F((a + b + h)d(un−1,un) + (c + h)d(un,un+1).

Since F is strictly increasing, we obtain

d(un,un+1) ≤ (a + b + h)d(un−1,un) + (c + h)d(un,un+1)
(1 − c − h)d(un,un+1) ≤ (a + b + h)d(un−1,un)

d(un,un+1) ≤

(
a + b + h
1 − c − h

)
d(un−1,un), for all n ∈N.

Now, since a + b + c + 2h = 1 and c , 1, we obtain a + b + h = 1 − c − h and 1 − c − h > 0 and so

d(un,un+1) ≤ d(un,un−1), for all n ∈N. (2)

This implies that d(un,un+1) is monotonic decreasing sequence in U.
Consequently,

τ + F(d(un,un+1)) ≤ F(d(un,un−1)), for all n ∈N, τ > 0
F(d(un,un+1)) ≤ F(d(un,un−1)) − τ (3)

Now again,

F(d(un,un−1)) ≤ F(d(un−1,un−2)) − τ ≤ ...
≤ F(d(u0,u1)) − nτ, for all n ∈N. (4)

Since {d(un,un+1)} is monotonic decreasing sequence, so we claim that lim
n→+∞

d(un,un+1) = 0. Put tn =

d(un,un+1). Let lim
n→+∞

d(un,un+1) = r > 0, by (3) taking n→ +∞

lim
n→+∞

F(d(un,un+1)) ≤ lim
n→+∞

F(d(un,un−1)) − τ

F(r) ≤ F(r) − τ < F(r), τ > 0

we get contradiction. This implies

lim
n→+∞

d(un,un+1) = 0 implies tn → 0 as n→ +∞. (5)

Now, we have to show that {un}n∈N is a Cauchy sequence. For this we shall use contrapositive method.
By assuming that there exists ϵ > 0 and sequences {p(n)}n∈N and {q(n)}n∈N of positive integers such that
p(n) > q(n) > n,

d(up(n),uq(n)) > ϵ, d(up(n)−1,uq(n)) ≤ ϵ, for all n ∈N.
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Then, we have

ϵ < d(up(n),uq(n)) ≤ d(up(n),up(n)−1) + d(up(n)−1,uq(n))
≤ d(up(n),up(n)−1) + ϵ.

It follows from (5) and the above inequality that

lim
n→+∞

d(up(n),uq(n)) = ϵ.

By the q-property, we have

d(up(n),Pup(n)−1) = d(E,G)
d(uq(n),Puq(n)−1) = d(E,G)

}
implies

τ + F(d(up(n),uq(n))) ≤F(ad(up(n)−1,uq(n)−1) + bd(up(n),up(n)−1) + cd(uq(n),uq(n)−1)
+ h(d(up(n)−1,uq(n)) + d(uq(n)−1,up(n))))
≤F(a(d(up(n)−1,up(n)) + d(up(n),uq(n)) + d(uq(n),uq(n)−1))
+ bd(up(n),up(n)−1) + cd(uq(n),uq(n)−1)
+ h(d(up(n)−1,up(n)) + d(up(n),uq(n)) + d(uq(n)−1,uq(n))
+ d(uq(n),up(n))))
=F((a + 2h)d(up(n),uq(n)) + (a + b + h)d(up(n)−1,up(n))
+ (a + c + h)d(uq(n)−1,uq(n))).

Since 0 < a + 2h ≤ 1, letting n→ +∞ in the above inequality, we get

τ + F(ϵ + 0) ≤ F(ϵ + 0)

which is a contradiction. This shows that {un}n∈N is a Cauchy sequence. Since the space (U, d) is complete,
the sequnece {un} converges to some element u in E.
Furthermore,

d(u,G) ≤ d(u,Pun) ≤ d(u,un+1) + d(un+1,Pun)
= d(u,un+1) + d(E,G)
≤ d(u,un+1) + d(u,G).

So, d(u,Pun)→ d(u,G).
Therefore, G is approximately compact with respect to E, the sequence {Pun} has a subsequence {Punk }

converging to some element v in G. So that

d(u, v) = lim
n→+∞

d(unk+1 ,Punk ) = d(E,G). (6)

Thus u must be an element of E0. Since P(E0) ⊆ G0,

d(t,Pu) = d(E,G)

for some element t in E. Using the p-property and (6), we have

d(unk+1 , t) = d(Punk ,Pu), for all nk ∈N.

If for some n0, d(t,un0+1) = 0, consequently d(Pun0 ,Pu) = 0 implies Pun0 = Pu implies d(u,Pu) = d(E,G).
Thus the enclusion is immediate.
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So let for any n ≥ 0, d(t,un+1) > 0. By our hypothesis P is a generalized proximal contraction of first kind,
we have

τ + F(d(t,un+1)) ≤ F(ad(u,un) + bd(t,u) + cd(un,un+1) + h(d(u,un+1) + d(un, t))).

Since F is strictly increasing, we obtain

d(t,un+1) ≤ ad(u,un) + bd(t,u) + cd(un,un+1) + h(d(u,un+1) + d(un, t)).

Letting n→ +∞,

d(t,u) ≤ bd(t,u) + hd(t,u)
d(t,u) ≤ (b + h)d(t,u),

this shows that u and t must be an identical. It follows, that

d(u,Pu) = d(t,Pu) = d(E,G).

To prove the uniqueness of the best proximity point. Let u∗ is an another best proximity point of the
mapping P such that

d(u∗,Pu∗) = d(E,G).

Since P is a generalized proximal contraction of the first kind, therefore

τ + F(d(u,u∗)) ≤ F((a + 2h)d(u,u∗)).

Since F is strictly increasing,

d(u,u∗) ≤ (a + 2h)d(u,u∗).

Therefore, u and u∗ must be identical. Hence, P has a unique best proximity point.

We can obtain the following corollaries from the Theorem 2.4.

Corollary 2.5. Let (U, d) be a complete metric space and (E,G) be a pair of non-empty closed subsets of (U, d). If G
is approximately compact with respect to E and P : E→ G satisfy the following proximal contraction condition:

d(u1,Pv1) = d(E,G)
d(u2,Pv2) = d(E,G)

}
implies τ + F(d(u1,u2)) ≤ F(ad(v1, v2) + bd(u1, v1) + cd(u2, v2)),

where F is strictly increasing function and a, b, c, τ > 0 with a+ b+ c = 1, c , 1, for all u1,u2, v1, v2 ∈ E and u1 , u2.
Also,
(i) P(E0) ⊆ G0 and (E,G) satisfies the p -property;
(ii) P has q-property.
Then, there exists a unique u ∈ E such that d(u,Pu) = d(E,G). Moreover, for any fixed element u0 ∈ E0, sequence
{un} defined by

d(un+1,Pun) = d(E,G),

converges to the best proximity point u.

Corollary 2.6. Let (U, d) be a complete metric space and (E,G) be a pair of non-empty closed subsets of (U, d). If G
is approximately compact with respect to E and P : E→ G satisfy the following proximal contraction condition:

d(u1,Pv1) = d(E,G)
d(u2,Pv2) = d(E,G)

}
implies τ + F(d(u1,u2)) ≤ F(d(v1, v2)),
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where F is strictly increasing function and τ > 0, for all u1,u2, v1, v2 ∈ E and u1 , u2.
Also,
(i) P(E0) ⊆ G0 and (E,G) satisfies the p -property;
(ii) P has q-property.
Then, there exists a unique u ∈ E such that d(u,Pu) = d(E,G). Moreover, for any fixed element u0 ∈ E0, sequence
{un} defined by

d(un+1,Pun) = d(E,G),

converges to the best proximity point u.

Now, we will state and prove the result for non-self generalized proximal contraction of the second kind.

Theorem 2.7. Let (U, d) be a complete metric space and (E,G) be a pair of non-empty closed subsets of (U, d). If E is
approximately compact with respect to G and P : E→ G satisfy the following conditions:
(i) P(E0) ⊆ G0 and (E,G) satisfies the p -property;
(ii) P is a continuous generalized proximal contraction of the second kind;
(iii) P has q-property.
Then, there exists a unique u ∈ E such that d(u,Pu) = d(E,G). Moreover, for any fixed element u0 ∈ E0, sequence
{un} defined by

d(un+1,Pun) = d(E,G),

converges to the best proximity point u. Further, if u∗ is another best proximity point of P, then Pu = Pu∗.

Proof. Similar to Theorem 2.4, we can construct a sequence {un} in E0 such that

d(un+1,Pun) = d(E,G), (7)

for all non-negative integer n.
From the p-property and (7) we get

d(un,un+1) = d(Pun−1,Pun), for all n ∈N.

If for some n0, d(un0 ,un0+1) = 0, consequently

d(Pun0−1,Pun0 ) = 0 implies Pun0−1 = Pun0 implies d(un0 ,Pun0 ) = d(E,G).

Thus the enclusion is immediate.
So let for any n ≥ 0, d(Pun,Pun+1) > 0. By our hypothesis P is a generalized proximal contraction of second
kind, we have

τ + F(d(Pun,Pun+1)) ≤F(ad(Pun−1,Pun) + bd(Pun−1,Pun) + cd(Pun,Pun+1)
+ h(d(Pun−1,Pun+1) + d(Pun,Pun)))
≤F(ad(Pun−1,Pun) + bd(Pun−1,Pun) + cd(Pun,Pun+1)
+ h(d(Pun−1,Pun) + d(Pun,Pun+1)))
=F((a + b + h)d(Pun−1,Pun) + (c + h)d(Pun,Pun+1)).

Since F is strictly increasing, we obtain

d(Pun,Pun+1) ≤ (a + b + h)d(Pun−1,Pun) + (c + h)d(Pun,Pun+1)
(1 − c − h)d(Pun,Pun+1) ≤ (a + b + h)d(Pun−1,Pun)

d(Pun,Pun+1) ≤

(
a + b + h
1 − c − h

)
d(Pun−1,Pun), for all n ∈N.
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Now, since a + b + c + 2h = 1 and c , 1, we obtain
a + b + h = 1 − c − h and 1 − c − h > 0 and so

d(Pun,Pun+1) ≤ d(Pun,Pun−1), for all n ∈N. (8)

This implies that d(Pun,Pun+1) is monotonic decreasing sequence in U.
Consequently,

τ + F(d(Pun,Pun+1)) ≤ F(d(Pun,Pun−1)), for all n ∈N, τ > 0
F(d(Pun,Pun+1)) ≤ F(d(Pun,Pun−1)) − τ (9)

Now again,

F(d(Pun,Pun−1)) ≤ F(d(Pun−1,Pun−2)) − τ ≤ ...
≤ F(d(Pu0,Pu1)) − nτ, for all n ∈N. (10)

Since {d(Pun,Pun+1)} is monotonic decreasing sequence, so we claim that lim
n→+∞

d(Pun,Pun+1) = 0. Put

sn = d(Pun,Pun+1). Let lim
n→+∞

d(Pun,Pun+1) = s > 0, by (9) taking n→ +∞

lim
n→+∞

F(d(Pun,Pun+1)) ≤ lim
n→+∞

F(d(Pun,Pun−1)) − τ

F(s) ≤ F(s) − τ < F(s), τ > 0

we get contradiction. This implies

lim
n→+∞

d(Pun,Pun+1) = 0 implies sn → 0 as n→ +∞. (11)

Now, we have to show that {Pun}n∈N is a Cauchy sequence. For this we shall use contrapositive method.
By assuming that there exists ϵ > 0 and sequences {p(n)}n∈N and {q(n)}n∈N of positive integers such that
p(n) > q(n) > n,

d(Pup(n),Puq(n)) > ϵ, d(Pup(n)−1,Puq(n)) ≤ ϵ, for all n ∈N.

Then, we have

ϵ < d(Pup(n),Puq(n)) ≤ d(Pup(n),Pup(n)−1) + d(Pup(n)−1,Puq(n))
≤ d(Pup(n),Pup(n)−1) + ϵ.

It follows from (11) and the above inequality that

lim
n→+∞

d(Pup(n),Puq(n)) = ϵ.

By the q-property, we have

d(up(n),Pup(n)−1) = d(E,G)
d(uq(n),Puq(n)−1) = d(E,G)

}
implies
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τ + F(d(Pup(n),Puq(n))) ≤F(ad(Pup(n)−1,Puq(n)−1) + bd(Pup(n),Pup(n)−1)
+ cd(Puq(n),Puq(n)−1) + h(d(Pup(n)−1,Puq(n))
+ d(Puq(n)−1,Pup(n))))
≤F(a(d(Pup(n)−1,Pup(n)) + d(Pup(n),Puq(n))
+ d(Puq(n),Puq(n)−1)) + bd(Pup(n),Pup(n)−1)
+ cd(Puq(n),Puq(n)−1) + h(d(Pup(n)−1,Pup(n))
+ d(Pup(n),Puq(n)) + d(Puq(n)−1,Puq(n))
+ d(Puq(n),Pup(n))))
=F((a + 2h)d(Pup(n),Puq(n)) + (a + b + h)d(Pup(n)−1,Pup(n))
+ (a + c + h)d(Puq(n)−1,Puq(n))).

Since 0 < a + 2h ≤ 1, letting n→ +∞ in the above inequality, we get

τ + F(ϵ + 0) ≤ F(ϵ + 0)

which is a contradiction. This shows that {Pun}n∈N is a Cauchy sequence. Since the space (U, d) is complete,
the sequnece {Pun} converges to some element v in G.
Furthermore,

d(v,E) ≤ d(v,un+1) ≤ d(v,Pun) + d(Pun,un+1)
= d(v,Pun) + d(E,G)
≤ d(v,Pun) + d(v,E).

So, d(v,un)→ d(v,E).
Therefore, E is approximately compact with respect to G, the sequence {un} has a subsequence {unk } con-
verging to some element u in E. So that

d(u,Pu) = lim
n→+∞

d(un+1,Pun) = d(E,G). (12)

To prove the uniqueness of the best proximity point. Let u∗ is an another best proximity point of the
mapping P such that

d(u∗,Pu∗) = d(E,G).

Since P is a generalized proximal contraction of the second kind, therefore

τ + F(d(Pu,Pu∗)) ≤ F((a + 2h)d(Pu,Pu∗)).

Since F is strictly increasing,

d(Pu,Pu∗) ≤ (a + 2h)d(Pu,Pu∗).

Therefore, u and u∗ must be identical. Hence, P has a unique best proximity point.

We can obtain the following corollaries from the Theorem 2.7.

Corollary 2.8. Let (U, d) be a complete metric space and (E,G) be a pair of non-empty closed subsets of (U, d). If E is
approximately compact with respect to G and P : E→ G satisfies the following proximal contraction condition:

d(u1,Pv1) = d(E,G)
d(u2,Pv2) = d(E,G)

}
implies τ + F(d(Pu1,Pu2)) ≤ F(ad(Pv1,Pv2) + bd(Pu1,Pv1) + cd(Pu2,Pv2)),
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where F is strictly increasing function and a, b, c, τ > 0 with a + b + c = 1, c , 1, for all u1,u2, v1, v2 ∈ E and
Pu1 , Pu2.
Also,
(i) P(E0) ⊆ G0 and (E,G) satisfies the p -property;
(ii) P has q-property.
Then, there exists a unique u ∈ E such that d(u,Pu) = d(E,G). Moreover, for any fixed element u0 ∈ E0, sequence
{un} defined by

d(un+1,Pun) = d(E,G),

converges to the best proximity point u. Further, if u∗ is another best proximity point of P, then Pu = Pu∗.

Corollary 2.9. Let (U, d) be a complete metric space and (E,G) be a pair of non-empty closed subsets of (U, d). If E is
approximately compact with respect to G and P : E→ G satisfies the following proximal contraction condition:

d(u1,Pv1) = d(E,G)
d(u2,Pv2) = d(E,G)

}
implies τ + F(d(Pu1,Pu2)) ≤ F(d(Pv1,Pv2)),

where F is strictly increasing function and τ > 0, for all u1,u2, v1, v2 ∈ E and Pu1 , Pu2.
Also,
(i) P(E0) ⊆ G0 and (E,G) satisfies the p -property;
(ii) P has q- property.
Then, there exists a unique u ∈ E such that d(u,Pu) = d(E,G). Moreover, for any fixed element u0 ∈ E0, sequence
{un} defined by

d(un+1,Pun) = d(E,G),

converges to the best proximity point u. Further, if u∗ is another best proximity point of P, then Pu = Pu∗.

Our next result is for non-self generalized proximal contractions of the first kind as well as second kind
without the assumption of approximately compactness of the domains or the co-domain of the mappings.

Theorem 2.10. Let (U, d) be a complete metric space and (E,G) be a pair of non-empty closed subsets of (U, d). Let
P : E→ G satisfy the following conditions:
(i) P(E0) ⊆ G0 and (E,G) satisfies the p -property;
(ii) P is a generalized proximal contraction of the first kind as well as a second kind;
(iii) P has q-property.
Then, there exists a unique element u ∈ E such that d(u,Pu) = d(E,G). Moreover, for any fixed element u0 ∈ E0,
sequence {un} defined by

d(un+1,Pun) = d(E,G),

converges to the best proximity point u. Further, if u∗ is another best proximity point of P, then Pu = Pu∗.

Proof. Similar to Theorem 2.4, we can construct a sequence {un} in E0 such that

d(un+1,Pun) = d(E,G), (13)

for all non-negative integer n, P(E0) ⊆ G0. Similar to Theorem 2.4, we can show that sequence {un} is a
Cauchy sequence. Thus converges to some element u in E. As in Theorem 2.7, it can be shown that the
sequence {Pun} is a Cauchy sequence and converges to some element v in G. Therefore,

d(u, v) = lim
n→+∞

d(un+1,Pun) = d(E,G). (14)

Thus, u becomes an element of E0. Since P(E0) ⊆ G0,

d(t,Pu) = d(E,G)
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for some element t in E. Using the p-property and (14), we have

d(un+1, t) = d(Pun,Pu), for all nk ∈N.

If for some n0, d(t,un0+1) = 0, consequently d(Pun0 ,Pu) = 0 implies Pun0 = Pu, hence d(E,G) = d(u,Pu). Thus
the enclusion is immediate.
So let for any n ≥ 0, d(t,un+1) > 0. Since P is a generalized proximal contraction of first kind, it follows from
this that

τ + F(d(t,un+1)) ≤ F(ad(u,un) + bd(t,u) + cd(un,un+1) + h(d(u,un+1) + d(un, t))).

Since F is strictly increasing, we have

d(t,un+1) ≤ ad(u,un) + bd(t,u) + cd(un,un+1) + h(d(u,un+1) + d(un, t)).

As n→ +∞,

d(t,u) ≤ bd(t,u) + hd(t,u)
d(t,u) ≤ (b + h)d(t,u),

which implies that u and t must be identical. It follows, that

d(u,Pu) = d(t,Pu) = d(E,G).

Also, as in the Theorem 2.4 , the uniqueness of the best proximity point of mapping P follows.

Example 2.11. Let U = R2 and d be a metric defined on U by

d((u1,u2), (v1, v2)) = |u1 − v1| + |u2 − v2|, for all (u1,u2), (v1, v2) ∈ R2

and (U, d) be a complete metric space. Let F : R+ → R defined by F(t) = 2t, which is increasing function.
Let E = {(e, 0) : e ≥ 0} and G = {(1, 1) : 1 ≥ 0}. Here we have E = E0 and G = G0. Let P : E → G be a mapping
defind by, for each (e, 0) ∈ E,

P((e, 0)) = (T(e), 1),

where

T(e) =
e

1 + e
.

Consider,

un =
(1

n
, 0

)
,n ∈N.

P(un) = P
((1

n
, 0

))
=

(
T
(1

n

)
, 1

)
implies P(un) =

( 1
1 + n

, 1
)

Consider unk =
(

1
2k , 0

)
and umk =

(
1
3k , 0

)
where 3k > 2k > n.

d
(
unk ,umk

)
= d

(( 1
2k
, 0

)
,
( 1

3k
, 0

))
=

∣∣∣∣∣ 1
2k
−

1
3k

∣∣∣∣∣
→ 0 as k→ +∞.
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Now,

d
(( 1

2k
, 0

)
,P

( 1
2k − 1

, 0
))
= d

(( 1
2k
, 0

)
,
(
T
( 1

2k − 1

)
, 1

))
= d

(( 1
2k
, 0

)
,
( 1

2k
, 1

))
=

∣∣∣∣∣ 1
2k
−

1
2k

∣∣∣∣∣ + |0 − 1|

= 1 = d(E,G).

Similarly,

d
(( 1

3k
, 0

)
,P

( 1
3k − 1

, 0
))
= 1 = d(E,G).

Hence, P satisfies q-property. Now, it is clear that, for each x, y ≥ 0,

|T(x) − T(y)| =
∣∣∣∣∣ x
1 + x

−
y

1 + y

∣∣∣∣∣
=

∣∣∣∣∣ x − y
(1 + x)(1 + y)

∣∣∣∣∣
≤

∣∣∣x − y
∣∣∣ .

Hence, E is approximately compact with respect to G, (E,G) satisfies the p-property, P is continuous and P(E0) ⊆ G0.
Now r, s, i, j ∈ E such that d(r,Pi) = d(E,G) and d(s,Pj) = d(E,G). Let i = (e1, 0) and j = (e2, 0) for some e1, e2 ≥ 0.
So

r = (T(e1), 1) =
( e1

1 + e1
, 1

)
, s = (T(e2), 1) =

( e2

1 + e2
, 1

)
.

We obtain that

d(Pr,Ps) = d
(
P
( e1

1 + e1
, 1

)
,P

( e2

1 + e2
, 1

))
= d

((
T
( e1

1 + e1

)
, 1

)
,
(
T
( e2

1 + e2

)
, 1

))
=

∣∣∣∣∣T ( e1

1 + e1

)
− T

( e2

1 + e2

)∣∣∣∣∣
=

∣∣∣∣∣ e1

1 + 2e1
−

e2

1 + 2e2

∣∣∣∣∣ .
and

d(Pi,Pj) = d(P(e1, 0),P(e2, 0))
= d((T(e1), 1), (T(e2), 1))

= d
(( e1

1 + e1
, 1

)
−

( e2

1 + e2
, 1

))
=

∣∣∣∣∣ e1

1 + e1
−

e2

1 + e2

∣∣∣∣∣
Now,

τ + F(d(Pr,Ps)) ≤ F(ad(Pi,Pj)) if c, b, h = 0
τ + 2(d(Pr,Ps)) ≤ 2ad(Pi,Pj)

τ + 2
∣∣∣∣∣ e1

1 + 2e1
−

e2

1 + 2e2

∣∣∣∣∣ ≤ 2a
∣∣∣∣∣ e1

1 + e1
−

e2

1 + e2

∣∣∣∣∣
τ + 2

∣∣∣∣∣ e1

1 + 2e1
−

e2

1 + 2e2

∣∣∣∣∣ ≤ 2
∣∣∣∣∣ e1

1 + e1
−

e2

1 + e2

∣∣∣∣∣ , if a = 1
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When we put e1 = 0 and e2 = 1 we get τ ∈ (0, 1
3 ). Hence P is a generalized proximal contraction of second kind.

Thus, all the condition of Theorem 2.7 are satisfied. Hence P has a unique best proximity point (0, 0).
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